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ABSTRACT

Recent advances in offline reinforcement learning (RL) have led to the develop-
ment of high-performing algorithms that achieve impressive results across stan-
dard benchmarks. However, many of these methods depend on increasingly
complex planning architectures, which hinder their deployment in real-world set-
tings due to high inference costs. To overcome this limitation, recent research
has explored data augmentation techniques that offload computation from on-
line decision-making to offline data preparation. Among these, diffusion-based
generative models have shown potential in synthesizing diverse trajectories but
incur significant overhead in training and data generation. In this work, we pro-
pose Trajectory Generation with Conservative Value Guidance (TGCVG), a novel
trajectory-level data augmentation framework that integrates a high-performing
offline policy with a learned dynamics model. To ensure that the synthesized tra-
jectories are both high-quality and close to the original dataset distribution, we in-
troduce a value-guided regularization during the training of the offline policy. This
regularization encourages conservative action selection, effectively mitigating dis-
tributional shift during trajectory synthesis. Empirical results on standard bench-
marks demonstrate that TGCVG not only improves the performance of state-of-
the-art offline RL algorithms but also significantly reduces training and trajectory
synthesis time. These findings highlight the effectiveness of value-aware data gen-
eration in improving both efficiency and policy performance. Our code is available
at this link.

1 INTRODUCTION

Offline Reinforcement Learning (RL) (Kumar et al., 2020; Fujimoto & Gu, 2021; Kostrikov et al.,
2021b), which focuses on training a policy from the static dataset, is emerging as the critical solution
for environments where online interaction is costly or risky. The main challenge of offline RL is
the distributional shift which would cause extrapolation error (Fujimoto et al., 2019). To mitigate
this problem, many previous works add the constraints to estimated value functions (Kumar et al.,
2020; Lyu et al., 2022) and policy networks (Wang et al., 2020; Fujimoto & Gu, 2021), or learn
without querying out-of-distribution (OOD) samples (Kostrikov et al., 2021b; Hansen-Estruch et al.,
2023). Moreover, some works have introduced strong generative architectures like Diffusion and
Transformer (Wang et al., 2022; Chen et al., 2024; Kim et al., 2023; Hu et al., 2024) for richer
representation learning to train the policy.

However, these methods often involve increased model and algorithmic complexity, leading to
longer inference time and raising concerns about their practicality in real-world deployment. To
address this issue, recent studies have explored data augmentation techniques that aim to broaden
the dataset distribution and improve the performance of simpler offline RL algorithms (Kumar et al.,
2020; Fujimoto & Gu, 2021; Kostrikov et al., 2021b). Early works primarily enrich the data dis-
tribution by adding noise to states (Laskin et al., 2020; Sinha et al., 2022), but such perturbations
are limited in diversity due to their constrained range. More recent approaches introduce generative
models, particularly Diffusion models (Lu et al., 2023; Li et al., 2024; Lee et al., 2024; Yang &
Wang, 2025), which offer a stronger mechanism for synthesizing diverse and dynamics-consistent
samples. However, Diffusion models are computationally expensive to train and require multi-step
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denoising for accurate generation. Moreover, they typically lack explicit guidance toward high-
value regions, resulting in limited improvements in data quality and marginal gains in offline policy
performance.

To address these challenges, we propose a simple and effective data synthesizer for offline RL,
termed Trajectory Generation with Conservative Value Guidance (TGCVG). Our method uses a
Transformer-based policy network trained with Conservative Q-learning (CQL) to generate high-
quality actions. A dynamics model from model-based RL (Lin et al., 2024) is then employed to
predict the corresponding rewards and next states, yielding a set of synthetic transitions. Intuitively,
this process mimics the original dataset collection procedure, where an online policy interacts with
the environment to generate trajectories (Fu et al., 2020; Hafner et al., 2020). Similar to prior works
(Li et al., 2024; Lee et al., 2024), our method generates sequential data, but replaces the Diffusion
module with the Transformer to significantly reduce computational overhead. Transformer has been
shown to be effective in offline RL tasks (Chen et al., 2021; Hu et al., 2024; Kim et al., 2024), making
them a practical and efficient alternative. The key component of TGCVG is conservative value
guidance, which constrains each generated (st, at, st+1) tuple to lie within the dataset distribution.
This limits OOD risk to a single step at each model interaction and prevents its accumulation across
rollouts. As a result, TGCVG produces dynamically consistent trajectories that are more stable and
reliable for offline policy training.

Our Contributions are summarized as follows. (1) We propose TGCVG, a novel value-guided data
synthesizer that generates high-quality trajectories while significantly reducing computational over-
head. (2) We demonstrate that TGCVG consistently achieves state-of-the-art performance across a
wide range of offline RL benchmarks, validating the effectiveness of our method. (3) We provide
a comprehensive ablation study to analyze the impact of key design choices and demonstrate the
robustness of our pipeline.

