
RPO: Retrieval Preference Optimization for Robust Retrieval-Augmented
Generation

Anonymous ACL submission

Abstract

While Retrieval-Augmented Generation (RAG)001
has exhibited promise in utilizing external002
knowledge, its generation process heavily de-003
pends on the quality and accuracy of the004
retrieved context. Large language models005
(LLMs) struggle to evaluate the correctness006
of non-parametric knowledge retrieved exter-007
nally when it differs from internal memoriza-008
tion, leading to knowledge conflicts during re-009
sponse generation. To this end, we introduce010
the Retrieval Preference Optimization (RPO),011
a lightweight and effective alignment method012
to adaptively leverage multi-source knowledge013
based on retrieval relevance. An implicit repre-014
sentation of retrieval relevance is derived and015
incorporated into the reward model to integrate016
retrieval evaluation and response generation017
into a single model, solving the problem that018
previous methods necessitate the additional pro-019
cedure to assess the retrieval quality. Notably,020
RPO is a RAG-dedicated alignment approach021
that quantifies the awareness of retrieval rele-022
vance in training, first overcoming mathemat-023
ical obstacles. Experiments on four datasets024
demonstrate that RPO outperforms RAG by 4-025
10% in accuracy without any extra component,026
exhibiting its robust generalization.027

1 Introduction028

Despite the wide application in natural language029

processing tasks, large language models (LLMs)030

still struggle with knowledge-intensive tasks (Guu031

et al., 2020; Lewis et al., 2020a). As a general and032

effective approach, retrieval-augmented generation033

(RAG) (Lewis et al., 2020b; Izacard and Grave,034

2021) involves retrieving the context related to the035

input query from an external corpus and integrating036

it for generation.037

However, RAG has been found to have the po-038

tential for over-reliance on retrieval, which could039

unconsciously lead to hallucination, particularly040

when the information retrieved, also called non-041

Figure 1: The figure showcases the overview of RAG
and three categories of adaptive RAG, including a) Pre-
Eval, b) Post-Eval, and c) Integrated-Eval approaches.
The estimated computational overhead of three cate-
gories is demonstrated as well, exhibiting the efficiency
of our RPO in inference.

parametric knowledge, conflicts with the para- 042

metric knowledge embedded within LLMs (Long- 043

pre et al., 2021; Xu et al., 2024). Specifically, 044

RAG tends to prioritize the retrieved external con- 045

text over the internal knowledge when conflicts 046

arise (Zou et al., 2024; Xiang et al., 2024; Yan 047

et al., 2024). Therefore, the performance of RAG 048

depends heavily on the accuracy of the retrieval 049

process, as inaccurate retrievals can introduce ir- 050

relevant or even harmful information, affecting the 051

quality of generated text (Shi et al., 2023; Rony 052

et al., 2022). To address the challenge, previous 053

studies evaluated the quality of retrieval before (pre- 054

eval) or after generation (post-eval). However, as 055

shown in figure 1, such approaches called adaptive 056
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RAG require extra processing to evaluate the value057

