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ABSTRACT

Accurate real-time monitoring of not only movements, but also internal joint mo-
ments or muscle forces that cause movement in unrestricted environments is key
for many clinical and sports applications. A minimally obstrusive way to monitor
movements is with wearable sensors, such as inertial measurement units, using the
fewest sensors possible. Current real-time methods rely on supervised learning,
where a ground truth dataset needs to be measured with laboratory measurement
systems, such as optical motion capture, which then needs to be processed with
methods that are known to introduce errors. There is a discrepancy between lab-
oratory and real-world movements, and for analysing new motions, new ground
truth data would need to be recorded, which is impractical. Therefore, we intro-
duce SSPINNpose, a self-supervised physics-informed neural network that esti-
mates movement dynamics, including joint angles and joint moments, from in-
ertial sensors without the need for ground truth data for training. We run the
network output through a physics model of the human body to optimize physical
plausibility and generate virtual measurement data. Using this virtual sensor data,
the network is trained directly on the measured sensor data instead of a ground
truth. Experiments show that SSPINNpose is able to accurately estimate joint an-
gles and joint moments at 8.7◦ and 4.9BWBH%, respectively, for walking and
running at up to speeds of 4.9m s−1 at a latency of 3.5ms. We further show the
versatility of our method by estimating movement dynamics for a variety of sparse
sensor configurations and inferring the positions where the sensors are placed on
the body.

1 INTRODUCTION

Understanding the biomechanics of injury-causing events is important for injury prevention. How-
ever, injuries seldom occur in controlled environments (Wallbank et al., 2024; Heiderscheit et al.,
2005). Therefore, in-the-wild capturing of human movement dynamics, e.g. kinematics, joint
torques, and ground reaction forces (GRFs), is desirable. Currently, the gold standard for cap-
turing kinematics is optical motion capture (OMC), which is limited to a lab environment. In OMC,
a person is fitted with reflective markers that are tracked by multiple cameras. Joint torques are
estimated from the kinematics and force data, which are measured using force plates embedded into
the floor, which further limits the environment. Applying the markers by hand is error-prone and
the resulting kinematics can vary between different assessors (McGinley et al., 2009). Furthermore,
different processing techniques can also lead to different results (Werling et al., 2022).

An alternative to the limited setting of OMC is the use of inertial measurement units (IMUs). These
small, lightweight sensors can be worn during sports activities. Recent studies have explored meth-
ods that, based on inertial sensing, estimate poses (Yi et al., 2021; Van Wouwe et al., 2024; Von Mar-
card et al., 2017; Huang et al., 2018; Jiang et al., 2022; Roetenberg et al., 2013), forces (Tan et al.,
2024) or full dynamics (Karatsidis et al., 2019; Dorschky et al., 2019; 2020; Yi et al., 2022; Li et al.,
2021; Winkler et al., 2022). The dynamics estimations are either based on deep learning (Yi et al.,
2021; Winkler et al., 2022; Dorschky et al., 2020), trajectory optimization (Dorschky et al., 2019; Li
et al., 2021) or static optimization (Karatsidis et al., 2019). Current deep-learning methods rely on
supervised learning, which requires labeled data for training and, therefore, inherit the limitations of
OMC. As a practical example, motions like high-speed running or sprinting require a large recording
area, and are absent in widely used public IMU datasets like DIP-IMU and TotalCapture Huang et al.
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Figure 1: Example stickfigure of a running bout with a maximum speed of 4.9m s−1 reconstructed
with SSPINNpose. We show every the stick figure (black/red/blue) at intervals of 100ms and the
estimated GRFs (gray) every 20ms.

(2018); Trumble et al. (2017). Additionally, these datasets do not include force data. On the other
hand, optimization-based methods need no labeled data but are computationally expensive. This
makes them infeasible for analyzing dynamics over a long time period, which, for example, could
be a running session leading to an injury. Both deep-learning and optimization-based methods can
handle sparse IMU configurations (Winkler et al., 2022; Yi et al., 2021; Li et al., 2021; Dorschky
et al., 2023), where not every body part is equipped with an IMU. This can make a system more
practical for the user, but also makes the reconstruction of human movement dynamics even more
challenging (Von Marcard et al., 2017). Similar to optical markers, the placement of IMUs can in-
troduce errors in kinematic estimation. Therefore, inferring the sensor placement from the data can
be highly beneficial.

To address these limitations, this work introduces SSPINNpose, which combines the real-time in-
ference of learning-based methods with the ability of optimization-based approaches to reconstruct
motions without relying on labeled data. The core principle behind SSPINNpose, a self-supervised
physics-informed learning method, is that if an estimated motion is physically correct and corre-
sponds to the measured IMU data, it is likely to be the correct motion. During training, the network
is therefore guided to generate physically plausible motions that align with IMU data through virtual
sensors. We further exploit auxiliary assumptions to accelerate training, mitigate local minima or
enforce known properties of human movement.

Our main contribution is to transform the trajectory optimization problems from Li et al. (2021) and
Dorschky et al. (2019) into self-supervised learning problem. We show that this method can also be
used for real-time inference and with sparse IMU configurations. We further demonstrate that our
method can be used to estimate the IMU placement. To our knowledge, SSPINNpose is the first
real-time method for estimating biomechanical variables from inertial sensor data without labeled
training data. An example of our model’s output is shown in Figure 1.

2 RELATED WORK

Our work focuses on gait analysis, specifically the estimation of human movement dynamics, in-
cluding both kinematics and the internal/external forces acting on the body. Since most dynamic
motion during straight walking or running occurs in the lower limbs, particularly in the sagittal
plane, we review works that either examine full-body motion or focus on this plane.

