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(a) Curly Kale (b) Fabric (c) Mesh at step 0 (d) Mesh at step 50

Figure 1: (a) Kale accretively grows bigger, gaining biomass and forming complex curls. (b) In
contrast, passive sheets like cloth only deforms. In this work, FOLIAGE models the former, yielding
stronger geometry understanding and cross-modal alignment. (c, d) SURF-GARDEN generates
accretive growth sequences on which the SURF-BENCH suite provides evaluation.

ABSTRACT

Accretive surfaces grow by adding material and changing rest metrics, producing
emergent, complex, and changing morphologies. To study this phenomenon, we
introduce FOLIAGE, a geometry-centric latent world model that infers a deploy-
able state from heterogeneous, partial sensors and predicts its action-conditioned
evolution. The perception stack aligns images, point clouds, and meshes through
correspondence-constrained fusion and age features, then pools into global and
young-region summaries that emphasize where change will occur next. Dynam-
ics input act only on the latent, taking material coefficients and a horizon code
to produce counterfactual roll-outs without entangling perception with control.
Training-time physics guides representation via a target encoder that receives
per-vertex energies and energy-gated message passing, while the deployable path
relies solely on observable inputs. On our SURF-GARDEN data platform and the
SURF-BENCH suite, FOLIAGE improves mesh topology classification by ∼3 pp,
reduces dense-correspondence geodesic error by ∼10%, lifts cross-modal retrieval
by ∼25% mAP@100, increases growth-stage recognition by ∼8 pp, lowers 5-step
Chamfer by∼20%, and cuts inverse-material error by∼40% relative to strong base-
lines. Stress tests show graceful degradation under sensor loss, stable long-horizon
roll-outs, and gains from train-only physics without test-time privileges. Code and
datasets used in this study will be made publicly available upon publication to
facilitate reproducibility and further research.

1 INTRODUCTION

Accretive surface growth adds material and alters rest metrics of thin shells (Fig. 1), inducing internal
stress that differentially propagate to complex, global morphology evolution Coen et al. (2023);
Efrati et al. (2009; 2017). This phenomenon underpins key frontier domains like smart material
and 4D printing Gladman et al. (2016); Wang et al. (2024); van Manen et al. (2021). It is also
present in living tissue such as plant and animal organs Liang & Mahadevan (2011); Huang et al.
(2018). External actions through heat, light, and chemical signals can condition growth trajectories
toward desirable shapes by changing the material property of the surface—without direct contact
manipulation. Walden et al. (2023); Guo et al. (2021); Li et al. (2021). However, precise control
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(b) Action-conditioned dynamics
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(c) Physics guidance (training)

Figure 2: In FOLIAGE: (a) a perception stack encodes sensors into latent st (instantiated as context
and EMA target encoders); (b) an action-conditioned predictor advances to ŝt+∆t; (c) (training only)
a target encoder for physics-informed st+∆t.

and modeling is challenging because the internal physical forces that drive accretive growth is not
externally observable; furthermore, growth sequence data is difficult to collect in both lab and natural
settings Gallet et al. (2022); Ambrosi et al. (2019).

Existing methods largely fall into two families. Differentiable simulators expose solver internals and
gradients, supporting parameter inference and control when models and discretizations are accurate
and sensing is not the bottleneck Li et al. (2022); Hu et al. (2020; 2019). Video-oriented world models
learn pixel dynamics end-to-end and are tuned for photometric prediction rather than surface geometry
Hafner et al. (2019; 2023); Oh et al. (2015). The target regime here is different: geometry, not pixels,
is the prediction object; sensing is multimodal and intermittent; and actions operate through material
parameters. Moreover, practical sensing is heterogeneous and partial—images, point clouds, and
occasionally partial meshes—creating a gap between raw observations and the geometry-centric state
needed for prediction and control Tretschk et al. (2023); Mildenhall et al. (2020). Our objective is to
infer latent a state from partial, multimodal observations and to predict how it evolves under actions
on material coefficients Hu et al. (2021); Raissi et al. (2019); Ma et al. (2023).

Design goals and problem formulation. (G1) Accretion-aware perception that fuses heterogeneous
sensors and emphasizes newly accreted regions. (G2) Action-conditioned latent dynamics that predict
geometric evolution under material coefficients and time. (G3) Physics-guided representation learning
that leverages train-only privileged signals while remaining deployable without test-time solvers.
At time t, observations are xt ⊆ {It, Pt,Mt} for RGB images, point clouds, and a surface mesh.
Actions at ∈ R3 parameterize material coefficients [kstretch, kshear, kbend]. The model learns a latent
state st ∈ Rd and a predictor Pθ such that for horizons ∆t, st+∆t ≈ Pθ(st, at,∆t).

Model overview. FOLIAGE (Fig. 2) is a latent world model Ha & Schmidhuber (2018); Hafner
et al. (2019) targeted at accretive surfaces under partial sensing and material control. A perception
stack maps available sensors into a shared token set with correspondence-based fusion and an
accretion-aware mesh pathway with vertex birth-time tags. Hierarchical pooling forms a compact
state comprising a global summary and a young-region summary. Actions enter only in the dynamics
through an action token; a lightweight Transformer predicts ŝt+∆t from (st, at,∆t), preserving
counterfactual semantics. During training, a target encoder receives per-vertex energies and applies
energy-gated message passing to shape supervision; deployment uses observable inputs only.

Data and benchmark. The SURF-GARDEN platform produces sequences in which surfaces grow
and deform under internal stress and material response while recording exact correspondences across
sensors, enabling multimodal supervision and counterfactual branching. An accompanying evaluation
suite, SURF-BENCH, defines tasks spanning geometry understanding, cross-modal alignment, roll-
outs, and inverse materials.

Contributions. (1) A geometry-centric latent world model that fuses images, point clouds, and
meshes and predicts action-conditioned evolution under partial sensing. (2) An accretion-aware
perception stack with vertex birth-time tags, correspondence-driven fusion, and hierarchical pooling
emphasizing young regions. (3) A physics-guided training branch that uses per-vertex energies
via energy-gated message passing, with deployment relying only on observable inputs. (4) A data
platform and an evaluation suite for accretive surface dynamics.
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Figure 3: SURF-BENCH explores (a) a rich action space with (b) fine-grained correspondences.

2 RELATED WORK

Latent world models for control. Latent world models learn compact states and their dynamics from
high-dimensional observations to support prediction, planning, and control Hafner et al. (2019); Ha &
Schmidhuber (2018); Lee et al. (2020). Most systems are designed for image-centric tasks, where the
latent is optimized for reward prediction or pixel reconstruction and actions represent task controls
in relatively rigid scenes Hafner et al. (2023); Oh et al. (2015). These approaches typically rely on
decoders or value models and seldom represent geometry explicitly; decoder-free variants remain
predominantly pixel-based with limited support for heterogeneous sensors Mildenhall et al. (2020);
Kerbl et al. (2023); Jaegle et al. (2021). In contrast, this work targets geometry as state and fuses
images, point clouds, and meshes through correspondence, while G2 introduces action-conditioned
dynamics tied to material coefficients Xu et al. (2022); Teed & Deng (2021). The representation is
built to support downstream geometric competence under partial sensing, without obligating image
synthesis or reconstruction.

