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Abstract

Contrastive self-supervised learning based on point-wise comparisons has been
widely studied for vision tasks. In the visual cortex of the brain, neuronal responses
to distinct stimulus classes are organized into geometric structures known as neural
manifolds. Accurate classification of stimuli can be achieved by effectively separat-
ing these manifolds, akin to solving a packing problem. We introduce Contrastive
Learning As Manifold Packing (CLAMP), a self-supervised framework that recasts
representation learning as a manifold packing problem. CLAMP introduces a loss
function inspired by the potential energy of short-range repulsive particle systems,
such as those encountered in the physics of simple liquids and jammed packings.
In this framework, each class consists of sub-manifolds embedding multiple aug-
mented views of a single image. The sizes and positions of the sub-manifolds are
dynamically optimized by following the gradient of a packing loss. This approach
yields interpretable dynamics in the embedding space that parallel jamming physics,
and introduces geometrically meaningful hyperparameters within the loss function.
Under the standard linear evaluation protocol, which freezes the backbone and
trains only a linear classifier, CLAMP achieves competitive performance with
state-of-the-art self-supervised models. Furthermore, our analysis reveals that
neural manifolds corresponding to different categories emerge naturally and are
effectively separated in the learned representation space, highlighting the potential
of CLAMP to bridge insights from physics, neural science, and machine learning.

1 Introduction

Learning image representations that are both robust and broadly transferable remains a major chal-
lenge in computer vision, with critical implications for the efficiency and accuracy of training
across downstream tasks. State-of-the-art models address this problem by employing contrastive
self-supervised learning (SSL), wherein embeddings are treated as vectors and optimized using
pairwise losses to draw together positive samples, augmented views of the same image, and push
apart negative samples, views of different images [1, 2, 3, 4, 5, 6]. While SSL has advanced signifi-
cantly, and in some cases, surpassed supervised methods [7, 8], its geometric foundations remain
largely underexplored. In visual cortex, neural activity often resides within geometric structures
known as neural manifolds — which span the embedding space [9] and may exhibit low intrinsic
dimensionality [10] that capture much of the observed variability in neural activity. Neural manifolds
have been characterized in a number of neural systems supporting a variety of cognitive processes
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(in addition to vision) including neural activity coordination, motor control, and information coding
[11, 12, 13, 14]. In the context of SSL, neural representations of similar and dissimilar samples are
frequently conceptualized as distinct sub-manifolds in the representation space, where a sub-manifold
corresponds to the encoding of a single data sample and its transformations, and a manifold to an
entire class. In classification, the objective is to separate these class-level manifolds so that each
maps cleanly to a distinct category under a readout function. When manifolds corresponding to
different classes, for example, manifolds representing “cats” and “dogs” overlap in neural state space,
the resulting ambiguity can lead to misclassification. This viewpoint recasts classification as the
problem of efficiently arranging manifolds in representation space to minimize overlap and enhance
separability [15].

Our main contributions are as follows:

• We propose a loss function inspired by the interaction energy of short-range repulsive particle
systems such as simple liquids and jammed packings, endowing each hyperparameter with a
clear physical interpretation.

• We demonstrate that CLAMP achieves state-of-the-art image classification accuracy, match-
ing state-of-the-art SSL methods and even setting a new SOTA on ImageNet-100, under
the standard linear evaluation protocol (a frozen backbone plus a linear readout), all while
being remarkably simple and interpretable thanks to its single projection head and one-term,
physics-grounded loss comprising a single term.

• We show that the dynamics of SSL pretraining under CLAMP resemble those of the
corresponding interacting particle systems, revealing a connection between SSL and non-
equilibrium physics.

• We compare CLAMP’s internal representations to mammalian visual cortex recordings
and find that CLAMP offers a compelling account of how complex visual features may
self-organize in the cortex without explicit supervision.

2 Related work

2.1 Interacting particle models in physics

A particularly insightful analogy for CLAMP comes from random organization models, originally
introduced to describe the dynamics of driven colloidal suspensions [16, 17, 18]. In these models,
overlapping particles are randomly “kicked” while isolated particles remain static. As the volume
fraction is increased, the system undergoes a phase transition from an absorbing state (where no
particles overlap) to an active steady state (where overlaps cannot be resolved under the prescribed
dynamics) in two and three dimensions [19]. When kicks between overlapping particle pairs are
reciprocal, meaning that each particle is displaced by an equal but opposite amount, the critical
and active states are characterized by anomalously suppressed density fluctuations at large scales, a
property known as “hyperuniformity”[20] or “blue noise”[21, 22]. This absorbing-to-active transition
coincides with random close packing (RCP) when the noisy dynamics are reciprocal [17]. Recent work
further establishes an equivalence between this process and a stochastic update scheme that minimizes
a repulsive energy under multiplicative noise [15]. We note that even beyond the hyperuniformity
observed for dense active states of random organization systems, for a high-dimensional system of
short-range, repulsive particles, such as those interacting via an exponential potential (e−cr, c > 0),
confined to a closed surface, a uniform spatial distribution minimizes the system’s energy in the
large density limit [23, 24, 25]. Drawing on these insights, CLAMP employs a short-range repulsive
potential over augmentation sub-manifolds as its self-supervised learning loss, favoring the separation
of embeddings.

2.2 Feature-level contrastive learning

Following recent SOTA self-supervised learning models, we use image augmentations and contrastive
losses. Most self-supervised learning frameworks treat features as points or vectors in the embedding
space, contrasting positive samples—embeddings of augmented views of the same image—with
negative samples. They typically use a pairwise contrastive loss such as InfoNCE [1, 2, 3, 4, 5, 6], or
a weighted-sample InfoNCE loss where negative samples are drawn from tailored Boltzmann-like
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distributions to sharpen sample-wise contrasts [26]. Here, CLAMP treats each image as its own class;
however, instead of applying the contrastive loss directly to individual feature vectors, it operates on
the entire augmentation sub-manifolds surrounding each input embedding.

