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Abstract

Antimicrobial peptides have emerged as promising molecules to combat antimicro-
bial resistance. However, fragmented datasets, inconsistent annotations, and the
lack of standardized benchmarks hinder computational approaches and slow down
the discovery of new candidates. To address these challenges, we present the Ex-
panded Standardized Collection for Antimicrobial Peptide Evaluation (ESCAPE),
an experimental framework integrating over 80 000 peptides from 27 validated
repositories. Our dataset separates antimicrobial peptides from negative sequences
and incorporates their functional annotations into a biologically coherent multilabel
hierarchy, capturing activities across antibacterial, antifungal, antiviral, and antipar-
asitic classes. Building on ESCAPE, we propose a transformer-based model that
leverages sequence and structural information to predict multiple functional activi-
ties of peptides. Our method achieves up to a 2.56% relative average improvement
in mean Average Precision over the second-best method adapted for this task, estab-
lishing a new state-of-the-art multilabel peptide classification. ESCAPE provides
a comprehensive and reproducible evaluation framework to advance Al-driven
antimicrobial peptide research. [1_-]

1 Introduction

Antibiotics are crucial in modern medicine, enabling routine procedures and treating common
infections. However, widespread misuse and overuse have led to the rise of antimicrobial resistance
(AMR), where bacteria and other pathogens develop mechanisms to endure these drugs [} 2]]. This
issue extends beyond bacteria, including viruses, fungi, and parasites that have rapidly evolved,
hindering the treatment of infectious diseases globally [3]]. The Institute of Health Metrics and
Evaluation estimates that antimicrobial-resistant infections could cause over 39 million deaths
between 2025 and 2050, with South Asia and Latin America facing the highest mortality rates [4]].
Besides the impact of AMR on healthcare systems and population lifespan, it is also a concern for
national economies across the globe [5]]. A recent United Nations report warns that, without action
on AMR, not only will healthcare costs increase, but also the global GDP may decrease by US$3.4
trillion and drive an additional 24 million people into extreme poverty by 2030 [6].

As a result, the scientific community has turned to alternative molecules capable of fighting infectious
microorganisms without quickly triggering resistance. This process has led to the exploration of
antimicrobial peptides (AMPs), which are either naturally occurring or synthetically designed proteins
with a broad spectrum of antimicrobial properties [7]. Unlike traditional antibiotics, AMPs often act
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Figure 1: Timeline of AMP Discovery and Computational Advances. The rise of AMR underscores
the urgent need for alternative therapies such as AMPs. While Al has shown promise in accelerating
AMP discovery, progress is hindered by heterogeneous data and the absence of standardized evaluation
protocols. We introduce ESCAPE to address these challenges and provide a robust foundation for
future Al-driven methods.

through mechanisms harder for pathogens to evade, reducing the likelihood of resistance development
[8l]. Despite their therapeutic potential, the research and development of antimicrobial peptides, as
with many pharmaceutical compounds, remains costly, time-consuming, and frequently unsuccessful.
These difficulties are due to the inherent complexity of identifying effective AMPs and the extensive
clinical trials and requirements novel drugs must undergo to reach the market and become profitable
[9]. These challenges create a bottleneck that limits the widespread adoption of AMPs and highlights
the need for more efficient and scalable discovery protocols.

To address the challenges of AMP discovery, researchers have explored using Artificial Intelligence
(AI) tools to accelerate the identification of promising antimicrobial candidates [10]. Most existing
models aim to predict whether a given peptide exhibits antimicrobial activity, often casting the
task as a binary classification problem [[11} [12, [13]. While this binary approach helps identify
potentially active peptides, it disregards the proven ability of AMPs to interact with multiple types
of microorganisms [[14]. Despite this constraint, interest in Al-driven AMP classification tools has
expanded in recent years. Some of the proposed methods include models based on Graph Neural
Networks (GNNs) and other architectures inspired by advances in Natural Language Processing
(NLP) [15L16]. However, the performance of these models remains suboptimal, indicating a need for
more effective modeling strategies and further exploration of architectures.