Learning physical dynamics. Differentiable simulators expose solver internals and gradients for
inverse problems and control when discretizations and constitutive laws are accurate, but they inherit
solver stability and modeling errors at inference Hu et al. (2021); Li et al. (2022); Hu et al. (2019;
2020). Neural surrogates and graph-based simulators advance states directly via learned message
passing or operator learning, typically on fixed or slowly varying meshes/particles with explicit
state supervision Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021). Both strands largely optimize
explicit physical states and assume stable connectivity, which complicates growth regimes where new
surface elements are spawned Pfaff et al. (2021); Sanchez-Gonzalez et al. (2020); Li et al. (2022).
Our approach places dynamics guidance at training time: FOLIAGE builds a growth-aware latent
via correspondence-driven fusion (G1), then learns action-conditioned evolution tied to material
coefficients (G2), while remaining solver-free at deployment (G3). We observe that decoupling
representation learning from solver fidelity improves robustness under multimodal, intermittent
sensing and topology change.

Multimodal geometric learning and correspondence. Cross-modal representation learning aligns
images with 3D geometry to support retrieval and correspondence Li et al. (2023); Zhu et al. (2022);
Liu & et al. (2023), while mesh correspondence methods focus on accurate matching across surfaces
Ovsjanikov et al. (2012); Melzi et al. (2019); Donati et al. (2020). These lines usually assume static
or pre-meshed geometry and are not optimized jointly with action-conditioned temporal dynamics or
robustness to missing modalities. FOLIAGE strengthen correspondence-driven fusion Newcombe
et al. (2015); Innmann et al. (2016); Bozic et al. (2020) with a dynamics predictor so that the latent is
effective for both static geometric tasks and forecasting under material-driven evolution (G1+G2).
Structured masking and hierarchical pooling increase robustness to incomplete sensing and emphasize
recently accreted regions within the same deployable interface Chen et al. (2023a); Yu et al. (2022);
Liu et al. (2022).

3 SURF-BENCH: A DATA PLATFORM FOR ACCRETIVE SURFACE GROWTH

To train our model and motivate further investigation in accretive growth, we build the SURF-
GARDEN pipeline (Fig. 3) which generates physically simulated mesh sequences with precisely
aligned multi-view RGB and LiDAR-style observations. The resulting dataset contains 7, 200
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Ground Truth Ours Motion2VecSets MeshGPT-solo CaDeX MeshGraphNets

Figure 4: Mesh predictions over 10 time steps under control actions. Errors are illustrated by a color
gradient. FOLIAGE’s predictions closely resemble the ground truth while baselines’ rapidly deviate.

branched sequences of 400 frames each, with vertex counts growing from ∼ 20 to ∼ 105, and an
8:1 :1 train/val/test split.

Simulator. We simulate a thin elastic shell with membrane and bending energies Tamstorf & Grinspun
(2013), introduce growth via metric accretion that expands rest lengths and induces non-Euclidean
curvature, and apply remeshing to maintain quality and prevent self-intersections across diverse
topology classes.

Counterfactual branching. After a shared 50-frame prefix, each sequence branches under modified
controls. Mesh element identifiers persist through connectivity updates, keeping geometry and indices
aligned across branches and enabling supervised counterfactual roll-outs from a shared past without
further simulator calls. To prevent split leakage, branches that descend from the same pre-branch
’parent’ trajectory are assigned to the same split; no parent or its branches are split across train/val/test.

Multimodal correspondence. Per frame, we render multi-view RGB and a LiDAR-style point
cloud. Pixels and points carry their originating mesh elements, and camera parameters are fixed per
trajectory, yielding exact cross-modal and temporal correspondences for the encoders.

4 FOLIAGE: A LATENT WORLD MODEL FOR ACCRETIVE SURFACES

System overview and goals. FOLIAGE targets accretive surface dynamics under heterogeneous and
intermittent sensing by learning a geometry-centric latent state and its action-conditioned evolution.
The design follows three goals: G1 accretion-aware perception that fuses images, point clouds,
and meshes and emphasizes newly accreted regions; G2 action-conditioned latent dynamics that
predict geometry under material controls while keeping perception observational; G3 physics-guided
representation learning that uses train-only privileged signals without requiring a solver at deployment.

4.1 ACCRETION-AWARE PERCEPTION (G1).

The perception stack (Fig. 2a) yields a latent st ∈ Rd that (i) respects growth-driven connec-
tivity changes, (ii) tolerates heterogeneous and intermittent sensing, and (iii) highlights recently
accreted regions predictive of near-term evolution. It comprises three stages: modality encoders,
correspondence-driven fusion, and hierarchical pooling. All components in this section use observable
inputs only; privileged physics appears later in the target branch.

Modality encoders. Let xt ⊆ {It, Pt,Mt} be the active sensors. Each sensor is mapped to tokens in
a shared space: TI = {pk}, TP = {qk}, and TM = {rv}; missing sensors contribute empty sets and
downstream modules operate on the union Ut = TI ∪TP ∪TM without branching. The mesh pathway
Sharp et al. (2022); Thorpe et al. (2022) encodes growth-driven connectivity in which vertices are
spawned as area increases (Fig. 5). Each vertex carries geometric features and a birth-time tag τ(v);
an age feature marks recently spawned regions and is injected before message passing. Image and
point tokens lack intrinsic age and receive an age proxy via correspondences (Fig. 3).

Correspondence-driven fusion. Tokens interact over a sparse heterogeneous graph with edges
from pixels to intersected mesh elements, points to nearest mesh vertices, and mesh-mesh adjacency.
Fusion uses type-aware attention constrained to these edges with simple geometric biases (e.g.,
barycentric confidence or distance) to privilege reliable correspondences, allowing texture to refine
mesh tokens and points to supply metric anchors without dense all-to-all interactions.
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(a) Vertex on mesh at t=0 (b) Same vertex by t=7 (c) Mesh colored by vertex age

Figure 5: Accretive growth complicates learning consistent features over time. (a) a vertex (green)
that began at a convave region quickly ends up at a convex area (b) as the mesh evolves. (c) tracking
the age of vertices added to the mesh illuminates this dynamic: in actively growing areas, young
vertices (white) quickly emerge between old vertices (red).

Robustness under partial sensing. A structured masking scheme enforces robustness: random token
masking per active modality, paired masking of neighbors along correspondence edges near masked
tokens, and occasional modality-level dropout (applied stochastically during training).

Age propagation to non-mesh tokens. Non-mesh tokens inherit an age proxy from neighboring
mesh tokens through correspondence edges using a conservative rule that assigns the minimum
neighboring age; the proxy is used for pooling only.

Hierarchical pooling and state formation. Pooling compresses Ut into a fixed-size state using two
summaries: a global token summary and a young-region summary computed over tokens with small
age. The two summaries are concatenated and linearly projected to form st.

Interfaces and invariances. The perception stack is permutation-invariant within token sets, tolerant
to missing modalities by construction, and stable to growth-driven mesh refinement. The output st is
the sole geometric state for downstream action-conditioned prediction; separating perception from
actions preserves counterfactual semantics and the masking scheme prevents trivial copying through
correspondences.
4.2 ACTION-CONDITIONED LATENT DYNAMICS (G2).

The predictor (Fig. 2b) advances the latent state under material control. Given st, at, and horizon
∆t, it produces ŝt+∆t. Actions enter only here, keeping perception observational and enabling
counterfactual roll-outs from a fixed st.

Inputs and conditioning. Inputs are the state st ∈ Rd, material coefficients at ∈ R3 encoded by a
small MLP into an action token, and a horizon code ϕ(∆t). The concatenated vector [st∥at∥ϕ(∆t)]
is projected and updated by a compact Transformer to yield ŝt+∆t.