2.3 Clustering methods for self-supervised learning

Clustering-based self-supervised learning methods assign images to clusters based on similarity
criteria, rather than treating each image as a distinct class. For instance, The DeepCluster [27] applies
the k-means algorithm to assign pseudo-labels to embeddings, which serve as training targets in
subsequent epochs. Collapse-resistant non-contrastive methods prevent feature collapse by using a
fixed dictionary and enforcing augmentation invariance without negative samples [28]. However, the
DeepCluster approach requires k-means classification on the entire dataset, making it unsuitable for
online, mini-batch, learning. SwAV [29] overcomes this limitation by using soft assignments and
jointly learning cluster prototypes and embeddings, enabling flexible online updates. In contrast to
clustering methods, our approach groups each image with its augmentations to learn the geometry of
the augmentation sub-manifold without clustering across different samples.

2.4 Alignment-Uniformity and maximum manifold capacity methods

The Alignment-Uniformity method [30] constructs the loss function by incorporating two components:
an alignment term and a uniformity term. The alignment term maximizes the cosine similarity of the
embedding vectors between positive pairs, thereby encouraging consistency. The uniformity term
acts as a repulsive pairwise potential over all pairs of embeddings, driving the representations to be
uniformly distributed on the hyper-sphere and mitigating representational collapse [31].

Maximum manifold capacity theory measures the linear binary classification capacity of manifolds
with random binary labels. For P d-dimensional manifolds embedded in D dimensions, αc measures
the maximum capacity such that for all P/D < αc, these manifolds can be linearly classified into
two categories with probability 1 in the limit where P → ∞, D → ∞, d/D → 0, and P/D remains
finite [32, 33]. Maximum manifold capacity representation (MMCR) maximizes this capacity on
augmentation sub-manifolds in the framework of multi-view self-supervised learning and achieves
high accuracy classification performance [34].

Unlike MMCR, which expressly maximizes the representation’s binary linear classification capacity,
CLAMP optimizes the embeddings for an n-ary nonlinear classification problem, making the two
approaches fundamentally different. Moreover, CLAMP’s loss function is based on short-range
interactions: the contribution from each augmentation sub-manifold depends only on its neighboring
sub-manifolds, whereas MMCR requires global information from all sub-manifolds. Finally, although
MMCR has comparable computational complexity to CLAMP, MMCR is less efficient to train,
because it requires one SVD for each learning step, compared to CLAMP, and its loss function and
optimization dynamics lack the clear, physics-based interpretability that CLAMP provides.

Compared to the Alignment-Uniformity method, our approach differs in three key aspects: (1)
The Alignment-Uniformity loss is defined over feature vectors, whereas our loss operates directly
on manifolds; (2) Our method employs a single loss term that simultaneously enforces alignment
and uniformity, avoiding the need to manually balance separate terms as required in Alignment-
Uniformity; (3) Our pairwise repulsion is short-ranged, involving only neighboring embeddings,
which reduces computational complexity compared to the global (long-ranged) repulsion used in
Alignment-Uniformity.

To summarize, both the MMCR and Alignment-Uniformity methods enhance mutual information
between positive pairs by pulling together augmentations of the same image (positive samples) and
pushing apart those of different images (negative samples) [35, 30]. In CLAMP, these properties
emerge naturally from the short-range repulsive dynamics described in Sec. 2.1, without relying on
global information or separate alignment and uniformity terms that need to be balanced, making
CLAMP a particularly elegant, efficient, and interpretable solution.
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3 Method

3.1 Description

Inspired by physical packing problems and recent advances in self-supervised learning, CLAMP
learns structured representations by minimizing an energy-based loss that encourages optimal packing
of neural manifolds in embedding space. Our framework is designed specifically for vision tasks
that use images as input. As shown in Fig. 1, given a batch of images, denoted x1, x2, . . . , xb,
where b represents the batch size, we adopt the standard contrastive learning setup, in which positive
samples are generated through image augmentations. For each input image xi, we apply random
transformations to obtain m augmented views, denoted as x1

i , x
2
i , . . . , x

m
i .

To establish precise terminology, we define an augmentation sub-manifold as the set of embeddings
produced from a finite number of augmentations of a single image. In the limit of infinite augmenta-
tions, this becomes a sub-manifold. The union of sub-manifolds corresponding to all images in a
given class defines a class manifold, or simply a neural manifold.

Figure 1: CLAMP architecture. The CLAMP framework pro-
cesses a batch of b input images by applying augmentations to
generate m views for each image. These augmented views are then
encoded and projected into a shared embedding space. Within this
space, the augmented embeddings corresponding to each input form
a distinct sub-manifold, resulting in b such sub-manifolds. Then, a
pairwise packing loss is applied to minimize overlap between these
sub-manifolds. The gradient of the loss is subsequently backpropa-
gated to optimize the model.

We employ a backbone encoder fθ(x)
as the feature extractor to get the rep-
resentations, yki = fθ(x

k
i ). To map

these representations into the embed-
ding space, we apply a multilayer
perceptron (MLP) projection head,
zki = gθ(y

k
i ). Normalizing embed-

ding vectors on the unit hypersphere
has been shown to be effective in self-
supervised learning and variational au-
toencoders [34, 30, 36]. Therefore,
we normalize the embeddings to lie
on the unit hypersphere by subtract-
ing the global center and projecting
to unit norm, z̃ki = (zki − c)/||zki −
c||2, where c = 1

mb

∑
i

∑
k z

k
i is the

global mean of all the projected vec-
tors in the batch.

For each image xi, its m augmentations form a cluster of projected vectors that we refer to as
an augmentation sub-manifold, {z̃1i , z̃2i , ...z̃mi } centered at Zi = 1

m

∑
k z̃

k
i . We approximate the

shape of each augmentation sub-manifold with a high-dimensional ellipsoid, as described next
in Sec. 3.1.1. This procedure yields b ellipsoidal sub-manifolds, one per image. We treat sub-
manifolds from different images as repelling entities and define the loss as L = log(Loverlap), where
Loverlap =

∑
i,j E(Zi, Zj) penalizes overlap between sub-manifolds. E(Zi, Zj) is an energy-based

pairwise repulsive potential that pushes ellipsoids i and j away from one another if they overlap,

Loverlap =


∑
i ̸=j

(
1− ∥Zi−Zj∥2

ri+rj

)2

, if ∥Zi − Zj∥2 < ri + rj

0, otherwise
,where ri = rs

√
Tr(Λi)

m
. (1)

Note that even though the loss function acts locally on neighboring sub-manifolds in the embedding
space, each weight update affects all embeddings. Since the logarithm is a monotonic function,
applying it to Loverlap preserves the locations of its minima while compressing large loss values,
stabilizing the training process.

