
Solving Offline Reinforcement Learning with
Decision Tree Regression

Prajwal Koirala
Iowa State University

prajwal@iastate.edu

Cody Fleming
Iowa State University

flemingc@iastate.edu

Abstract: This study presents a novel approach to addressing offline reinforce-
ment learning (RL) problems by reframing them as regression tasks that can be
effectively solved using Decision Trees. Mainly, we introduce two distinct frame-
works: return-conditioned and return-weighted decision tree policies (RCDTP and
RWDTP), both of which achieve notable speed in agent training as well as infer-
ence, with training typically lasting less than a few minutes. Despite the simpli-
fication inherent in this reformulated approach to offline RL, our agents demon-
strate performance that is at least on par with the established methods. We evaluate
our methods on D4RL datasets for locomotion and manipulation, as well as other
robotic tasks involving wheeled and flying robots. Additionally, we assess perfor-
mance in delayed/sparse reward scenarios and highlight the explainability of these
policies through action distribution and feature importance.

Keywords: Offline Reinforcement Learning, Decision Trees

1 Introduction

There have been many attempts to transcribe a reinforcement learning (RL) problem into a super-
vised learning (SL) problem [1, 2, 3, 4, 5]. The motivation behind this transformation primarily
stems from two key factors. First, by treating RL as a SL task, the training process tends to show
improved stability due to reduced susceptibility to the challenges associated with non-stationary
targets. This facilitates smoother convergence. Second, the use of a true supervised learning objec-
tive enhances data efficiency, preventing it from becoming ‘stale’ after a single learning step. This
enables agents to learn more quickly and effectively from their experiences.

However, the distinction between these two learning paradigms (SL and RL) lies in the nature of
the feedback signals they utilize. In supervised learning, the error signal, typically represented as
loss or cost, is generated from labeled data and minimized through gradient descent algorithms.
Conversely, reinforcement learning relies on an evaluation signal provided by the environment, such
as reward or return, which require special treatment depending on the setting. For example, Deep
Q Networks try to estimate the Q-value of the state-action pair based on the evaluation signal, and
Policy Gradient Methods adjust the action probabilities to optimize the policy accordingly [6, 7,
8]. Contemporary state-of-the-art reinforcement learning approaches often seek to encapsulate this
specialized treatment through sophisticated loss functions that involve the evaluation signal term,
enabling minimization akin to error signals in supervised learning paradigms.

The traditional online learning paradigm of RL involves iteratively collecting experience by inter-
acting with the environment and using that experience to improve the policy [9]. However, in recent
years, offline reinforcement learning has emerged as a promising approach in robot learning, par-
ticularly due to its utilization of previously collected data without the need for continuous online
data collection. This circumvents the impracticality and expense associated with continuous data
gathering in many settings. By leveraging stationary historical data, offline RL enables agents to
learn without direct interaction with the environment during training, thereby transforming large

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

datasets into powerful decision-making engines. While the static nature of the dataset allows of-
fline RL to be treated as a supervised learning problem—an apparently advantageous prospect—it
also introduces the challenge of covariate shift, the disparity between the data distribution and the
learned policy distribution, which necessitates a more careful handling [10]. In contrast to offline
RL, imitation learning algorithms like Behavior Cloning (BC) and its variants treat the static dataset
as labeled data (states as features and actions as labels), often disregarding the evaluation signal
[11, 12, 13, 14]. Although Kumar et al. [15], in their comparison of Conservative Q-Learning (CQL
[16]) with Behavior Cloning, highlight the capability of offline RL algorithms to derive effective
policies even from suboptimal data, showcasing superiority over BC algorithms in conditions with
sparse rewards or noisy datasets, in many cases Behavior Cloning (BC) outperforms offline RL al-
gorithms. In addition, BCs offer faster training, minimalistic loss function with no requirement of
‘special treatment’, and are less sensitive to hyperparameter tuning compared to CQL [17].

In this context, we propose transforming a reinforcement learning task in an offline setting into a
simple regression objective, allowing us to leverage decision trees, which have shown strong perfor-
mance in regression and classification tasks, often providing a viable alternative to neural networks.
By employing an ‘extreme’ gradient boosting algorithm for regression over actions space, we train
the agent’s policy as an ensemble of weak policies, achieving rapid training times of mere minutes,
if not seconds. Besides replacing neural networks as the default function approximators in RL,
our paper also introduces two offline RL frameworks: Return Conditioned Decision Tree Policy
(RCDTP) and Return Weighted Decision Tree Policy (RWDTP). These methods embody simpli-
fied modeling strategies, expedited training methodologies, faster inference mechanisms, and
require minimal hyperparameter tuning, while also offering explainable policies. We conduct
comprehensive comparisons with prior methods, discuss the use cases of our proposed methods,
and also assess our model’s performance in scenarios with delayed and sparse rewards using D4RL
benchmark tasks. Finally, we explore the applicability of our methods in robot learning and real-time
control of dynamical systems, highlighting their potential in practical settings.

0 100 200 300 400 500
Timesteps

0.1

0.0

0.1

Ca
rtp

ol
e

An
gl

e

RWDTP
RCDTP

(a) Cartpole (Discrete)

0 50 100 150 200
Timesteps

2

0

2

Pe
nd

ul
um

 A
ng

le RWDTP
RCDTP

(b) Pendulum (Continuous)
Figure 1: Decision Tree Policies in Classical Control Environments with Different Action Spaces.
Both methods achieve expert-level returns in both environments using medium-level demonstration
datasets from d3rlpy [18], with all trainings completed within a second.

2 Preliminaries and Related Works

2.1 Offline Reinforcement Learning

Reinforcement learning (RL) is a mathematical framework for learning-based control, where an
agent learns to optimize user-specified reward functions by acquiring near-optimal behavioral skills,
represented by policies. This process typically involves iteratively collecting experience by interact-
ing with the environment and using that experience to improve the policy.

Offline RL focuses on learning policies from a static dataset without any active data collection. In-
stead of obtaining data via environment interactions like in online RL, the agent only has access to a
fixed, limited dataset consisting of trajectory rollouts from an arbitrary behavior policy (or policies).
The inability of the agent to further explore the environment and collect additional feedback makes
it a challenging form of learning-based decision making and control.