Training. Multi-horizon training samples ∆t uniformly from {1, . . . , 20} and minimizes Lpred =
∥ŝt+∆t − st+∆t∥22 where targets come from a target encoder (exponential-moving-average copy of
the context encoder), stabilizing supervision across horizons.

Null action and stability. When controls are unavailable, a learned null-action embedding replaces
at. Multi-horizon sampling and a bottlenecked action path mitigate long-horizon drift and over-
conditioning while preserving sensitivity to geometry encoded in st.

4.3 PHYSICS-GUIDED REPRESENTATION (G3).

Growth is driven by internal stress and material response, which are not observable at deployment.
During training only, the simulator provides per-vertex membrane and flexural energies that summa-
rize these drivers. G3 uses these privileged signals to bias the representation toward regions likely to
evolve under control, while the deployed system relies solely on observable inputs.

Architecture. Two instantiations of the perception stack (Fig. 2a) are maintained: a context encoder
Ectx that consumes only observables (Fig. 2b), and a target encoder Etar that additionally receives
per-vertex energies during training (Fig. 2c). Etar supervises the predictor and is updated as an
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Figure 6: FOLIAGE accurately tracks features in the dense correspondence tasks as baselines degrade
over significant changes in surface morphology which occur during accretive growth.

exponential moving average Tarvainen & Valpola (2017) of Ectx, preserving symmetry and avoiding
a test-time dependency on privileged values.

Energy-gated message passing. In Etar, energies modulate the early mesh message passing so
that propagation is amplified near high-energy vertices and remains standard elsewhere. Gating is
bounded and confined to the first propagation step for stability. Ectx has no gating.

Auxiliary alignment. Target mesh tokens also predict normalized energies with a lightweight
regression loss, encouraging features that correlate with stress while leaving the deployed path
unchanged.

Training objective. The predictor is trained to match the target latent st+∆t = Etar(xt+∆t) using
Lpred, with a simple variance–covariance regularizer to avoid collapsed representations; weights are
shared across branches except for the gated inputs in Etar.

Leakage control and safeguards. (1) Privileged energies are provided only to Etar. (2) Energies
are treated as constants (no gradients). (3) Etar is updated via EMA rather than by backpropagating
prediction gradients through privileged inputs. Bounded gating and a single gated step prevent over-
amplification; EMA coupling keeps Etar close to Ectx, reducing sensitivity to simulator idiosyncrasies
and preserving deployment behavior.

5 SURF-BENCH EXPERIMENTS

We assemble the SURF-BENCH suite composed of six tasks (T1–T6) and four stress tests (S1–
S4), aligned with the model goals: R1 (G1) geometry and multimodal grounding (T1, T5, T6);
R2 (G2) action-conditioned dynamics (T2, T4); R3 (G3) physics-guided representation (T3); R4
robustness and generalization (S1–S4). Success criteria: the latent supports classification, regression,
correspondence, retrieval, and roll-outs under partial sensing, and remains counterfactually coherent
so that identical st can condition distinct futures under different at. For each downstream task, a
specialized critic head ingesting the learned latent is used. FOLIAGE does not receive modalities not
present in the task input (e.g. image for dense correspondence).

1. Geometry, correspondences, and cross-modal alignment under partial inputs. Tasks T1
(global shape), T5 (image–point retrieval), and T6 (dense correspondence) assess whether the latent
is geometry-faithful and sensor-robust. Baselines for T1 include MeshCNN Hanocka et al. (2019),
DiffusionNet Sharp et al. (2022), Adaptive-PH Nishikawa et al. (2023), and ETNN Battiloro et al.
(2023); for T5 include CrossPoint Zhang et al. (2021), CLIP2Point Zhang et al. (2023), ULIP-2 Li
et al. (2023), and PointCLIPv2 Zhu et al. (2022); and for T6 include ZoomOut Melzi et al. (2019),
DiffusionNet Sharp et al. (2022), G-MSM Eisenberger et al. (2023), and SpectralMeetsSpatial Cao
et al. (2024a). Protocols use identical sensor subsets and correspondence supervision when applicable.
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T1: Topology Classification T2: Inverse Material Reg. T3: Growth-Stage Recog.
Accuracy↑ MAE↓ Balanced Acc.↑

MeshCNN 0.88 NeuralClothSim 0.060 SVFormer 0.67
DiffusionNet 0.92 DiffPD 0.058 VideoMAE-v2 0.68
Adaptive-PH 0.94 BDP 0.055 TimeSformer 0.69
ETNN 0.94 DiffCloth 0.053 VideoMamba 0.71
Ours 0.97 Ours 0.038 Ours 0.79

T4: Mesh Forecasting T5: Cross-Modal Retrieval T6: Dense Correspondence
Chamfer↓/Vertex Drift↓ mAP@100↑ Geodesic Err.↓

MeshGraphNets 0.065/4133 CrossPoint 0.42 ZoomOut 4.2
CaDeX 0.052/2261 CLIP2Point 0.43 DiffusionNet 3.8
MeshGPT-solo 0.045/2540 ULIP-2 0.46 G-MSM 3.6
Motion2VecSets 0.038/1721 PointCLIPv2 0.48 SpectralMeetsSpatial 3.2
Ours 0.030/1044 Ours 0.60 Ours 2.8

Table 1: FOLIAGE’s learning outcomes are applicable across a diverse range of downstream tasks
(T1-T6), in which it leads baselines.

2. Action-conditioned dynamics and stability beyond training horizons. Tasks T2 (inverse
material estimation) and T4 (counterfactual roll-outs) evaluate control sensitivity versus passive
prediction. Baselines for T2 include differentiable-physics identification with DiffPD Hu et al. (2021)
and BDP Gong et al. (2024), and neural simulators such as NeuralClothSim Kairanda et al. (2024) and
DiffCloth Li et al. (2022). Baselines for T4 include forecasters MeshGraphNets Pfaff et al. (2021),
CaDeX Lei & Daniilidis (2022), MeshGPT-solo Siddiqui et al. (2024), and Motion2VecSets Cao et al.
(2024b); these operate as passive forecasters unless otherwise specified.

3. Physics-guided training and anticipation of change. Task T3 (growth-stage recognition) tests
whether training-time privileged signals improve sensitivity to regions about to evolve, without any
privileged inputs at deployment. Baselines span per-modality classifiers (SVFormer Chen et al.
(2023b), TimeSformer Bertasius et al. (2021)), fusion or masked encoders (VideoMAE-v2 Wang et al.
(2023)), and temporal backbones (VideoMamba Li et al. (2024)).

4. Robustness and generalization challenges. Stress tests include sensor-subset robustness (S1),
zero-shot alignment (S2), long-horizon stability (S3), and physics ablation (S4). Baselines for
S1 include VideoMAE-v2 Wang et al. (2023) and PiMAE Chen et al. (2023a); for S2 include
CrossPoint Zhang et al. (2021), CLIP2Point Zhang et al. (2023), ULIP-2 Li et al. (2023), and
PointCLIPv2 Zhu et al. (2022); for S3 include FMNet Rodolà et al. (2017), MeshGraphNets Pfaff
et al. (2021), MeshGPT-solo Siddiqui et al. (2024), CaDeX Lei & Daniilidis (2022), INSD Sang
et al. (2025), and Motion2VecSets Cao et al. (2024b); and for S4 include classical pooling and graph
backbones µPool Zaheer et al. (2017) and GCN Kipf & Welling (2017). Ablations remove individual
inductive components (GCF, XPM, APE, energy signals, EGMP) to isolate their contributions.