2 RELATED WORK

2.1 MODEL-FREE OFFLINE REINFORCEMENT LEARNING

Model-free offline RL algorithms aim to train policy networks directly from static datasets. Several
methods (Fujimoto & Gu, 2021; Kostrikov et al., 2021b; Lyu et al., 2022) adopt the value-based
paradigm from online RL by learning Q-functions to guide behavior improvement. To address dis-
tributional shift, value-based approaches typically incorporate explicit policy constraints (Kumar
et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021), penalize overestimated Q-values on OOD sam-
ples (Kumar et al., 2020; Kostrikov et al., 2021a; Wu et al., 2021), or avoid querying OOD actions
(Wang et al., 2018; Kostrikov et al., 2021b; Hansen-Estruch et al., 2023). Beyond these methods,
generative models such as Transformer (Chen et al., 2021; Kim et al., 2023) and Diffusion models
(Janner et al., 2022; Ajay et al., 2022) have been introduced for modeling offline RL tasks. Recent
works further explore hybrid approaches that combine generative modeling with value-based tech-
niques (Wang et al., 2022; 2024; Hu et al., 2024; Gao et al., 2025) to enhance policy improvement.
However, as algorithmic architectures grow increasingly complex, the computational cost of policy
evaluation rises substantially, limiting the practical deployment of offline RL algorithms.

2.2 MODEL-BASED OFFLINE REINFORCEMENT LEARNING

Model-based offline RL algorithms aim to learn a dynamics model from static datasets and leverage
it to derive or improve policies. A central challenge in this setting is how to effectively utilize the
learned model. Prior works address this by quantifying model uncertainty (Yu et al., 2020; Sun et al.,
2023), learning conservative value functions (Yu et al., 2021; Jeong et al., 2022), or transforming
one-step models into multi-step transition models (Machado et al., 2023; Lin et al., 2024). While
data augmentation methods (Lu et al., 2023; Lee et al., 2024) also generate synthetic trajectories,
they decouple data generation from policy learning. This modularity enables the synthesized data
to be reused by model-free algorithms, offering greater flexibility and generalization. Notably, such
methods demonstrate superior scalability in high-dimensional environments, where model-based
approaches often suffer from compounding model errors and poor generalization.
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2.3 DATA AUGMENTATION IN OFFLINE REINFORCEMENT LEARNING

Data augmentation has emerged as an important technique for improving the performance of offline
RL algorithms. Traditional approaches (Yarats et al., 2021; Laskin et al., 2020; Sinha et al., 2022)
apply simple transformations such as noise injection or random translations to pixel-based or state-
based observations. With the rise of generative models, recent works have explored generative data
augmentation. Several studies (Lu et al., 2023; He et al., 2023; Li et al., 2024; Yang & Wang, 2025)
leverage Diffusion models to approximate the data distribution and synthesize dynamically plausible
transitions. Building on Diffusion-based data augmentation, GTA (Lee et al., 2024) further proposes
generating high-return trajectories to improve overall dataset quality. This reward-guided design has
been shown to enhance the performance of offline RL algorithms. Our TGCVG differs from prior
methods in two aspects: (1) it replaces costly Diffusion models with a lightweight Transformer-
based policy for efficient sequential data generation; (2) it leverages conservative value guidance to
steer synthesis toward high-return trajectories while remaining within the dataset distribution.

3 PRELIMINARIES

3.1 OFFLINE REINFORCEMENT LEARNING

Reinforcement learning is typically formalized as a Markov Decision Process (MDP) (Bellman,
1957), defined by the tuple (ρ0,S,A, P,R, γ), where ρ0 denotes the initial state distribution, S
and A are the state and action spaces, P (s′|s, a) is the transition probability, R(s, a) is the reward
function, and γ is the discount factor. The objective of standard RL is to learn a policy π∗(a|s) that
maximizes the expected return E[

∑∞
t=0 γ

tr(st, at)] through direct interaction with the environment.
In contrast, offline RL focuses on learning from a fixed dataset D = {(s, a, r, s′)} collected by a
behavior policy πβ , without further environment interaction. This setting poses unique challenges,
as the agent must generalize from static data without the ability to explore.

3.2 TRANSFORMER IN OFFLINE REINFORCEMENT LEARNING

Transformer-based methods typically frame offline RL as a supervised learning problem to improve
training stability. Among them, Decision Transformer (DT) (Chen et al., 2021) is a seminal approach
that models trajectories as sequences of states, actions, and returns-to-go (RTGs), where the RTG at
timestep t is defined as the sum of future rewards: R̂t =

∑T
t′=t rt′ . At each timestep t, DT takes

as input a sequence τ = (R̂t−L+1, st−L+1, at−L+1, · · · , R̂t−1, st−1, at−1, R̂t, st), where L denotes
the sequence length, and predicts the next action at. During training, the model is optimized to match
the ground-truth actions from the dataset. In the evaluation stage, since true RTGs are unavailable,
DT conditions on a pre-specified target RTG that represents the desired return. At each step, the
received reward is subtracted from the target RTG until the episode ends or the maximum trajectory
length is reached.

While Transformer-based methods benefit from leveraging long-term historical information for
decision-making, their lack of explicit value guidance can hinder effective trajectory stitching. To
overcome this limitation, recent work has explored integrating value-based learning with sequence
modeling to improve policy optimization (Yamagata et al., 2023; Gao et al., 2024; Hu et al., 2024;
Kim et al., 2024), effectively improving decision quality and leading to stronger empirical perfor-
mance.

4 METHOD

In this section, we propose Trajectory Generation with Conservative Value Guidance (TGCVG), a
Transformer-based generative framework that interacts with a pretrained dynamics model to pro-
duce high-quality offline trajectories. We first describe how to train the Transformer policy using
conservative Q-value guidance. Then, we introduce the pipeline for trajectory-level data genera-
tion using the learned policy and the dynamics model. The overall architecture is summarized in
Figure 1. Finally, we employ standard offline RL algorithms on the augmented dataset to improve
performance.
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Figure 1: Overview of the TGCVG Architecture. In the first stage, we train a conservative policy
network and a dynamics model to facilitate data generation. In the subsequent stage, we exploit the
interaction between these components to synthesize new trajectories that align with the high-reward
distribution of the offline dataset.