2

The environment in a sequential decision-making setting like RL is typically defined as a Markov
Decision Process (MDP), represented as the tuple (S,A,P,R), where S is the state space, A is the
action space, P is the state transition probability function and R is the reward function. For some
s, s′ ∈ S and a ∈ A, P(s′|s, a) : S × S ×A → [0, 1] andR(s, a, s′) : S ×A× S → R.

A trajectory of time-length T is made up of a sequence of states, actions, and rewards (τ =<
st, at, rt >

T
t=0). The reward at any timestep is usually the function of the state, action and the next

state. The return at timestep t, Rt, is the discounted sum of future rewards with discount factor γ:
Rt(< rt >, γ) =

∑T
k=t γ

k−trk. The return-to-go (RTG) at a timestep is defined as the undiscounted
sum of future rewards from that timestep (RTG= Rt(< rt >, γ = 1)). The goal in RL (including
offline RL) is to learn a policy that maximizes the expected return in an MDP.

2.2 Decision Tree Regression

Regression analysis aims to establish a relationship between a vector of independent variables (say
s) and a vector of dependent variables (say a) by determining appropriate coefficients or parameters
to model their association. We seek to minimize the sum of squared residuals between a and â, where
â is the prediction of the model parameterized by θ. Formally, we define the optimization problem as
follows: θ∗ = argminθ

∑n
i=1 (ai − âi(si;θ))

2, where, θ∗ represents the optimal parameters that
minimize the sum of the squared differences between the actual values ai and the predicted values
âi across all observations i = 1, . . . , n.

A powerful approach to solving this regression problem is using regression trees, particularly
through the XGBoost algorithm [19, 20, 21]. XGBoost, short for Extreme Gradient Boosting, con-
structs an ensemble of decision trees to model the relationship between s and a. This method itera-
tively improves the model by minimizing the objective function using a gradient-based optimization
approach. Mathematically, the model output â in XGBoost is expressed as the sum of predictions
from K individual regression trees: âi =

∑K
k=1 fk(si), where each fk represents a regression tree

parameterized by its structure and leaf weights.

The objective function (L) in XGBoost includes a regularization term to penalize model complexity,
thereby preventing overfitting. The formal objective function to be minimized is:

L =

n∑
i=1

(ai − âi)
2
+

K∑
k=1

Ω(fk) (1)

where Ω(fk) is the regularization term for the k-th tree, dependent on number of leaves and the
weight of the leaves. So each tree fk is optimized to correct the errors of the previous trees, resulting
in a highly accurate and robust regression model. Furthermore, XGBoost incorporates techniques
such as sparsity-aware algorithms for sparse data and weighted quantile sketch for approximate tree
learning. It optimizes cache access, data compression, and sharding to build a scalable tree-boosting
system, making it faster and more scalable than traditional boosting methods, even for large datasets
with limited resources [21, 22].

2.3 Related Works

Several approaches have been explored for explainable policy learning, often using decision tree-
based methods [23, 24, 25, 26]. Differentiable decision trees (DDTs) is a framework that integrates
policy gradient [25], showing that such online-trained policies outperform MLP policies in both
performance and confirmed usability and interpretability by a user-study with Likert scale ratings.
Similarly, [27] examined neural policies’ interpretability through disentanglement, extracting ab-
stractions via decision trees based on neuron responses to provide clearer insights into the learned
policies of robots.

RWDTP: Advantage-weighted regression (AWR) is an actor-critic algorithm that trains through
supervised regression, showing strong performance in both online and offline settings [5]. AWR
involves two supervised learning steps: regressing onto target values for the value function and

3

regressing onto weighted target actions for the policy. Initially introduced as an off-policy online
algorithm, AWR uses advantage-weighted updates to improve the policy. TD3+BC combines the
Twin Delayed Deep Deterministic Policy Gradients (TD3 [28]) algorithm with behavior cloning in
the offline setting [29]. It adds a simple regression loss to the TD3 loss, regularizing the policy by
cloning the behavior observed in the dataset.

Some prevalent approaches focus on reprioritizing the sampling of offline data to improve training.
Return-based Data Resample (ReD) adjusts the probability of sampling each transition in the dataset
according to its episodic return [30]. BAIL learns a V-function to select high-performing actions,
which are then used to train the policy network using imitation learning [31]. Similarly, Offline
Prioritized Experience Replay (OPER) employs priority functions to prioritize highly-rewarding
transitions, ensuring they are more frequently visited during training [32, 33].

RCDTP: Upside-down reinforcement learning redefines cumulative rewards as inputs rather than
predictions and adopts a ‘true’ supervised learning objective, ensuring stable and consistent learn-
ing targets [3]. This marks a shift in reinforcement learning methodologies by transforming how
rewards and learning objectives are utilized [34]. An important work in this line, Decision Trans-
former (DT [4]), frames offline RL as a return-conditioned sequence modeling problem [35]. This
eliminates the need for bootstrapping for long-term credit assignment and avoids discounting future
rewards, preventing short-sighted decisions. Janner et al. [36] utilize a diffusion model (DDPM [37])
for trajectory generation, offering flexible behavior synthesis and variable-length planning. The de-
noising process allows flexible conditioning: either by using gradients of an objective function to
bias plans toward high-reward regions or by conditioning on a specified goal. The guidance of the
return-conditioning model is then injected into the reverse sampling stage. Despite being significant
milestones in using Generative Models in RL, DT and Diffuser results often do not surpass ‘conven-
tional’ methods like CQL and behavior cloning, even with larger models and increased training and
inference times.

3 RWDTP and RCDTP frameworks

Training an off-policy reinforcement learning (RL) algorithm typically involves training a critic net-
work to approximate the value function while simultaneously training an actor network to maximize
this value. However, due to the lack of fresh interactions with the environment, the actor can learn
out-of-distribution (OOD) actions that falsely appear to maximize the approximate value function
due to estimation errors related to these actions. Contemporary offline RL algorithms address this
overestimation problem through several strategies: regularizing the value function [16, 38, 39], con-
straining the action distribution [29, 40, 41], or avoiding the querying of out-of-distribution actions
while training [4, 42, 43]. The decision tree policies (DTPs) trained in this study adopt the third
strategy; as they do not rely on a value function, no OOD actions are queried while training them.