Following the convention established in [2], we refer to the output space of the encoder fθ(·) as the
representation space, while the output space of the projection head gϕ(fθ(·)) is designated as the
embedding space.

3.1.1 Approximate augmentation sub-manifolds as ellipsoids

We approximate the distribution of embedding vectors p(z̃i) generated from random augmentations
of input image xi as a multivariate Gaussian with mean Z̃i and covariance Λi, z̃i ∼ N (Zi,Λi). We
assume that Λi is full-rank and invertible (see Appendix K for a treatment of the general case). To
represent the augmentation sub-manifold in embedding space, we define the corresponding enclosing
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ellipsoid with Mahalanobis distance rs,

(z̃ − Zi)Λ
−1
i (z̃ − Zi)

T = r2s (2)

where rs is a scaling hyperparameter that controls the effective size of the manifold. A large rs
corresponds to larger ellipsoids, and an appropriate choice of rs ensures that the ellipsoid encloses
the majority of the augmentation sub-manifold (Fig. 2(a)). The lengths of the ellipsoid’s semi-axes

are given by the square roots of the nonzero eigenvalues of Λi scaled by rs: rs
√
λ
(1)
i , rs

√
λ
(2)
i , ...

where λ
(k)
i is the k-th eigenvalue of Λi. To estimate the effective size of the ellipsoid, we compute

the square root of the expected squared semi-axial length,
√
E[(rs

√
λ)2], yielding the sub-manifold

radius, ri = rs

√∑
j λ

(j)
i

rank(Λi)
. The radius ri provides an upper bound on the volume of the ellipsoid i

(Vi), ri ≥ cV
1/min(b,D)
i (see Appendix K for details). In practice, the number of augmentations

m ∼ O(10) is much smaller than the embedding dimension D ∼ O(100), making the empirical
covariance Λi lower rank or singular. In such cases, the expression for ri remains valid with
rank(Λi) ≈ m serving as a proxy (see Appendix K for discussion).

3.1.2 Pairwise potential enhances similarity between positive samples and prevents
embeddings from collapsing

CLAMP models sub-manifolds as repulsive particles interacting via a short-range potential E(Zi, Zj),
where Zi, Zj are the centroids of sub-manifolds i and j. The potential attains its maximum at
||Zi − Zj ||2 = 0 corresponding to complete overlap between two sub-manifolds and drops to zero
when ||Zi − Zj ||2 > ri + rj , ensuring that non-overlapping sub-manifolds do not interact. Eq. 1
implies that increasing the inter-center distance between sub-manifolds and reducing their sizes leads
to a lower loss.

Similarity. Similarity requires that augmentations of the same image (positive samples) be mapped
to nearby points in the feature space, thereby making them robust to irrelevant variations. CLAMP
allows the manifold sizes to vary dynamically, unlike fixed-size particle-based models in physics.
This flexibility is crucial in self-supervised representation learning, where small augmentation sub-
manifold sizes ri are desirable to enhance similarity across positive samples.

Avoiding representational collapse. Representational collapse refers to a degenerate solution in
which all network outputs converge to a constant vector, regardless of the input [31]. In CLAMP,
the repulsive term in the loss function avoids such collapse by explicitly pushing sub-manifolds of
different images apart.

Separability. Separability encourages the negative embeddings to be distant and separable on
the unit hypersphere. Analogous repulsive interactions in physical systems are known to produce
near-uniform distributions. Consistent with this, we observe that the embeddings progressively
become more separable throughout training. To quantify this effect, we track both similarity (distance
among positives) and separability (distance among negatives) throughout pretraining, confirming that
CLAMP systematically enhances class-level separation.

Figure 2: Sub-manifold and visualization of the embedding space. (a) Schematic for approximating aug-
mentation sub-manifolds as ellipsoids with different scale factor rs. (b) We selected 10 images from the
MNIST dataset, one for each digit from 0 to 9, and applied Gaussian noise augmentation. These augmented
images were then encoded into a 3-dimensional embedding space for visualization. Solid dots represent the
embedding points of each augmented view, while the shaded regions denote circumscribed ellipsoids defined
by (z̃ − Zi)(Λi)

−1(z̃ − Zi) = r2s . Left: the initial embeddings. Right: the trained embeddings. For this toy
example, we use rs = 3.0
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To visualize CLAMP and provide a proof of concept, we developed a toy model using an 18-
layer ResNet as the backbone, fθ, and an MLP, gθ, that maps the resulting representation to three-
dimensional embedding space. We loaded one image per class from the MNIST dateset [37] and
applied Gaussian noise to generate 60 augmented views per image, and set rs = 3.0. Fig.2(b) shows
the manifold repulsion and size shrinkage dynamics of CLAMP.

3.2 Implementation details

The code for CLAMP is available at https://github.com/guanming-zhang/clamp

3.2.1 Image augmentation

During data loading, each image was transformed into m augmented views using asymmetric
augmentation consisting of two augmentation pipelines each sampled from different transformation
distributions and applied to one half of the views. We used the following augmentations: random
cropping, resizing, random horizontal flipping, random color jittering, random grayscale conversion,
random Gaussian blurring (see Appendix B for details).

3.2.2 Architecture

We used a ResNet network, fθ(x), as the backbone and a MLP, gϕ(x), as the projection head.
Following [1] and [2], the projection head MLP was discarded after pretraining.

CIFAR10 For the CIFAR10 dataset [38], we used the ResNet-18 [39] network as the
backbone and a two-layer MLP of size [2048,128] as the projection head. Following
[4, 2], we removed the max pooling layer and modified the first convolution layer to be
kernel_size=1,stride=1,padding=2.