Deep learning for movement dynamics: In order to estimate the 3D pose of a person in real-
time from sparse IMU configurations, Huang et al. (2018) proposed a deep learning-based method
using a recurrent neural network (RNN). Subsequent work enhanced motion accuracy and allowed
for flexible sensor configurations (Yi et al., 2021; Van Wouwe et al., 2024; Jiang et al., 2022; Zhang
et al., 2024). Since visually plausible motion was prioritized in these early methods, physical cor-
rectness, such as accurate force estimation, became a significant next step. Therefore, Winkler et al.
(2022) trained reinforcement learning agents to control torque-driven multibody dynamics models in
a physical simulator. Another approach, Physical Inertial Poser (PIP), (Yi et al., 2022) introduced a
physics module to create physically plausible motions. The physics module contains a proportional-
derivative (PD) controller and a motion optimizer, which also yields joint torques and GRFs, but
only the kinematics have been validated so far. Similar to PIP, two-stage inference methods, where
kinematics are first estimated with a learned prior and then dynamically updated with a physics
model, are established in the domain of video-based pose estimation Shimada et al. (2020); Xie
et al. (2022); Kocabas et al. (2023); Yi et al. (2023); Yuan et al. (2021).
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In biomechanical applications, reference data was often recorded with OMC in combination with
force plates, from which joint angles and torques can be estimated via inverse kinematics and in-
verse kinematics. Supervised deep learning models have demonstrated to accurately predict these
outcome variables from IMU data in a single inference step. Examples span a range of applica-
tions, such as gait analysis (Lim et al., 2019; Hernandez et al., 2021; Dorschky et al., 2020), slopes
and stair climing (Chen et al., 2020), activities of daily living (Wang et al., 2023) or pediatric care
Mohammadi Moghadam et al. (2024).

All deep-learning-based inertial pose and dynamics estimation methods to date rely on labeled data
for training. Therefore, these methods are unable to predict out-of-distribution movements. Further-
more, supervised methods inherit limitations from the reference system that was used for labelling,
which is usually OMC, such as eventual systemic biases or confinement to laboratory spaces. Our
method requires no labeled data for training as we use a fully self-supervised approach.

Optimization-based movement dynamics: To estimate movement dynamics without labeled
data, one can use optimization-based methods. Based on kinematics estimated by Xsens, Karat-
sidis et al. (2019) was first to propose the use of inverse methods to estimate GRFs and joint torques.
From the estimated kinematics, they used static optimization to infer the GRF, and then used inverse
dynamics to estimate the joint torques. They modeled the human body as a 3D musculoskeletal
model with 39 degrees of freedom. However, their method has not been validated on running data
and is not capable of real-time inference or handling sparse IMU setups. Furthermore, errors can
accumulate during the multiple processing steps.

Movement dynamics can also be estimated in a single step with a trajectory optimization by finding
control inputs, e.g. torques, for a simulation that best fits the IMU data. A solution to this problem
can be found using optimal control. In optimal control, an objective function, in this case the distance
between the actual and simulated IMU data, is minimized while satisfying dynamics constraints
imposed by a multibody dynamics model. Dorschky et al. (2019) solved the resulting optimization
problem with a two-dimensional musculoskeletal model with 9 degrees of freedom and 7 IMUs
using a direct collocation method. However, they assumed the gait to be symmetric and periodic.
Furthermore, they only optimised on averaged gait cycles data from multiple trials, while inference
took more than 30 minutes for a single gait cycle. They later followed up with a study on sparse
IMU configurations under the same settings (Dorschky et al., 2023). Optimal control problems with
sparse IMU configurations under no symmetry assumptions have been solved by (Li et al., 2021),
but they relied on the detection of gait events instead. Detecting gait events from IMU data is an
additional error source and unreliable for fast motions. 3D optimal control problems based on IMU
data of 3D movements have not been solved yet, except when synthetic IMU data was used (Nitschke
et al., 2023).

Our method is conceptually related to optimal control, as we aim to find a motion that minimizes the
distance between actual and simulated IMU data and is physically plausible. Unlike optimal con-
trol, we create a surrogate model to stochastically map inputs to outputs instead of solving discrete
optimization problems as such. A further difference is that optimal control problems use physical
correctness as a constraint, while we use it as an optimization objective instead. This is similar to
the solving strategy of constraint relaxation in optimization. As our method relies on stochastic op-
timization through a deep learning model, we use first-order solvers, such as Adam (Kingma & Ba,
2017), instead of second-order solvers that are commonly used in optimal control problems, such
as IPOPT (Wächter & Biegler, 2006). Our method is advantageous in terms of pre-processing, as
we do not need to detect gait events (Li et al., 2021) or extract gait cycles under the assumption that
these are periodic (Dorschky et al., 2019).

From optimization problems to self-supervised learning: Our work is based on the idea of
transforming an optimization problem into a self-supervised learning problem. This have the ad-
vantage of speeding up the simulations, while not requiring labeled data. This approach has been
used in various fields. For example, for 3D human (Schmidtke et al., 2023) and hand (Wan et al.,
2019) shape matching, the shape of a hand or human body was predicted from a single image with
a neural network. The shape, was then (neurally) rendered and compared to the input image. As the
rendering process is differentiable, they can backpropagate the error to the neural network. A similar
approach was used for the design of RF pulses in MRI (Jang et al., 2024), where the an optimal RF
pulse prior was learned via MRI simulations. Self-supervised learning is also used in cloth simula-
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tion, where the neural network predicts the mechanics of clothing during movement, which is then
evaluated based on physical plausibility (Bertiche et al., 2021; Santesteban et al., 2022). Optimiza-
tion problems are very specific to the task, which is also reflected in their respective self-supervised
learning methods. In SSPINNpose, we reconstruct our input signal, comparable to Wan et al. (2019),
and aim for physical plausibility as in Santesteban et al. (2022).

3 METHOD

3.1 PROBLEM FORMULATION

Our goal is to reconstruct lower body movement dynamics in the sagittal plane using IMUs. We aim
to achieve this in a fully self-supervised manner, meaning that no labeled data for the outputs will
be available during training.

The input consists of sequential two-dimensional accelerometer and gyroscope measurements from
up to seven IMUs placed on the feet, shanks, thighs, and pelvis, alongside body constants that define
the parameters of a multibody dynamics model. The outputs are the kinematics of the lower body,
including root rotation and translations, joint angles, joint torques and GRF. All outcome parameters
are directly estimated by the neural network, except for the GRFs, which are estimated with a ground
contact model based on the kinematics output. We describe our method in the following section.