4.1 CONSERVATIVE Q-LEARNING BASED ON TRANSFORMER

Building upon Transformer-based architectures, we explore the integration of return-conditioned
supervised learning (RCSL) (Brandfonbrener et al., 2022) with Q-learning to optimize the policy
network. To streamline training, we eliminate action and RTG tokens according to DD (Ajay et al.,
2022) and our ablation study in Appendix B.1, which demonstrates that RTGs are unnecessary
when employing Q-value regularization. The resulting trajectory representation, consisting solely
of states, is defined as:

τt = (st−L+1, · · · , st−1, st), (1)

where L represents the trajectory length. Adopting the conservative value estimation technique from
CQL (Kumar et al., 2020), we employ an ensemble of five networks: two Q-networks Qϕ1 , Qϕ2 ,
two target networks Qϕ′

1
, Qϕ′

2
and the policy network πθ. The Q-networks are trained by solving

the following optimization problem:

min
ϕ

λEsi∼D,ai∼µ(·|si)

[
log

∑
ai

exp(Qϕi
(si, ai))− Eai∼π̂β(·|si)[Qϕi

(si, ai)]

]

+
1

2
E(τt,τt+1,at−L+1:t,rt−L+1:t)∼D

t∑
m=t−L+1

∥∥∥Q̂m −Qϕi
(sm, am)

∥∥∥2 ,
where Q̂m =

t∑
j=m

γj−mrj + γt+1−m min
i=1,2

Qϕ′
i
(st+1, ât+1).

(2)

In this formulation, µ(·|si) is used to match the marginal distribution in the dataset, ât+1 is sampled
from the policy πθ, π̂β(·|si) denotes the behavior policy, γ is the discount factor, and λ is a weighting
coefficient. We adopt the n-step Bellman backup to estimate the Q-value function, which has been
shown to outperform the 1-step approximation in recent studies (Hu et al., 2024). The first term in
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Algorithm 1 Transformer-CQL
Input: Sequence horizon L, offline datasets D, coefficient ρ.
Initialize policy network πθ, critic networks Qϕ1

and Qϕ2
, and target networks Qϕ′

1
and Qϕ′

2
.

for t = 1 to T do
Sample mini-batch B = {(sj , aj , rj)t+L

j=t } ∼ D.
// Q-value function learning
Sample ât+L ∼ πθ(ât+L|st+1:t+L).
Update Qϕ1 and Qϕ2 by Equation 2.
// Policy learning
for i = 0 to L− 1 do

Sample ât+i ∼ πθ(ât+i|st:t+i).
end for.
Update policy by minimizing Equation 3.
// Update target networks
ϕ′
i = ρϕ′

i + (1− ρ)ϕi for i = {1, 2}.
end for.

the objective serves as a regularization component, penalizing Q-values for OOD state-action pairs
while preserving values for those within the dataset distribution.

The policy learning objective is defined as:

L(θ) = min
θ

Eτt∼DEsi∼τt,âi∼πθ(·|τt)i

[
α log πθ(âi|si)− min

i=1,2
Qϕi(si, âi)

]
,

where α = argmin
α

Eτt∼DEsi∼τt,âi∼πθ(·|τt)i

[
− logα · (log πθ(âi|si) +Htarget)

]
,

(3)

where Htarget is predetermined by the environment’s action space. The policy loss follows the
SAC (Haarnoja et al., 2018) framework to promote policy improvement while encouraging suffi-
cient exploration. We detail the learning procedure in Algorithm 1. In addition to our conserva-
tive value-based optimization, an alternative Transformer-based Q-learning approach exists, which
incorporates value improvement into the supervised learning objective by adopting the policy con-
straint paradigm from TD3BC (Hu et al., 2024). For clarity, we refer to these two approaches
as Transformer-CQL and Transformer-TD3BC, respectively. In this work, we ultimately adopt
Transformer-CQL, and the rationale for this choice is discussed in Section 5.3.

4.2 GENERATING SEQUENCE DATA WITH THE DYNAMICS MODEL

In the data generation phase, we mimic the online data collection process, where an agent interacts
with the environment to collect (s, a, r, s′) tuples. Specifically, we use the learned policy network to
interact with a pretrained dynamics model (Lin et al., 2024). To generate synthetic transitions, we
first sample a state sequence of length K from the original dataset:

τ̃ = (st−K+1, · · · , st−1, st). (4)

We then take the first L states from this sequence, denoted as τt−K+L = (st−K+1, · · · , st−K+L),
and feed them into the policy network to obtain the action ât−K+L. The next state and reward are
predicted by the dynamics model fω as:

ŝt−K+L+1, r̂t−K+L = fω(st−K+L, ât−K+L), (5)

The predicted state ŝt−K+L+1 is appended to the state sequence, forming a new window
τt−K+L+1 = (st−K+2, · · · , ŝt−K+L+1), which is used as input to the Transformer-based policy.
This autoregressive process is repeated until we construct the full generated trajectory:

τ̂ =

[
st−K+L, · · · , ŝt−1, ŝt, ŝt+1

ât−K+L, · · · , ât−1, ât, 0
r̂t−K+L, · · · , r̂t−1, r̂t, 0

]
. (6)

Other auxiliary information (e.g., terminal indicators) is directly aligned with and inherited from the
corresponding timesteps in the original sequence, thereby preserving the original episode termina-
tion signals. The generated trajectories are fused with original trajectories, leading to our augmented
dataset.
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4.3 TRAINING OFFLINE RL ALGORITHMS WITH AUGMENTED DATASET

Following the data generation phase, we obtain a set of new, high-quality trajectories. Consistent
with prior works (Lu et al., 2023; Lee et al., 2024), we combine the generated trajectories with the
original dataset via random shuffling. The resulting augmented dataset is then used to train standard
offline RL algorithms.