RWDTP: The policy is deterministic and is conditioned on the state, represented as ât = π(st; θ).
The corresponding regression objective is:

JRWDTP (π) =

N∑
n=1

(an − π(sn; θ))
2R̃p

n (2)

where, N is the number of datapoints in the dataset, R̃n ∈ [0, 1] is the discounted sum of future
rewards normalized over the dataset and p is a hyper-parameter that adjusts the distribution of R̃n as
an exponent. Mathematically, for a reward of rt at timestep t in a trajectory of length T :

R̃t =
Rt −minN{Rn}

maxN{Rn} −minN{Rn}
and Rt =

T∑
k=t

γk−trk

RCDTP: In RCDTP, the action is conditioned on the return-to-go, and timestep in addition to
the state. Return to go (RTG) for a timestep is the undiscounted sum of future rewards from that

4

timestep (i.e Rt =
∑T

t rt). The policy is represented as ât = π(st, Rt, t; θ). The corresponding
regression objective is:

JRCDTP (π) =

N∑
n=1

(an − π(sn, Rn, tn; θ))
2 (3)

Optimal Policy: For both RWDTP and RCDTP, the optimal policy is obtained by solving the
unconstrained minimization problem:

π∗
θ(·) = argminπθ

J(πθ) (4)

A neural network aimed at minimizing the cost J as described in equations 2 and 3 typically employs
gradient descent or a similar method, updating the model parameters θ through the iterative rule
θ ← θ − α∇θJ .

However, when using decision trees, the gradients and Hessians need to be calculated with respect
to the model output (â) at every boosting round [21], rather than the model parameter θ. These
gradients and Hessians are then utilized in constructing additional trees until convergence. The
output of the decision tree associated with the kth boosting round, with observations at step i, is
given as âki := πk(si, Ri, i). The final policy will consist of a sum of such outputs,

π(·) =
K∑

k=1

πk(·), (5)

for some fixed training budget, K, where each policy πk is referred to as a weak policy and is
optimized according to the second-order approximation in equation 6 and using standard techniques
for decision-tree splitting and optimization [21].

πk = argminπ

N∑
i=1

[
∇âk−1J · π(·) + 1

2
∇2

âk−1J · π(·)2
]
. (6)

Policy Training Implementation: In this study, we use the Extreme Gradient Boosting (XG-
BOOST) algorithm to fit the decision tree policies. RWDTP has four training hyperparameters: the
discount factor (γ), the power applied to the normalized return, the number of weak policies/trees
to be constructed, and the maximum depth of these trees. With the discount factor and return-power
both set to 1, RCDTP has only two training hyperparameters. Additionally, RCDTP employs a
runtime hyperparameter set at the beginning of the episode, the target return, which conditions the
policy. This target return is the total return the agent is prompted to collect within the episode and is
updated at each step by subtracting the reward obtained in the previous step (RTarget

t+1 = RTarget
t − rt).

4 Experimental Results

4.1 Gym Mujoco Locomotion

This section focuses on the results in Gym-Mujoco environments with the D4RL datasets [44],
specifically Walker2d-v2, Hopper-v2, and Halfcheetah-v2. We include comparisons across four
kinds of datasets commonly used for benchmarking: medium, medium replay, medium-expert, and
expert. Medium and expert datasets are generated from rollouts of ‘medium’ and ‘expert’ perfor-
mance policies, respectively, trained with Soft Actor-Critic. Medium-expert datasets are created by
combining medium datasets with expert datasets, while medium-replay datasets consist of replay
buffers generated during the training of medium policies.

Table 1 presents a comparison involving recent baselines EDAC and SAC-N, which exhibit superior
performance in these tasks, alongside the conventional and widely used baseline, CQL [45, 16]. The
mean and standard deviations are calculated from evaluations across five seeds. The training is per-
formed on hardware comprising an Intel Core i9-13900KF CPU and an NVIDIA RTX 4090 GPU

5

Table 1: Results on Gym-MuJoCo Locomotion Tasks (All experiments are run by the authors.)
Environment Dataset RWDTP RCDTP EDAC SAC-N CQL
HalfCheetah Medium 42.11 ± 1.07 41.44 ± 0.72 67.85 69.04 31.72

Medium-Replay 40.03 ± 1.75 40.08 ± 0.43 63.52 63.39 44.81
Medium-Expert 85.40 ± 4.64 86.22 ± 3.85 49.73 61.53 27.20

Expert 90.70 ± 1.74 91.24 ± 0.45 2.02 1.67 96.65
Hopper Medium 55.01 ± 3.51 61.52 ± 7.5 102.39 9.68 77.42

Medium-Replay 84.10 ± 9.63 83.88 ± 7.25 98.20 101.02 91.70
Medium-Expert 111.24 ± 0.84 111.13 ± 1.63 32.55 39.59 27.29

Expert 111.39 ± 1.29 110.92 ± 0.76 48.62 1.27 103.29
Walker2d Medium 79.48 ± 8.80 79.62 ± 7.2 90.91 88.01 60.13

Medium-Replay 60.96 ± 22.81 75.02 ± 8.49 80.55 81.12 82.32
Medium-Expert 109.16 ± 0.37 85.99±8.522 106.69 116.18 44.36

Expert 108.60 ± 0.75 108.15 ± 0.38 20.39 1.02 107.58
Average Training Time 20.79 ± 14.44 s. 104.14 ± 115.90 s. ≥ 1hr. ≥ 1hr. ≥ 1hr.

(24 GB), with computational resources for baselines restricted to one hour on the GPU to ensure
a fair comparison. Two primary reasons motivate this approach: first, SAC-N, with a large num-
ber of critics and sufficient gradient steps, can outperform all other methods in locomotion tasks,
necessitating an equitable comparison; second, our method emphasizes time-efficient training, thus
necessitating performance assessment in a resource-limited setting. Interestingly, baseline perfor-
mance sometimes improved under these constraints compared to the results reported in [46], where
complete training results and additional baseline data are also available. RWDTP and RCDTP were
trained on a CPU, completing training in just a few minutes, and demonstrated excellent perfor-
mance, particularly in medium-expert and expert datasets. More experiments on enhancing DTP
performance in the non-expert regime are discussed in Appendix A.7.

4.2 Gym Robot Manipulation - Adroit and Kitchen Tasks

The Adroit domain involves controlling a 24-DoF robotic hand, and includes four tasks: pen, door,
hammer, and relocate. Each task presents unique challenges that require precise robotic manipula-
tion and control. This section includes comparative results from PLAS [47], an offline RL algorithm
excelling in manipulation tasks, alongside other baselines [38, 41] employed by PLAS.