A significant limitation in the current literature is the inconsistency and insufficiency of data selected
for training Al models [[17]]. Although the number of publicly available datasets continues to grow,
most Al methods rely on individual datasets containing only a few hundred to a few thousand peptides
[18]. Having such a limited number of examples from a single dataset when developing an AI model
may restrict its learning potential and demonstrates the need for a more extensive set of data [[19].
Furthermore, the absence of a standardized dataset or benchmarking framework makes it difficult to
compare models reliably and to confidently identify which approach represents the state-of-the-art.

To overcome these limitations, we present three main contributions displayed in Fig. [T} First,
we compile, curate, and standardize 27 public AMPs databases into the Expanded Standardized
Collection for Antimicrobial Peptide Evaluation (ESCAPE), a comprehensive dataset containing over
80 000 peptides. We pre-process and validate all sequences to support robust Al-driven antimicrobial
research. Second, we evaluate seven publicly available AMP classification methods on ESCAPE,
adapting those designed initially for binary tasks to handle multilabel classification. To the best of
our knowledge, this work results in the first benchmark that fairly compares existing approaches on a
unified and scalable dataset for AMP multilabel classification. Finally, we introduce the ESCAPE



Baseline, a transformer-based architecture that leverages both sequence and structural information
from peptides to predict not only whether it is antimicrobial, but also the types of pathogens it targets.
Our baseline outperforms the state-of-the-art methods on the complete ESCAPE Dataset with a
relative average improvement with respect to the second-best method of 2.56% and 1.90% in mean
Average Precision (mAP) and F1-score, respectively.

2 Related Work

Given the global concern for antimicrobial resistance, there has been a noticeable rise in the develop-
ment of AMP databases in recent years. Building on these resources, researchers have developed
numerous Al models to analyze and identify potential AMP candidates to optimize antimicrobial
drug discovery.

2.1 AMP Databases

In the search for novel AMPs, researchers have developed several databases, each containing peptides
annotated with diverse biological activities [20]]. These databases can be broadly categorized into
general [21, 22} 23] 24] and specialized databases [25, 26} 27]]. General databases span a wide range
of peptide functions or classes. In contrast, specialized databases focus on narrower aspects, such
as peptide origin [26] or the type of target organism [25]], [27]. The number of peptide entries and
the granularity of functional classes vary substantially among databases. For instance, dbAMP [21]]
comprises 33 065 peptides annotated with 58 distinct functional classes, while DRAMP [22] includes
30260 entries but only 8 classes. Moreover, the hierarchical level of these classes is often inconsistent
across databases. Namely, LAMP2 [23]] annotates 23 253 peptides into 38 classes, including “anti-
Gram negative” and “anti-Gram positive,” which researchers can interpret as subclasses of a broader
“Antibacterial” category. In contrast, SATPdb [24] assigns its 19 192 peptides to just 10 classes,
among them a single “Antibacterial” label. Hence, currently available AMP datasets present key
limitations. The class granularity and hierarchy discrepancies complicate training predictive models
and comparing their performance across datasets.

Additionally, training models on datasets composed entirely of peptides obtained using a single
experimental technology may introduce methodological biases, ultimately hampering the model’s
ability to generalize across broader peptide sources [28]]. The ESCAPE Database addresses these
limitations by integrating a wide range of public AMP datasets with more than 80000 peptides
obtained from various sources. In addition, we standardize the class annotation system by curating
a concise and biologically meaningful hierarchy of antimicrobial functions, thus improving the
interpretability of annotations and facilitating dataset integration.

2.2 AMP Benchmarks

Benchmarking is critical in evaluating AMP prediction models, yet standardized protocols for
consistent comparison are still missing. Many studies rely on custom datasets and train-test splits
without releasing exact partitions, hindering reproducibility and fair comparison against other methods
[29]. Furthermore, most benchmarking efforts focus on binary classification tasks that fail to capture
the functional diversity and therapeutic relevance of AMPs [30]. Although several studies have
introduced multilabel classification approaches for AMPs [15}[31], the field still lacks a standardized,
openly accessible benchmark designed to support rigorous evaluation in multilabel antimicrobial
peptide prediction. In this context, the ESCAPE Benchmark is a significant advancement by enabling
rigorous evaluation of seven state-of-the-art models on the multilabel AMP classification task, thereby
facilitating fair and transparent comparisons of Al methodologies on a large-scale peptide dataset.