5 EXPERIMENTS

In this section, we present a series of experiments to evaluate the effectiveness of TGCVG. We
begin by outlining the experimental setup and demonstrate that our method consistently enhances
the performance of offline RL algorithms across a range of environments. We then perform ablation
studies to assess the contribution of each component and provide a rationale for our design choices.
Finally, we investigate key characteristics of TGCVG to gain deeper insights into its behavior.

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on the D4RL benchmark (Fu et al., 2020), including MuJoCo
Gym, Maze2D, and AntMaze tasks. The MuJoCo locomotion suite consists of widely used bench-
mark tasks in offline RL, characterized by smooth reward functions and a high proportion of near-
optimal trajectories. The Maze2D datasets are designed to evaluate an algorithm’s ability to effec-
tively stitch sub-trajectories in navigation tasks. AntMaze presents a more challenging maze nav-
igation environment, featuring sparse 0–1 rewards and higher-dimensional state and action spaces
compared to Maze2D.

Baselines. We compare our method against several data augmentation baselines: (1) S4RL (Sinha
et al., 2022), which perturbs states with Gaussian noise; (2) Synther (Lu et al., 2023), which employs
a diffusion model to learn the transition distribution from offline data and generate new samples; (3)
GTA (Lee et al., 2024), which augments offline data via a partial noising and denoising process
guided by amplified return signals. The performance scores for these baseline methods are mainly
sourced from results published in (Lee et al., 2024), ensuring a fair comparison.

Offline RL Algorithms. We evaluate our TGCVG using several representative algorithms: (1)
CQL (Kumar et al., 2020), which penalizes Q-values on unseen actions to enforce conservatism; (2)
TD3BC (Fujimoto & Gu, 2021), which constrains the learned policy to stay close to the behavior
policy; (3) IQL (Kostrikov et al., 2021b), which performs implicit value regularization by querying
only in-distribution actions; and (4) DT (Chen et al., 2021), which takes trajectory data as input and
applies Transformer to model the distribution of trajectories in the offline dataset. Following GTA,
we employ only IQL for the Maze2D and AntMaze datasets, as it provides complete hyperparameter
settings and demonstrates stable performance in these environments.

5.2 MAIN RESULTS

Tables 1 and 2 report the normalized scores across three task domains, following the protocol of (Fu
et al., 2020). We analyze results by domain.

Gym Domain. Our TGCVG consistently boosts the performance of all offline RL algorithms, with
CQL and TD3BC achieving results comparable to recent state-of-the-art methods (Hu et al., 2024;
Kim et al., 2024). This highlights the effectiveness of the policy used for data synthesis and demon-
strates that the conservative value guidance effectively mitigates distributional shift. Gains are es-
pecially notable on suboptimal datasets (e.g., medium, medium-replay), where trajectory stitching is
more critical, indicating the advantage of our Transformer-CQL design in imperfect data regimes.

Maze2D and AntMaze Domains. In Maze2D, which evaluates trajectory stitching capabilities,
our TGCVG generates useful data across both simple and complex environments. In the more
challenging AntMaze tasks, which are characterized by sparse rewards and high-dimensional state
spaces, TGCVG still enables model-free learners to perform competitively, even though it employs
similar dynamics models as those used in previous model-based approaches (Yu et al., 2020; Sun
et al., 2023; Lin et al., 2024). These results suggest that placing greater emphasis on policy learning
may be more beneficial than solely refining dynamics models.
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Table 1: Normalized results of TGCVG and baselines on the MuJoCo datasets. Average and standard
deviation scores are reported over 5 seeds and the best average values are marked in bold. The dataset
names are abbreviated as follows: medium to ‘m’, medium-replay to ‘m-r’, and medium-expert to
‘m-e’.

Algo. Aug. halfcheetah hopper walker2d Averagem m-r m-e m m-r m-e m m-r m-e

TD3BC

None 48.42±0.62 44.64±0.71 89.48±5.50 61.04±3.18 65.69±24.41 104.08±5.81 84.58±1.92 84.11±4.12 110.23±0.37 76.92
S4RL 48.74±0.31 44.53±0.30 90.78±4.65 59.34±3.50 67.39±23.81 106.10±7.24 84.63±2.44 83.42±4.70 110.21±0.35 77.24
SynthER 49.16±0.39 45.57±0.34 85.47±11.35 63.70±3.69 78.81±15.80 98.99±11.27 85.43±1.14 90.67±1.56 109.95±0.32 78.64
GTA 57.84±0.51 50.04±0.84 93.13±3.07 69.57±4.05 89.31±16.84 110.40±4.04 86.69±0.89 93.82±1.74 110.86±0.34 84.63
TGCVG 68.14±0.58 57.78±0.32 94.68±0.67 90.47±4.06 94.08±15.35 106.73±6.74 87.50±0.20 94.23±0.73 110.12±0.52 89.30

