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Abstract. We present NeuReach, a tool that uses neural networks for
predicting reachable sets from executions of a dynamical system. Unlike
existing reachability tools, NeuReach computes a reachability function
that outputs an accurate over-approximation of the reachable set for any
initial set in a parameterized family. Such reachability functions are use-
ful for online monitoring, verification, and safe planning. NeuReach imple-
ments empirical risk minimization for learning reachability functions. We
discuss the design rationale behind the optimization problem and estab-
lish that the computed output is probably approximately correct. Our ex-
perimental evaluations over a variety of systems show promise. NeuReach
can learn accurate reachability functions for complex nonlinear systems,
including some that are beyond existing methods. From a learned reach-
ability function, arbitrary reachtubes can be computed in milliseconds.
NeuReach is available at https://github.com/sundw2014/NeuReach.

Keywords: Reachability analysis · Data-driven methods · Machine learn-
ing

1 Introduction

Reachability has traditionally been a fundamental building block for verification,
monitoring, and prediction, and it is finding ever-expanding set of applications
in control of cyber-physical and autonomous systems [19,23]. Reachtubes cannot
be computed exactly for general hybrid models, but remarkable progress over the
past two decades have led to approximation algorithms for nonlinear and very
high-dimensional linear models (See, for example, [11,18,5,3,25,12,1,26,34]). All
of these algorithms and tools compute the reachtube from scratch, every time
the algorithm is invoked for a new initial set X0, even if the system model does
not change. This is a missed opportunity in amortizing the cost of reachability
over multiple invocations. All the applications mentioned above, like verification,
monitoring, and prediction, indeed use multiple reachtubes of the same system,
but from different initial sets.
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In this paper, we present NeuReach, a tool that learns a reachability function
from executions of dynamical systems. With the learned reachability function,
for every new initial set a corresponding reachtube can be computed quickly. To
use NeuReach, the user has to implement a simulator function of the underly-
ing dynamical (or hybrid) system for generating trajectories, and several other
functions for sampling initial sets. As output, the tool will generate a function
which can be serialized and stored for repeated use. This function takes as input
a query which is an initial set X0 and a time instant t, and outputs an ellip-
soid, which is guaranteed to be an accurate over-approximation of the actual
reachable set.

Formally, NeuReach solves a probabilistic variant of the well-studied reach-
ability problem: the problem is to compute a reachability function R(·, ·) for
a given model (or simulator), such that for any initial set X0 and time t, the
output of the function R(X0, t) is an over-approximation of the actual reachset
from X0 at time t. That is, R is computed once and for all—possibly with an
expensive algorithm—and thereafter, for every new initial set X0 and time t, the
reachset over-approximation R(X0, t) is computed simply by calling R. Thus, it
enables online and even real-time applications of reachset approximations.

NeuReach computes reachability functions using machine learning. We view
this as a statistical learning problem where samples of the system’s trajectories
have to be used to learn a parameterized reachability function Rθ(·, ·). Because
the trajectory samples are the only requirements from the underlying dynamical
system to run NeuReach, it can be applied to systems with or without analyt-
ical models. In this paper, we discuss how the above problem can be cast as
an optimization problem. This involves carefully designing a loss function that
penalizes error and conservatism of the reachability function. With this loss func-
tion, it becomes possible to solve the problem using empirical risk minimization
and stochastic gradient descent. For the sake of justifying our design, we de-
rive a theoretical guarantee on the sample complexity using standard statistical
learning theory tools.

We evaluate NeuReach on several benchmark systems and compare it with
DryVR [21] which also uses machine learning for single-shot reachset computa-
tions. Results show that, with the same training data, NeuReach generates more
accurate and tighter reachsets. Using NeuReach we are able to check the key
safety properties of the challenging F-16 benchmark presented in [28]. To our
knowledge, this is the first successful verification of at least some scenarios in
this benchmark. Furthermore, as expected, once R(·, ·) is computed, it can be
invoked to rapidly compute reachsets for arbitrary X0 and t. For example, esti-
mating a reachset for an 8-dimensional dynamical system with an NN-controller
only takes ∼ 0.3 milliseconds. This makes NeuReach attractive for online and
real-time applications.