ImageNet-100/1K For the ImageNet dataset [40], we used the ResNet-50 [39] network as the
backbone and a three-layer MLP of size [8192,8192,512] as the projection head.

3.2.3 Optimization

We used the LARS optimizer [41] for training the network. For CIFAR10, we trained the model for
1000 epochs using the warmup-decay learning rate scheduler, and with 10 warmup steps and a cosine
decay for rest of the steps. For ImageNet-100, we trained the model for 200 epochs with 10 steps of
warmup and 190 steps of cosine decay for the learning rate. For ImageNet-1K, we trained the model
for 100 epochs with 10 steps of warmup and 90 steps of cosine decay for the learning rate. Training
on 8 A100 GPUs with batch size 1024 for 4 views with distributed data parallelization for 100 epochs
took approximately 17 hours. See Appendix D for details.

4 Evaluation

4.1 Linear evaluation

Following standard linear evaluation protocols, we froze the pretrained ResNet-50 backbone encoder
and trained a linear classifier on top of the representation. Training was conducted for 100 epochs
on ImageNet-1K and 200 epochs on ImageNet-100. Classification accuracies are reported on the
corresponding validation sets (Table 1). We find that CLAMP achieves competitive performance
relative to existing SSL algorithms and even sets a new state of the art on ImageNet-100. Our
model performance under linear evaluation depends only weakly on batch size but improves with an
increased number of augmented views as shown in Appendix L. See Appendix E for details about
linear evaluation.

4.2 Semi-supervised learning

We evaluated the model using a semi-supervised setup with 1% and 10% split (the same as [1]) of
the ImageNet-1K training dataset. During semi-supervised learning, both the backbone encoder and
the appended linear classifier were updated for 20 epochs. The results are shown in Table 1. Again,
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Linear evaluation Semi-supervised
Method ImageNet-100 ImageNet-1K 1% 10%
SimCLR[1] 79.64 66.5 42.6 61.6
SwAV[29] - 72.1 49.8 66.9
Barlow Twins[42] 80.38* 68.7 45.1 61.7
BYOL[2] 80.32* 69.3 49.8 65.0
VICReg[6] 79.4 68.7 44.75 62.16
CorInfoMax[43] 80.48 69.08 44.89 64.36
MoCo-V2[3] 79.28* 67.4 43.4 63.2
SimSiam[4] 81.6 68.1 - -
A&U [30] 74.6 67.69 - -
MMCR (4 views+ME)[34] 82.88 71.5 49.4 66.0
CLAMP (4 views) 85.12 ±.05 69.50 ±.14 47.38 ±.56 65.10 ±.30
CLAMP (8 views) 85.10 ±.15 70.04 ±.16 47.87 ±.03 65.96 ±.04

Table 1: Linear evaluation accuracy on ImageNet-100 dataset for 200-epoch pretraining: For SimCLR the
higher accuracy between [34] and [43] is reported. For Barlow twins, BYOL, and MoCo-V2, the accuracies
using ResNet-18 as the backbone (labeled with *) in [43] are reported because either ResNet-50 results are absent
or ResNet-18 performs better in [43]. A&U and MMCR results are taken from [30] and [34] respectively. Linear
evaluation accuracy on ImageNet-1K dataset for 100-epoch pretraining: For SimCLR, SWAV, Barlow Twins,
BYOL, VICReg, CorInfoMax, MoCo-V2 and SimSiam, we reported the highest accuracy for each method among
the results in the solo-learn library [44], VISSL library [45], [34] and [43]. We report the 200-epoch pretraining
result for A&U, as the 100-epoch result is unavailable [30]. Semi-supervised learning:The semi-supervised
learning results for VICReg and CorInfoMax are taken from [43], those for other methods are from [34]. In
MMCR with 4 views and a momentum encoder (4 views + ME), the effective 8 views, 4 from the backbone
and 4 from the encoder, achieve the same linear accuracy (71.5%) as using 8 views without the momentum
encoder [34]

we find that CLAMP achieves competitive performance relative to existing SSL algorithms. See
Appendix G for details.

4.3 Transfer to object detection tasks

To evaluate CLAMP’s generalizability beyond linear
classification, we apply the pretrained model to object
detection. Specifically, we report results using a Faster
R-CNN architecture with a C4 backbone, pretrained
with CLAMP on ImageNet-1K using 8 views and a
batch size of 512 for 100 epochs. The model is fine-
tuned on the VOC2007+2012 training set and eval-
uated on the VOC2007 test set (Table. 2). CLAMP
delivers stronger detection performance than other
self-supervised learning baselines, demonstrating that
its learned manifold structure transfers effectively to
spatially structured vision tasks. See Appendix H for
details.

Methods mAP ↑ AP50 ↑ AP75 ↑
SimCLR 54.4 81.6 61.0
Barlow Twins 53.1 80.9 57.7
BYOL 55.6 82.3 62.0
MoCo v2 54.7 81.7 60.2
MMCR 54.6 81.9 60.0
CLAMP 55.7 82.3 62.4

Table 2: Object detection on VOC datasets:
The benchmarks (mAP, AP50 and AP75) for the
baseline methods are from [34]. Models are pre-
trained on ImageNet-1K for 100 epochs before
fine-tuning.

5 Training dynamics reflect geometrical changes in the embedding space

We analyze manifold packing dynamics by tracking the evolution of neighbor count and manifold
size during ImageNet-1K training. Two sub-manifolds are considered neighbors if the Euclidean
distance between their centroids is smaller than the sum of their radii (||qi − qj ||2 < ri + rj). At
each epoch, we compute the average number of neighbors (for m = 4 views) and the average
manifold size, Ei∼data[

√
Λi/m], using a 1% validation split. As shown in Fig. 3, both metrics

decrease over training, indicating that embeddings evolve from an initial collapsed state toward
more structured representations with increased pairwise distances. This mirrors random organization
models [17, 15], where local density and spacing show similar temporal behavior, reflecting improved
feature discrimination over time.
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Figure 3: Training dynamics: (a) Number of neighbours as a function of epochs. (b) Average embedding
sub-manifold sizes as the function of epochs. (c) Distances between pair of embeddings for untrained and trained
networks.