of retrieval via several API or LLM calls, leading to058

massive computational overhead. Meanwhile, re-059

moving part of the negative context that is assessed060

by the evaluator reduces the information provided061

for generation. It makes the generator more de-062

pendent on the evaluator, affecting the ultimate063

performance as well.064

Considering the issues above, in this paper, we065

propose RPO, a Retrieval Preference Optimization066

algorithm, aiming to enhance the robustness of067

LLM to multi-source knowledge by integrating re-068

trieval evaluation in generation through reinforce-069

ment learning. A comprehensive theoretical anal-070

ysis is first conducted to highlight the technical071

limitations of previous preference optimization al-072

gorithms (Ouyang et al., 2022; Rafailov et al., 2023;073

Zhang et al., 2024) in the context of the RAG sce-074

nario. We mathematically prove the limitations of075

the previous methods, which violate the objective076

of adaptive RAG, which is to select the correct an-077

swer both before and after retrieval. When conflict078

is involved between parametric and non-parametric079

knowledge, an over-tendency towards the retrieved080

knowledge still easily arises during the generation.081

Building on this theory, our RPO alignment method082

is designed to mitigate over-reliance on retrieval by083

incorporating the awareness of retrieval relevance084

into the reward model. To strengthen the capability085

of conflict mitigation, RPO simulates knowledge086

conflict and rectifies the discernment of LLM about087

which type of knowledge to prioritize. First, we088

instructed LLM to generate answers with and with-089

out retrieval respectively, filtering the contradictory090

instances as knowledge conflict. In the meantime,091

the relevance of the retrieved context is quantified092

and represented implicitly. Ultimately, the calcu-093

lated relevance is integrated into the reward model094

for alignment to adaptively reward the positive an-095

swer in the contradictory pair based on the quality096

of retrieval.097

As shown in figure 1, RPO (Integrated-eval) in-098

tegrated the evaluation of the retrieval quality with099

the generation, without any additional overhead, ex-100

hibiting significant efficiency. Meanwhile, results101

on four datasets of PopQA (Mallen et al., 2023),102

Natural Questions (Kwiatkowski et al., 2019), Triv-103

iaQA (Joshi et al., 2017), and RGB (Chen et al.,104

2024) show that RPO can significantly improve105

the performance of RAG over prior approaches,106

demonstrating its consistent advancements across107

various benchmarks.108

In summary, our contributions in this paper are 109

three-fold: 1) We propose an optimization strategy 110

named RPO, aimed at encouraging LLMs to syn- 111

chronously evaluate the retrieved context and selec- 112

tively leverage non-parametric knowledge without 113

any explicit processing during response generation. 114

2) We provide a mathematical proof highlighting 115

the inadequacy of existing preference optimization 116

strategies for direct application in RAG-based sce- 117

narios and propose a more efficient algorithm as 118

well as a data collection method for training to ad- 119

dress this limitation. 3) Through experimentation 120

involving multiple LLMs and benchmarks, we val- 121

idate the efficacy of our proposed RPO algorithm 122

and showcase its consistent performance advance- 123

ments. 124

2 Related Work 125

Adaptive RAG In traditional RAG (Lewis et al., 126

2020b) applications, the retrieved context, referred 127

to as non-parametric knowledge, may sometimes 128

conflict with the parametric knowledge stored in 129

LLMs. Previous research has explored the evalu- 130

ation of retrieval quality and the adaptive use of 131

non-parametric knowledge for conflict resolution, 132

which can be generally categorized into pre-eval 133

and post-eval approaches. Pre-eval methods(Yoran 134

et al., 2024; Yan et al., 2024; Wang et al., 2024) 135

involve employing a specialized classification lan- 136

guage model (LM) or instructing LLMs to assess re- 137

trieval quality. In contrast, post-eval methods(Asai 138

et al., 2023; Xiang et al., 2024) entail independently 139

generating multiple responses based on various re- 140

trieved documents and selecting the best answer 141

as the final response. However, on the one hand, 142

both approaches are computationally demanding 143

and structurally complex, resulting in decreased 144

inference efficiency. On the other hand, part of the 145

information is removed by the evaluator, making 146

the generator more dependent on the performance 147

of the evaluator, which affects the ultimate perfor- 148

mance as well. 149

Model Alignment In reviewing the Rein- 150

forcement Learning from Human Feedback 151

(RLHF) (Ouyang et al., 2022) pipeline, three main 152

phases are included: supervised fine-tuning (SFT), 153

reward model learning, and RL optimization. After 154

fine-tuning a pre-trained LM a pair of answers is 155

sampled (y1, y2) ∼ πSFT(y | x), crowd workers an- 156

notate the preferred one between the pair, denoted 157

as yw ≻ yl | x. A latent reward model is intro- 158

duced and learned afterward to quantify the prefer- 159
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ence. Ultimately, the Proximal Policy Optimization160

(PPO) (Schulman et al., 2017) algorithm is adopted161

as the objective of RL optimization. Afterward,162

as one of the most popular alignment strategies,163

DPO (Rafailov et al., 2023) involves replacing the164

external reward model with a closed-form expres-165

sion. Instead of learning an explicit reward model,166

DPO reparameterizes the reward function r using167

a closed-form expression with the optimal policy.168

The computationally lightweight approach signifi-169

cantly eliminates the need for direct RL optimiza-170

tion and outperforms existing methods.171

3 Task Definition172

3.1 RAG Formulation173

To answer a question x from a dataset D with an174

LLM π, RAG requires the retrieved context R as175

the supplementary material before response gen-176

eration. In most situations, the first stage of the177

system is to retrieve multiple relevant documents178

Dr = {Dr
1, ...D

r
K} from an accessible corpus C,179

which then serve as supplementary input to the180

query for the LLM generation. Thus the RAG task181

can be simplified into:182 {
yn+p = π(q,R)

R = Dr,
(1)183

where yn+p means the answer for the question q184

that has access to the retrieved results, i.e., all re-185

trieved context Dr. LLMs autonomously select186

either parametric or non-parametric knowledge for187

response generation.188

3.2 Knowledge Conflict189

Apart from the response that integrates retrieved in-190

formation, π actually has its own potential answer191

with the knowledge memorized in the parameters.192

It can be activated by directly instructing π to gen-193

erate the answer, expressed as:194 {
yp = π(q,R)