Table 2: Results on Adroit Manipulation Tasks (Baseline results are from [17, 46, 47]).
Environment Dataset RWDTP RCDTP EDAC SAC-N CQL BCQ PLAS

Pen Expert 120.65 ± 32.81 112.21 ± 25.04 -1.55 87.11 -1.41 114.9 120.7
Door Expert 105.00 ± 0.67 106.42 ± 0.25 106.29 -0.33 -0.32 99.0 104.2

Hammer Expert 126.00 ± 2.28 125.23 ± 1.02 28.52 28.13 0.26 107.2 127.1
Relocate Expert 110.62 ± 1.83 109.72 ± 2.19 71.94 -0.36 -0.30 41.6 106.9

Franka Kitchen is a multitask environment featuring a 9-DoF Franka robot placed in a kitchen with
some common household items. This is a sparse-reward manipulation setup with limited baselines
for comparison across its three D4RL datasets: complete, partial, and mixed.

Table 3: Results on Franka Kitchen (Baseline results are from [47]).
Environment Dataset RWDTP RCDTP BEAR BCQ PLAS

Kitchen Complete 50.0 ± 0.0 60.0 ± 12.25 0.0 8.1 34.8
Partial 45.0 ± 24.49 40.0 ± 12.25 13.1 18.9 43.9
Mixed 50.0 ± 0.0 45.0 ± 24.5 47.2 8.1 40.8

4.3 Racecar Gym and Pybullet Drones

Figure 2a compares RCDTP with the Decision Transformer (DT [4]) in the F1tenth racing scenario
where the total rewards is measured based on the percentage progress made on the specific race-
track/environment [48, 49]. Both return-conditioned methods are trained exclusively on a dataset
from the Austria environment and their performance is tested in other racetracks. They rely solely
on lidar and velocity observation without prior track-specific knowledge. RCDTP outperforms the
Decision Transformer in this seen-to-unseen transferability test.

6

Austria Barcelona Berlin Columbia Torino Treitlstrasse
0

20

40

60

80

100

To
ta

l R
ew

ar
ds

RCDTP
DT

(a) Racecar Gym

0 50 100 150 200 250
Timestep

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Dr
on

e
He

ig
ht

Dataset
RWDTP (1.0)
RWDTP (0.8)
RWDTP (0.6)

(b) Pybullet Drones
Figure 2: Decision Tree Policies Applied to Wheeled and Flying Robots for Assessment of Zero-
Shot Transfer of the Learned Policy. (a) Return-conditioning in Different F1tenth Racetracks. (b)
Goal-conditioning for Different Heights Using RWDTP in the Pybullet Drones Simulation.

Figure 2b demonstrates the Pybullet drones simulation, where the objective is to hover at a certain
height [50]. Although the observation space is 27-dimensional, only the height (z dimension) is
shown for clarity. With a suboptimal demonstration dataset for hovering at 1m, we investigate
whether the same dataset can train a decision tree policy to make the drone hover at a different
height. By slightly modifying the observation space of RWDTP to incorporate the goal height,
the policy can successfully transfer to hover at different heights without additional data collection,
showcasing the generalization ability of decision tree policies.

5 Discussions

5.1 How do decision tree policies perform in delayed reward scenario?

In delayed reward scenarios where the agent receives 0 reward for all timesteps except the last one
when it receives the cumulative reward, excelling requires strong long-term planning and effective
use of past experiences. Unlike Q-learning variants, Behavior Cloning (BC) is agnostic to this
delayed-reward transformation, and our experimental results in 4 show that RWDTP also remains
nearly invariant. DTP-BC represents behavior cloning with decision trees and BC results are from
the work of Tarasov et al. [17].

Table 4: Performance drop on delayed rewards scenarios
Dataset Hopper-M Hopper-MR Hopper-ME Hopper-E
RWDTP 53.96 ± 6.01 ↓ 2% 78.89 ± 20.58 ↓ 6% 110.37 ± 0.64 ↓ 1% 110.67 ± 0.29 ↓ 1%
RCDTP 49.78 ± 1.21 ↓ 19% 52.91 ± 10.68 ↓ 37% 46.65 ± 6.77 ↓ 58% 111.92 ± 0.82 ↑ 1%
100% BC 53.51 ± 1.76 0% 29.81 ± 2.07 0% 52.30 ± 4.01 0% 110.85 ± 1.02 0%

100% DTP-BC 49.33 ± 4.04 0% 23.08 ± 8.46 0% 53.26 ± 6.04 0% 110.68 ± 0.784 0%

5.2 Are decision tree policies only as effective as BC?

In the maze2d environment, a sparse-reward gym robotics environment, both RCDTP and RWDTP
significantly outperform the Behavior Cloning (BC) variations, including Decision Transformer
(DT) and behavior cloning with decision trees (DTP-BC), demonstrating superior long-term plan-
ning and utilization of past experiences (table 5).

Table 5: Results on Maze2d Against %BC
Environment Dataset RWDTP RCDTP 100% DTP-BC 100% BC 50% BC 10% BC DT

Maze2d Umaze 64.74 ± 6.31 101.61 ± 30.91 9.38 ± 16.45 0.36 ± 8.69 4.02 ± 17.39 12.18 ± 4.29 18.08 ± 25.42
Medium 56.51 ± 15.8 63.37 ± 56.02 11.61 ± 8.77 0.79 ± 3.25 11.15 ± 8.06 14.25 ± 2.33 31.71 ± 26.33

Large 76.96 ± 20.57 73.66 ± 26.86 3.85 ± 8.94 2.26 ± 4.39 -4.97 ± 0 11.32 ± 5.10 35.66 ± 28.20

5.3 How fast are decision tree policies in comparision to Sequence Modeling counterparts?

Table 6 presents a comparative analysis of our regression-based methods versus sequence modeling
approaches, specifically Decision Transformer (DT [4]) and Trajectory Transformer (TT [43]). This
comparison in Hopper expert datasets evaluates performance on the same seed, focusing on training
time, inference time, and normalized returns. To match the performance of the regression-based

7

models, DT was trained for 30k gradient steps and TT for 10 epochs. Our key findings show that
the CPU training time for RWDTP and RCDTP is less than 1% of the GPU training time for DT and
TT. In average, the training time for decision tree polices are less than the inference time for TT on
the same CPU device. Appendix A.6 includes similar comparisons to other baselines.