Figure 4: The properties of sub-manifolds in the embedding space for the pretrained ResNet-18 network are
characterized by: (a) Orientation similarity: the squared cosine similarity between the principal orientations
of the sub-manifolds. (b) Centroid distances: the Euclidean distances between the centroids of different sub-
manifolds. (c) Centroid similarity: the cosine similarity between the centroid points of sub-manifolds.

6 Properties of the representations

Figure 5: t-SNE visualization of the rep-
resentations. Visualization of the 256-
dimensional representation space by t-SNE
method. Each color shows the representa-
tion corresponding to different category in
CIFAR-10 dataset.

To quantify the geometric properties of the learned rep-
resentations, we analyzed the CLAMP representation ob-
tained for CIFAR-10 using a ResNet-18 backbone archi-
tecture. As shown in Appendix F, we achieve ∼ 90%
top-1 accuracy (without hyperparameter tuning) which is
competitive with alternative SSL frameworks. For each
sub-manifold, we computed its centroid and alignment
vector (defined as the principal eigenvector of its covari-
ance matrix), grouping them according to their class labels.
We compared the geometric properties such as centroid
distances, centroid cosine similarity, and alignment cosine
similarity of representations across inter-class and intra-
class sub-manifold pairs. To ensure robust estimation, we
randomly sampled 800 images from the test dataset and
generated 100 augmentations per image to compute the
manifold properties. This process was repeated 10 times.

As shown in Fig. 4, intra-class and inter-class sub-
manifolds exhibit clear differences across all metrics, in-
dicating that manifolds of different classes are distinct in
both position and orientation, reinforcing the potential for linear separability. Notably, the inter-class
alignment similarity peaks strongly at ∼ 0, suggesting that sub-manifolds of different classes are
almost orthogonal to one another.

To demonstrate the emergence of category-specific manifolds, we visualize the representation space
of the CIFAR-10 test dataset (without augmentation) using t-SNE [46], a method that preserves local
neighborhood structure while projecting high-dimensional data into a lower-dimensional space. As
shown in Fig. 5, representations from different classes form distinct, well-separated clusters, indicat-
ing the formation of class-specific manifolds in the learned representation space. This clear clustering
underscores the structured organization induced by CLAMP and demonstrates its effectiveness in
producing representation that are separable in representation space.

7 Biological implications
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Methods V1 ↑ V2 ↑ V4 ↑ IT ↑
SimCLR 0.224 0.288 0.576 0.552
SwAV 0.252 0.296 0.568 0.533
Barlow Twins 0.276 0.293 0.568 0.545
BYOL 0.274 0.291 0.585 0.55
MMCR (8 views+ME) 0.270 0.311 0.577 0.554
CLAMP (4 views) 0.258 ±0.013 0.336 ±0.017 0.558 ±0.004 0.570 ±0.005

Table 3: Brain-score:We use public data from [47] for V1 and V2, and from [48] for V4 and IT to evaluate the
brain-score [49, 50]. The benchmarks for all baseline methods are from [34]. In the MMCR method, ME refers
to the momentum encoder.

Figure 6: The eigenspectrum of the covari-
ance matrix for the responses of 24000 im-
ages randomly selected from the ImageNet-
1K dataset follows a power law decay
λ ∝ n−1.013. Our model is pretrained on
ImageNet-1K for 100 epochs. The inset
is adapted from the eigenspectrum of the
stimulus-evoked activity in mouse V1 re-
ported in [51]

Neuroscience has long served as a source of inspiration
for advancements in artificial neural networks, prompt-
ing the question of whether SSL models can replicate
response statistics observed in cortex. Stringer et al. [51]
analyzed stimulus-evoked activity in mouse V1 (primary
visual cortex) and found that the eigenspectrum of its co-
variance matrix follows a power-law decay, λ ∝ n−α

with α ≈ 1.04, and further proved that α > 1 is indeed
necessary to ensure differentiability of the neural code.
After training CLAMP on ImageNet-1K, we measured
the eigenspectrum of its feature covariance and observed
a power law decay λ ∝ n−1.013, matching the cortical
exponent and theoretical predictions [51].

We then evaluated representational alignment using the
Brain-Score benchmark [49, 50], which measures how
well model activations predict primate neural record-
ings via cross-validated linear regression. We found that
CLAMP achieves the highest Brain-Score in V2 and IT
compared to the selected self-supervised models. These
results suggest that CLAMP ’s representation geometry
not only supports downstream classification performance
but also offers a compelling account of how complex visual features may self-organize in cortex
without explicit supervision.

8 Discussion

We have introduced CLAMP, a novel self-supervised learning framework that recasts contrastive
learning as a neural-manifold packing problem, guided by a physics-inspired loss. By promoting
similarity of positive pairs and repulsion of negatives through purely short-range, multi-view repul-
sive interactions, CLAMP achieves competitive, and in some cases state-of-the-art, performance
across standard downstream benchmarks. Importantly, our analysis of training dynamics reveals a
progressive structuring of the embedding space. Sub-manifolds that are initially overlapping evolve
into well-separated compact structures. We further show that class-level manifolds emerge from the
aggregation of sub-manifolds, which interact purely through repulsion, a phenomenon reminiscent of
phase separation in statistical physics. The mechanism underlying this emergent organization should
be elucidated in future theoretical work. It is also interesting to test if hierarchical cluster emerges
during the learning process in the future.

We demonstrate that CLAMP offers a compelling account of how complex visual features might
self-organize in the cortex without explicit supervision, based on direct comparisons between its
learned representations and experimental neural data. However, these findings should be interpreted
with caution. Brain-Score’s linear mapping between deep nets output and experimental activity may
overlook non-linear relationships between model and neural representation. It also does not guarantee
that CLAMP implements the same computations or dynamics as cortex. Moreover, CLAMP’s use of
large-batch contrastive optimization with backpropagation is unlikely to reflect biologically realistic
learning mechanisms. In contrast, Hebbian-style self-supervised learning frameworks with local
update rules are considered biologically plausible [52]. Developing local self-supervised learning
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dynamics inspired by manifold packing, without relying on backpropagation, is an important direction
for future research.