6 RESULTS

6.1 CORE TASKS

Tab. 1 reports performance on the SURF-BENCH core tasks.

Geometry Understanding (T1, T6). Across the two hardest purely geometric tests—classifying
mesh genus and recovering dense correspondences—FOLIAGE adds a consistent ∼3 pp of accuracy
and cuts geodesic error by ≈ 10% versus the strongest recent baselines. The gain follows from
treating geometry as part of a world state: age features disambiguate birth and death of vertices,
and the global/young-region summaries preserve scene-level context when solving functional maps.
Spectral or diffusion descriptors that view each shape in isolation lack this temporal context.

Physical Parameter Inference (T2). Regressing bending modulus from a single RGB view,
differentiable-physics identification beats vision-only CNNs, yet FOLIAGE reduces error by ≈ 40%.
While the model does not simulate mesh states, physics guidance in training shapes a latent on which
a small head suffices for inverse material estimation.
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S1 Sensor-Subset Robustness (Balanced Acc.↑) S2 Zero-Shot Img.-Pc. Retrieval (mAP@100↑)
Rich Typical Sparse Noisy I→P P→I

VideoMAE-v2 0.74(4) 0.68(6) - 0.62(7) CrossPoint 0.18 0.16
PiMAE 0.76(5) 0.70(6) 0.67(6) 0.63(6) CLIP2Point 0.20 0.19
ULIP-2 0.78(4) 0.72(5) 0.71(5) 0.66(6) PointCLIPv2 0.23 0.21
CLIP2Point 0.74(5) 0.65(5) 0.68(6) 0.60(6) ULIP-2 0.22 0.23
Ours 0.80(3) 0.78(4) 0.74(4) 0.74(4) Ours 0.38 0.36

S3 Long-Horizon Latent Roll-outs (Chamfer↓) Architectural Ablation (mean (stdev))
5 10 20 40 Topo↑ MAE↓ Chamfer↓ mAP↑

FMNet 0.042 0.053 0.092 0.136 w/o GCF 0.960(2) 0.040(2) 0.033(2) 0.46(10)
MeshGraphNets 0.036 0.057 0.088 0.120 w/o XPM 0.975(2) 0.038(2) 0.031(2) 0.55(10)
MeshGPT-solo 0.027 0.052 0.089 0.110 w/o APE 0.951(3) 0.042(3) 0.036(3) 0.59(10)
CaDeX 0.028 0.040 0.068 0.990 µPool 0.960(2) 0.039(2) 0.034(2) 0.57(10)
INSD 0.029 0.035 0.055 0.890 GCN 0.932(4) 0.045(3) 0.038(3) 0.53(20)
Motion2VecSets 0.022 0.029 0.045 0.075 w/o EGMP 0.964(2) 0.048(2) 0.030(2) 0.60(10)
Ours 0.016 0.025 0.028 0.047 Ours 0.958(2) 0.035(2) 0.028(2) 0.63(10)

S4 Energy-Signal Ablation Capacity / Compute (Training)
MAE↓ Params GPU-h

w/o Energy-All 0.060(3) GCN 27 11
w/o Energy-Aux 0.048(2) w/o XPM 39 18
Our Full 0.035(2) Our Full 41 19

Table 2: FOLIAGE degrades gracefully in stress tests (S1-S4). Ablations illuminate the impact of our
design choices on performance and cost.

Growth Perception & Prediction (T3, T4). Video transformers detect growth mainly through pixel
motion; FOLIAGE leverages the young-region summary and improves stage recognition by ∼8 pp.
Rolling the same latent forward reduces 5-step Chamfer error by roughly one fifth while avoiding
spurious vertex explosions. The predictor anticipates localized edits that realize accretion, not only
smooth deformations.

Cross-Modal Grounding (T5). Correspondence-constrained fusion ties pixel tokens to their source
vertices, narrowing the image-to-mesh gap and yielding a 25% relative boost in mAP@100 over
the strongest retrieval baseline. The resulting world state is inherently multimodal—geometry
and appearance cohabit the same coordinate frame—which improves cross-modal search without
task-specific retraining.

6.2 STRESS TESTS

We freeze the encoder and probe four settings that stress modality resilience, cross-modal alignment,
long-horizon stability, and physics supervision (Tab. 2).

Modality-Robust Inference (S1, S2). Across Rich (RGB+LiDAR+mesh), Typical (RGB-only),
Sparse (LiDAR-only), and Noisy (masked RGB) settings, FOLIAGE leads in balanced accuracy
and degrades gracefully. The strongest baseline (ULIP-2 Li et al. (2023)) drops seven points from
Rich to Sparse; FOLIAGE drops six and holds ground under noisy RGB, reflecting sensor elasticity
from structured masking and correspondence fusion. The same design drives zero-shot retrieval:
FOLIAGE reaches 0.38/0.36 mAP@100 (image–point), nearly doubling CrossPoint and leading
CLIP2Point Zhang et al. (2023), PointCLIPv2 Zhu et al. (2022), and ULIP-2 by 14–16 pp.

Predictive Fidelity & Physics Signals (S3, S4). Extrapolating further in time, FOLIAGE maintains
temporal coherence as physics-based baselines degrade. Removing privileged stretch/bend energies
increases inverse-material MAE on kbend from 0.035 to 0.060; keeping EGMP while dropping the
auxiliary head recovers part of this gap, indicating that detached physics cues at training time improve
deployable accuracy without test-time privileges.
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6.3 ABLATION STUDIES

In Tab. 2, each variant disables a single component, retrains for the same 20 GPU-h, and is scored
on topology accuracy, material MAE, 5-step Chamfer, and retrieval mAP (mean ± stdev, 3 seeds).
Three design choices emerge as most impactful:

(i) Geometry-aware fusion. Removing correspondence-constrained fusion minimally affects topol-
ogy (–1 pp) but reduces retrieval by 14 pp. Replacing structured masking with random masking
degrades every metric, confirming the need to simulate sensor dropout so multimodality provides
flexibility rather than failure under missing inputs.

(ii) Temporal encoding. Without age features, material MAE and Chamfer increase (e.g., +0.004 cm)
while retrieval remains flat, suggesting that age primarily encodes growth dynamics, not appearance.
Replacing hierarchical pooling with mean pooling Zaheer et al. (2017) hurts all tasks, indicating that
separating global and young-region summaries to capture multiscale dynamics is important.

(iii) Capacity and physics-informed gating. A size-matched 10-layer GCN Kipf & Welling (2017)
(27M params, 11 GPU-h) trails the full model (41M, 19 GPU-h) by 4–7 pp, suggesting gains are
architectural rather than purely parametric. Removing EGMP while keeping the auxiliary loss
nearly doubles material MAE, underscoring the general benefit of train-time physics guidance in
physics-driven settings.

6.4 ANALYSIS

Comparison with simulator-centric pipelines. Explicit simulators excel when full states and
accurate discretizations are available, but deployment often lacks solver access and faces partial
sensing. Across T2 and T4, the geometry-centric latent paired with action-conditioned dynamics
yields lower inverse-material error and more stable roll-outs than pipelines that rely on differentiable
gradients at inference. S4 shows that privileged energies improve supervision yet are unnecessary at
test time: training-only physics reduces kbend MAE substantially while preserving the deployable
interface. The broader guidance is to use physics to shape representation during training, keep
actions out of perception to preserve counterfactual semantics, and evaluate success on geometry-
and control-centric metrics rather than pixel error.