Table 6: Training and Inference Time Comparison Against DT and TT
Dataset Hopper Expert
Method RWDTP RCDTP DT TT

Training Device CPU CPU GPU GPU
Training Time (µ) 9.64s 11.36s 2896.67s 1961.87s

(σ) 1.94s 2.09s 34.29s 1.34s
Inference Device CPU CPU CPU CPU

Inference Time (µ) 3.15e-4s 2.57e-4s 2.30e-2s 12.83s
(σ) 1.29e-3s 5.63e-4s 3.63e-2s 1.11s

Normalized Returns 111.81 113.68 116.25 110.82

5.4 Do RCDTP and RWDTP learn to prioritize similar features and predict similar actions?

Figure 3a shows the distribution of the action distance (||aA−aB ||2) evaluated over the observations
in the Hopper-Expert dataset, where A and B are two different policies/sources. Our empirical ex-
periments indicate that RCDTP and RWDTP may learn different policies depending on the dataset
type, as they are conditioned on different inputs despite using similar regression objectives. How-
ever, the features that they learn to prioritize are fairly consistent. Feature-importance analysis in
Hopper observation space reveals that both models prioritize the angular velocity and the angle of
the foot joint the most when predicting the actions (figure 3b). These features closely correspond to
the torque applied to the foot rotor in the action space.

0.0 0.4 0.8 1.2 1.6 2.0
Action Distance

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

RWDTP-Dataset
RCDTP-Dataset
RWDTP-RCDTP

(a) Actions Distribution

foot foot ztorso ztorso torso
0.0

0.1

0.2

0.3

W
ei

gh
ts

1

2

3
4 5

1

2

5 6 4

Weight and rank assigned by:
RWDTP
RCDTP

(b) Feature Importance
Figure 3: Comparison Between Decision Tree Policies in Hopper Expert Dataset

5.5 Limitations

While the rapid training and inference capabilities make decision tree policies particularly suitable
for quick experimentation in robot learning and real-time control of dynamical systems, there are
some notable limitations. Decision Tree Policies are primarily applied to flat-structured observation
spaces, and due to the choice of function approximator, our methods may not extend to more com-
plex data modalities such as images and text. Future work could explore integrating these data types
to enhance robot perception and decision-making.

Additionally, human behavior is often multimodal, with diverse actions in similar contexts, which
our models may not fully capture as generative models do. Handling these multimodal datasets
through energy-based methods remains a viable future direction. Furthermore, our training process
is conducted offline, relying on pre-collected datasets. Due to the inherent characteristics of decision
trees, which lack adjustable weights like those in neural networks, online training involving the
construction of additional trees in each round appears impractical.

Despite these limitations, we believe that the proposed methods represent a significant advancement
in integrating regression-based techniques into explainable offline RL, offering a robust foundation
for future research and application in robot learning and control.

8

References
[1] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and S. Levine. Learning to

reach goals via iterated supervised learning. arXiv preprint arXiv:1912.06088, 2019.

[2] A. Kumar, X. B. Peng, and S. Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

[3] J. Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them
to actions. arXiv preprint arXiv:1912.02875, 2019.

[4] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084–15097, 2021.

[5] X. B. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[6] A. G. Barto and T. G. Dietterich. Reinforcement learning and its relationship to supervised
learning. Handbook of learning and approximate dynamic programming, 10:9780470544785,
2004.

[7] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-
forcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[9] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

[10] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[11] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[12] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179, 2018.

[13] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

[14] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In ICML, volume 97, pages
12–20, 1997.

[15] A. Kumar, J. Hong, A. Singh, and S. Levine. When should we prefer offline reinforcement
learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

[16] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

[17] D. Tarasov, A. Nikulin, D. Akimov, V. Kurenkov, and S. Kolesnikov. Corl: Research-oriented
deep offline reinforcement learning library. Advances in Neural Information Processing Sys-
tems, 36, 2024.

[18] T. Seno and M. Imai. d3rlpy: An offline deep reinforcement learning library. Journal of
Machine Learning Research, 23(315):1–20, 2022.

9

[19] W.-Y. Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining
and knowledge discovery, 1(1):14–23, 2011.

[20] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[21] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[22] D. McElfresh, S. Khandagale, J. Valverde, V. Prasad C, G. Ramakrishnan, M. Goldblum, and
C. White. When do neural nets outperform boosted trees on tabular data? Advances in Neural
Information Processing Systems, 36, 2024.

[23] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. Journal
of Machine Learning Research, 6, 2005.

[24] A. Suárez and J. F. Lutsko. Globally optimal fuzzy decision trees for classification and regres-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12):1297–1311,
1999.

[25] A. Silva, T. Killian, I. D. J. Rodriguez, S.-H. Son, and M. Gombolay. Optimization meth-
ods for interpretable differentiable decision trees in reinforcement learning. arXiv preprint
arXiv:1903.09338, 2019.

[26] Z. Ding, P. Hernandez-Leal, G. W. Ding, C. Li, and R. Huang. Cdt: Cascading decision trees
for explainable reinforcement learning. arXiv preprint arXiv:2011.07553, 2020.

[27] T.-H. Wang, W. Xiao, T. Seyde, R. Hasani, and D. Rus. Measuring interpretability of neural
policies of robots with disentangled representation. In Conference on Robot Learning, pages
602–641. PMLR, 2023.

[28] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[29] S. Fujimoto and S. S. Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

[30] Y. Yue, B. Kang, X. Ma, Z. Xu, G. Huang, and S. Yan. Boosting offline reinforcement learning
via data rebalancing. arXiv preprint arXiv:2210.09241, 2022.

[31] X. Chen, Z. Zhou, Z. Wang, C. Wang, Y. Wu, and K. Ross. Bail: Best-action imitation learning
for batch deep reinforcement learning. Advances in Neural Information Processing Systems,
33:18353–18363, 2020.

[32] Y. Yue, B. Kang, X. Ma, G. Huang, S. Song, and S. Yan. Offline prioritized experience replay.
arXiv preprint arXiv:2306.05412, 2023.

[33] Y. Yue, B. Kang, X. Ma, G. Huang, S. Song, and Y. Shuicheng. Decoupled prioritized resam-
pling: Advancing offline rl with improved behavior policy. 2023.