Contributions. (1) We present a simple but effective and useful machine-
learning algorithm for learning reachability functions from simulations. With
the learned reachability function, accurate over-approximation of the reachable
set for any initial set in a parameterized family can be quickly computed, which

NeuReach: Learning Reachability Functions from Simulations 323



enables real-time safety check and online planning; (2) We derive a probably
approximately correct (PAC) bound on the error of the learned reachability
function (Theorem 1) using techniques in statistical learning theory; (3) We eval-
uate the proposed tool on several benchmark dynamical systems and compare
it with another data-driven reachability tool. Experiments show that NeuReach
can learn more accurate and tighter reachability functions for complex nonlinear
and hybrid systems, including some that are beyond existing methods.

2 Related work

Reachability analysis for models with known dynamics. This category
of approaches consider the reachability analysis of models with known dynamics
(i.e., white-box models). This is an active research area, and there is an ex-
tensive body of theory and tools on this topic [11,2,15,5,25,33,27,16,38,10,39].
Reachability analysis is hard in general. Exact reachability is undecidable even
for deterministic linear and rectangular models [29,24]. For dynamical models de-
scribed with ordinary differential equations (ODE), Hamilton–Jacobi–Bellman
(HJB) equations can be used to derive the exact reachable sets [30,6,7]. An
HJB equation is a partial differential equation (PDE). Solutions of this PDE
defines the reachabiltiy of the underlying dynamical system. However, solving
HJB equations is difficult, and such approaches do not scale to high-dimensional
systems. In practice, the exact reachable set might be unnecessary. For example,
over-approximations of the reachable sets could suffice for safety check purpose.
To this end, many approaches and tools have been developed. For example,
Flow∗ [11] uses the technique of Taylor model integration to compute over-
approximations of the solution of an ODE.

Another series of work [22,20] leverage the sensitivity analysis of ODE to
bound the discrepancy of solutions starting from a small initial set, and thus can
compute an over-approximation of the exact reachable set. In [12], a Lagrangian-
based algorithm is proposed, which makes use of the Cauchy-Green stretching
factor derived from an over-approximation of the gradient of the solution-flows
of an ODE. All of the above approaches consider set-based reachability analysis.

Data-driven reachability analysis. In the cases where the exact dynamics
of the systems is unknown or partially known, the above approaches cannot be
applied. One straight-forward direction is to learn the reachability from behav-
iors [42] of the dynamical system. Several approaches have been proposed for
reachability only using simulations of the underlying system. These approaches
include scenario optimization [14,44], sensitivity analysis [21], Gaussian pro-
cesses [13], adversarial sampling [32,9], etc.

NeuReach falls in the category of approaches that use randomized algorithms
for reachability analysis of deterministic (and not stochastic) systems. Another
member in this category is the scenario optimization approach presented in [14].
Different from NeuReach, this method learns a single reachset for a fixed initial
set and time interval instead of a mapping from arbitrary initial sets and time
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to the reachsets. Another approach based on scenario optimization is presented
in [44]. This method computes a fixed-width reachtube by learning a function
of time to represent the central axis of the reachtube. Moreover, it uses polyno-
mials with handcrafted feature vectors for learning, which requires case-by-case
design and fine-tuning. In contrast, our method learns a more flexible reacha-
bility function using neural networks and avoids the use of handcrafted feature
vectors. DryVR [21] computes the reachtubes based on sensitivity analysis. It
first learns a sensitivity function with theoretical guarantees, and then uses it to
compute the reachset. Among all these tools or methods, we found that DryVR
is the only one that has a publicly available implementation. Thus, we compared
NeuReach with DryVR.

Neural networks for reachability analysis. Applications of machine learn-
ing with neural networks for reachability and monitoring has become an active
research area. The approach in [23] aims to learn the reachtube from data using
neural networks, with a focus in motion planning. Unlike NeuReach, this ap-
proach learns the dynamics of the reachtube, and the reachtube can be obtained
by integrating that dynamics. In [30,7], neural networks are used as a PDE solver
to approximate the solution of HJB equations. The approach in [36] makes use
of neural networks to approximate the reachability of dynamical systems with
control input. In [38,10], the authors develop a framework for runtime predictive
monitoring of hybrid automata using neural networks and conformal prediction.