Comparison with video-centric encoders. Video backbones optimized for photometric objectives
transfer poorly to cross-modal geometry tasks and under sensor loss. On T5 and S2, correspondence-
constrained fusion and a geometry-centric state deliver large mAP gains and zero-shot alignment that
video encoders do not match; on T1/T6, temporally informed geometry (age features + young-region
pooling) lowers classification and correspondence errors without relying on dense appearance cues.
Under S1, structured masking trains for sensor elasticity, so the model degrades smoothly from Rich
to Sparse regimes where video methods drop sharply. The broader guidance is to treat geometry as
the state, fuse modalities through explicit correspondences, and encode growth locality directly in
the state; these choices yield improvements in retrieval, correspondence, and robustness beyond the
specific accretion setting.

7 CONCLUSION

FOLIAGE treats geometry as state and couples correspondence-driven perception with action-
conditioned latent dynamics, using physics only at training time to shape targets. This design yields
counterfactual roll-outs, robust cross-modal grounding, and improved geometric competence under
partial sensing, while avoiding dependence on solver access or pixel reconstruction. Results on
SURF-BENCH indicate consistent gains in topology, correspondence, retrieval, growth recognition,
roll-out stability, and inverse materials. The combination of geometry-centric state, explicit cross-
modal correspondences, and train-only physics guidance provides a compact and deployable recipe
for modeling growing surfaces and, more broadly, for physical world models operating under
heterogeneous sensing and control.
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8 OPTIONAL ETHICS AND REPRODUCIBILITY STATEMENT

We have read, acknowledged, and adhered to the ICLR Code of Ethics. We provide further details on
architectural specifications, hyperparameters, ablations, and metric definitions are documented in the
appendix. We believe that these materials enable independent reproduction of the reported results,
and we will release the source code and pretrained models upon acceptance to further facilitate
reproducibility and research.
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A APPENDIX

Ground Truth Ours Motion2VecSets Cao et al. (2024b)

MeshGPT-solo Siddiqui et al. (2024) CaDeX Lei & Daniilidis (2022) MeshGraphNets Pfaff et al. (2021)

Figure 7: Mesh predictions on SURF-BENCH. ∆t = 18, action = [0.1, 0.3, 0.01].

A.1 SURF-GARDEN DETAILS

In SURF-GARDEN, surfaces undergo metric accretion, where new material is added, and deform
like thin elastic shells. Energy-based simulations produce FEM-quality meshes with two sensor
projections per frame. With rich physics, precise cross-modal alignment, and topological diversity,
SURF-GARDEN offers a well-rounded addition to accretive surface growth research.

A.1.1 COUNTERFACTUAL PHYSICS SIMULATOR

Energy Model. Formally, SURF-GARDEN embeds a non-Euclidean metric into R3, inducing negative
curvature and curling, an approach grounded in differential geometry and plant morphogenesis
research. For a meshMt = (Vt, Et, Ft), the simulator minimizes a smooth energy Grinspun et al.
(2003):

E(Vt) = kstretch
∑

e(∥e∥ − ℓ⋆e)
2 + kshear

∑
f ∥Sf∥2F︸ ︷︷ ︸

Emembrane

+ kbend
∑

(fi,fj)
(θij − θ⋆ij)

2︸ ︷︷ ︸
Eflexural

,

where ℓ⋆e is the rest length, Sf the shear tensor, and θ⋆ij = 0 the preferred dihedral. The closed-form
gradients Tamstorf & Grinspun (2013) are efficient to evaluate and support stable forward Euler steps
at ∆t = 10−2.

Metric Accretion and Non-Euclidean Growth. Growth is modulated by g(v) ∈ [0, 1], the nor-
malized geodesic distance to a source set, simulating hormone diffusion (e.g., auxin). Rest lengths
update as ℓ⋆e(t) = ((g(vi) + g(vj))/2 + 1)∥e∥. Edges that exceed 1.5× their original rest length are
split. This guided adaptive refinement varies growth spatially in a differential manner, with some
parts growing faster than others. Coefficients kstretch, kshear, kbend introduce temporal variation.

Mesh Quality. Meshes are optimized with ODT smoothing Chen (2004) and Delaunay edge flips,
producing near-isotropic triangles (0.88±0.04 radius-edge ratio) and valence 5−7. Self-intersections
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are avoided using ellipsoidal vertex colliders in a bounding-volume hierarchy (BVH) Wald et al.
(2007).

Topological Variety. We include six classes of 2-manifolds with boundary: disc, annulus, punctured
torus, Möbius strip, pair-of-pants, and thrice-punctured disc. These cover lobed, twisted, and
compound forms common in botany and geometry alike, reducing overfitting to select shapes.

Counterfactual Branching. Each sequence begins with a 50-frame prefix under baseline parameters
θA, after which it branches into two or more trajectories with modified controls θB , θC , . . . (e.g.,
halved kbend). Identifiers in the half-edge structure ensure that vertex indices and geometry remain
aligned post-branch. This enables supervised counterfactual reasoning: identical pasts yield distinct
futures, and the model must predict each outcome conditioned on an action token.

Such branch-point supervision equips physically intelligent agents with the ability to forecast the
consequences of their own interventions. During training, FOLIAGE observes the prefix through the
context encoder and rolls out to each branch using its corresponding action tokens. At inference,
alternate futures can be queried by swapping tokens—no simulator calls are required.

SURF-GARDEN provides 7, 200 branched growth sequences, each defined by kstretch, kshear, kbend, a
topology class, and a random seed. Every sequence spans 400 frames, evolving from rest to maturity
with vertex counts that increase from 20 to 105. Variation is further introduced through quaternion
perturbations and vector fields. We split the dataset 8:1 :1 into train/val/test.

A.1.2 MULTIMODAL CORRESPONDENCE EXTRACTOR AND EVOLUTION TRACING

Each frame yields two mesh-tied modalities. (1) Multi-view RGB: eight cameras on a Fibonacci
sphere render photorealistic frames with Cycles shading Blender Online Community (2023), HDR
lighting, and 50mm lenses. Exposure jitter, defocus, and 20% CutOut masking improve robustness
DeVries & Taylor (2017). Each pixel carries its emitting triangle index and barycentric coordinates.
Cameras are fixed per trajectory; masks persist over time. (2) LiDAR-style point cloud: a 64× 2048
raycast with σ=5mm Gaussian noise and 5% dropout mimics real-world sparsity. Each point stores
its nearest mesh vertex. Both views preserve consistent token indices, enabling direct cross-modal
supervision.

Across frames, a half-edge data structure is maintained with a unique identifier for the vertices, edges,
and faces. Even as vertices and edges are added (new vertices, edge flips etc.) and their indices are
updated, these identifiers remain the same, allowing us to exactly identify the same mesh elements
over time alongside their quantities of interest (energy, age, etc.).