[34] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaśkowski, and J. Schmidhuber. Training agents using
upside-down reinforcement learning. arXiv preprint arXiv:1912.02877, 2019.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[36] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. arXiv preprint arXiv:2205.09991, 2022.

10

[37] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[38] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. Advances in neural information processing systems, 32, 2019.

[39] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum. Offline reinforcement learning with fisher
divergence critic regularization. In International Conference on Machine Learning, pages
5774–5783. PMLR, 2021.

[40] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

[41] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-
ration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.

[42] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

[43] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

[44] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[45] G. An, S. Moon, J.-H. Kim, and H. O. Song. Uncertainty-based offline reinforcement learning
with diversified q-ensemble. Advances in neural information processing systems, 34:7436–
7447, 2021.

[46] Corl - clean offline reinforcement learning, 2022. URL https://github.com/tinkoff-ai/

CORL.

[47] W. Zhou, S. Bajracharya, and D. Held. Plas: Latent action space for offline reinforcement
learning. In Conference on Robot Learning, pages 1719–1735. PMLR, 2021.

[48] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam. F1tenth: An open-source evalua-
tion environment for continuous control and reinforcement learning. Proceedings of Machine
Learning Research, 123, 2020.

[49] A. Brunnbauer. Racecar gym, 2021. URL https://github.com/axelbr/racecar{_}gym.

[50] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig. Learning to fly—a
gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter
control. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 7512–7519. IEEE, 2021.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[52] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. Offline reinforcement learning via high-fidelity
generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

[53] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idql: Implicit q-learning
as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.

[54] S. Park, K. Frans, S. Levine, and A. Kumar. Is value learning really the main bottleneck in
offline rl? arXiv preprint arXiv:2406.09329, 2024.

11

https://github.com/tinkoff-ai/CORL
https://github.com/tinkoff-ai/CORL
https://github.com/axelbr/racecar{_}gym

A Appendix

A.1 XGBoost algorithm for state-action regression

LetD = < si, ai >
N
i=1 denote the training dataset, where si represents the feature vector of instance

i and ai denotes its corresponding true target value. In XGBoost, the model output â is determined
by aggregating predictions from K individual regression trees, denoted as âi =

∑K
k=1 fk(si), where

each fk represents a regression tree parametrized by its structure and leaf weights. Any tree fk is
optimized to correct the errors of the previous trees, and is also referred to as a weak policy in this
paper. To curb overfitting, XGBoost’s objective function (L) integrates a regularization term aimed
at penalizing model complexity.

L(θ) =
n∑

i=1

(ai − âi)
2
+

K∑
k=1

Ω(fk) (7)

where θ represents the parameters of the model, ai is the true target value of instance i, and âi is the
predicted value. The regularization term Ω(fk) for the k-th tree is typically defined as:

Ω(fk) = γTk +
1

2
λ

Tk∑
j=1

w2
kj (8)

Here, Tk denotes the number of leaves in the k-th tree, wkj represents the weight of the j-th leaf, γ
is a parameter controlling model complexity by penalizing the number of leaves, and λ controls L2
regularization on leaf weights.

The optimization process in XGBoost proceeds by sequentially adding trees fk to fit the residual
value that best reduce the objective function. The t-th tree is built to minimize the following objec-
tive:

L(t) =

n∑
i=1

[
gift(si) +

1

2
hift(si)

2

]
+Ω(ft) (9)

where gi and hi are the first and second-order gradients of the loss function with respect to the
prediction at instance i.

gi =
∂L

∂â
(t−1)
i

, hi =
∂2L

∂â
(t−1)2

i

(10)

where, â(t−1)
i represents the predicted value of instance i using the ensemble of t− 1 trees.

A.2 Policy Training

Decision tree policy training involves iteratively improving the ensemble model through a series of
gradient-boosting steps and is detailed in algorithm 1. At each iteration, the algorithm computes
the first and second-order gradients (gradients and hessians) of the loss function with respect to the
current model’s predictions. These gradients and hessians guide the construction of a new decision
tree (a weak policy) that fits the residual errors of the current model. This new tree is then added
to the ensemble, progressively refining the model’s prediction. This iterative process continues until
the specified number of estimators, K, is reached, thereby optimizing the model by sequentially
minimizing the objective function.

Decision Tree Policies are generally not very sensitive to hyperparameters. Additionally, the training
process is swift, making the tuning process easy and efficient if needed. For Gym-Mujoco locomo-
tion tasks, RWDTP typically uses 100 estimators with a tree depth of 11, while RCDTP employs
1000 estimators and a tree depth of 6. We have found these values to be effective starting points
for a range of tasks and often adjust the number of estimators based on dataset size. For example,
adroit tasks, which involve smaller datasets, only require 50 estimators for RWDTP. Nonetheless,
the configuration of 100 estimators and a tree depth of 11 for RWDTP, and 1000 estimators with
a tree depth of 6 for RCDTP, offer robust baseline settings for hyperparameter tuning across most
tasks.

12

Algorithm 1: Decision Tree Policy Training
Input : States s, Actions a, Target Returns R, Timesteps t (for RCDTP)
Input : States s, Actions a, Powered Return Weights R̃p (for RWDTP)
Output: Trained Decision Tree Policy
Tree Hyperparameters: Number of estimators K, Maximum Tree Depth D
1. Preprocess Data

For RCDTP: X train← concatenate(s,R, t), y train← a
For RWDTP: X train← s, y train← a

2. Initialize Model
For RWDTP: objective← squared error weighted by R̃p

For RCDTP: objective← squared error
model← Regressor(objective, K, D)

3. Train Model
Function fit(model, X train, y train):

for t← 1 to N do
1. Compute gradients gi and hessians hi

2. Construct a new decision tree to fit the residuals
3. Add the new tree to the model ensemble

end
return model

model← fit(model,X train, y train)

In addition to the hyperparameters related to estimators and tree depth, RWDTP incorporates an
additional hyperparameter, p, which plays a role in weighting the samples based on their normalized
return. Specifically, the dataset-normalized return is used with an exponential function of p as a
weight (w = R̃p), providing a measure of how valuable each sample is relative to others in the
dataset. Figure 4 illustrates the impact of this weighting mechanism, controlled by p on normalized
returns for different Walker2d datasets. The hyperparameter p allows for adjusting this weighting,
where higher values of p amplify the prioritization of higher-return samples, effectively skewing the
contribution of these samples during training. This enables the model to focus more on higher-return
demonstrations. When p is set to 0, the RWDTP method reduces to pure behavior cloning, where all
samples contribute equally, regardless of their return.