3.2 SSPINNPOSE

We introduce SSPINNpose, a self-supervised physics-informed neural network designed to learn
human movement dynamics from IMU data without labels. The term ”physics-informed” refers to
the integration of Kane’s equations and a temporal consistency loss, which ensures that the estimated
velocities and accelerations align with changes in position and velocity over time. Temporal consis-
tency describes that the velocities and accelerations are consistent with the changes in position and
velocities, respectively. The self-supervised aspect relates to the reconstruction of the IMU data,
allowing the model to learn from the inherent structure of the input signals. To ensure stable and
fast training, we introduce further auxiliary losses that are based on either common assumptions in
human movement or known properties of inertial sensors. In summary, SSPINNpose is trained with
a weighted combination of the core (section 3.2.2) and auxiliary losses (section 3.2.3), which will
be introduced in the following sections (see A for more details):

L =
∑

i∈{IMU,T,K,GC}

λiLi +
∑

j∈{B,τ,slide,FS}

λjLj (1)

3.2.1 RNN IMPLEMENTATION

To capture the temporal dependencies inherent in human movements and inertial sensor data, we
employ a recurrent neural network (RNN). We tested a LSTM (Hochreiter, 1997) for real-time
inference and a bidirectional LSTM that has access to future information, each followed by two
dense layers to calculate the output. At each time step t, the model receives the current IMU reading
xt, body constants θb, IMU placement and rotations relative to their segment roots θimu, and ground
contact model parameters θgc. The input IMU data consists of 2D acceleration and 1D angular
velocity data per sensor in the sagittal plane, and is augmented with Gaussian noise with a standard
deviation of ηimuσ(xi) for each input channel i, where ηimu is set to 0.25

The 46 output features ŷt consist of the estimated generalized coordinates q, velocities q̇, acceler-
ations q̈, torques τ and ground contact model states, which consists of the global kinematics of the
ankle joint q̃ankle, ˜̇qankle, and a current friction factor for each foot µ̂. We do not predict the hori-
zontal position. For the loss calculations introduced in the following sections, we compute the global
kinematics for the joints pj , IMUs pIMU and ground contact points pgc based on the kinematics of
the respective parent joint. The global kinematics of each point consist of its global position, x, y,
and angle, α, as well as their first and second derivatives p = {x, ẋ, ẍ, y, ẏ, ÿ, α, α̇, α̈} (see A for
further details).
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Figure 2: Overview of the SSPINNpose’s training scheme. The blue box shows inertial measure
unit (IMU) signals from an unknown motion. For simplicity, we only show a single pose (gray).
IMUs are annotated in light green. The RNN estimates the multibody dynamics in the first light
red box. We then calculate the global kinematics for all joints, virtual IMUs, the heels and the toes
(magenta). The ground reaction force (GRF, green) is then estimated based on the global ankle
kinematics. Then we calculate the IMU loss (LIMU ) and the temporal consistency loss (LT ) based
on the global positions and Kane’s Loss (LK) based on the estimated joint angles, torques and GRFs.

3.2.2 PHYSICS INFORMATION AND SELF-SUPERVISION

The main idea behind SSPINNpose is that a motion that is physically plausible and consistent with
the IMU data is likely to be the correct motion. We enforce this by the following loss functions:
Kane’s loss (LK), temporal consistency loss (LT ) and IMU reconstruction loss (LIMU ). These core
components of SSPINNpose are illustrated in Figure 2.

Multibody Dynamics Model & Kane’s Equations: Our multibody dynamics model is a sagittal-
plane lower limb model with 2 translational and 7 rotational degrees of freedom, which correspond
to the generalized coordinates. The body consists of 7 segments: one trunk, and a thigh, shank, and
foot for each leg. The body constants contain the mass, length, center of mass and moment of inertia
for each segment. The body constants are linearly scaled based on the participant’s height (Winter,
2009). The forces scale linearly with the bodyweight, therefore, we set it to 1 kg.

Using this dynamics model, we calculate the equations of motion based on Kane’s method (Kane &
Levinson, 1985), implemented in SymPy (Meurer et al., 2017). Kane’s formulation is advantageous
for deep learning as it is the method that requires fewer equations to be solved to describe movement
dynamics. Kane defined that the sum of internal (F ∗

r ) and external (Fr) forces acting on a system is
zero. Therefore, we can define a loss term that enforces the physical plausibility of each estimated
state:

LK = |F ∗
r + Fr| = f (ŷ,θb,Fgc) . (2)

To estimate the GRF Fgc, we model the foot-ground contact with a sliding contact point. The
contact point’s position between the heel and toe is determined based on the global ankle rotation.
The vertical component of the GRF is modeled as a linear spring-damper system as in van den
Bogert et al. (2011), while the horizontal component is modeled as a friction cone with a learned
current friction coefficient µ̂. To disentangle the GRF from the kinematics, we estimate the global
ankle kinematics seperately, which is supervised by the distance to the estimated forward kinematics
(LGC) of the ankle. For more details, see A.

Temporal Consistency Loss: While Kane’s method enforces physical plausibility at each time
point, we also ensure that the derivatives of the estimated coordinates match the estimated velocities,
and that the derivatives of the estimated velocities match the estimated accelerations. This loss is
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applied to the generalized coordinates q. We normalize by the standard deviation of the estimated
coordinates or velocities over the sequence to ensure that the loss is scale-invariant:

LT =
1

2nq

nq∑
i=1

((
δqi
δt

− q̇i

)
σ(qi)

−1 +

(
δq̇i
δt

− q̈i

)
σ(q̇i)

−1

)
. (3)

We chose this approximate integration method to decouple the learning of kinematics from move-
ment dynamics, as numerical differentiation of the kinematics would cause exploding gradients in
Kane’s equations.

IMU Reconstruction Loss: We obtain virtual IMU signals x̂imu by rotating the kinematics of
each IMU pIMU into its respective local coordinate system. These virtual IMU signals are then
compared to the recorded IMU signals. We normalize by the standard deviation over a sequence of
the IMU signals per channel and the number of IMUs nimu:

LIMU =
1

nimu

nimu∑
i=1

(ximu − x̂imu)σ(ximu)
−1. (4)

3.2.3 AUXILIARY LOSSES

This section describes the auxiliary losses that we use to accelerate training, mitigate local minima
or enforce known properties of human movement. For more details and an abliation study to justify
these losses, refer to the supplementary sections A and C.