A.2 CRITIC HEADS

For each SURF-BENCH task, we attach a specialized critic to evaluate the core objective under
realistic sensor constraints. We denote the learned latent from Foliage as Model-Agnostic Growth
Embedding (MAGE). The topology critic ingests mesh-only MAGE into a frozen backbone plus
a 768→256→6 MLP for genus classification; the material critic uses a single RGB-based MAGE
with a one-hidden-layer regressor to predict bending modulus; the stage critic processes four MAGE
embeddings through a 128-unit Bi-GRU Cho et al. (2014) for balanced growth-stage accuracy; the
growth critic conditions MeshGPT’s Siddiqui et al. (2024) autoregressive split/offset tokens on Mt

and st+∆t to measure Chamfer Barrow et al. (1977) and vertex-count errors; the retrieval critic ranks
image-to-mesh MAGE by cosine similarity Salton & McGill (1983); and the correspondence critic
refines per-vertex features with global and young-region tokens via a 2-layer residual MLP, projects
onto 128 spectral components, solves a functional map Ovsjanikov et al. (2012), and applies five
ZoomOut refinements Melzi et al. (2019).

A.3 PERCEPTION STACK DETAILS

At time step t, Ectx ingests multimodal context to produce a compact latent st ∈ R768 which becomes
a Modality-Agnostic Growth Embedding (MAGE). An action encoder maps physical control into an
action embedding at ∈ R768, which conditions a predictor P to evolve st in time to ŝt+∆t. A target
encoder Ectx augmented with privileged physics features encodes the future world state to st+∆t.
Critic heads read (st, ŝt+∆t) for downstream tasks.
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Each active sensor stream is encoded in a shared token space. This unified representation allows
downstream modules to operate purely on token identities, not modalities. This allows missing
modalities to be handled gracefully as empty sets for seamless generalization over input combinations.

We distinguish observable inputs—pixels, point coordinates, vertex positions—available at both
training and inference, from privileged simulator-only signals: per-vertex stretching and bending
energies (wflexural, wmembrane) and material coefficients (kstretch, kshear, kbend). The privileged signals
influence two paths: gating message passing in AGN, and serving as auxiliary regression targets. The
gating path applies a detach, and the auxiliary head is dropped at inference, so no privileged data is
needed at test time. All encoders emit tokens in Rd with d=768, denoted TI , TP , and TM . Empty
inputs yield empty sets, preserving sensor flexibility.

Image Encoder. Each RGB frame is resized to 336× 336, partitioned into 16× 16 patches, and fed
through a ViT-B/16 Dosovitskiy et al. (2021); the resulting patch embeddings serve as a token set
TI = {pk}441k=1 ⊂ Rd

Point-Cloud Encoder. Point clouds are encoded by PointNeXt-L Qian et al. (2022) in a two-level
PointNet++ Qi et al. (2017) hierarchy, with a final linear projection to d. Training augmentations
include random point dropout, jitter, and global rotations to mimic LiDAR sparsity. This yields
tokens TP = {qk}512k=1 ⊂ Rd

Accretive Graph Network (AGN). New mesh vertices emerge during growth; an effective encoder
must be invariant to vertex density and sensitive to accretion. Each vertex v gets geometric features
f
(0)
v = [xv;nv;κv; b(v)]. To handle accretion, we introduce Age Positional Encoding (APE): a

sinusoidal encoding of vertex birth time τv ∈ [0, 1] concatenated before diffusion. Then, AGN uses
two mesh diffusion layers (DiffusionNet Sharp et al. (2022)) to capture local geometry, followed by
two learned-step graph ODEs (GRAND++ Chamberlain et al. (2021); Thorpe et al. (2022)) handles
evolving connectivity. This yields the token set TM = {rv}v∈Vt

⊂ Rd. We found that delaying APE
injection degrades performance.

Geometry-Correspondence Fusion (GCF). TI , TP , and TM are synthesized into a unified interaction
space via a heterogeneous graph and sparse cross-modal attention. Each token—patch pk, point
qk, or mesh feature rv—is a node i ∈ V = TI ∪ TP ∪ TM , with its Rd embedding and geometric
anchor (barycentric coordinates, 3D position, etc.). Directed edges encode simulator-provided
correspondences: Epix = {(p, rv)}, Ept = {(q, rv)}, Emesh = {(rv, ru) | u ∈ N (v)}. Learned
edge biases bij encode cross-modal confidence: dot-products for image normals, Gaussian distances
for points, and zero for mesh edges. Attention is restricted to edges: aij = q⊤

i kj/
√
d + bij ,

reducing the complexity from O(|V |2) to O(|E|). Tokens communicate via sparse neighborhoods:
ui ←

∑
j∈N (i) αijvj . We found that GCF layers suffice, since any patch or point is at most two hops

from a mesh vertex. Unlike naive concatenation, GCF leverages known correspondences provided
by SURF-GARDEN to a complementary, mutually-reinforcing effect: images sharpen mesh features,
curvature refines depth, and sparse points gain context.

Cross-Patch Masking (XPM). Corrupting the input forces the model to infer missing information
from context, driving the encoder to learn robust and semantically rich embeddings rather than relying
on trivial correlations. However, generic masking can erase correlated signals or allow for trivial
recovery. XPM combats this through three mechanisms: (i) 25% of tokens in each modality are
dropped independently, encouraging feature redundancy and stabilizing training. (ii) Paired masking
disables neighbors of masked tokens along GCF’s correspondence graph edges, blocking trivial
copying, and promoting longer-range inference. (iii) A full modality is dropped with 30% probability,
sampled after token and pair masking. Training under images-only, points-only, and hybrid conditions
promotes invariance and temporal coherence.

Hierarchical Pooling first captures local dynamics, then aggregates them into a global summary,
so that MAGE reflects both detail and global state. The global token gt = LN( 1

|Ut|
∑

u∈Ut
u)

aggregates current tokens Ut, remaining invariant to count. The young-region token yt =
1

|Uyoung
t |

∑
u∈Uyoung

t
LN(u) pools over tokens with age τ(u) < 0.2, capturing fast-changing geom-

etry near new growth. A linear layer with bias W ∈ Rd×2d projects the concatenated pair (gt,yt)
into the final embedding st. This balances both macroscopic shape and microscopic dynamics.
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A.4 ACTION ENCODER

The action space in our unbounded surface evolution settings consists of the three scalar elastic
coefficients that parameterise the shell mechanics, arawt = [kstretch, kshear, kbend]. Because these
values span several orders of magnitude, we first apply a logarithmic re–scaling k̃ = log10(k), k ∈
{kstretch, kshear, kbend} followed by z–score normalization using the mean and variance estimated
throughout the training set. The normalized vector ãt ∈ R3 is then embedded into the model’s
token space through a two–layer perceptron at = MLPact(ãt),MLPact : 3→ 128→ d, d = 768
with GELU activations Hendrycks & Gimpel (2016) and layer normalization Ba et al. (2016). This
produces the action token at ∈ R768).

At training time, the encoder also encounters a learned anull embedding that substitutes for at
whenever material coefficients are withheld. During training we drop the entire action token with
probability 0.1 for this scenario. During inference, the user may supply a physical–coefficient vector
to perform counterfactual roll–outs; if omitted, the encoder inserts the null token, reverting the model
to passive prediction behavior.

A.5 ENERGY-GATED MESSAGE-PASSING (EGMP) DETAILS.

Inside Etar we compute a scalar gate gv = 1 + σ
(
MLP(detach[wmemb,v, wflex,v])

)
and assemble

G = diag(g1, . . . , gn). The gate modulates the first ODE step dH = −GLH +Gφ(H), where L
is the Laplacian of the current mesh. We note the choice of a variant robust to open surfaces over
the cotangent one Sharp & Crane (2020). High-stress vertices, therefore, propagate messages more
rapidly, allowing the latent to focus on regions that are about to wrinkle or curl, while low-stress
areas remain stable. In the context branch, the energies are zeroed, so gv = 1 and the update reduces
to the standard form. detach keeps the gating weights trainable while treating the energy values as
fixed constants, fully preventing the leakage of privileged information.