CQL

None 46.98±0.20 44.70±0.51 95.90±0.52 61.13±3.20 82.33±16.37 104.38±7.30 82.26±1.18 79.74±5.19 109.50±0.43 78.55
S4RL 47.00±0.23 44.62±0.42 95.89±0.45 62.72±3.46 78.82±9.89 108.87±2.69 81.46±2.28 80.82±8.35 109.65±0.22 78.87
SynthER 47.21±0.14 46.03±0.40 95.29±1.90 64.65±4.78 92.06±13.40 107.66±6.68 81.91±0.89 86.62±3.03 109.36±0.36 81.20
GTA 54.14±0.31 51.36±0.27 94.93±3.71 74.80±7.42 98.88±3.51 110.90±3.44 80.40±4.98 91.57±5.15 110.44±0.28 85.27
TGCVG 68.31±0.27 59.03±0.28 97.40±0.47 88.25±2.99 101.80±0.13 111.36±1.39 85.69±0.34 92.91±1.22 109.79±0.34 90.50

IQL

None 48.65±0.19 43.35±0.50 94.57±1.88 66.35±7.09 95.76±4.01 91.69±25.97 84.34±3.31 69.60±10.80 112.37±0.60 78.52
S4RL 48.58±0.29 43.57±0.65 94.22±1.59 65.06±5.94 86.72±22.01 99.82±8.09 84.58±4.26 70.33±7.99 112.29±0.79 78.35
SynthER 49.76±0.27 46.91±0.28 91.90±3.75 69.21±5.85 102.97±1.65 94.08±23.94 80.15±16.47 90.63±4.66 112.12±0.53 81.97
GTA 54.82±0.35 46.89±3.00 95.30±0.55 77.46±3.42 102.11±1.51 107.78±4.66 84.40±2.32 93.37±6.35 112.87±0.66 86.11
TGCVG 68.61±0.39 59.63±0.24 95.39±0.39 81.55±5.42 100.99±0.37 97.30±10.96 81.00±2.93 86.32±10.94 112.99±0.47 87.09

DT

None 42.43±0.14 39.34±1.22 92.43±0.50 63.09±2.49 81.81±3.39 109.05±2.02 71.64±0.69 62.06±1.88 108.38±0.31 74.47
S4RL 42.44±0.39 38.71±0.83 91.80±0.77 64.49±1.70 66.47±19.27 110.57±0.81 72.22±2.49 59.67±4.91 108.40±0.24 72.75
GTA 43.83±0.13 37.98±4.97 91.78±1.88 64.57±1.22 78.43±9.93 110.54±0.18 74.94±1.72 67.90±13.41 108.24±0.62 75.36
TGCVG 62.68±0.52 35.79±9.95 92.76±0.74 60.11±4.99 73.36±31.59 104.87±7.33 82.18±0.99 82.96±3.32 108.06±0.59 78.09

Table 2: Normalized results of TGCVG and baselines on the Maze2D and AntMaze datasets. Aver-
age and standard deviation scores are reported over 5 seeds and the best average values are marked
in bold. The dataset names are abbreviated as follows: umaze to ‘u’, medium to ‘m’, large to ‘l’,
play to ‘p’, and diverse to ‘d’.

Algo. Aug. maze2d antmaze Averageu m l u m-p l-p u-d m-d l-d

IQL

None 37.41±2.83 32.80±1.49 58.99±9.16 58.75±8.90 78.13±3.44 40.63±8.75 50.38±17.39 65.50±9.46 45.75±6.34 52.04
S4RL 37.69±3.36 34.82±3.16 62.93±3.47 55.00±10.47 80.88±5.17 42.88±8.71 51.63±11.67 74.00±9.72 46.13±8.34 53.99
SynthER 39.00±2.26 34.27±2.51 61.74±4.51 17.13±6.45 41.00±20.58 37.50±6.48 23.94±11.83 40.88±14.15 37.50±8.37 36.99
GTA 41.68±1.41 37.78±1.66 76.56±4.70 66.50±6.91 81.88±4.19 44.38±4.66 57.88±9.51 78.13±7.85 47.75±6.69 59.17
TGCVG 53.76±7.50 48.41±3.04 103.97±12.85 41.20±4.71 83.20±2.14 55.20±6.68 57.20±4.40 84.60±4.32 57.20±4.26 64.97

5.3 ABLATION STUDIES

How does Transformer-CQL perform compared to the original CQL? We compare
Transformer-CQL with the original CQL, which employs a simple MLP as the policy network.
As shown in Table 3, the Transformer-based action synthesizer outperforms the original architecture
in CQL, consistent with observations from RCSL methods (Chen et al., 2021; Wang et al., 2024;
Hu et al., 2024). We attribute this performance gap to the superior representation capacity of the
Transformer backbone.

How does Transformer-CQL perform compared to Transformer-TD3BC? As discussed in the
method section, we design a conservative value-guided policy for data generation, in contrast to
policies constrained by behavior cloning. We compare two augmentation strategies: Transformer-
CQL, which represents the conservative Q-value paradigm, and Transformer-TD3BC, a representa-
tive method of policy constraint. As shown in Figure 2(a), Transformer-CQL yields stable perfor-
mance when its augmented data is used to train both CQL and TD3BC. In contrast, Transformer-
TD3BC also converges well when paired with TD3BC, but results in a performance collapse when
its augmented data is used to train CQL. To further investigate this discrepancy, we visualize the
data distributions in Figure 2(b). The figure shows both a portion of the original dataset and the
corresponding generated samples. We observe that samples generated by Transformer-CQL remain
well-aligned with the original distribution, whereas Transformer-TD3BC produces dense clusters of
outlier points (highlighted with green circles). According to (Lyu et al., 2022), policy regulariza-
tion methods (such as TD3BC) typically exert less constraint on Q-values than value-penalization
methods (such as CQL). As a result, Transformer-TD3BC may generate actions that fall outside
the support of the original dataset. In the subsequent offline RL training phase, these dense outlier
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Table 3: Ablation on the action synthesizer. The final scores are trained with TD3BC. Average and
standard deviation scores are reported over 5 seeds. The best average values are marked in bold.