Joint Limit and Ground Contact Force Bounds (LB): We penalize the model for exceeding
joint limits and for violating bounds on maximum velocity and vertical position (see A). Addition-
ally, we assume that for each sequence, each foot supports at least 20% of the body weight. In
practice, this avoids local minima where the model does not predict any ground contact or skips on
one foot.

Torque Minimization (Lτ ): We apply a small weight on speed-weighted torque minimization, as
minimizing effort is a common assumption in human movement and usually leads to more natural
motions (van den Bogert et al., 2011). Similar to Dorschky et al. (2019), we normalize the torques
by the maximum speed of the root translation in the sagittal plane. As our training data might con-
tain some non-movement phases, the speed normalization only applies to sequences with estimated
moving speeds greater than 1m s−1.

Sliding Penalty (Lslide): To prevent foot sliding when a ground reaction force (GRF) is present,
we define sliding as the product of foot-ground speed and vertical GRF. This formulation ensures
that at least one of these variables is constrained to be zero.

Foot Speed (LFS): To speed up the training process and make our model less susceptible to
local minima, we make use of known properties of foot-worn IMUs by reconstructing their global
velocities (ṗK,x) using a Kalman filter with zero-velocity updates (Solà, 2017; Simon Colomar
et al., 2012), as implemented in Küderle et al. (2024). This algorithm is based on integration of the
IMU signals which accumulates errors from drift and noise. Furthermore, zero-velocity updates are
unreliable during running. In consequence, we treat these reconstructed speeds as erroneous and
only apply a penalty when the estimated foot-worn IMU speed from our kinematics differs by more
than 30% from its reconstructed maximum speed during the sequence.

4 EXPERIMENTS

In this section, we first describe the dataset used for training and evaluation, followed by the evalua-
tion metrics used to assess our model’s performance. Next, we show and discuss model’s capability
to estimate human movement dynamics from IMU data in section 4.1. Next, we show and discuss
experiments regarding finetuning for physics and sensor placement personalizations (section 4.2)
and sparse IMU configurations (section 4.3).
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Dataset We use the ”Lower-body Inertial Sensor and Optical Motion Capture Recordings of Walk-
ing and Running” dataset for training and evaluation (Dorschky et al., 2024). The dataset contains
data of persons walking and running through an area equipped with OMC cameras and a single force
plate, along with continuous IMU signals. For every trial, the OMC data contains roughly 5m of
kinematics data and force plate data for a single step. We downsampled the IMU signals to 100Hz.
The dataset includes data from 10 participants, each performing 10 trials at 6 different speeds, rang-
ing from 0.9m s−1 to 4.9m s−1. For each condition, the first 7 trials were designated for training,
while the remaining 3 were used for evaluation.

We selected the training data by applying a heuristic that identifies standing and turning phases
based on the foot and pelvis IMU signals, respectively. This was done to include the run-up to the
motion capture area and some steps after the motion capture area in our training set, while avoiding
turning phases that we cannot reconstruct with a two-dimensional model. In total, our training data
consists of 76 minutes of unlabeled IMU data. We processed the OMC and force plate data with
addBiomechanics (Werling et al., 2022) to compare the resulting joint angles and joint torques. The
first participant was excluded from addBiomechanics because of erroneous force plate readings.
During training, we randomly selected sequences of 256 time steps from the training data, while
full sequences were used during evaluation. Typical sequences from the datasets are visualized in
Figures 1 and 7. This dataset has been used by several other works focussing on sagittal-plane lower
limb dynamics (Dorschky et al., 2019; 2020; 2023).

Metrics: We use the following metrics to evaluate our model: 1.) Joint Angle Error (JAE): The
root mean square deviation (RMSD) between the estimated joint angles and those obtained from ad-
dBiomechanics, including the root orientation, in degrees. 2.) Joint Torque Error (JTE): The RMSD
between the estimated joint torques and those obtained from addBiomechanics, in bodyweight-
bodyheight percent (BWBH%). 3.) GRF Error (GRFE): The root mean square error (RMSE)
between the estimated GRFs and those obtained from the force plate, normalized by the body-
weight, in bodyweight percent (BW%). The GRF is the only outcome variable that can be directly
measured, therefore, we consider it to be an error and not a deviation to a reference system. 4.)
Speed Error: The RMSD between the estimated average speed and the sagittal-plane speed of the
pelvis markers while the participant was crossing the OMC area, in ms−1. For all metrics, lower
values are better. We show an evaluation on metrics that are commonly used in computer graphics
in the supplementary B.

4.1 QUANTITATIVE AND QUALITATIVE EVALUATION

In the following, we show the performance of SSPINNpose on the test data (Table 1). We eval-
uated SSPINNposes performance on continuous IMU data using a LSTM and a Bi-LSTM model,
respectively. Between both, there are only minor differences in the outcome metrics. The LSTM
model estimated dynamics and GRFs slightly more accurately, while the Bi-LSTM model estimated
speed more accurate and produces smoother motions. The LSTM can estimate the joint angles
and torques in real-time, with a latency of 3.5ms. Training took approximately 16 hours on a
NVIDIA RTX 3080 GPU. To compare against state of the art methods that report results on the
same dataset, we show versions of our model with adapted training and evaluation schemes. To
compare to Dorschky et al. (2019), which optimized on ensemble averaged gait cycles, we trained
and evaluated SSPINNpose (OCP) on ensemble averaged gait cycles from all 60 trials. For a fairer
comparison to the regression-based Dorschky et al. (2020), we trained SSPINNpose (Reg) on con-
tinuous IMU data from 7 participants and evaluated on ensemble averaged gait cycles from the
remaining 3 participants.