Our loss function leverages the sizes and locations of sub-manifolds within the embedding space.
Incorporating orientation alignment among sub-manifolds may enable denser packing, potentially
improving downstream task performance. However, we currently omit orientation information due to
its high computational cost: accurately estimating a sub-manifold’s orientation requires on the order
of O(D) ∼ 100 points, ∼ 100 augmentations per input, which is infeasible at the scale of CIFAR-10
or ImageNet.
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[24] András Sütő. Ground state at high density. Communications in mathematical physics, 305:657–
710, 2011.

[25] Cameron Davies, Tongseok Lim, and Robert J McCann. Classifying minimum energy states for
interacting particles: regular simplices. Communications in Mathematical Physics, 399(2):577–
598, 2023.

[26] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning
with hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

[27] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the European conference on
computer vision (ECCV), pages 132–149, 2018.

[28] Emanuele Sansone, Tim Lebailly, and Tinne Tuytelaars. Collapse-proof non-contrastive self-
supervised learning. In Forty-second International Conference on Machine Learning, 2025.

[29] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

[30] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In International conference on machine learning,
pages 9929–9939. PMLR, 2020.

[31] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse
in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

11



[32] SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Linear readout of object manifolds.
Physical Review E, 93(6):060301, 2016.

[33] SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Classification and geometry of general
perceptual manifolds. Physical Review X, 8(3):031003, 2018.

[34] Thomas Yerxa, Yilun Kuang, Eero Simoncelli, and SueYeon Chung. Learning efficient coding
of natural images with maximum manifold capacity representations. Advances in Neural
Information Processing Systems, 36:24103–24128, 2023.

[35] Rylan Schaeffer, Victor Lecomte, Dhruv Bhandarkar Pai, Andres Carranza, Berivan Isik, Alyssa
Unell, Mikail Khona, Thomas Yerxa, Yann LeCun, SueYeon Chung, et al. Towards an improved
understanding and utilization of maximum manifold capacity representations. arXiv preprint
arXiv:2406.09366, 2024.

[36] Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. arXiv
preprint arXiv:1808.10805, 2018.

[37] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[38] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www. cs. toronto. edu/kriz/cifar. html, 5(4):1, 2010.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[40] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[41] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks.
arXiv preprint arXiv:1708.03888, 2017.

[42] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In International conference on machine learning,
pages 12310–12320. PMLR, 2021.

[43] Serdar Ozsoy, Shadi Hamdan, Sercan Arik, Deniz Yuret, and Alper Erdogan. Self-supervised
learning with an information maximization criterion. Advances in Neural Information Process-
ing Systems, 35:35240–35253, 2022.

[44] Victor Guilherme Turrisi Da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-
learn: A library of self-supervised methods for visual representation learning. Journal of
Machine Learning Research, 23(56):1–6, 2022.

[45] Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu, Benjamin
Lefaudeux, Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bojanowski, Armand Joulin,
and Ishan Misra. Vissl. https://github.com/facebookresearch/vissl, 2021.

[46] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[47] Jeremy Freeman, Corey M Ziemba, David J Heeger, Eero P Simoncelli, and J Anthony Movshon.
A functional and perceptual signature of the second visual area in primates. Nature neuroscience,
16(7):974–981, 2013.

[48] Najib J Majaj, Ha Hong, Ethan A Solomon, and James J DiCarlo. Simple learned weighted
sums of inferior temporal neuronal firing rates accurately predict human core object recognition
performance. Journal of Neuroscience, 35(39):13402–13418, 2015.

12

https://github.com/facebookresearch/vissl


[49] Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham, Elias B Issa,
Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, et al. Brain-score:
Which artificial neural network for object recognition is most brain-like? BioRxiv, page 407007,
2018.

[50] Martin Schrimpf, Jonas Kubilius, Michael J Lee, N Apurva Ratan Murty, Robert Ajemian, and
James J DiCarlo. Integrative benchmarking to advance neurally mechanistic models of human
intelligence. Neuron, 108(3):413–423, 2020.

[51] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Matteo Carandini, and Kenneth D Har-
ris. High-dimensional geometry of population responses in visual cortex. Nature, 571(7765):361–
365, 2019.

[52] Manu Srinath Halvagal and Friedemann Zenke. The combination of hebbian and predictive
plasticity learns invariant object representations in deep sensory networks. Nature neuroscience,
26(11):1906–1915, 2023.

[53] Alexander Buslaev, Vladimir I Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A Kalinin. Albumentations: fast and flexible image augmentations.
Information, 11(2):125, 2020.

13



A Algorithm

Algorithm 1 CLAMP algorithm

Input: batch size b, number of views m, number of optimization steps n,
size scaling factor rs
initialize feature extractor network fθ
initialize projection head gϕ
initialize the distribution of random transforms T1 and T2
for t = 1 to n do

sample a batch from the dataset x1, x2, ...xb

for i = 1 to b do
# for each image, augment half of the views with T1
x1
i , ...x

m/2
i = t1(xi)..., t

m/2(xi). t1...tm/2 ∼ T1
#augment the other half of the views with T2
x
m/2+1
i , ...xm

i = tm/2+1(xi)..., t
m(xi). tm/2+1...tm ∼ T2

y1i , ...y
m
i = fθ(x

1
i ), ...fθ(x

m
i ) # extract features

z1i , ...z
m
i = gϕ(y

1
i ), ...gϕ(y

m
i ) # projection

end for
# normalization
c = 1

mb

∑b
i=1

∑m
k=1 z

k
i

z̃ki = (zki − c)/∥zki − c∥2 for i = 1...b, k = 1...m
for i = 1 to b do

qi =
1
m

∑
k z̃

k
i # center of each sub-manifold

Λi =
1
m

∑
k(z̃

k
i − qi)