3 Problem setup and an overview of the tool

NeuReach works with deterministic dynamical systems. The state of the system
is denoted by x ∈ X ⊆ Rn. We assume that we have access to a simulator
function ξ : X ×R≥0 7→ X that generates trajectories of the system up to a time
bound T . That is, given an initial state x0 ∈ X and a time instant t ∈ [0, T ],
ξ(x0, t) is the state at time t.1

Consider the evolution of the system from a set of initial states (initial set)
X0 ⊂ X . Lifting the notation of ξ to sets, we write the reachset from X0 as
ξ(X0, t) := ∪x0∈X0

ξ(x0, t). In general, ξ(X0, t) cannot be computed precisely, and
thus, we resort to over-approximations of ξ(X0, t) which are usually sufficient for
verification and monitoring of safety and general temporal logic requirements,
and also for planning. Beyond computing over-approximations of ξ(X0, t) for
a single X0 and t, we are interested in finding a reachability function R : 2X ×
[0, T ] 7→ 2X such that, ideally, ξ(X0, t) ⊆ R(X0, t) for all valid X0 and t. NeuReach
implements a solution to this problem which provides a probabilistic version of
the above guarantee with some restrictions on the shape of the initial set X0.

In order to discuss the error of a reachability function R, we have to assume
that its arguments X0 and t are independently chosen according to some dis-

1 For the sake of simplicity, here we ignore issues arising from quantization and numer-
ical errors in simulators. Such issues have been extensively studied in the numerical
analysis and we refer the reader to [17] for a discussion related to verification.
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tributions P1 and P2, i.e. X0 ∼ P1 and t ∼ P2. Also, we need a distribution
function D(·) such that D(X0) is distribution over X0. For example, D(X0) could
be the uniform distribution over X0. Given these distributions, the error of a
reachability function is defined as:

Pr
X0∼P1,t∼P2,x0∼D(X0)

[ξ(x0, t) /∈ R(X0, t)] . (1)

Here, we assume that the joint distribution of (X0, t, x0) is defined on the
Borel σ−algebra such that any Borel set is measurable. Given the fact that R is
continuous2 and ξ as the trajectory of a dynamical system is at least piece-wise
continuous, the set of all tuples (X0, t, x0) that satisfy ξ(x0, t) /∈ R(X0, t) must
be a Borel set, and thus is measurable. Therefore, the above probability is well
defined.

User interface and data representation. P1, P2 and D are specified by the
user as functions generating samples (explained below). The input and output of
the reachability function R(X0, t) involve infinite objects, and in order to learn
R, first, we need some finite representations of these objects. In NeuReach, X0 is
picked from a user-specified family of sets where each set can be represented by
a finite number of parameters. For example, X0 could be a ball and represented
by two parameters — center and radius. From here on, we will not distinguish
between X0 and its parameterized representation. Similarly, the reachset R(X0, t)
also needs a representation. NeuReach represents the reachsets with ellipsoids.
Given a vector x0 ∈ Rn and a matrix C ∈ Rn×n, the set E(x0, C) := {x ∈ Rn :
‖C · (x − x0)‖2 ≤ 1} is an ellipsoid . Thus, given the center, an ellipsoid can be
represented by an n× n matrix.

In order to use NeuReach, the user has to implement the following functions.

(i) sample X0(): Produces a random initial set X0 from a distribution P1.
Specifically, the parameterized representation of X0 is returned.

(ii) sample t(): Produces a random sample of t from a distribution P2.
(iii) sample x0(X0): Takes an initial set X0, and produces a random sample of

x0 ∈ X0 according to a distribution D(X0).
(iv) simulate(x0): Takes an initial state x0 and generates a finite trajectory

ξ(x0, ·) which is a sequence of states at some time instants. The user should
make sure that for every time instant returned by sample t(), a state
corresponding to it can be found in the simulated trajectory.

(v) get init center(X0): Takes an initial set X0 and returns E [D(X0)] :=

Ex∼D(X0) [x], which is the mean value of x over the initial states.

Given these functions, NeuReach computes a reachability function R with an
error guarantee (Theorem 1). The reachset R(X0, t) is an ellipsoid centered at
ξ(E [D(X0)] , t). As the output, NeuReach will generate a Python function R(X0,

t). This function can be serialized and stored on disk for future use. When
calling this function, the user provides the initial set X0 and t, and then an n×n
matrix representing the shape of the ellipsoid will be returned.

2 As will be stated later, R is a neural network, which is indeed continuous.
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4 Design of NeuReach: Learning reachability functions

We present the design rationale behind NeuReach and discuss the learning algo-
rithm it implements. We show that standard results in statistical learning theory
give a probabilistic guarantee on the error of the learned reachability function.