R = ϕ,
(2)195

where yp means the answer without any retrieved196

context, i.e. null set in the equation above, repre-197

senting the response with parametric knowledge198

for q. Note that if the parametric knowledge and199

retrieved non-parametric knowledge are different,200

i.e., knowledge conflict arises, the generator in201

RAG should make a decision on which knowledge202

to be referred to. If the knowledge from the re-203

trieved context is adopted, the answer would be204

vary from yp. Based on this situation, we filtered 205

the non-parametric answers yn from yn+p Ulti- 206

mately, we can detect knowledge conflict and filter 207

non-parametric answers by: 208

Acc(yn) + Acc(yp) = 1, (3) 209

where yn ∈ yn+p, and the correct answer can be 210

formulated as Acc(y) = 1, and the incorrect one 211

satisfies Acc(y) = 0. Therefore, Equ. (3) indicates 212

that only one in the pair of the answers is correct. 213

4 Why DPO is Limited to Apply to RAG 214

DPO (Rafailov et al., 2023) has shown its great 215

performance in fine-grain optimization by align- 216

ing LLMs with the chosen ones in the preference 217

pairs, which just meets the task requirement of the 218

knowledge conflict. However, several concerns ex- 219

ist regarding the application of DPO to RAG-based 220

tasks. 221

Firstly, the optimization objective of RLHF and 222

DPO is inconsistent with the conflict-mitigating 223

target in RAG. Considering the integrated re- 224

trieved context in the input when applied to RAG, 225

the ultimate optimization objective of RLHF and 226

DPO can be formulated as : 227

max
πθ

Ex∼D,y∼πθ(y|x)r(x,D
r, y)

− βDKL[πθ(y | x,Dr) ||πref(y | x,Dr)],

(4)

228

where β is the controlling hyper-parameter. πθ 229

and πref indicate the trainable and reference poli- 230

cies respectively, which are both initialized to πSFT, 231

while πref is frozen. The last term in the formu- 232

lation is adopted as an extra constraint, which is 233

significant in preventing the model from deviat- 234

ing to far from the original distribution. However, 235

in the RAG application, LLMs require consider- 236

able parameter tuning to improve the distribution 237

from the over-tendency on retrieved context. For 238

instance, if the parametric answer is the preferred 239

one, the ideal distribution should be aligned with 240

πref(y | x), while the non-parametric answer is 241

preferred, the target distribution should be aligned 242

with πref(y | x,Dr). The constraint in the previous 243

optimization strategies will affect the efficiency and 244

the performance of the training methods, remaining 245

bias on the non-parametric answers. 246

Secondly, the partition function within the re- 247

ward model can not be canceled out. Note that 248
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DPO necessitates both positive and negative re-249

sponses to have high probabilities for the same in-250

put, i.e., (yw, yl) ∼ πSFT(y | x), satisfying that251

log πSFT(yw | x), log πSFT(yl | x) > ϵ, where252

ϵ is a rather high value among the output log-253

probabilities of the policy. When DPO is directly254

applied to RAG, considering the existence of the255

retrieval Dr, the expression of the DPO optimizing256

objective can be formulated as:257

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log

σ

(
β log

πθ(yw|xw)
πref(yw|xw)

− β log
πθ(yl|xl)
πref(yl|xl)

)
±
(
β logZ(x)− β logZ(x,Dr)