SSPINNpose’s kinematics estimations are on par with current real-time deep learning-based meth-
ods (Yi et al., 2022) (see B for more details). Compared to existing biomechanically validated
methods, SSPINNpose able to estimate the dynamics of human movement from IMU data in real-
time without the need for labeled data. We achieve a speed error that is 0.1m s−1 smaller the current
optimal control-based state-of-the-art (Dorschky et al., 2023) when trained on continuous IMU data.
The JAE, JTE, and GRFE, on the other hand, are generally larger than the CNN-based estimation
from Dorschky et al. (2020), when tested under the same conditions. However, both the CNN and
the optimal control-based methods took assumptions that are not applicable to real-time inference by
segmenting the data into gait cycles. Furthermore, they assumed them to be symmetric and periodic,
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Table 1: Quantitative comparison on continuous IMU data and on the test sets of Dorschky et al.
(2019) and Dorschky et al. (2020). The best results are shown in bold. To compare against citet-
dorschkyEstimationGaitKinematics2019 and Dorschky et al. (2020), we retrained and evaluated
SSPINNpose in settings that are comparable to their methods.

Model JAE JTE GRFE Speed
[deg] [BWBH%] [BW%] [ms−1]

SSPINNpose (LSTM) 8.7 4.9 16.4 0.19
SSPINNpose (Bi-LSTM) 8.9 5.0 18.8 0.15
SSPINNpose (OCP) 8.9 6.8 23.8 0.25
Dorschky et al. (2019) 6.3 2.6 17.9 0.25
SSPINNpose (Reg) 11.2 7.2 23.1 0.12
Dorschky et al. (2020) 4.9 1.4 10.7 -
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Figure 3: Average joint angles, torques and ground reaction forces (GRFs) for the right leg over all
test gait cycles. Estimated with the Bi-LSTM. We segmented the gait cycles during which the force
plate was hit and normalized them to a duration of 100 samples. Walking and running data is shown
in solid and dashed lines, respectively. Our estimates are shown in cyan, the reference data is shown
in black. The shaded area represents the standard deviation.

which limits the generalization towards arbitrary movements. SSPINNpose (Reg) was evaluated un-
der a domain shift from noisy, continuous IMU data to averaged gait cycles. In our experiments, we
found that torques and GRFs are more sensitive to the domain shift than joint angles. We argue that
the comparison on continuous IMU data is a more realistic scenario and therefore more relevant,
while the need for gait cycle segmentation is a limitation of the other methods.

In Figure 3, we show the gait-cycle averages of the joint angles, torques and GRFs estimated with the
Bi-LSTM model in comparison to the OMC reference. The kinematics were estimated accurately,
with a small bias in the hip and knee angle. Especially in running, the hip and knee moment were
not accurately estimated during the stance phase, which is the first 40% of the gait cycle for running
and the first 60% for walking. The ankle moment and vertical GRF shows slightly lower values
than the reference data, while the horizontal GRF could not be estimated correctly. SSPINNpose
estimated the kinematics and speeds robustly, with median and 95th percentile errors of 5.2◦ and
16.7◦ for joint angles, and 3.1% and 9.3% for speed.

In SSPINNpose, the network implicitly learns the interconnection between movement kinematics
and dynamics. In contrast, other real-time capable methods (Yi et al., 2022; Shimada et al., 2020),
use kinematical network output as an input signal for a PD controller and dynamics optimizer.
Whether direct or two-stage inference is preferable, depends on the application. Direct inference
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is faster and the dynamics are not subject to propagation errors from the kinematics. On the other
hand, the two-stage inference can help with generalization towards unseen movements and can be
more robust to noise. When testing SSPINNpose with PIP’s PD controller and optimizer, we found
that the the PD controller hyperparameters needed to be adjusted. We found that, depending on the
hyperparameters, the PD controller could be used to slightly reduce the JTE while raising the JAE
and smoothing the motion (see C for implementation details).

Our method contains a number of assumptions and simplifications. As in Yi et al. (2022), we assume
that the ground is flat and the foot cannot slide. Information about the ground is present in the IMU
data, and has been exposed in recent work (Jiang et al., 2022). The interaction between foot and
ground is modeled as a linear spring-damper system. Furthermore, the multibody dynamics model
is based on a generic template, which is due to a lack of personalization options. As we fit towards
IMU signals that are noisy, our model can learn to replicate that noise and becomes less physically
plausible, which we are mitigating, but not eliminating by augmenting the input data with Gaussian
noise. Our model is able to accurately estimate human movement dynamics despite these limitations,
therefore we consider them to be an opportunity to make the estimations more accurate in the future.

4.2 FINETUNING FOR PHYSICS AND PERSONALIZATION

In an ideal simulation, the estimated dynamics should perfectly match the actual motion. However,
achieving a perfect simulation requires physical exactness, meaning that both Kane’s loss and the
temporal consistency loss must be zero. Therefore, we finetuned the Bi-LSTM towards physics by
increasing the weight of the Kane’s loss and the temporal consistency loss by a factor of 10. This
reduced the JTE by 10% and the GRFE by 20%. However, as the IMU signals were not followed as
strictly, the JAE increased by 5% and the speed error increased by 33%. After finetuning, the biases
in knee moment and vertical GRF were substantially reduced and only the bias in the hip torque
during the stance phase in running remained. For use cases where the torques are of most interest,
this trade-off should be acceptable.

OMC Markers

dataset IMU pos.

estimated IMU pos.

Figure 4: Comparison of IMU positionings from the dataset and our estimations. We use OMC
markers as a reference frame. For all participants, we show either the right or left leg. We always
chose the side where the IMU and OMC markers were clearly visible. If they were visible from both
sides, we chose the picture that was taken more perpendicular to the sagittal plane.