4.1 Reachability with Empirical Risk Minimization

The basic idea is to model the reachset R(X0, t) as an ellipsoid around
ξ(E [D(X0)] , t). As stated earlier, given the center, an n-dimensional ellipsoid
can be represented by an n × n matrix. Thus, learning the set-valued reacha-
bility function R(X0, t) becomes the problem of learning a matrix-valued func-
tion C(X0, t) that describes the shape of the set. We represent function C us-
ing parametric models, such as neural networks. Let us denote this parametric,
matrix-valued function by Cθ, where θ ∈ W ⊆ Rp is the vector of parameters.
The parameter θ could be, for example, a scalar representing a coefficient of a
polynomial, a vector representing weights of a neural network, etc. Thus, the
parametric reachability function is:

Rθ(X0, t) := E(ξ(E [D(X0)] , t), Cθ(X0, t)). (2)

To simplify the notations, for X = (X0, t, x0) and parameter θ, we define
a function gθ(X) := ‖Cθ(X0, t) (ξ(x0, t)− ξ(E [D(X0)] , t))‖2. For a particular
sample X and a parameter θ, if gθ(X) ≤ 1, then ξ(x0, t) ∈ Rθ(X0, t), otherwise
it is outside and contributes to the error. The goal of our learning algorithm is
to find a θ to minimize the error of the resulting reachability function Rθ, which
gives the following optimization problem:

θ∗ = arg min
θ

Pr
X0∼P1,t∼P2,x0∼D(X0)

[ξ(x0, t) /∈ Rθ(X0, t)]

= arg min
θ

E
X0,t,x0

[
I
(∥∥∥∥Cθ(X0, t) ·

(
ξ(x0, t)− ξ(E [D(X0)] , t)

)∥∥∥∥
2

> 1

)]
= arg min

θ
E

X:=(X0,t,x0)
[I (gθ(X)− 1 > 0)] ,

where I (·) is the indicator function.
In order to solve the above optimization problem using empirical risk min-

imization, we consider the following setup. First, a training set is constructed.
We denote a training set with N samples by S = {Xi}Ni=1, where the samples

Xi = (X (i)
0 , t(i), x

(i)
0 ) are independently drawn from the data distribution defined

by X0 ∼ P1, t ∼ P2, x0 ∼ D(X0). The empirical loss on S for a parameter θ is

LERM (θ) =
1

N

N∑
i=1

` (gθ(Xi)− 1) , (3)

where `(x) := max{0, xα +1} is the hinge loss function with the hyper-parameter
α > 0, which is a soft proxy for the indicator function. Therefore, the empirical
loss LERM is a soft, empirical proxy of the actual error as defined in Equation (1).
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Arguments Default Value Description

system - Name of the Python file containing the model.
lambda 0.03 λ in Eq. (4).
alpha 0.001 α in Eq. (3).
N X0 100 NX0 : Number of initial sets.
N x0 10 Nx0 : Number of initial states.
N t 100 Nt: Number of time instants.

layer1 64 L1: Number of neurons in the first layer of the NN.
layer2 64 L2: Number of neurons in the second layer of the NN.
epochs 30 Number of epochs for training.
lr 0.01 Learning rate.

Table 1: Command-line arguments passed to the tool.

In addition to minimizing the empirical loss, we would also like the over-
approximation of the reachset to be as tight as possible. Thus, the volume of
the ellipsoid should be penalized. Inspired by [14], we use − log(det(CᵀC)) as
a proxy of the volume of an ellipsoid E(x0, C), and the following regularization
term is added to penalize large ellipsoids.

LREG(θ) = − 1

N

N∑
i=1

log
(

det
(
Cθ(X (i)

0 , t(i))ᵀCθ(X (i)
0 , t(i))

))
.

Combining the two terms, we define the overall optimization problem:

θ̂ = arg min
θ
LERM (θ) + λLREG(θ), (4)

where λ is a hyper-parameter balancing two loss terms.