)]
,

(5)258

where xw = x and the last term is positive when259

the parametric answer is the positive one, while260

xw = {x,Dr} and the last term is negative when261

the answer with non-parametric knowledge is posi-262

tive. Detailed proof can be found in Appendix A.1.263

Apparently, this loss function becomes complex264

and impractical to calculate due to the existence of265

the partition function.266

Thirdly, over-tendency towards non-parametric267

knowledge is still inevitable since parametric268

answers are fabricated for training. Due to269

the issue of the partition function, the input of270

yn and yp should be the same, which does not271

conform to the real-world application. Prior stud-272

ies have attempted to fabricate the parametric an-273

swer and pretending that it is generated with re-274

trieved context, i.e., (yn, yp) ∼ πSFT(y | x,Dr)275

(Zhang et al., 2024). However, the potentially sig-276

nificant discrepancy in likelihood between fabri-277

cated and original answers could hinder LLM con-278

vergence during training, leading to suboptimal279

outcomes. For instance, the situation in the infer-280

ence stage widely exists where an instance satisfies281

(xinf, yp_inf ≻ yn_inf) but the optimized LLM still282

chooses the suboptimal non-parametric answer as283

the final response:284

πDPO(yw | xinf, D
r) < πDPO(yl | xinf, D

r). (6)285

Equ. (6) suggests that despite DPO is conducted286

for training, the optimized policy still tends to take287

the dispreferred answer as the response as long as a288

considerable discrepancy exists between the initial289

preferred and dispreferred answers. Detailed proof290

can be found in Appendix A.2.291

5 Methodology 292

Motivated by the challenges encountered in im- 293

plementing preference optimization to RAG as 294

illustrated above, this study aims to propose a 295

RAG-specific approach for policy optimization. 296

Acknowledging the discrepancy between the re- 297

inforcement learning objective of the DPO and the 298

requirements of RAG, we first propose a new re- 299

inforcement learning objective by incorporating a 300

representation of retrieval relevance to adaptively 301

reward LLM based on retrieval quality. Further- 302

more, we outline a data collection and filtering 303

strategy to simulate the knowledge conflict for the 304

practical training. 305

5.1 Theoretically Analysis 306

Reward Model Since the reinforcement learn- 307

ing objective formulated as Equ. (4) has shown 308

a discrepancy against the target of conflict miti- 309

gation in RAG, modifying the RL objective rep- 310

resentation is primary and significant. In this pa- 311

per, we mainly attribute the discrepancy to the ab- 312

sence of the retrieval rewarding. Previous studies 313

conventionally regard retrieved context as a fixed 314

part of the input to build the reward model, i.e., 315

(yw; yl) | x,R. However, from the perspective of 316

the entire RAG system, the retrieved context is only 317

an intermediate variable, conditioned on the input 318

query, which is consistent between preferred and 319

dispreferred samples. Therefore, we suppose that 320

the reward model in RAG should reward not only a 321

preferred answer, but also a preferred retrieval, i.e., 322

(yw, Rw; yl, Rl) | x. Ultimately, the RL objective 323

can be formulated as: 324

max
πθ

Ex∼D,y∼πθ(y|x,R)r(x, y,R)

− βDKL[πθ(y,R | x) ||πref(y,R | x)].
(7) 325

Similar to the derivation of the reward model 326

in the DPO strategy, we can get the reward model 327

formulation in our RPO: 328

r(x, y,R) =β log
π(y | x,R)

πref(y | x,R)

+ β log
π(R | x)
πref(R | x)

+ β log Y (x),

(8)

329

where Y (x) is the partition function, the details 330

about the reward model can be found in Ap- 331

pendix A.3. 332
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Figure 2: An overview of RPO at training. In phase 1, given a question and the retrieved documents, two answers
(yp, yn) are generated by the frozen language model π. After comparing with the golden answers, instances that
involve knowledge conflict are filtered for supervised fine-tuning. In phase two, the tine-tuned LLM is prompted to
generate a pair of answers again, and the instances with knowledge conflict are filtered as the training set of RPO.

Length Normalization Previous studies have ob-333

served the tendency of LLMs to be influenced by334

the length bias during DPO. In RPO, since retrieved335

context is generally much longer than the response,336

the length of the retrieved context could greatly337

affect the reward model, raising the length bias338

To mitigate the excessive impact of the retrieval-339

awareness term, and overcome the length bias of340

LLMs, we utilized the average log probabilities as341

a part of the reward. Substituting the length nor-342

malization in the reward model representation, the343

ultimate RPO training objective can be written as:344

LRPO = −E
[
log σ

(
β log

πθ(yw|x,Dr)

πref(yw|x,Dr)︸ ︷︷ ︸
(a)preferred generation reward

−β log
πθ(yl|x,Dr)

πref(yl|x,Dr)︸ ︷︷ ︸
(b)dispreferred generation reward

± β

|Dr|
log

πθ(D
r | x)

πref(Dr | x)︸ ︷︷ ︸
(c)retreival reward

)]
,

(9)

345

where the first and second terms (Equ. (9a), (9b))346

represent the preferred and dispreferred reward of347

generation respectively, which is consistent with348

DPO. While the last term (Equ. (9c)) indicates the349

reward of the retrieved context, which is positive350

when the non-parametric answer yn is preferred351

against the parametric answer yp, i.e., yn ≻ yp, and352

negative when the parametric answer is preferred,353

i.e., yp ≻ yn.354

5.2 Training Overview355

In this section, we illustrate how to collect, filter,356

and formulate data for SFT and preference opti-357

mization. Figure 2 and Algorithm 1 present an358

overview of RPO at training. Each example is com- 359

prised of a query and a corresponding Wikipedia 360

page that can answer the question and has one or 361

more short spans from the annotated passage con- 362

taining the actual answer. 363

Preference Pairs Collection We first construct 364

the preference pairs adopted for supervised fine- 365

tuning (SFT) and RPO, aimed at enhancing the 366

model’s awareness to leverage retrieved non- 367

parametric knowledge adaptively. Given an in- 368

stance from the dataset (x, y) ∈ D, we respec- 369

tively instruct the model to generate responses with 370

and without retrieval (yn+p, yp) as illustrated in 371

Section 3.2. Two subsets sampled from D are con- 372

structed to collect preference pairs. In the first 373

subset D1, our goal is to continually enhance the 374

model’s ability to read and comprehend the re- 375

trieved context. Instances are sampled where the 376

model fails to answer the questions directly, while 377

correctly generating the responses with retrieval, 378

i.e., Acc(yn+p) > Acc(yp). To further confirm that 379

yn+p refers to the retrieved knowledge, i.e. yn+p = 380

yn, we solely select samples where the ground 381

truths are contained in the retrieved context. The 382

second subset D2 focuses on mitigating the over- 383

reliance of the model on the retrieved knowledge. 384

We select the instances where the model could have 385

responded correctly while being affected by the 386

retrieved knowledge and generating incorrect an- 387

swers, i.e., Acc(yp) > Acc(yn+p). Note that in- 388

terference due to incorrectness is caused by the 389

introduced non-parametric knowledge, yn+p can 390

be approximately regarded as a non-parametric an- 391

swer yn. It helps the model to reconsider whether to 392

utilize the non-parametric knowledge before gener- 393
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Algorithm 1: RPO Training Procedure
Model :π
Dataset(D) :X (Input Questions), Y (Output Labels), C = {D1, D2, ..., DN} (Documents)
Output :πRPO (Optimized Policy)
// Supervised Fine-Tuning