Action Synthesizer hopper-medium walker2d-medium

CQL 60.66±3.83 84.98±0.82
Transformer-CQL 90.47±4.06 87.50±0.20
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Figure 2: (a) Ablation study comparing Transformer-CQL and Transformer-TD3BC. (b) t-SNE visu-
alization of generated data distributions on halfcheetah-medium. Each point represents a state-action
pair.

clusters are incorrectly treated as in-distribution data due to CQL’s conservatism, while the original
sparse samples are mistakenly penalized as OOD data. This mismatch leads to inaccurate value
estimation and poor performance.

The effect of λ. The tradeoff coefficient λ plays a critical role in value penalization. We conduct
experiments by varying λ on different datasets to investigate how the level of conservatism affects
performance. As shown in Figure 3(a), changing λ has limited impact on the walker-medium dataset
but significantly influences performance on hopper-medium. A smaller λ, corresponding to a lower
degree of conservatism, tends to improve the performance of the downstream offline algorithms. Fig-
ure 3(b) further illustrates that the effect of λ manifests through its influence on the decision-making
capacity of Transformer-CQL, which in turn determines the quality of the synthesized data and indi-
rectly impacts the final offline learning performance. This insight provides a practical guideline for
applying our TGCVG: the quality of synthesized trajectories is highly dependent on the decision-
making ability of the action synthesizer. Therefore, improving the policy model’s capability during
the early stage of training can lead to higher-quality data generation.

5.4 FURTHER ANALYSIS

Data Quality Analysis. We adopt the data quality metrics introduced in GTA (Lee et al., 2024) to
evaluate our generated datasets. Specifically, we consider three metrics: (1) novelty, which quantifies
the ability of an augmentation method to explore novel state-action pairs; (2) optimality, which
measures the actual rewards of the generated data; and (3) dynamic MSE, which computes the
normalized discrepancy between synthesized and real states after applying the transition dynamics.
Although baselines provide code for data generation, the implementations of the evaluation metrics
are not publicly available. To ensure a fair and consistent comparison, we reproduce the datasets
using the official codebase of each method and evaluate all datasets using our own implementation
of the evaluation pipeline. Table 4 reports the results on standard Gym tasks. While our TGCVG
does not achieve the best score in every individual metric, it consistently yields the best overall
performance. Compared to GTA, our TGCVG achieves better dynamic MSE despite slightly lower
optimality, which may imply that dynamic consistency is a more important prerequisite than reward
magnitude when evaluating the quality of generated data. Notably, although our TGCVG constrains
trajectory generation within the original data distribution via value penalization, the novelty scores
indicate that the generated samples are not mere replicas of existing ones. This suggests that the
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Figure 3: Ablation on the λ. (a) Final performance of TD3BC trained on our augmented datasets.
Average and standard deviation scores are reported over 5 seeds. (b) Evaluation scores of the
Transformer-CQL policy networks, before interacting with dynamics models to generate synthetic
trajectories. Average and standard deviation scores are reported over 5 seeds.

Table 4: Data quality analysis of TGCVG and baselines across Gym locomotion tasks. Arrows ↑/↓
indicate whether higher/lower values are better. The best and the second-best results of each setting
are marked as bold and underline, respectively.

Task Novelty (↑) Optimality (↑) Dynamics MSE (↓)
S4RL Synther GTA TGCVG S4RL Synther GTA TGCVG S4RL Synther GTA TGCVG

halfcheetah-medium 0.00 3.72 4.21 5.80 4.77 4.78 6.26 6.25 0.05 2.04 2.64 1.29
halfcheetah-medium-replay 0.00 10.91 9.47 13.68 3.09 3.10 3.21 4.70 0.05 4.82 8.05 4.80
halfcheetah-medium-expert 0.00 3.16 6.00 3.63 7.71 7.69 9.39 8.06 0.03 2.54 5.57 0.86
hopper-medium 0.00 0.09 0.10 0.11 3.11 3.11 3.74 3.22 0.11 0.22 0.18 0.13
hopper-medium-replay 0.00 0.32 0.19 0.46 2.37 2.37 2.59 2.57 0.09 0.24 0.10 0.12
hopper-medium-expert 0.00 0.08 0.11 0.08 3.36 3.35 3.84 3.48 0.08 0.13 0.10 0.08
walker2d-medium 0.00 0.84 1.07 1.12 3.39 3.40 3.61 3.46 4.27 4.34 5.87 4.24
walker2d-medium-replay 0.00 3.49 2.53 3.64 2.47 2.46 2.74 2.65 7.92 8.73 8.90 6.33
walker2d-medium-expert 0.00 0.62 0.84 0.77 4.16 4.17 4.29 4.27 4.62 4.68 5.07 4.35

interaction between the policy and dynamics models enables a degree of generalization beyond the
training data.
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0

200

400

600

800

1000

1200

Ti
m

e 
Ov

er
he

ad
 (m

in
)

Dynamic Model Training
Aug Model Training
Data Generation

0

2

4

Ti
m

e 
Ov

er
he

ad
 (m

in
)

Figure 4: Compare the time over-
head of our TGCVG and GTA.