T (z̃ki − qi) # covariance matrix

ri = rs

√
1
mTr(Λi) # manifold size

# Note: in practice, only the diagonal elements of Λi are calculated for Tr(Λi).
end for
calculate the loss function

Loverlap =


∑
i̸=j

(
1− ∥qi−qj∥2

ri+rj

)2

,if ∥qi − qj∥2 < ri + rj

0, otherwise
L = log(Loverlap)
update the network fθ, gϕ to minimize L

end for
return fθ and discard gϕ
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B Image augmentation

During self-supervised training, CLAMP employs a collection of image augmentations, drawn
from the broader set introduced in [1] and [2]. We adopt the following image augmentations:
randomly sized cropping, Gaussian blur, random gray-scale conversion(color dropping), random
color jitter,randomly horizontal flipping.

parameter value (T1 = T2)

random sized cropping - output size 32 × 32
random sized cropping - scale [0.08,1.0]
Gaussian blur - probability 0.5
Gaussian blur - kernel size 3 × 3
color drop - probability 0.2
color jitter - probability 0.8
color jitter - brightness adjustment max intensity 0.8
color jitter - contrast adjustment max intensity 0.8
color jitter - saturation adjustment max intensity 0.8
color jitter - hue adjustment max intensity 0.2
horizontal flipping - probability 0.5

Table 4: Image augmentation parameters for CIFAR10

parameter T1 T2

randomly sized cropping - output size 224 × 224 224 × 224
randomly sized cropping - scale [0.08,1.0] [0.08,1.0]
Gaussian blur - probability 0.8 0.8
Gaussian blur - kernel size 23 × 23 23 × 23
color drop - probability 0.2 0.2
color jitter - probability 0.8 0.8
color jitter - brightness adjustment max intensity 0.8 0.8
color jitter - contrast adjustment max intensity 0.8 0.8
color jitter - saturation adjustment max intensity 0.2 0.2
color jitter - hue adjustment max intensity 0.1 0.1
horizontal flipping - probability 0.5 0.5
solarization - probability 0.0 0.2

Table 5: Image augmentation parameters for ImageNet-1K/100

As the last step of the augmentation process, we apply channel-wise normalization using dataset-
specific statistics. Each image channel is standardized by subtracting the dataset mean and dividing
by the standard deviation. For CIFAR-10, we use (0.4914, 0.4822, 0.4465) as the mean values and
(0.247,0.243,0.261) for the standard deviation. For ImageNet-100 and ImageNet-1K, the normal-
ization parameters are (0.485, 0.456, 0.406) for the mean and (0.229, 0.224, 0.225) for the standard
deviation. During resizing, we employ bicubic interpolation to preserve image quality. We use
Albumentaions library for fast image augmentation [53].

C Time complexity for the loss function

Note that only the diagonal part of the covariance matrix Λi is required in the loss function, it is not
necessary to calculate the complete covariance matrix. Therefore, each iteration, the time complexity
for computing sub-manifold sizes ri is O(bmD), the time complexity for the pairwise loss function
is O(b2D), therefore the time complexity for each iteration is O(bD max(m, b)). Since the number
of iteration is N/b where N is the size of the dataset, the complexity for calculating the loss function
for one epoch is O(ND max(m, b)).

D Self-supervised pretraining

We employ the LARS optimizer for self-supervised learning with its default trust coefficient (0.001).
Our learning-rate schedule begins with a 10-step linear warm-up, after which we apply cosine decay.
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To enable fully parallel training, we convert all BatchNorm layers to synchronized BatchNorm and
aggregate embeddings from all GPUs when computing the loss. In addition, we exclude every bias
term and all BatchNorm parameters from weight decay and use weight decay parameter = 10−6. For
CIFAR-10 dataset, we removed the max pooling layer and modified the first convolution layer to be
kernel size=1,stride=1,padding=2. We use m = 16 views for CIFAR-10 dataset and m = 4, 8 for
ImageNet-1K/100. rs = 8.5 is applied for CIFAR-10 and ImageNet-100/1K. Other parameters are
shown in Table 6 where the base learning rate = lr × batch size/256.

dataset backbone MLP head batch size lr momentum parameter epochs

CIFAR-10 ResNet-18 [2048,256] 128 2.0 0.9 1000
ImageNet-100 ResNet-50 [8192,8192,512] 512 2.0 0.9 200
ImageNet-1K ResNet-50 [8192,8192,512] 512 1.1 0.9 100

Table 6: Self-supervised pretraining setups for CIFAR-10 and ImageNet-1K/100

E Linear evaluation

We discard the projection head and freeze the backbone network during linear evaluation.

CIFAR10 dataset: We use the Adam optimizer with learning rate = 0.05× and batch size/ 256.0
(batch size = 1024) to train the linear classifier for 100 epochs. We apply a cosine learning rate
schedule.

ImageNet-100 dataset: We use SGD optimizer with Nesterov momentum and weight decay to train
the linear classifier where the learning rate = 0.05× batch size / 256, batch size = 1024, momentum
= 0.9 and weight decay = 1e-5. During training, we transform an input image by random cropping,
resizing it to 224 × 224, and flipping the image horizontally with probability 0.5. At test time we
resize the image to 256× 256 and center-crop it to a size of 224× 224. We apply a cosine learning
rate schedule to train the linear classifier for 100 epochs.

ImageNet-1K dataset:we use the same setup as ImageNet-100 but base learning rate = 1.6× batch
size / 256, batch size = 1024.

F Linear evaluation on CIFAR10

Method Top1 accuracy Top5 accuracy

SimCLR 90.74 99.75
SwAV 89.17 99.68
DeepCluster V2 88.85 99.58
Barlow Twins 92.10 99.73
BYOL 92.58 99.79
CLAMP (ours) 90.21 99.60

Table 7: Linear evaluation on CIFAR10 dataset using resnet-18 as the backbone encoder. Results for Sim-
CLR [1], SwAV [29], DeepCluster V2 [29],Barlow twins [42] and BYOL [2] methods are taken from solo-learn
benchmarking [44].

Note that we adopt the same learning rate used for ImageNet-100 and do not perform further
hyperparameter tuning.