A perfect simulation would require a correct multibody dynamics model with correct IMU positions.
Our model and loss function can act together as a differential physical simulator. Therefore, we can
optimize input parameters, including IMU orientations and positions. The IMU orientations and
positions are prone to errors as they are placed and measured manually. Therefore, we finetuned
the network and the IMU positions and orientations jointly for about 40 minutes per participant. In
Figure 4, we show the results of the IMU positioning optimization for all participants’ thigh IMUs.
We use the trochanter and knee markers as reference for the hip and knee joints. We present the
manually measured position of the thigh IMU in the dataset, which Dorschky et al. (2024) assumed
was located on the segment axis. We show that we are able to recover this misplacement from the
dataset. For most participant, the position estimation is on or very close to the IMU housing. To
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our knowledge, current methods can only estimate the distance of an IMU from the joint center,
but not the distance of the IMU to the segment axis. This discrepancy between the positioning
from the dataset and our estimation could only be found for the thigh IMUs and that the margin
of improvement in the metrics is very small (see C). However, the personalization of the IMU can
make the model more robust to misplacements and misalignments then donning the IMUs. There
is no validation for the correctness of body constants and ground contact model parameters on the
given dataset, as that would require medical imaging. Thus, we excluded these parameters from the
IMU positioning optimization. However, when we optimized the body constants, we found that only
the moments of inertia yielded unrealistic values, as they converged to zero. We found these results
because Kane’s loss formulation favours smaller moments of inertia, as they lead to less forces and
therefore less physics error in general. For the body weight, the same issue would apply, but we
mitigated that by optimizing for the weight distribution instead of the body weight itself.

4.3 SPARSE IMU CONFIGURATIONS

In practical use, the fewer IMUs one has to wear, the better. We have retrained the Bi-LSTM from
scratch on configurations with only the foot-worn IMUs (F), foot and thigh IMUs (FT), and foot and
pelvis IMUs (FP). Errors generally increased (Table 2), but the output motion is still physically and
visually plausible (see C). For the running motions in F and FT configurations, the ankle angle and
therefore the origin of the GRF is visibly shifted. Between the configurations with and without a
pelvis IMU, the trunk orientation is different for all motions. Therefore, there is likely a discrepancy
between the actual, physically plausible, trunk orientation and the IMU orientation, i.e. the pelvis
IMU might not be correctly aligned. Compared to Dorschky et al. (2023), our increases in errors are
similar for the F and FP configurations, but higher for the FT configuration. We believe our method
is more affected by soft tissue artefacts, measurement errors caused by the movement of skin and
muscle, from thigh IMUs compared to the optimal control method. As there is no hard constraint in
SSPINNpose, it can trade off physical correctness for a better fit to the IMU signals, especially when
they contain noise. On the other hand, optimal control’s hard constraints not allowing physically
incorrect motions. The pelvis and foot IMUs, on the other hand, are less affected by soft-tissue
artefacts.

Table 2: Comparison of different sparse IMU configurations using the Bi-LSTM model on the
evaluation metrics. The best results are shown in bold.

IMU configuration JAE JTE GRF Speed
[deg] [BWBH%] [BW%] [ms−1]

All 8.9 5.0 18.8 0.15
Feet + Thighs 14.4 8.1 32.7 0.45
Feet + Pelvis 12.6 4.9 24.9 0.41
Feet 13.2 7.4 27.8 0.30

5 CONCLUSION

In this work, we present SSPINNpose, a real-time method for the estimation of human movement
dynamics from inertial sensor data that does not require labeled training data. Instead, it relies
on self-supervision and physics information to find plausible motions. We show that SSPINNpose
can accurately estimate joint angles, torques, and GRFs from IMU data, while outperforming state-
of-the-art methods in terms of horizontal speed estimation. Additionally, SSPINNpose effectively
identifies movement patterns from sparse IMU configurations and personalizes IMU placement on
the body. Given its capability to work with minimal IMU configurations and allow for personaliza-
tion, SSPINNpose is a promising approach for long-term monitoring of athletes and understanding
injury mechanisms. In the future, we aim to extend SSPINNpose to 3D applications and adapt it for
model predictive control tasks.
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REPRODUCIBILITY STATEMENT

We provide the code for SSPINNpose in our supporting material and will link our github project in
the final version. The addBiomechanics repository will also be linked in the final version.
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A IMPLEMENTATION DETAILS

RNN & Hyperparameters: We use a network architecture similar to physics inertial poser (PIP)
(Yi et al., 2022). We use a LSTM with 2 layers with a hidden size of 256, while the output layers are
of size 128 and 46, respectively. The LSTM has a dropout rate of 40%. Further hyperparameters,
including the weighting between the loss terms, are listed in table 3. We take the hyperparameters
from PIP, as we use the same architecture. The loss weights were tuned manually.

Table 3: Hyperparameters in SSPINNpose.

Parameter Value
learning rate 10−3

optimizer Adam
batch size 32
criterion MSE
ηimu 0.25
λK 3.0
λT 3.0
λIMU 30.0
λankle 100.0
λB 10000.0
λτ 1.0
λslide 30.0
λFS 1.0

Calculation of point kinematics: We list the equations to calculate the global kinematics, con-
taining the positions (x, y) and angle α, of a point p = {x, ẋ, ẍ, y, ẏ, ÿ, α, α̇, α̈}, based on its
parent segment, here. For calculation, the parent is defined by an offset dx, dy , a point p′ =
{x′, ẋ′, ẍ′, y′, ẏ′, ÿ′, α′, α̇′, α̈′}. First, {α, α̇, α̈} are set by adding the local coordinates qp to p′

for the respective point. Then, {x, ẋ, ẍ, y, ẏ, ÿ} are calculated as follows:

x = x′ + cos(α′)dx − sin(α′)dy, (5)
y = y′ + sin(α′)dx + sin(α′)dy, (6)

ẋ = ẋ′ − (sin(α′)dx + cos(α′)dy) α̇′, (7)
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ẏ = ẏ′ + (− sin(α′)dy + cos(α′)dx) α̇′, (8)

ẍ = ẍ′ +
(
−dxα̇′2 − α̈′dy

)
cosα′ −

(
−dyα̇′2 + α̈′dx

)
sinα′, (9)

ÿ = ÿ′ +
(
−dxα̇′2 − α̈′dy

)
sinα′ +

(
−dyα̇′2 + α̈′dx

)
cosα′. (10)

The global kinematics are only directly estimated for the pelvis and the ankle. Therefore, the global
kinematics based on the pelvis are first calculated for the hip joint position and pelvis IMU and then
propagated along the kinematic chain. From the ankle kinematics that are seperately estimated, the
heel and ankle point globals are calculated.