Machine learning setup. The training set is constructed as follows. First,
we sample NX0 initial sets by calling sample X0(). Then, for each initial set,
we sample Nx0

initial states from it using sample x0(X0) and then get Nx0

trajectories by calling simulate(x0). Finally, for each trajectory, we sample Nt
time instants by calling sample t(). Thus, the resulting training set contains
N := NX0

×Nx0
×Nt samples, but generating such a training set only needs NX0

×
Nx0 trajectory simulations. NeuReach implements the optimization problem of
Equation (4) in Pytorch [37] and solves it with stochastic gradient descent. By
default, a three-layer neural network is used to represent Cθ. For n-dimensional
reachsets, the number of neurons in each layer are L1, L2, and n2, where L1 and
L2 can be specified by the user. The output vector of the neural network is then
reshaped to be an n × n matrix. By default, we set α = 0.001 and λ = 0.03.
The neural network is trained for 30 epochs with a learning rate of 0.01. Hyper-
parameters including learning rate, α, λ, and size of the training set can be easily
changed via the user interface as shown in Table 1.
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4.2 Probabilistic Correctness of NeuReach

The following theorem shows that the error of the learned reachability func-
tion Rθ̂ can be bounded. Specifically, the difference between the error and the

empirical loss is O(
√

1
N ), where N is the size of the training set.

Theorem 1. For any ε > 0, and a random training set S with N i.i.d. samples,
with probability at least 1− 2 exp(−2Nε2), the following inequality holds,

EX
[
I
(
gθ̂(X)− 1 > 0

)]
≤ 1

N

N∑
i−1

˜̀(gθ̂(Xi)− 1) +
12

α
Lg

√
p

N
+ ε, (5)

where p is the number of parameters, i.e. θ ∈ Rp, and ˜̀(·) = min{1, `(·)} is the
truncated hinge loss, and Lg is the Lipschitz constant of gθ w.r.t. θ.

Theorem 1 shows that by controlling ε and N , the actual error

EX
[
I
(
gθ̂(X)− 1 > 0

)]
can be made arbitrarily close to the empirical loss

1
N

∑N
i−1

˜̀(gθ̂(Xi)−1), with arbitrarily high probability. The empirical loss on the
training set S can be made very small in practice due to the high capacity of the
neural network. Of course, there is no free lunch, in general. In order to drive
the empirical loss to 0, we might have to increase the number of parameters,
which in turn increases the term 12

α Lg
√

p
N . Furthermore, the hyper-parameter

λ also affects the empirical loss. A smaller λ results in lower empirical loss but
more conservative reachsets. Actually, conservatism and accuracy are conflicting
requirements. As shown in [21], when using reachability to verify safety, accuracy
determines the soundness of the verification, while conservatism influences the
sample efficiency. We wanted to focus more on soundness than on efficiency.
Thus, a theoretical guarantee is derived for accuracy but not for conservatism.

Proof. Starting from the left hand side and using the definition of hinge loss,

we get EX
[
I
(
gθ̂(X)− 1 > 0

)]
≤ EX

[
˜̀(gθ̂(X)− 1)

]
. By adding and subtracting

the empirical loss term, we get:

EX
[
˜̀(gθ̂(X)− 1)

]
− 1

N

N∑
i=1

˜̀(gθ̂(Xi)− 1) +
1

N

N∑
i=1

˜̀(gθ̂(Xi)− 1)

≤ sup
θ∈W

(
EX

[
˜̀(gθ(X)− 1)

]
− 1

N

N∑
i=1

˜̀(gθ(Xi)− 1)

)
+

1

N

N∑
i=1

˜̀(gθ̂(Xi)− 1),

where the inequality follows from the definition of supremum.

Let V = supθ∈W

(
EX

[
˜̀(gθ(X)− 1)

]
− 1

N

∑N
i=1

˜̀(gθ(Xi)− 1)
)

, i.e. the worst-

case difference between the empirical average and the expectation of the loss.
Note that V is a random quantity since S = {Xi}Ni=1 is random. Next, we derive
an upper bound on V that holds with high probability.

First, we derive an upper bound on ES [V]. Let G be the function class con-
taining gθ parameterized by θ, i.e. G := {gθ(·) | θ ∈ W}. Similally, F := {˜̀(gθ(·)−
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1) | θ ∈ W}. Applying G to the set of inputs S generates a new set G(S) :=
{(g(X1), g(X2), · · · , g(XN )) : g ∈ G}. Define F(S) := {(f(X1), · · · , f(XN )) :
f ∈ F} in the same way.

Notice that V is the worst-case (among all fθ ∈ F) gap between the ex-
pectation and the empirical average of fθ(X). A fundamental result in PAC
learning (Theorem 3.3 in [35]) shows that this gap can be bounded as ES [V] ≤
2ES [Rad(F(S))], where Rad(F(S)) is the Rademacher complexity [35] of F(S).
Furthermore, notice that F(S) can be generated from G(S) by shifting it and
composing it with ˜̀. It follows from Talagrand’s contraction lemma [31] that
ES [Rad(F(S))] ≤ 2L˜̀ES [Rad(G(S))], where L˜̀ = 1

α is the Lipschitz constant.