0 1 2 3 4 5 6 7 8
Return Power (p)

20

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

Walker2d Expert
Walker2d Medium
Walker2d Medium Replay
Walker2d Medium Expert

Figure 4: Impact of Hyperparameter pp on Normalized Returns During Evaluation

A.3 RCDTP: Modeling of Returns Distribution

To assess RCDTP’s efficacy in modeling returns distributions, we generate plots illustrating the
accumulated actual returns achieved by the agent when conditioned on specific target RTG values.
For comparison, we also include the Decision Transformer (DT) return distribution plot for the same
dataset. Although Decision Transformer uses extended context length, uses a larger model, and takes

13

50 times more training time, by visual comparison, it is evident that RCDTP’s performance is closer
to the desired return values, showing a comparable capacity for modeling of returns.

10 20 30 40 50 60 70
Target Return

20

40

60

No
rm

al
ize

d
Re

wa
rd

s
Hopper Medium v2

Oracle
DT
RCDTP

10 20 30 40 50 60 70 80 90
Target Return

20

40

60

80

No
rm

al
ize

d
Re

wa
rd

s

Hopper Medium Replay v2
Oracle
DT
RCDTP

20 40 60 80 100
Target Return

25

50

75

100

No
rm

al
ize

d
Re

wa
rd

s

Hopper Medium Expert v2
Oracle
DT
RCDTP

Figure 5: Returns Distributions Comparison Between RCDTP and Decision Transformer

A.4 Explainability of Policies

Figure 6: A Weak Policy Example in Cartpole Environment

Decision trees inherently offer greater explainability for policies. Figure 6 illustrates a decision tree
from an ensemble used to form an expert-level policy in the CartPole environment. This specific
tree shows that the agent’s decisions are primarily based on the pole’s angle: if the angle is negative,
the agent is likely to push the cart left, and if positive, it mostly pushes the cart right. This results
in an intuitive and interpretable weak policy. As more trees are added to the ensemble, the policy’s
strength and robustness increase. Feature importance analysis in figure 7 further enhances explain-
ability, revealing that pole angle and angular velocity are more critical for stabilizing the pole than
cart position and velocity. Similarly, in the pendulum environment, the policy equally prioritizes the
cosine and sine components of the pendulum angle, giving substantial weight to all dimensions of
the observation space in decision making.

x x
0.0

0.2

0.4

Fe
at

ur
e

Im
po

rta
nc

e

(a) Cartpole

cos() sin()0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e

Im
po

rta
nc

e

(b) Pendulum
Figure 7: Features Prioritized by RWDTP

We have also visualized the decision boundaries learned by the decision tree policies. For CartPole,
the decision boundary (whether to push the cart to the right) is visualized in figure 8a based on
different pole angles and velocities, while keeping the cart’s position and velocity fixed at (0,0). For
the pendulum environment, we plot, in figure 8b, the predicted torque values over various pendulum
angles and angular velocities, providing further insight into the model’s action prediction surfaces.
These visualizations further demonstrate the explainability of our approach across environments,
highlighting how decision tree policies make control decisions.

14

0.4 0.2 0.0 0.2 0.4
6

4

2

0

2

4

6

0.0

0.2

0.4

0.6

0.8

1.0

(a) Cartpole

2 0 2
8
6
4
2
0
2
4
6
8

Torque

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(b) Pendulum
Figure 8: Decision Boundaries/Surfaces Learnt by RWDTP

A.5 Racecar Gym and Pybullet Drones Experiments Details

The offline dataset for the Racecar Gym experiments was obtained by implementing a controller
tailored to the Austria racetrack. This controller receives the raceline to be tracked and determines
the steering angle and motor command based on the current heading angle and lookahead points
in the raceline. After training offline on a hundred episode demonstrations collected using this
controller in the Austria racetrack, the agents undergo a zero-shot transfer test on various other
racetracks. Both RCDTP and DT agents utilize only Lidar and velocity observations, excluding
raceline or map information, to predict actions, which include steering angle and motor command. In
this environment, agents are rewarded based on racetrack progress and are penalized for collisions,
leading to episode termination.

We conducted experiments using the hover-aviary environment in Pybullet drones. The target posi-
tion is set to [0, 0, 1], with the reward based on the L4 norm distance between the drone positions
and the target. The primary objective is to maintain a hovering position around ztarget = 1, with
minimal deviations in the x and y dimensions from the starting state. Initially, we trained Proximal
Policy Optimization (PPO [51]) for 100,000 timesteps to obtain a ‘suboptimal’ agent and collected
100 episodes to form an offline demonstration dataset. Subsequently, we modified the z dimension
of the dataset using the transformation ztarget− z so as to incorporate the goal height (ztarget = 1).
After training RWDTP on this dataset with slightly modified observation space, we conducted sim-
ulations with ztarget values of 1, 0.8, and 0.6. The same RWDTP policy hovered the drone at
each target height without any policy retraining, modifications to the reward function, or additional
dataset collection.

A.6 Training and Inference Time

Table 7 presents the training times (on GPU) and inference times (on CPU) for 1 million gradient
steps across various methods, as recorded in our experiments. For baselines, we compare CQL,
Behavioral Cloning (BC), and different variants of EDAC with 10 and 50 critic networks. The
experiments were conducted on a system running Ubuntu 22.04.3 LTS, equipped with a 13th Gen
Intel Core i9-13900KF processor with 24 cores, an NVIDIA RTX 4090 GPU (24 GB), and 64 GB
of DDR5 memory.

Table 7: Training and Inference Time (in seconds)
Method Training Mean Training Std Inference Mean Inference Std

CQL 6053.3 28.3 3.6e-4 1.3e-4
BC 692.26 13.45 1.04e-4 3.32e-5

EDAC-10 3754.5 39.8 4.2e-4 5.8e-4
EDAC-50 5154.0 62.74

15

A.7 Using IQL Critic to Guide Action Selection

In our attempt to improve the performance of decision tree policies (DTPs) on datasets without
expert-level demonstrations, we conducted additional experiments using an IQL [42] critic to guide
action selection. Unlike traditional methods, IQL allows training the Q function without requiring
an actor to sample unseen actions, providing a distinct advantage in offline learning. Specifically, we
integrated a perturbation layer with a mean of the predicted action and a standard deviation of 0.2
into the output of RCDTP and RWDTP methods. From these perturbed actions, we sampled N = 10
actions and selected the one with the highest Q value. This action selection (or policy extraction)
method, based on sampling, has been employed before in [52, 53, 54]. The performance of these
IQL-assisted DTPs is denoted by the suffix of +IQL in the table 8. Although the performance
of ‘plain’ decision tree policies is on par with the conventional baselines in the non-expert regime,
results of our experiments sometimes show performance improvements of up to 60% when using the
IQL critic. This also highlights the better performance of decision tree policy prior in comparison
to the diffusion BC prior used in IDQL [53].