Ground contact model: We determine the ground contact point based on the global ankle rotation
αankle, where the contact point is positioned on the line between heel and toe. The exact position
is determined as (tanh(αankle ∗ 7) + 1)/2, where 1 corresponds to the toe and 0 to the heel. The
GRF is calculated as: Fy = −kζ(βpgc,y) (1− bṗgc,y) /β with β = 300, stiffness k = 100BW/m,
damping b = 0.75N sm−1, and Fx = µmax tanh(µ̂)Fy , with µmax = 0.5. The global ankle
kinematics p̃ankle are estimated seperately and supervised by the estimated forward kinematics of
the ankle pankle:

LGC =
1

nankle

nankle∑
i=1

((p̃ankle − pankle) /σ(pankle)) . (11)

Bounds on joint limits and maximum velocity: For hip and ankle, we set the joint ranges to
[−π/3, π/3]. As the knee can extend less, its joint range was set to [−π/3, 0.1]. The maximum
velocity was set to [−10m s−1, 10m s−1], while the vertical root position was set to [0m, 2m].

Equations for the auxiliary losses: The torque minimization loss is calculated as:

Lτ =
∑

τ/max(ṗ0,x, 1), (12)

where τ is the joint torque and ṗ0,x is the speed of the root translation in the sagittal plane. The
sliding penalty loss is calculated as:

Lslide =
1

ngc

ngc∑
i=1

(|ṗgc,x|Fgc,y) , (13)

where ṗgc,x is the horizontal speed of the foot and Fgc,y is the vertical GRF. The foot speed loss is
calculated as:

LFS =
1

2

∑
p∈pankle

|ṗx − ṗK,x| − 0.3max(ṗK,x), (14)

where ṗK,x is the reconstructed horizontal speed of the foot-worn IMU and ṗx is the estimated
horizontal speed of the foot-worn IMU.

B COMPARISON TO 3D POSE ESTIMATION

Current state-of-the-art 3D pose estimation methods are typically evaluated on different metrics than
those that biomechanists are interested in, which are listed in table 4: 1.) Jitter: The third derivative
of the joint positions in km s−3. 2.) Global Orientation Error (GOE): The mean absolute error
(MAE) between estimated global segment orientations and those obtained from addBiomechanics,
including the root orientation, in degrees. This term is similar to the SIP error, which measures the
accuracy of global limb orientations in 3D. 3.) Mean Absolute Joint Angle Error (JA-MAE): The
MAE between estimated joint angles and those obtained from addBiomechanics, including the root
orientation, in degrees. 4. Joint Positioning Error (JPE): The mean distance between the knee and
ankle position in our estimation and the position of the respective OMC marker, in cm. The greater
trochanter marker was aligned with the hip joint in our estimations.

Compared to PIP (Yi et al., 2022), our results show lower angular errors, slightly higher positioning
errors and higher jitter. None of these metrics is directly compareable due to different reasons:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: The top half shows results of our baseline models on more additional metrics for walking
and all movements. For comparison, results from PIP (Yi et al., 2022) are listed in the bottom half
on its datasets.

SSPINNpose Jitter GOE JA-MAE JPE Latency (ms)
[km s−1] [deg] [deg] [cm] [ms]

Walking 0.75 4.9 6.7 6.8 3.5
All motions 1.95 6.9 7.0 6.5 3.5
PIP (Dataset) SIP

[deg]
DIP-IMU 0.24 15.02 8.73 5.04 16
TotalCapture 0.20 12.93 12.04 6.51 16

• Different model configuration: SMPL (Loper et al., 2015) is a 3D model, which PIP used,
that contains more joints and rotational degrees of freedom. Therefore, the rotational errors
can be bigger, while the joint positions are closer to the reference data. The positioning
of joints and their distances to the aligned root joint also influences the metrics. Jitter is
affected similiarly as JPE.

• Different evaluation method in JPE: In state-of-the-art methods, the reference joint cen-
ters are found by fitting SMPL to the reference data. On the other hand, we believe that
the sagittal position of the knee and ankle markers is more precisely reflecting the actual
joint position. By this, our error contains propagates inaccuracies in scaling the multibody
dynamics model and thus reveals IMU-driven model personalization as a new challenge.

• The datasets are different. Besides walking, DIP-IMU and TotalCapture contain gestures,
freestyle and range of motion movements. Therefore, there is no fair comparison between
our method and PIP.

C ADDITIONAL RESULTS

Physics Finetuning and personalization of IMU positions: We list the visual (see Figure 5) re-
sults of the physics finetuning and quantitative results (see Table 5) of the physics finetuning and
IMU positioning personalization experiments. GRFs and joint torques are estimated more accu-
rately, while the joint angles show slightly higher error.

Table 5: Quantitative comparison between the physics-finetuned model, personalized IMU orienta-
tions and rotation, and the baseline model.

IMU configuration JAE JTE GRF Jitter Speed
Baseline 8.9 5.0 18.8 1.95 0.15
Physics Finetuned 9.3 4.5 14.9 1.15 0.20
Personalized 9.0 5.0 17.8 1.92 0.14

Ablations: To justify the importance of the individual loss terms and implementation details, we
performed an ablation study. The results are shown in Table 6. The ablations are explained as
follows: 1.) w/o est-ankle: We do not estimate ankle kinematics seperately, we use the full-body
kinematics to estimate the GRFs instead. 2.) w/o input noise: We remove the input noise from the
IMU signals. 3.) w/o GRF minimum: We remove the minimum bound on the GRFs. 4.) w/o LFS:
We remove the foot speed loss. 5.) w/ two contact points: Instead of defining a single contact point
based on the global foot angle, we set a fixed contact points for the foot and the heel, respectively.
This is similar to the ground contact model in Dorschky et al. (2019).

We show that all ablations lead to a decrease in performance. We note that the GRF minimum is
especially important because it prevents local minima where the model does not learn to interact
with the ground.
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Figure 5: Average joint angles, torques and GRFs for the right leg, estimated with a physics-
finetuned Bi-LSTM baseline model. We segmented the gait cycles during which the force plate
was hit and normalized them to a duration of 100 samples. Walking and running data is shown in
solid and dashed lines, respectively. Our estimations are shown in cyan, the reference data is shown
in black. The shaded area represents the standard deviation.