1 foreach (x, y) ∈ (X ,Y) do
2 yp = π(x)
3 yn+p = π(x,Dr), Dr = {Dr

j , j = 1, 2, ...K} = Retriever(x)
4 end
5 DSFT =Conflict_Collection(D, Condition:Acc(yn+p) + Acc(yp) = 1 )
6 πSFT =Supervised_FineTuning(π,DSFT)
// Retrieval Preference Optimization

7 foreach (x, y) ∈ (X ,Y) do
8 yp = πSFT(x)
9 yn+p = πSFT(x,D

r), Dr = {Dr
j , j = 1, 2, ...K} = Retriever(x)

10 end
11 DRPO =Conflict_Collection(D, Condition:Acc(yn+p) + Acc(yp) = 1)
12 πRPO =RPO(πSFT,DRPO)

ation. Ultimately, combine both subsets and obtain394

the training set, Dtrain = D1∪D2, which consists395

of samples that involve knowledge conflict.396

Supervised Fine-Tuning In this stage, we per-397

form SFT utilizing the instances that are collected398

with the methods in Section 5.2, obtaining the sub-399

set DSFT. Despite preference pairs are not required400

in the SFT stage, the subset is constructed only401

to collect knowledge conflict. Since only one be-402

tween parametric and non-parametric sources of403

the instances in DSFT contains the correct knowl-404

edge, the model must determine which knowledge405

to rely on. Therefore, SFT helps the model to pre-406

liminarily raise awareness of evaluating the quality407

of retrieval to support its decision.408

Retrieval Preference Optimization As the pre-409

vious illustration reveals, LLMs generally exhibit410

confusion and hallucination when accessing a con-411

text that contains different information than para-412

metric knowledge. To address this issue, we413

propose the Retrieval Preference Optimization414

(RPO) training strategy, enhancing the awareness415

of LLMs to focus on the retrieved context dur-416

ing response generation. In detail, similar data417

filtering processing illustrated in Section 5.2 is418

adopted to the dataset again with the fine-tuned pol-419

icy πSFT. Meanwhile, which of the answers within420

the (yp, yn+p) pairs will be preferred is annotated421

by their accuracy. The selected dataset through422

the SFT policy utilized for subsequent training423

is denoted as DRPO Eventually, we conduct the424

RPO strategy by reducing the loss demonstrated in 425

Equ. (9). In this approach, we obtain the ultimate 426

policy denoted as πRPO, which implicitly conducts 427

an integrated evaluation on retrieval within the gen- 428

eration. 429

6 Experiments 430

We conducted experiments to extensively demon- 431

strate RPO’s advancement and adaptability to RAG- 432

based approaches and their generalizability across 433

various tasks. 434

6.1 Tasks, Datasets and Metrics 435

RPO was evaluated on four datasets, including 436

PopQA (Mallen et al., 2023), NQ (Kwiatkowski 437

et al., 2019), RGB (Chen et al., 2024), and Trivi- 438

aQA (Joshi et al., 2017). Following previous work, 439

accuracy was adopted as the evaluation metric for 440

the benchmarks. On the one hand, the same met- 441

rics are used because our proposed method is com- 442

parable to previous studies. On the other hand, 443

the accuracy metric objectively measures the accu- 444

racy of the knowledge within generated responses, 445

which appropriately represents the performance of 446

methods in knowledge-intensive tasks. 447

6.2 Baselines 448

We primarily compared RPO with previous RAG- 449

based baselines, which can be divided into three 450

categories according to the base model, including: 451

LLaMA2-7B approaches utilized the vanilla or 452

instruction-tuned LLaMA2-7B model for response 453

generation. (1) Self-RAG (Asai et al., 2023) that 454
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Table 1: Overall evaluation results on the test sets of four datasets. Results are separated based on the generation
LLMs. The Column Adaptive Category indicates the category of the method if it belongs to adaptive RAG. #
API/LM Calls means the number of times that an API or an LM is called during an inference. Bold numbers indicate
the best performance among all methods and LLMs. †indicates that due to the cost, only a part of the test set is
evaluated. * indicates the results that are directly cited from the papers, otherwise results are reproduced by us with
the consistent retrieval results.