Training and Generation Time Comparison for TGCVG and
GTA. We compare the training time of our TGCVG and GTA,
the Diffusion-based method guided by scaled returns. All exper-
iments are conducted on a single NVIDIA RTX TITAN GPU us-
ing the halfcheetah-medium-v2 dataset, with 2×105 training steps
and 5 × 106 synthesized data points. As shown in Figure 4, our
TGCVG enables parallel training of the dynamics model and the
policy generation model, leading to significantly reduced training
time compared to the diffusion process in GTA. Moreover, our
TGCVG achieves much faster data generation by avoiding the
time-consuming partial noising and denoising stages required by
GTA. These results demonstrate the substantial reduction in time
cost achieved by our approach.

6 CONCLUSION

We propose Trajectory Generation with Conservative Value Guidance (TGCVG), a simple yet effec-
tive data augmentation framework for offline RL. The Q-learning module encourages above-average
actions compared to the dataset, while value-based penalization constrains generated samples within
the data distribution, mitigating OOD errors. Experiments on standard offline benchmarks show that
our TGCVG not only outperforms state-of-the-art baselines but also significantly reduces compu-
tational overhead. These results demonstrate the potential of leveraging the interaction between an
offline policy and a learned dynamics model to synthesize high-quality data, mimicking the data
collection process in online RL.
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7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. A detailed description of the
proposed method is provided in Section 4, and all hyperparameter settings are included in Appendix
A.1. The datasets used in our experiments are publicly available through the D4RL benchmark (Fu
et al., 2020).
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A EXPERIMENTAL DETAILS

A.1 DETAILS OF TGCVG

We implement TGCVG based on the official GTA codebase (https://github.com/
Jaewoopudding/GTA), replacing the original Diffusion module with our Transformer-based
synthesizer. For policy network training, most hyperparameters of the Transformer backbone follow
those used in DT (Chen et al., 2021), as detailed in Table 5. For the context length L on the Gym
domain, we set L = 5 for halfcheetah-medium and halfcheetah-medium-replay, and L = 20 for
the remaining tasks, following (Hu et al., 2024). On the Maze2D and AntMaze domains, we consis-
tently set L = 5. Our conservative Q-value guidance is adapted from CQL (Kumar et al., 2020), with
modifications to the tradeoff coefficient λ to balance conservatism and exploration. During the data
augmentation phase, we adopt a similar pipeline to GTA, and the dynamics model is implemented
using the official ADMPO codebase (https://github.com/LAMDA-RL/ADMPO). The sam-
ple length K is chosen based on the complexity of each environment. Complete hyperparameter
settings for all evaluated tasks are summarized in Table 6.

Table 5: Hyperparameters of TGCVG in our experiments.

Parameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 256
Nonlinearity function GeLU
Batch size 256
Dropout 0.1
Optimizer Adam (Kingma, 2014)
Learning rate 1e-4

Table 6: Hyperparameter settings of all datasets.

Datasets λ K

halfcheetah-medium-v2 0.1 60
halfcheetah-medium-replay-v2 0.1 60
halfcheetah-medium-expert-v2 10.0 60
hopper-medium-v2 2.0 60
hopper-medium-replay-v2 2.0 40
hopper-medium-expert-v2 5.0 60
walker2d-medium-v2 5.0 40
walker2d-medium-replay-v2 5.0 40
walker2d-medium-expert-v2 10.0 40
maze2d-umaze-v1 0.5 7
maze2d-medium-v1 0.3 7
maze2d-large-v1 0.4 7
antmaze-umaze-v2 5 6
antmaze-medium-play-v2 3 7
antmaze-large-play-v2 1 7
antmaze-umaze-diverse-v2 5 7
antmaze-medium-diverse-v2 1 7
antmaze-large-diverse-v2 2 7
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A.2 OFFLINE RL ALGORITHMS

We utilize the Clean Offline Reinforcement Learning (CORL) library (Tarasov et al., 2023) as
the implementation base for all offline RL algorithms, available at (https://github.com/
tinkoff-ai/CORL). For the Gym domain, we adopt the default hyperparameters for CQL, IQL,
TD3+BC, and DT. For the Maze2D and AntMaze tasks, IQL hyperparameters are configured ac-
cording to the original paper.

A.3 DATASET AND EVALUATION

We use the v2 datasets for the Gym locomotion and AntMaze tasks, and the v1 datasets for Maze2D,
consistent with GTA. For all tasks evaluated, we train TD3+BC, IQL, and CQL for 1 million steps
and report performance based on final evaluations. For DT, we train for 200,000 steps due to its faster
convergence. We report final evaluation scores averaged over 10 episodes for Gym locomotion tasks
and 100 episodes for Maze2D and AntMaze tasks. All scores are normalized following the D4RL
protocol (Fu et al., 2020), where a score of 0 corresponds to a random policy and 100 corresponds
to an expert policy.

B ADDITIONAL EXPERIMENTS

B.1 ABLATION STUDY ON RETURN CONDITION

Transformer-based methods in offline RL typically formulate the task as a sequence modeling prob-
lem, using the RTG as a condition to generate high-return trajectories. Recent approaches such as
QT (Hu et al., 2024) incorporate Q-learning into the Transformer architecture and have shown effec-
tive policy improvement. However, we investigate whether the RTG input remains necessary when
the Transformer is already equipped with a Q-learning module. To this end, we conduct an ablation
study on RTG using the official QT codebase (https://github.com/charleshsc/QT). As
shown in Table 7, removing RTG has little impact on performance, suggesting that the Q-learning
component is the primary driver of policy improvement. Based on this observation, we design our
Transformer-CQL model to take only state sequences as input, which reduces input tokens and im-
proves computational efficiency.