A.6 MESH FORECASTING

Ground Truth Ours Motion2VecSets Cao et al. (2024b)

MeshGPT-solo Siddiqui et al. (2024) CaDeX Lei & Daniilidis (2022) MeshGraphNets Pfaff et al. (2021)

Figure 8: Mesh predictions on SURF-BENCH. ∆t = 8, null action.
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Ground Truth Ours Motion2VecSets Cao et al. (2024b)

MeshGPT-solo Siddiqui et al. (2024) CaDeX Lei & Daniilidis (2022) MeshGraphNets Pfaff et al. (2021)

Figure 9: Mesh predictions on SURF-BENCH. ∆t = 10, action = [0.05, 0.2, 0.12].

Fig. 7, 8, and 9 shows examples of mesh prediction by FOLIAGE and baselines across different
look-ahead and action conditioning. For simple topology and limited growth, the general morphology
of the surface is preserved. But near the boundaries and in areas of high feature activity (emergence
or disappearing of buckling), prediction error increases, especially for baseline models. In Fig. 8,
baselines such as MeshGraphNets Pfaff et al. (2021) and CaDeX Lei & Daniilidis (2022) struggle to
model surfaces that had enlarged substantially through accretive growth, resulting in visibly ’shrunk-
down’ predictions. With more complex topology such as the Möbius strip (Fig. 9), these errors
propagate globally. These disparities highlight the effectiveness of FOLIAGE’s perception-action
setup and physics-guided learning to model the complex deformations and growth of the surfaces.

A.7 CROSS-MODEL RETRIEVAL

In Fig. 10, 11, 12, and 13 we show examples of cross-model retrieval in normal and zero-shot settings
for point clouds and images. The correct option (solid line border) is differentiated from the incorrect
ones (dashed line border). We note that the purple lines highlighting the boundary (e.g. in Fig. 7) are
a visual aid; they are not present in the rendered images of the mesh surface. FOLIAGE’s first choice
is predominantly the correct one followed by visually similar surfaces (image rendering or point
cloud representations) with the same topology categorization. This is observed for unseen examples
with complex morphology and challenging viewing angles, indicating the strong semantic awareness
and consistency of FOLIAGE’s Modality-Agnostic Growth Embedding across different modalities.

A.8 DENSE CORRESPONDENCE

In contrast to well-studied domains like human or animal bodies, which follow a set template (the
skeleton) movements constrained to specific parts of the geometry (e.g. arm movements has very
limited impact on the full body), SURF-GARDEN’s open surfaces represent a continuum in which
features smoothly emerge and dissipate. As Fig. 14 suggests, identifying one of a fixed number of
extrusions (e.g. fingers on a hand) is insufficient in the accretive growth regime.

Fig. 15, 16, and 17 show the correspondence maps from a source mesh to a target mesh generated
by FOLIAGE and baselines from two distinct viewing angles each. As the surface expands and
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Ground Truth 1 2

3 4 5

Figure 10: Top-5 retrievals on SURF-BENCH (Image→ Point Cloud)

Ground Truth 1 2

3 4 5

Figure 11: Top-5 retrievals on SURF-BENCH (Point Cloud→ Image)

buckles, a small bulge quickly develops into multiple twists and turns which FOLIAGE reliably tracks.
Meanwhile, baseline models increasingly lose track of or mismatches features as the morphological
complexity of the surface grows under shell physics and material accretion.
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Ground Truth 1 2

3 4 5

Figure 12: Top-5 retrievals on SURF-BENCH (Point Cloud→ Image, Zero-shot)

Ground Truth 1 2

3 4 5

Figure 13: Top-5 retrievals on SURF-BENCH (Image→ Point Cloud, Zero-shot)

A.9 SURF-GARDEN PARAMETERS

SURF-GARDEN supports the exploration of a large morphology space guided by physical control
parameters kstretch, kshear, kbend. Fig. 18 illustrates the effect of their different combinations. A
low bending coefficient models a thinner, more flexible surface that is prone to more complex
deformations; a higher value models a thicker surface that only permits large-scale deformations to
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mesh at t = 100 (b) mesh at t = 108 (FOLIAGE)

Figure 14: A vertex feature (turquoise sphere) that began at the bottom of a valley (left) quickly
develops into the peak of a mountain (right).

form slowly. Stretching and shearing coefficients further regulate the local behavior of the surface,
leading to varied morphology.

A.10 LATENT SPACE

Topology. FOLIAGE ’s latent space naturally arranges shapes according to their global invari-
ants—genus and boundary count—while not explicitly trained on topology classification tasks. In
Fig. 19, all genus-0 surfaces (disc, annulus, pair-of-pants, thrice-punctured disc) form one region,
with boundary-count differences causing small shifts along a shared axis: for example, the disc (one
boundary) sits between the annulus (two holes) and the pair-of-pants (three holes). By contrast, the
genus-1 punctured torus and the non-orientable Möbius strip form a distinct cluster, reflecting their
additional “handle” or “twist.”

Forecasting. We compare two forecasting modes on the SURF-BENCH test set in Fig.20: a direct
multi-step predictor that always resets to the true embedding before forecasting, and an autoregressive
latent rollout that feeds each prediction back into the model. The solid curve shows that FOLIAGE
’s one-shot predictions grow only modestly from approximately 0.03 cm at ∆t = 1 to 0.05 cm at
∆t = 8, demonstrating that its redictor generalizes well beyond its training horizons. The dashed
blue curve, by contrast, exhibits a clear “knee” at ∆t ≈ 4—early errors accumulate slowly but then
accelerate once predictions exceed the ∆t ≤ 8 range.

We further plot rollout errors for four prior mesh-prediction methods. MeshGraphNets Pfaff et al.
(2021) falters early as more and more vertices are added to expand the surface; CaDeX Lei &
Daniilidis (2022) smooths away fine curls in the absence of explicit physics signals; MeshGPT-solo
Siddiqui et al. (2024) introduces occasional “ghost” splits under long-range dependency strain; and
Motion2VecSets Cao et al. (2024b) blurs high-frequency folds without age-encoding or energy
gating. In all cases, these baselines start at higher one-step Chamfer and diverge far more rapidly
than FOLIAGE, highlighting the importance of dynamic remeshing, membrane and flexural energy
guidance, and robust masking in achieving stable multi-step accuracy.

A.11 EXTENDED ABLATION STUDIES

Before delving into detailed ablations, we clarify our composite-metric proxy. Rather than tuning four
hyperparameters across six individual tasks (and four stress tests), we normalize each task’s evaluation
metric into a [0, 1] range (inverting distances so that higher score indicates better performance), weight
all tasks equally, and sum them into a single scalar. This composite score strongly correlates with
the full multi-task performance of interest (ρ ≈ 0.92), enabling broad five-point sweeps to be run
efficiently. Once top-performing settings emerge, we re-evaluate the individual metrics for each task
and report them in Tab. 3, 4, and 5.
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Source view A Target (GT) view A

Ours SpectralMeetsSpatial DiffusionNet G-MSM ZoomOut

Source view B Target (GT) view B

Ours SpectralMeetsSpatial DiffusionNet G-MSM ZoomOut

Figure 15: Correspondences on SURF-BENCH.