G Semi-supervised learning

We use semi-supervised learning via fine tuning on the backbone network with a linear classifier for
1% and 10% splits of the ImageNet-1K dataset. The same splits are applied as [1]. We use the SGD
optimizer with momentum of 0.9 but no weight decay for cross entropy loss. We adopt the same data
augmentation procedure during training and testing as in the linear evaluation protocol. We scale
down the learning rate of the backbone parameters by a factor of 20. Both the backbone and classifier
use the cosine-decay learning rate schedule. We use a batch size of 256 and sweep the initial learning
rate over {0.1, 0.2, 0.4, 0.6}.
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H Object detection

we apply the Faster R-CNN detector with a R50-C4 backbone (pretrained on ImageNet-1K with 8
views and batch size 512 for 100 epochs), fine-tuned on VOC2007+2012 training dataset and tested
on VOC2007 test dataset. Our implementation follows the procedure of [3], except that we set the
base learning rate to 0.07.

I Power law exponent for the eigen-spectrum

In analysis of experimental data in [51], the exponent is estimated using log-log scale liner fit on
eigenvalues ranked from 11 to 500. Here, we use eigenvalues ranked from 15 to 1400 to fit the
exponent.

J Brain-Score

We use the datasets with identifiers, FreemanZiemba2013public.V1-pls,
FreemanZiemba2013public.V2-pls, MajajHong2015public.V4-pls, MajajHong2015public.IT-pls for
the neural activity recorded from V1,V2,V4 and IT respectively.

K Qualitative understanding of sub-manifolds in the embedding space

K.1 Manifold radius for singular Λi

As Λi is positive semi-definite, it can be decomposed as

Λi =

K∑
j

λ
(j)
i v

(j)
i v

(j)T

i

with λ
(k)
i > 0 where K = rank(Λi) and v

(j)
i are orthonormal vectors. We then enclose the

sub-manifold as the ellipsoid whose equation reads,

[(z̃ − Zi)
T v

(1)
i ]

2

r2sλ
(1)
i

+
[(z̃ − Zi)

T v
(2)
i ]

2

r2sλ
(2)
i

+ ...+
[(z̃ − Zi)

T v
(K)
i ]

2

r2sλ
(K)
i

= 1.

This equation represents the K-dimensional ellipsoid centered at Zi embedded in the D-dimensional

space with semi-axial lengths rs

√
λ
(1)
i ...rs

√
λ
(K)
i . We compute the sub-manifold radius as the

square root of average semi-axial length square,

ri =

√
r2sλ

(1)
i + ...+ r2sλ

(K)
i

K
.

Even if Λi is not a full-rank matrix, Tr(Λi) = λ
(1)
i + ...+ λ

(K)
i is well defined. We get

ri = rs

√
Tr(Λi)

K
Λi is the covariance matrix of m embedding vectors embedded in D-dimensional space, There-
fore rank(Λi) ≤ min(m,D) = m (in practice, the number of views is much smaller than the
dimensionality , m ≪ D). Here, we use m, the upper bond, to estimate rank(Λi).

K.2 The relation between estimated sub-manifold radius and the estimated sub-manifold
volume

We enclose the sub-manifold i by K (K = rank(Λi)) dimensional ellipsoid embedded in the

D-dimensional space with semi-axial lengths rs
√
λ
(1)
i ...rs

√
λ
(K)
i . Its volume reads

V =
πK/2

Γ(K2 + 1)

K∏
j

rs

√
λ
(j)
i .
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From the inequality of arithmetic and geometric means, we have

V ≤ πK/2

Γ(K2 + 1)

(
1

K

∑
i

rs

√
λ
(j)
i

)K

By Cauchy–Schwarz inequality

V =
πK/2

Γ(K2 + 1)

(
1

K

∑
i

rs

√
λ
(j)
i

)K

≤

(
rs

√
Tr(Λi)

K

)K
πK/2

Γ(K2 + 1)
=

πK/2

Γ(K2 + 1)
rKi

Therefore ri is related to the upper-bound of the estimated sub-manifold volume.

L Hyperparameters

We conducted an ablation study to investigate the role of different hyperparameters. Due to limited
computational resources, ablation study on parameter rs and number of views m, 30% of the training
data from ImageNet-1K were selected and pretrained for 100 epochs (which is consistent with our
baseline where the whole training set are pretrained for 100 epochs). For the ablation on batch
size, we employed the entire ImageNet-1K dataset. We used the frozen-backbone linear evaluation
accuracy on the entire test dataset as the criterion for ablation.

L.1 Scale parameter rs

As shown in Fig. 7, accuracy increases with rs until it reaches a plateau at approximately rs ≈ 6.0.
This result further supports our qualitative finding that setting rs > 3 is necessary to compensate
for the underestimation of manifold size. A higher rs increases computational cost because more
sub-manifold pairs are involved in the loss function and the corresponding optimization process.

Figure 7: Linear evaluation accuracy as the function of the size scale factor rs on 30% ImageNet-1K dataset. we
use 4 views.

L.2 Number of augmentations m

We observed that increasing the number of data augmentations leads to higher linear evaluation accu-
racy. This indicates that greater augmentation diversity helps the model learn better representations.
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2 views 4 views 8 views

top 1 accuracy 55.17 58.29 58.95

Table 8: Linear evaluation using different number of views for ablation study on 30% ImageNet-1K dataset

L.3 Batch sizes

In contrast to SimCLR, where large batch sizes are critical for achieving high accuracy, we find that
the linear evaluation accuracy of CLAMP depends only weakly on batch size.

batch size 256 512 1024

top 1 accuracy 69.02 69.43 69.11

Table 9: Linear evaluation using different batch sizes for 4 views
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction are substantiated by
our methodology, evaluation results, and supporting analyses, including figures and tables.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitation in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Please see the section method and the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We show the details of the model, parameters, datasets in section implementa-
tion details and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We include our code in the supplementary material and all the datasets we use
are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have presented the benchmark and implementation details of our algorithms
in in section implementation details and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the error (two-sigma for three independent experiments with different
random seeds) in the table. The error in Brain-Score is provide by the library.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have these details in section implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms in every points with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in our abstract and introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:This paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:All the assets are properly credited and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are created in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve any crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve any crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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