Finally, following from a conclusion on Rademacher complexity of Lipschitz
parameterized function classes (See page 13 in [8]), we get ES [Rad(G(S))] ≤
3Lg

√
p
N . Therefore, we get

ES [V] ≤ 12

α
Lg

√
p

N
. (6)

Then, applying McDiarmid’s inequality [35] gives a high-probability bound
on V. That is,

Pr
S

(∣∣∣∣V − E [V]

∣∣∣∣ ≥ ε) ≤ 2 exp(−2Nε2).

Together with Eq. (6), we have V ≤ E [V] + ε ≤ 12
α Lg

√
p
N + ε with probability

at least 1− 2 exp(−2Nε2). This implies

EX
[
I
(
gθ̂(X)− 1 > 0

)]
≤ 1

N

N∑
i−1

˜̀(gθ̂(Xi)− 1) +
12

α
Lg

√
p

N
+ ε,

with probability at least 1 − 2 exp(−2Nε2), which completes the proof.

5 Experimental evaluation

We evaluated NeuReach on several benchmark systems including the Van der Pol
oscillator, the Moore-Greitzer model of a jet engine, an 8-dimensional quadrotor
controlled by a neural network [40], and an F-16 Ground Collision Avoidance
system [28]. We also compare our method with DryVR [21]. Since NeuReach is
fully data-driven and does not rely on the analytical model of the system, it
would not make sense to compare against model-based methods like Hamilton-
Jacobi reachability analysis [6], Flow∗ [11], C2E2 [18], or SReach [41]. Some of
our benchmarks cannot be handled by these tools. Also, once the reachability
function is learned, many reachsets can be computed very quickly by our method.
Given that other tools need to compute the reachset from scratch for each new
query, comparisons based on running times, would not make sense either.
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5.1 Benchmark systems

The simulators available for the benchmark systems allow us to specify fixed
time-steps ∆t and a time bound T . As for the distribution P2, we adopt the uni-
form distribution, i.e. P2 = Unif({∆t, 2∆t, · · · , b T∆tc∆t}) (Recall, the definition
of this distribution in Section 3). For a given initial set X0, D(X0) is defined as
the uniform distribution on the boundary of X0. As shown in Corollary 1 of [43],
the boundary of the reachable set of an initial set is equal to the reachable set
of the initial set’s boundary for ODEs. That is, if the estimated reachable set
contains the reachable set of the initial set’s boundary, it automatically contains
that of the interior. Thus, we only sample points on the boundary of X0 to im-
prove sample efficiency. As for the distribution P1, we will give details for each
benchmark below.

Van der Pol oscillator is a widely used 2-dimensional nonlinear model. An
initial set X0 is a ball centered at c with radius r. The distribution P1 for choos-
ing X0 is specified by the distributions for choosing these parameters. In our
experiments, we use c ∼ Unif([1, 2] × [2, 3]) and r ∼ Unif([0, 0.5]). The time
bound is set to T = 4, and time step is ∆t = 0.05.

JetEngine model from [4] is also 2-dimensional and commonly used as a verifi-
cation benchmark. Again, we use balls for the initial sets with c ∼ Unif([0.3, 1.3]×
[0.3, 1.3]) and r ∼ Unif([0, 0.5]). The time bound is set to T = 10, and time step
is ∆t = 0.05.

F-16 Ground Collision Avoidance System [28] is a challenging benchmark
for formal analysis tools. This system consists of 16 state variables (See Table 1
in [28]) among which Vt and alt are air speed and altitude. The key safety
property of interest is ground collision avoidance, and therefore, in our exper-
iments we focus on estimating the reachset only for Vt and alt. We consider
initial uncertainty in up to 6 state variables, [Vt, α, φ, ψ, Q, alt]. The function
simulate(x0) is designed to return projections of trajectories to Vt and alt,
while sample X0() returns 6-dimensional initial sets. We restrict the initial set
to be hyper-rectangles as in [28]. An initial set X0 is determined by a center
c ∈ R6 and a radius r ∈ R6 with X0 = {x ∈ R6 : c − r ≤ x ≤ c + r}. As for
the distribution, we choose c ∼ Unif([560, 600]× [−0.1, 0.1]× [0, π4 ]× [−π4 ,