Latent Dim. d Score EMA Rate Score Sampling Range (∆t) Score
512 0.74 0.995 0.80 Uniform 1–4 0.78
640 0.79 0.997 0.81 Uniform 1–6 0.80
768 (Ours) 0.82 0.998 (Ours) 0.82 Uniform 1–8 (Ours) 0.82
896 0.81 0.999 0.81 Uniform 1–10 0.81
1024 0.78 0.9995 0.79 Uniform 1–12 0.79

Table 3: Ablation results for model capacity and temporal encoding. Each block shows the effect of
sweeping a single hyperparameter on the composite validation score.

A.12 MODEL CAPACITY AND TEMPORAL ENCODING

In Tab. 3, we swept the latent dimensionality d from 512 to 1024. Smaller dimensions (512–640)
consistently underperform: the model lacks sufficient capacity to encode fine-grained geometric and
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Source view A Target (GT) view A

Ours SpectralMeetsSpatial DiffusionNet G-MSM ZoomOut

Source view B Target (GT) view B

Ours SpectralMeetsSpatial DiffusionNet G-MSM ZoomOut

Figure 16: Correspondences on SURF-BENCH.

energetic signals, impairing tasks such as dense correspondence and material regression. Larger
dimensions (896–1024) offer diminishing returns—more parameters than data—and exhibit slightly
reduced stability during long-horizon rollouts, as the predictor transformer struggles to regularize
across a wider channel space. We find d = 768 to be the optimal trade-off, balancing expressivity for
physics-informed features (e.g., membrane and flexural energies) with trainability.

We also tuned the EMA (exponential moving average) update rate for the target (privileged-signal)
encoder. Slower rates (0.995–0.997) update too sluggishly, causing the context and target embeddings
to drift apart, which diminishes the effectiveness of energy-gated message passing. Faster rates
(0.999–0.9995) over-smooth the target, preventing it from reflecting the latest context weights, and
thereby hamper auxiliary energy regression. We observed that a rate of 0.998 best balances stability
and responsiveness.
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Source view A Target (GT) view A

Ours SpectralMeetsSpatial DiffusionNet G-MSM ZoomOut

Source view B Target (GT) view B

Ours SpectralMeetsSpatial DiffusionNet G-MSM ZoomOut

Figure 17: Correspondences on SURF-BENCH.

Token Drop Ratio Score Modality Drop Ratio Score Action Drop Prob. Score
15% 0.78 20% 0.79 0% 0.80
20% 0.80 25% 0.81 5% 0.81
25% (Ours) 0.82 30% (Ours) 0.82 10% (Ours) 0.82
30% 0.80 35% 0.79 15% 0.81
35% 0.77 40% 0.75 20% 0.78

Table 4: Ablation results for regularization strategies. Each column group shows the effect of
sweeping one dropout-related hyperparameter on the composite validation score. The selected
configuration for each is highlighted in bold.
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Figure 18: Effect of SURF-GARDEN physical control parameters [kstretch, kshear, kbend] (left to right
columns): [0.15, 0.15, 0.25], [0.15, 0.15, 0.2], [0.1, 0.15, 0.2], and [0.15, 0.1, 0.2], respectively.

Figure 19: TSNE on topology classes.

A.13 TEMPORAL HORIZON SAMPLING

Choosing the rollout-horizon distribution is critical in a physics-aware world model. As Tab. 3
shows, if we bias sampling toward short horizons (e.g., Uniform(1, 4)), the model learns only
incremental dynamics and performs poorly in mid-term predictions; Chamfer and vertex-drift errors
spike after 10 steps. Conversely, sampling very long horizons (e.g., Uniform(1, 12)) spreads the
model’s capacity across a wide temporal range, weakening both short-term fidelity and long-term
coherence. Our Uniform(1, 8) policy emphasizes the early and mid-growth phases—where prediction
is most critical—while still exposing the model to challenging, longer-range rollouts. This sampling
regime consistently maximizes the composite score without overfitting to either extreme.

A.14 REGULARIZATION AND ROBUSTNESS

Token and Modality Dropout. In our cross-modal fusion setup, we independently drop 25% of
tokens per modality and 30% of entire modalities. As Tb. 4 shows, lower dropout rates (15–20%
token, 20–25% modality) fail to regularize adequately: the model overfits to specific sensor patterns
and degrades under simulated sensor dropout (Stress S1). Higher rates (30–35% token, 35–40%
modality) deprive the fusion transformer of coherent correspondence signals, weakening geome-
try–correspondence alignment and degrading performance on tasks such as topology classification
and retrieval. The selected dropout rates strike a balance, simulating realistic sensor failures without
removing so much information that cross-modal attention cannot reconstruct object structure.

Action Dropout. We further experimented with dropping the action token during training (0%–20%)
in Tab. 4. Omitting action dropout leads to a model that is overly dependent on control inputs and
generalizes poorly when such inputs are noisy or absent. Conversely, excessive dropout (15–20%)
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(a) Direct vs. rollout forecasts (b) latent-space MSE vs. Chamfer distance
(FOLIAGE)

Figure 20: Prediction fidelity both in shape space (left) and in its internal latent representation (right)
highlighting the effectiveness of FOLIAGE’s latent modeling approach for stable long-term rollouts.

Learning Rate Score Weight Decay Score λE Score λvc Score

5.0× 10−4 0.78 5.0× 10−3 0.79 0.00 0.75 0.00 0.76
7.5× 10−4 0.80 7.5× 10−3 0.81 0.01 0.79 0.02 0.80
1.0× 10−3 (Ours) 0.82 1.0× 10−2 (Ours) 0.82 0.02 (Ours) 0.82 0.04 (Ours) 0.82
1.5× 10−3 0.79 1.5× 10−2 0.80 0.04 0.80 0.06 0.81
2.0× 10−3 0.75 2.0× 10−2 0.76 0.08 0.78 0.08 0.77

Table 5: Ablation results for optimization and loss weighting. Each group shows a sweep over one
hyperparameter and its effect on the composite validation score.

enforces robustness at the cost of physical consistency, as the model may ignore legitimate control sig-
nals. A moderate 10% dropout encourages the model to infer actions from observed state transitions,
while still forming tight action–perception loops when control signals are present.

A.15 OPTIMIZATION

Learning Rate and Weight Decay. As Tab. 5 shows, a low AdamW learning rate (e.g., 5× 10−4)
leads to slow convergence and under-optimized parameters, while a high learning rate (e.g., 2×10−3)
causes unstable gradients, especially in the multi-head self-attention layers of the predictor. Similarly,
a weak weight decay (e.g., 5× 10−3) under-regularizes the high-dimensional latent space, whereas
overly strong decay (e.g., 2× 10−2) suppresses meaningful emergent physics representations. Our
chosen configuration—learning rate of 1 × 10−3 and weight decay of 1 × 10−2—yields smooth
optimization and robust generalization.

Energy and Variance–Covariance Loss Weights. The auxiliary energy regression weight λE

and variance–covariance regularizer λvc govern how much the model prioritizes privileged physical
signals over raw rollout accuracy. Setting the energy weight to zero (λE = 0) causes material
inference to degrade, while excessive weight (e.g., λE = 0.08) pulls the latent space toward physics
features at the cost of open-loop prediction accuracy, worsening Chamfer and drift metrics. We
select λE = 0.02 and λvc = 0.04 to ensure that physics cues meaningfully inform the representation
without overwhelming the primary learning signal, striking a balance between interpretability and
predictive performance.
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