Adaptive PopQA NQ TriviaQA RGB
Method Category #API/LM calls (Accuracy) (Accuracy) (Accuracy) (Accuracy)

Others

RAGChatGPT† - 1 50.8 41.8 65.7 99.3
AstuteRAG Pre-Eval 2-4 42.1 51.5 47.6 94.6

LLaMA2-7B

RAG - 1 48.8 22.0 52.5 91.6
CRAG† Pre-Eval 6 54.9 38.4 59.6 92.0
Self-RAG Post-Eval 2-11 54.9 42.4 68.9 92.6
RPO Integrated-Eval 1 55.8 45.3 57.6 97.3

LLaMA3-8B-instruct

RAG - 1 59.0 41.3 65.8 96.3
InstructRAG - 1 65.0 46.7 65.1 99.3
Self-RAG* Post-Eval 2-11 55.8 42.8 71.4 -
RPO Integrated-Eval 1 65.4 51.9 74.4 100.0

tuned the LLaMA2 on the instruction-tuning data455

containing several sets of reflection tokens which456

were labeled by GPT-4 (OpenAI, 2023), while (2)457

CRAG (Yan et al., 2024) that evaluated the qual-458

ity of the retrieval and selectively corrected the459

retrieved context with the web search.460

LLaMA3-8B-Instruct approaches generated461

the response with LLaMA3-8B-Instruct. (1) In-462

structRAG (Wei et al., 2024) proposes a instruction-463

tuning method, while (2) Self-RAG are along with464

the methods above except the base model. Notably,465

results on Self-RAG with * indicate that the results466

are directly cited from the previous paper.467

Others means that LLMs except LLaMA2 and468

LLaMA3 are adopted as the generator. Specifically,469

AstuteRAG (Wang et al., 2024) was reproduced in470

this experiment on ChatGPT, which iteratively fil-471

tered and revised the knowledge before generation.472

6.3 Results473

Table 1 presents the results on four datasets. We474

briefly mark the categories of the listed adaptive475

RAG methods in the table. To showcase the effi-476

ciency of RPO in computational overhead during477

the inference phase, the estimated API call or LLM478

inference times are presented as well. From these479

results, we can conclude the following findings:480

First, the proposed method significantly outper-481

formed previous baselines that involve adaptive482

retrieval, reaching state-of-the-art. Specifically, 483

as shown in table 1, RPO outperformed RAG by 484

margins of 6.4% accuracy on PopQA, 10.6% ac- 485

curacy on NQ, 8.6% accuracy on TriviaQA, and 486

3.7% accuracy on RGB when based on LLaMA3- 487

8B-instruct, as well as by margins of 7.0% accuracy 488

on PopQA, 23.3% accuracy on NQ, 5.1% accuracy 489

on TriviaQA, and 5.7% on RGB when based on 490

LLaMA2-hf-7b. Compared with the currently ad- 491

vanced adaptive RAG methods, RPO has generally 492

outperformed in all the benchmarks. The advance- 493

ments in our method greatly illustrate the effec- 494

tiveness of preference optimization, showing the 495

significance of overcoming the knowledge conflict. 496

Second, the proposed method exhibited greater 497

computational efficiency, providing a practical so- 498

lution in the real-world application for knowledge 499

conflict mitigating. It can be seen that either pre- 500

eval or post-eval approaches require multiple calls 501

of API or LMs within a single inference. Compared 502

to the previous adaptive RAG, the retrieval evalu- 503

ation is performed synchronously through genera- 504

tion. Meanwhile, even better results are obtained, 505

further illustrating the efficacy of our RPO. 506

6.4 Ablation Study 507

Since two phases including supervised fine-tuning 508

and preference optimization have adopted during 509

the training stage, and both of them help to enhance 510

7



Table 2: Ablation study for removing retrieval-
awareness, preference optimization, and SFT phases
respectively on the PopQA dataset in terms of accuracy.
w̃/o RR means that the retrieval reward term is removed
for optimization, while w̃/o PO means that the model is
trained without preference optimization.

PopQA NQ TriviaQA RGB

LLaMA2-7B-hf
RPO 55.8 45.3 57.6 97.3
RPO w̃/o RR 53.6 43.5 51.7 96.3
RPO w̃/o PO 51.3 36.0 54.3 94.6
RPO w̃/o SFT 52.5 34.9 50.1 90.6

Table 3: Comparison results between RPO with and
without data filtering during SFT phase.