π
4 ]×

[−0.1, 0.1]×[70, 80]) and r ∼ Unif([0, 10]×[0, 0.1]×[0, π16 ]×[0, π8 ]×[0, 0.1]×[0, 1]).
The time bound is set to T = 20, and time step is ∆t = 1

30 . However, DryVR
does not support hyper-rectangles as initial sets. Thus, we also use another set-
ting for comparison where the initial sets are balls. To do this, we sample balls
from a cube with c ∼ Unif([−1, 1]×· · ·× [−1, 1]) and r ∼ Unif([0, 0.5]). Then, we
transform this ball to the original coordinate system by scaling each dimension.
This setting is shown in Fig. 2 (Left) as F-16 (Spherical).

Quadrotor controlled by a neural controller is based on [40]. The state of
the quadrotor system is x = [px, py, pz, vx, vy, vz, θx, θy], and the control input
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Fig. 1: Left: Some reachsets of JetEngine. Red curve is ξ(E [D(X0)] , ·). We randomly
sample 100 trajectories starting from X0. Points on sampled trajectories are shown
as black dots. Boundaries of the estimated reachsets at some selected time instants
are shown. Clearly, ellipsoids can approximate the actual reachsets better; Right: A
sample reachtube of F-16. Green region is the reachtube estimated by NeuReach, which
is the union of all reachsets. Blue curves are sampled trajectories from the initial set.
The blue region can be viewed as the actual reachtube. The estimated reachtube verifies
the safety, i.e. alt > 0 always holds.

is u := [az, ωx, ωy]. We are only interested in estimating the reachability of the
position variables, i.e., the first 3 dimensions of the state vector. We use balls
for the initial sets with c ∼ Unif([−1, 1] × · · · × [−1, 1]) and r ∼ Unif([0,

√
8]).

The time bound is set to T = 10, and time step is ∆t = 0.05.

5.2 Experimental results

Evaluation metrics. In order to evaluate the learned reachability function,
we randomly sample 10 initial sets for testing. For each initial set X0, we then
sample 100 trajectories starting from it. For every sampled time instant on the
sampled trajectories, we check whether the state is contained in the estimated
reachset and compute the empirical error (i.e., the frequency that a sample is
not in the estimated reachset). In order to evaluate the conservatism of the
over-approximations, we also compare the size of the over-approximations. For
each initial set X0, we compute the total volume of the over-approximations
R(X0, ti) where ti = ∆t, 2∆t, · · · , b T∆tc∆t. Then, the total volume averaged over
10 sampled initial sets are reported. Results are summarized in Figure 2 (Left).
Please note that we use the default settings in Table 1 for all benchmarks.

All experiments were conducted on a Linux workstation with two Xeon Sil-
ver 4110 CPUs and 32 GB RAM. As shown in Figure 2 (Left), NeuReach learns
an accurate reachability function for each benchmark. Please note that due to
the complicated dynamics and the neural controller, the F-16 model and the
quadrotor are beyond the reach of current model-based tools. As shown in Fig-
ure 1 (Right), NeuReach successfully verified the safety of the F-16 model.
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Fig. 2: Left: Volume and error of the estimated reachtube. Results are averaged over
10 random choices of X0; Right: Impact of λ. Error bars are the range over 10 runs.

Comparison with DryVR. DryVR [21] computes reachsets for spherical ini-
tial sets by learning a piece-wise exponential discrepancy (PED) function that
bounds the sensitivity of the trajectories to the initial state. This function is of
the form:

β(r, t) = rKe
∑i−1

j=1 γj(ti−ti−1+γi(t−ti−1), ∀t ∈ [ti−1, ti],

where r is the radius of the initial set, [ti−1, ti] is the i-th time interval, and K, γ
are learned parameters. For an spherical initial set X0 = B(c, r), the computed
reachset is R(B(c, r), t) := B(ξ(E [D(B(c, r))] , t), β(r, t)), where B(c, r) is a ball
centered at c with radius r. It is important to recall that, similar to other reacha-
bility tools, for every new initial set X0, DryVR computes the PED function and
the reachset from scratch. For a fair comparison, we compute the parameters K
and γ on the exact same training set as the one used in NeuReach and reuse the
resulting PED for further queries.