Table 6: Quantitative results from the ablation study

Model Version JAE JTE GRF Jitter Speed
Full 8.9 5.0 18.8 1.95 0.15
w/o est-ankle 9.4 4.7 27.1 3.59 0.20
w/o noise augmentation (ηimu = 0 ) 9.1 5.0 17.7 2.34 0.15
w/o GRF minimum 34.0 - - 2.95 0.86
w/o LFS 9.7 5.4 19.3 2.25 0.18
w/ two contact points 12.8 4.7 21.6 2.05 0.30

SSPINNpose combined with PIP’s second stage: To combine PIP with SSPINNposes second
stage, we first estimate the global kinematics with SSPINNpose and track the joint angles q and
joint velocities ṗ with a PD controller. Instead of projecting contact polygons from contact points,
we deviated from the original PIP implementation by using the heel and toe positions as the contact
points. We heuristically set the ground contact probablity as a function of the horizontal speed of
the contact points and estimated GRFs. The PD controller was tuned manually (kλ = 0.01, kres =
0.1, kτ = 0.1).

Sparse IMU configurations: In Figure 6, we show the stick figures for the sparse IMU configu-
rations. We show that the model is able to estimate physically and visually plausible motions for all
configurations. The errors are higher for the foot and thigh (FT) configuration, as the thigh IMUs are
more prone to soft-tissue artefacts. The errors are lowest for the foot and pelvis (FP) configuration,
as the pelvis IMU is less affected by soft-tissue artefacts.

Sensitivity to IMU misplacement: We retrained SSPINNpose with IMU positions that were per-
turbed by varying offsets in the sagittal plane. We did a training run each with offsets of 2 cm, 4 cm,
6 cm, 8 cm, 10 cm, 15 cm, and 20 cm in a random direction. Next, we tested whether SSPINNpose
was able to recover either the IMU positions from the finetuning experiment in Section 4.2 or the
IMU positions in the dataset. The results in Table 7 indicate that SSPINNpose is robust to small vari-
ations in IMU placement, but performance degrades with offsets of 10 cm or more. Manual IMU
placement or measurement should usually be accurate within less than 10 cm, so we consider this a
reasonable level of robustness. Recovering the IMU positions in the dataset is more challenging, but
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Al
l

FT
FP

F

Figure 6: Sample stick figures for sparse IMU configurations, with forces annotated in gray. The
rows show (from top to bottom) all IMUs, foot and thigh (FT) IMUs, and foot and pelvis (FP) IMUs,
only foot (F) IMUs. We show random samples with the first two columns showing walking data,
and the last two columns showing running data. All samples are drawn randomly from different
participants.

as long the model has been trained on reasonably accurate IMU positions, it can partially recover
the IMU positions. This is shown by the optimized offsets compared to the finetuning experiment
and dataset being smaller than the offsets used for training.

Table 7: Experiments regarding the sensitivity to IMU misplacement and recovery of IMU positions.
The first four columns show the evaluation metrics when training with offset IMU positions. The
last two columns show the offsets compared to the original finetuning experiment the IMU positions
in the dataset (DS).

Offset JAE JTE GRF Speed Offset vs. Sec. 4.2 Offset vs. DS
cm [deg] [BWBH%] [BW%] [ms−1] cm cm
Baseline 8.9 5.0 18.8 0.15 0.0 +- 0.0 4.7 +- 2.2
2 9.4 5.5 19.1 0.13 4.4 +- 2.0 2.2 +- 1.2
4 9.7 5.9 19.5 0.14 6.1 +- 2.5 4.3 +- 2.5
6 8.4 5.1 17.6 0.13 3.8 +- 2.3 2.1 +- 1.4
8 10.4 5.7 20.9 0.16 5.8 +- 2.3 4.1 +- 1.8
10 16.4 4.7 36.1 2.99 7.6 +- 3.3 6.3 +- 3.7
15 14.1 6.0 22.1 0.52 15.1 +- 8.7 14.5 +- 9.9
20 18.5 5.3 19.7 0.39 24.1 +- 11.6 23.7 +- 12.5

D GRAPHICAL OVERVIEW OF SSPINNPOSE TRAINING AND EVALUATION
SCHEME

In Figure 7, we give an overview of the training and evaluation scheme of SSPINNpose. The ex-
plaination to the graphic is as follows: A: We take continuous IMU signals, body constants, IMU
positions and ground contact model parameters as input. B: We use a (Bi-) LSTM to output kine-
matics and joint torques. C: We show a stick figure of the estimated kinematics at {2.5, 3.0, ..., 4.5}
s. For two out of these frames, we also show the reference kinematics in grey. D: We supervise our
model using the loss functions introduced in Section 3.2. Here we show: 1.) Kane’s Loss, which
has the same dimensionality as the multibody dynamics model’s degrees of freedom. 2.) Temporal
Consistency Loss for pankle,r, where the estimated velocity is shown in black and the estimated
acceleration in red. The dashed lines represent the numerical differentiation of the position and ve-
locity, respectively. 3.) Virtual IMU: The simulated IMU signals of a foot-worn IMU. 4.) Foot-IMU
speed: The estimated speed of the foot-worn IMU, our model in blue and the kalman-filter based
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integration in green. The shaded area marks the zone where the speed error is zero. E: We show
the biomechanical outcome variables. Dashed lines represent the reference data. 1.) Kinematics:
Hip flexion: blue; knee flexion: red; ankle plantarflexion: green. 2.) Speed: Translational velocity.
3.) Torques: Knee flexion: red, ankle plantarflexion: green. The hip flexion torque is not shown as
it is out of range, but it is not estimated correctly for this trial. 4.) GRFs: Vertical: blue, horizontal:
red.
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Figure 7: Overview of the SSPINNpose training and evaluation process. All data shown is from a
single running bout at a max speed of 4.9m s−1. The shaded area marks the time where the reference
data was recorded.
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