PopQA NQ TriviaQA RGB

LLaMA2-7B-hf 48.8 22.0 52.5 91.6
πSFT w/o filtering 46.9 38.2 48.8 80.0
πSFT with filtering 51.3 36.0 54.3 94.6

retrieval awareness and overcome knowledge con-511

flict. We perform ablation studies to confirm the512

contribution of each stage in our RPO. The fine-513

tuning and preference optimization phases are re-514

moved specifically in the experiment and the results515

are evaluated on the benchmarks. Results in Table 2516

demonstrate that the performance dropped when517

removing either phases, revealing the significance.518

6.5 Impact of Training Set Filtering519

In phase 1 of the training stage, supervised fine-520

tuning is introduced for the preliminary training.521

Notably, the training set is filtered, only the in-522

stances that involve knowledge conflict are selected523

for supervised fine-tuning. We hypothesize that524

LLMs possess the inherent ability to assess retrieval525

quality while generating responses, albeit not ac-526

tivated yet. Therefore, the operation is solely in-527

tended to enhance the retrieval awareness of LLMs,528

rather than to learn more knowledge. In fact, the529

experimental results in table 3 reveal that the fine-530

tuned LLM without data filtering significantly un-531

derperformed, even worse than the original LLM532

before tuning, further verifying our hypothesis.533

6.6 Knowledge Selection Performance534

In this section, we compare RPO with previous535

training strategies in terms of knowledge selection536

performance. Further analysis is conducted on the537

issue of knowledge conflict before and after RPO.538

The results in figure 3 reveal a consistent advance-539

15.8% 6.4%

35.5%42.3%

Retrieval
correct

Retrieval
incorrect

LLM
correct

LLM
incorrect

A

B

C

D

a) Proportion of Knowledge Conflict

b) Accuracy on Four Clusters

15.8% 6.4%

35.5%42.3%

Retrieval
correct

Retrieval
incorrect

LLM
correct

LLM
incorrect

A

B

C

D

Figure 3: Proportion of four clusters in PopQA and the
corresponding accuracy scores on LLaMA2-7B.

ment in all clusters to evaluate the knowledge and 540

select the correct autonomously. Besides, we found 541

that the ability of the LLM to select knowledge can 542

be even worse after SFT. In Cluster B and C, which 543

involve knowledge conflicts, SFT does not achieve 544

a positive advancement, while RPO has shown a 545

significant improvement in knowledge selection. 546

7 Conclusion 547

This paper studies the issue of knowledge con- 548

flict where parametric knowledge and retrieved 549

non-parametric knowledge in RAG are inconsis- 550

tent. Previous model alignment methods have been 551

proved limited in the context of RAG application, 552

leading to inadequacy and bias when knowledge 553

conflict is involved. Therefore, a new proximal pol- 554

icy optimization algorithm named Retrieval Pref- 555

erence Optimization is proposed to adapt the RAG 556

application. The capability of LLMs to evaluate 557

of the retrieval is integrated into the generation 558

with our RPO, which greatly improves the effi- 559

cacy compared with previous adaptive RAG ap- 560

proaches. Experiments extensively demonstrate 561

its advancement as well as generalizability across 562

various benchmarks. Future work will continually 563

explore a more integrated and implicit approach for 564

retrieval evaluation to further enhance the reliabil- 565

ity and robustness of RAG. 566

8



Limitations567

While we primarily proposed to improve the RAG568

framework with a dedicated alignment method,569

whether a better reward function exists requires570

further study. Although we make an effort to pre-571

vent reward hacking during the experiments, the572

intended objective can still not be fully fulfilled. In573

addition, since the model is only trained on NQ,574

the training data could not cover various domains,575

leading to potential bias. Future work will further576

explore a more flexible and robust rewarding strat-577

egy for RAG.578
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A Detailed Poofs763

A.1 Proof for Equation 5764

In DPO optimization algorithm, a latent reward765

model r(x, y) is adopted, which is consistent with766

RLHF. To quantify the preferences, the Bradley-767

Terry model is introduced, which can be written768

as:769

p(yw ≻ yl|x) = σ(r(x, yw)− r(x, yl)), (10)770

where σ is the logistic function. Therefore, given771

a reward model r(y, x), the task can be defined as772

a binary classification problem and the negative773

log-likelihood loss can be:774

LR(r,D) = −E(x,yw,yl)∼D[log

σ(r(x, yw)− r(x, yl))].
(11)775

If DPO is directly adopted for RAG and taking776

yn and yp as the (yw, yl) pair, considering the in-777

fluence of retrieved context Dr, the expression of778

reward model would get modified as:779

r(x, yp) = β log
πθ(yp|x)
πref (yp|x)

+ β logZ(x); (12)780

r(x, yn) = β log
πθ(yn|x,Dr)

πref (yp|x,Dr)

+ β logZ(x,Dr).

(13)