Table 8: Improved Performance in Non-expert Regime (Baseline results are from [53])
Dataset RWDTP RCDTP RWDTP+IQL RCDTP+IQL IQL IDQL CQL DT BC

Halfcheetah Med 42.11 41.44 49.38 48.83 47.4 51.0 44.0 42.6 43.1
Hopper Med 55.01 61.52 87.04 88.58 66.3 65.4 58.5 67.6 63.9

Walker2d Med 79.48 79.62 87.96 83.07 78.3 82.5 72.5 74.0 77.3
Halfcheetah Med-Rep 40.03 40.08 45.39 43.91 44.2 45.9 45.5 36.6 4.3

Hopper Med-Rep 84.10 83.88 89.59 96.27 94.7 92.1 95.0 82.7 27.6
Walker2d Med-Rep 60.96 75.02 78.56 79.53 73.9 85.1 77.2 66.6 36.9

Average 60.28 63.59 72.99 73.37 67.47 70.33 65.45 61.68 42.18

To understand the performance gap between decision tree policies and their +IQL counterparts,
we examine the distribution of actions learned by RWDTP and RWDTP+IQL in Hopper-Medium,
where the gap is high, and Hopper-Medium-Replay, where the gap is lower. Figure 9 depicts the
distribution of action distance (||apolicy−adataset||2) evaluated over the observations in the dataset.
Specifically, we examine the Hopper Medium and Medium Replay scenarios to illustrate the impact
of potential overfitting on the performace. RWDTP’s distribution of action distances from the dataset
is highly skewed towards zero for Hopper-Medium compared to Hopper-Medium-Replay, indicating
a lack of out-of-distribution generalization and potential overfitting within the dataset’s distribution.
As a result, when the IQL critic is used to guide the action selection, it shifts this action-distance
distribution away from zero and also greatly improves performance.

0.0 0.5 1.0 1.5 2.0
Action Distance From Demonstrations

0

1500

3000

4500

6000

Fr
eq

ue
nc

y

RWDTP
RWDTP+IQL

(a) Hopper Medium

0.0 0.6 1.2 1.8 2.4 3.0
Action Distance From Demonstrations

0

400

800

1200

1600

Fr
eq

ue
nc

y

RWDTP
RWDTP+IQL

(b) Hopper Medium Replay

Figure 9: Distribution of Action Distance From Demonstrations

A.8 Additional Feature Importance Analysis

Feature importance analysis can be a crucial tool in robot learning, particularly for understanding
which input features are most influential in the decision-making process of learned policies. By
identifying key features, we can better assess the interpretability and robustness of these policies,
which is essential for ensuring interoperability across different tasks and environments. In this

16

additional study, we applied feature importance analysis to the Expert and Medium datasets in the
Hopper and Walker2d environments to evaluate the behavior of the decision tree policies.

foot foot ztorso ztorso torso
0.0

0.1

0.2

0.3
W

ei
gh

ts
1

2

3
4 5

1

2

5 6 4

Weight and rank assigned by:
RWDTP
RCDTP

(a) Hopper Expert

foot foot leg ztorso ztorso
0.0

0.1

0.2

0.3

W
ei

gh
ts

1

2 3

4 5

1

2
3

5 4

Weight and rank assigned by:
RWDTP
RCDTP

(b) Hopper Medium

leftfoot rightfoot ztorso rightfoot leftfoot
0.0

0.1

0.2

0.3

W
ei

gh
ts 1

2

3 4 5

2
1

5
11

3

Weight and rank assigned by:
RWDTP
RCDTP

(c) Walker2d Expert

rightfoot leftfoot leftthigh leftleg leftfoot
0.0

0.1

0.2

0.3

W
ei

gh
ts 1 2

3

4 5

1

2
3

6 8

Weight and rank assigned by:
RWDTP
RCDTP

(d) Walker2d Medium

Figure 10: Feature Importance

Figures 10a through 10d display the ranked importance of key features identified by both meth-
ods. Our analysis reveals that despite being trained on different performance datasets, RWDTP and
RCDTP tend to prioritize similar features when predicting actions. For each environment, the two
most important features identified by both methods (DTPs) in both datasets remain the same. The
rankings of important features as identified by the two policies in the Hopper datasets are summa-
rized in table 9. This kind of consistency can be important for ensuring the interpretability of policies
before deploying them to real-world robotic tasks.

Table 9: Feature Importance Rank Assigned in Hopper Datasets
Observation RWDTP (Expert) RWDTP (Medium) RCDTP (Expert) RCDTP (Medium)
Angular velocity of the foot hinge 1 1 1 1
Angle of the foot joint 2 2 2 2
Velocity of the z-coordinate of the torso 3 4 5 5
Z-coordinate of the torso 4 5 6 4

17

	Introduction
	Preliminaries and Related Works
	Offline Reinforcement Learning
	Decision Tree Regression
	Related Works

	RWDTP and RCDTP frameworks
	Experimental Results
	Gym Mujoco Locomotion
	Gym Robot Manipulation - Adroit and Kitchen Tasks
	Racecar Gym and Pybullet Drones

	Discussions
	How do decision tree policies perform in delayed reward scenario?
	Are decision tree policies only as effective as BC?
	How fast are decision tree policies in comparision to Sequence Modeling counterparts?
	Do RCDTP and RWDTP learn to prioritize similar features and predict similar actions?
	Limitations

	Appendix
	XGBoost algorithm for state-action regression
	Policy Training
	RCDTP: Modeling of Returns Distribution
	Explainability of Policies
	Racecar Gym and Pybullet Drones Experiments Details
	Training and Inference Time
	Using IQL Critic to Guide Action Selection
	Additional Feature Importance Analysis