Accuracy and conservatism. As shown in Figure 2 (Left), the reachsets
estimated by NeuReach are tighter and more accurate than those computed by
DryVR. There are two reasons for this. First, DryVR uses piece-wise exponential
functions to capture the relationship between the initial radius and the radius at
time t, while NeuReach uses more expressive neural networks. Second, the use of
ellipsoids allows coordinate-specific accuracy. As seen in Figure 1, the reachset
of JetEngine is not a perfect circle even if the initial set is a circle. Ellipsoids
can approximate the actual reachsets better.

Running time. As expected, the training phase of NeuReach takes several
minutes, but once a reachability function has been learned, computation of the
reachset from a new initial set is very fast. For the quadrotor system, for example,
this takes ∼ 0.3 ms on the aforementioned workstation. We believe that this
makes NeuReach suitable for online safety checking and motion planning.

Impact of the hyper-parameter λ. λ influences the error and volume of the
reachsets computed by NeuReach. Figure 2 (Right) shows the result of running
NeuReach on JetEngine with different settings of λ. As expected, larger λ results
in smaller reachsets but hurts the accuracy. On the other hand, we do not need

NeuReach: Learning Reachability Functions from Simulations 333

Benchmark
NeuReach DryVR

Volume Error Volume Error
JetEngine 17.9 0.001 38.3 0.003
VanDerPol 39.2 0.001 76.4 0.002
Quadrotor 373.9 0.019 1025146.2 0.021

F-16 (Spherical) 28153.7 0.004 62651.5 0.004
F-16 31465.9 0.025 - -



to tune λ case by case. Note that we use λ = 0.03 for all the results in Figure 2
(Left), and it works reasonably well for all our benchmarks.

6 Conclusion

In this paper, we presented a tool for computing reachability of systems using
machine learning. NeuReach can learn accurate reachability functions for com-
plex nonlinear systems, including some that are beyond existing methods. From a
learned reachability function, arbitrary reachtubes can be computed in millisec-
onds. There are several limitations in the current implementation of NeuReach.
First, the simulator is assumed to be deterministic—this can be too restrictive
for autonomous systems with complex perception and vehicle models. We plan
to extend the theory and implementation to support more general simulators.
Secondly, the over-approximations are restricted to be represented as ellipsoids.
Other representations will be supported in the future.
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25. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification. Lecture
Notes in Computer Science, vol. 6806, pp. 379–395. Springer (2011)

NeuReach: Learning Reachability Functions from Simulations 335

https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1109/ACC.2015.7171970
https://doi.org/10.1109/ACC.2015.7171970
https://doi.org/10.1109/ACC.2015.7171970
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1145/3302504.3311796
https://doi.org/10.1145/3302504.3311796
https://doi.org/10.1145/3302504.3311796


26. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability
over the reals. In: International Joint Conference on Automated Reasoning. pp.
286–300. Springer (2012)

27. Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., Grosu, R.: Parallel reachabil-
ity analysis of hybrid systems in xspeed. Int. J. Softw. Tools Technol. Transf.
21(4), 401–423 (2019). https://doi.org/10.1007/s10009-018-0485-6, https://doi.
org/10.1007/s10009-018-0485-6

28. Heidlauf, P., Collins, A., Bolender, M., Bak, S.: Verification challenges in f-16
ground collision avoidance and other automated maneuvers. In: ARCH@ ADHS.
pp. 208–217 (2018)

29. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hy-
brid automata? In: ACM Symposium on Theory of Computing. pp. 373–382 (1995),
citeseer.nj.nec.com/henzinger95whats.html

30. Jiang, F., Chou, G., Chen, M., Tomlin, C.J.: Using neural networks to compute
approximate and guaranteed feasible hamilton-jacobi-bellman pde solutions. arXiv
preprint arXiv:1611.03158 (2016)

31. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: isoperimetry and pro-
cesses. Springer Science & Business Media (2013)

32. Lew, T., Pavone, M.: Sampling-based reachability analysis: A random set theory
approach with adversarial sampling. arXiv preprint arXiv:2008.10180 (2020)

33. Maidens, J., Arcak, M.: Reachability analysis of nonlinear systems using matrix
measures. Automatic Control, IEEE Transactions on 60(1), 265–270 (2015)

34. Mitra, S.: Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT Press
(2021), https://mitpress.mit.edu/contributors/sayan-mitra

35. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning.
MIT press (2018)

36. Niarchos, K., Lygeros, J.: A neural approximation to continuous time reachabil-
ity computations. In: Proceedings of the 45th IEEE Conference on Decision and
Control. pp. 6313–6318. IEEE (2006)

37. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
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