781

Substituting the representation in Equ. (12) and782

(13) for the Bradley-Terry model in Equ. (10), it783

can be found that the partition function can not be784

canceled.785

A.2 Proof for Equation 6786

In order to apply DPO to RAG, fabricated answers787

are necessary. However, the fabricated answer is788

may not the candidate answers with the highest789

likelihood for LLMs, i.e., existing yp, satisfying790

that:791 
log πref(yn | x,Dr) > ϵ

log πref(yp | x,Dr) < ϵ

log πref(yn | x,Dr)− log πref(yp | x,Dr) > ϵd,
(14)792

where ϵd indicates the difference of logits be-793

tween parametric output and non-parametric out-794

put, which can be massive. While πSFT is πref,795

which is used as the reference policy in the opti-796

mization phase.797

It could lead to a concern that the optimized 798

LLMs would not converge to the optimal solu- 799

tion. Two aspects can theoretically interpret the 800

conclusion. On the one hand, the proposal of the 801

DPO reward model training strategy comes from 802

the RL optimization objective of RLHF, as shown 803

in Equ. (4). Therefore, due to the constraint of the 804

KL-divergence, the distribution of the policy would 805

not change a lot, i.e.: 806{
|log πθ(yn | x,Dr)− log πSFT(yn | x,Dr)| < ϵad

|log πθ(yp | x,Dr)− log πSFT(yp | x,Dr)| < ϵad,
(15) 807

where ϵad > 0 is a very limited value. Supposing a 808

situation during the inference (xinf, yp_inf ≻ yn_inf) 809

that can generally exist, where the parametric an- 810

swer is wining, meanwhile, the distance between 811

parametric and non-parametric is big enough so 812

that ϵd > 2ϵad, then the generator would still 813

choose the losing one as the ultimate response: 814

πθ(yw | xinf, D
r) = πθ(yp_inf | x,Dr)

< πref(yp_inf | xinf, D
r) + ϵad

< πref(yn_inf | xinf, D
r)− ϵad

< πθ(yn_inf | xinf, D
r)

= πθ(yl | xinf, D
r).

815

A.3 Derivation of RPO’s Reward Model 816

Given the RL objective as Equ. (7) shows, expand- 817

ing the KL-divergence Formula and derive: 818

max
πθ

Er(x, y,R)

− βDKL[πθ(y,R | x) ||πref(y,R | x)].

= min
πθ

E
[
log

πθ(y,R | x)
πref(y,R | x)

− 1

β
r(x, y,R)

]
,

(16)

819

while following the previous work(Peters and 820

Schaal, 2007; Peng et al., 2019; Korbak et al., 2022; 821

Go et al., 2023; Rafailov et al., 2023), it is straight- 822

forward to show that the optimal solution takes the 823

form: 824

πr(y,R | x) =
πref(y,R | x) exp ( 1β r(x, y,R))

Y (x)
,

(17)

825

where the partition function can be formulated as: 826

Y (x) =
∑
y

∑
R

πref(y,R | x) exp ( 1
β
r(x, y,R)). 827
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Based on Equ. (17), the reward model can be828

derived and written as:829

r(x, y,R) =β log
π(y,R | x)
πref(y,R | x)

+ β log Y (x).

(18)

830

Following the Bayes theorem, the reward model831

can be formulated as Equ. (8).832

B Experiment Details833

B.1 Details of the Datasets834

RPO was evaluated on four datasets, which are in835

public domain and licensed for research purposes,836

including:837

PopQA (Mallen et al., 2023) is a short-form gen-838

eration task. Generally, only one entity of factual839

knowledge is expected to be answered for each840

single question. In our experiments, we exactly fol-841

lowed the setting in the previous work (Asai et al.,842

2023) which evaluated methods on a long-tail sub-843

set consisting of 1,399 rare entity queries whose844

monthly Wikipedia page views are less than 100.845

Natural Questions (NQ) (Kwiatkowski et al.,846

2019) is a benchmark for question answering re-847

search that contains real user questions issued to848

Google search, and answers found from Wikipedia849

by annotators. Annotations include long answers850

(usually a paragraph of text) and short answers (one851

or more entities), which are marked as null if there852

is no answer on the page. Additionally, NQ con-853

tains 307,372 training examples, 7,830 examples854

for development, and we withold a further 7,842 ex-855

amples for testing. Only short answers are adopted856

in our experiments.857

TriviaQA (Joshi et al., 2017) is a reading com-858

prehension dataset containing over 650K question-859

answer-evidence triples. TriviaQA includes 95K860

question-answer pairs authored by trivia enthusi-861

asts and independently gathered evidence docu-862

ments, six per question on average, that provide863

high quality distant supervision for answering the864

questions.865

Retrival-Augmented Generation Benchmark866

(RGB) (Chen et al., 2024) is a benchmark that867

chooses to aggregate the latest news. Different ba-868

sic abilities of LLMs are evaluated according to869

the common challenges in RAG, including noise870

robustness, negative rejection, information integra-871

tion and counterfactual robustness.872

B.2 Experimental Setup 873

We use the package vllm for inference, and the 874

parameter settings are listed below: 875

temperature=0.0 876

top_p=1.0 877

max_tokens=100 878

skip_special_tokens=false 879

880

The model was trained on 4*A100 in our ex- 881

periment, and the SFT was implemented with the 882

hyperparameter settings below: 883

n_epochs=1 884

batch_size=4 885

gradient_accumulation_steps=32 886

mixed_precision=bf16 887

max_seq_length=2048 888

warmup_ratio=0.03 889

learning_rate=2e-5 890

weight_decay=0.0, 891

while RPO strictly followed the hyperparameters 892

used in Rafailov et al. (2023). 893
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