Table 7: Ablation on RTG conditioning in QT. Average and standard deviation scores are reported
over 3 seeds. The best average values are marked in bold.

Dataset QT w/o RTG QT w/ RTG

hopper-medium 73.29±1.15 77.28±4.07
hopper-medium-replay 99.24±0.23 100.99±0.51

B.2 ABLATION STUDY ON SAMPLE LENGTH

We investigate the effect of sample length K in the data synthesis process. As shown in Table 8,
increasing K improves trajectory coverage and allows the policy model to explore longer, higher-
return behaviors, particularly in stable environments such as halfcheetah. However, a larger K also
increases the likelihood of sampling trajectories that contain terminal states. Since our method in-
herits terminal flags from the original trajectories, this can result in inconsistencies: the generated
portion may not actually reach a terminal condition, but the trajectory is still forcibly terminated.
Such mismatches between true and inherited termination become more pronounced as K increases,
especially in environments with well-defined terminal conditions like hopper. Conversely, smaller
values of K reduce the chance of terminal mismatch but may lead to insufficient trajectory explo-
ration, as the generated segment is shorter and less likely to achieve high returns. These results
highlight a tradeoff in choosing the appropriate sample length K during synthesis.
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Table 8: Ablation on the number of sampled steps K. The final scores are trained with TD3BC.
Average and standard deviation scores are reported over 5 seeds. The best average values are marked
in bold.

Dataset K = 25 K = 40 K = 60 K = 80 K = 100

halfcheetah-medium 65.69±0.60 66.99±0.72 68.14±0.58 67.42±2.11 69.21±0.30
hopper-medium 91.06±4.07 93.94±4.60 90.47±4.06 86.50±5.02 87.24±4.66

B.3 PERFORMANCE COMPARISON BETWEEN TGCVG AND MODEL-BASED METHODS

Model-based methods also generate data, though their data generation is typically not decoupled
from the learning process, unlike data augmentation approaches. We are interested in whether data
generated by model-based methods can be repurposed to train offline model-free algorithms for
performance improvement. Since our dynamics model is adapted from ADMPO (Lin et al., 2024),
we compare our method with ADMPO to investigate this question. Table 9 compares ADMPO+IQL,
which reuses data from ADMPO training for IQL, with the original ADMPO scores and our TGCVG
results. The results suggest that data generated by model-based methods is not well-suited for direct
use in offline model-free training, demonstrating that TGCVG provides a more general and effective
data generation strategy for offline RL.

Table 9: Normalized results on halfcheetah-medium and antmaze-large-diverse. Average and stan-
dard deviation scores are reported over 5 seeds. The best average values are marked in bold.

Algo. halfcheetah-medium antmaze-large-diverse

ADMPO+IQL 21.90±3.91 0.00±0.00
ADMPO 72.20±0.60 0.00±0.00
TGCVG+IQL 68.61±0.39 57.20±4.26

B.4 FURTHER STUDY ON COMPOUNDING ERROR

Compounding errors remain a major challenge for model-based methods in offline RL. To assess
this issue, we follow the evaluation protocol used in ADMPO (Lin et al., 2024) and plot the pre-
diction error curves over rollout steps. We compare TGCVG and GTA using generated trajectories
with rollout lengths corresponding to those used in ADMPO. For a fair comparison, we evaluate
prediction errors over the shared rollout horizon, defined as the minimum trajectory length between
the two methods. As shown in Figure 5, the prediction errors of TGCVG and GTA remain close
and increase slowly with rollout length, indicating that the dynamic plausibility of the generated
sequences is well preserved.

B.5 FURTHER STUDY ON DATA QUALITY

We further analyze how data quality evolves with increasing rollout length. As shown in Figure 6,
both novelty and optimality metrics improve as the rollout horizon increases. This suggests that the
policy network becomes less dependent on the original dataset and gradually shifts toward gener-
ating more diverse and higher-reward samples. Meanwhile, the dynamic MSE remains relatively
stable across different rollout lengths, indicating that the interaction between the policy and dynam-
ics models consistently produces transitions that are dynamically plausible.

C LIMITATIONS

Our work proposes a novel data augmentation framework for offline RL that improves the quality
of generated trajectories while reducing computational overhead. However, since our method builds
upon the implementation of CQL, it inherits certain limitations of CQL itself. In particular, tasks that
are inherently challenging for CQL remain difficult for our Transformer-CQL variant, even though
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Figure 5: Comparison among TGCVG and GTA, in terms of the growth curve of the compounding
error as rollout length increases, after data generation.
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Figure 6: Data quality analysis of TGCVG as rollout length increases.

our policy model is more robust and expressive. When the policy fails to produce high-quality
actions, the benefit of incorporating generated data into offline RL training is limited.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on the use of large language models (LLMs), we disclose that
LLMs are employed during the preparation of this paper. Their use is limited to assisting with
language editing, improving readability, and polishing the presentation of the manuscript. LLMs
are not involved in formulating the research questions, designing the methodology, conducting ex-
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periments, analyzing results, or drawing scientific conclusions. We take full responsibility for all
technical content, claims, and conclusions presented in this work.
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