2.3 AMP Classification Models

There are two main categories of AMP classification methods in the current literature: those that rely
exclusively on raw amino acid sequences and those that incorporate bioinformatically derived descrip-
tors using specialized libraries. Sequence-focused methods include AMPIlify [11]], which employs
a bidirectional LSTM with multi-head and context attention to generate a summary vector. Other
methods use Large Language Models (LLMs) [32]] as the backbone of the architecture. For example,
TransImbAMP [31] uses a BERT model pretrained in a self-supervised manner via masked token



prediction and fine-tunes a fully connected layer attached to its outputs for the AMP classification
task. AMP-BERT [12], another sequence-based model, also employs a pretrained BERT, but with
an inserted class token whose embedding guides the classifier. More recently, dSAMPGAN [33]]
integrates CNN, Attention, and BiLSTM layers with transfer learning to perform AMP classification
and function prediction, while AMPpred-DLFF [34] combines ESM-2 [35] embeddings with graph
attention networks and CNN modules to capture both spatial and sequential information.

In contrast, feature-augmented approaches compute additional descriptors before modeling. For
instance, amPEPpy [13] feeds CTD features (composition, transition, distribution of physicochemical
amino-acid classes) to a Random Forest, and AMPs-Net [[15] represents peptides as graphs enriched
with physicochemical node and edge attributes to then process the peptides with a GNN. PEP-Net [36]
fuses one-hot amino-acid identities, computed physicochemical properties, and high-dimensional
protein language model embeddings through residual convolutional and Transformer blocks to
capture local information and global contextual information. AVP-IFT [37] employs a dual-branch
framework integrating contrastive learning with a transformer network enhanced with biophysical and
chemical properties. Recent work has also introduced ensemble-based feature-augmented approaches,
including Stack AMP [38]], AMP-RNNpro [39]], and StackPIP [40], which combine diverse peptide
descriptors with multiple machine learning models to improve classification performance. Unlike prior
methods, the ESCAPE Baseline introduces a bidirectional cross-attention mechanism by integrating
the peptide sequence and its 3D distance representation, enabling the combination of spatial structural
information with the sequence and leading to superior performance.

3 Expanded Standardized Collection for Antimicrobial Peptide Evaluation

Current research on AMP prediction faces a critical bottleneck due to fragmented, inconsistent, and
small-scale datasets that vary widely in format, annotation standards, and functional coverage [[17]].
These limitations hinder the development of robust predictive models and complicate fair comparisons
across methods. To overcome this gap, we introduce the ESCAPE Dataset, a unified collection of
antimicrobial peptides compiled from 27 public repositories. This multilabel framework standardizes
functional annotations to reflect the biological taxonomy of infectious agents, resulting in five classes:
four main AMP activities (antibacterial, antifungal, antiviral and antiparasitic) and a fifth category
(antimicrobial) that represents the general ability to act on any microorganism. Peptides that do not
exhibit antimicrobial properties, and thus do not belong to any of the five classes, are considered
Non-AMPs.

3.1 Data Compilation

To build the ESCAPE Dataset, we collect experimentally validated and manually curated antimicrobial
peptide entries from 27 public databases: BIOPEP-UWM Database [41], CPPsite 2.0 [42], CAMPR3
[43], TumorHoPe [44]], APD3 [45], SPdb [46], ParaPep [47], CancerPPD [27]], BrainPreps [48]],
Quorumpeps [49], YADAMP [25]], LAMP2 [23]], Milkampdb [50], DADP [26], AntiTbPdb [51],
PeptideDB [52]], NeuroPrep [53], SATPdb [24], BioDADPep [54]], NeuroPedia [55], DFBP [56],
dbAMP 3.0 [21], DRAMP 4.0 [22], AVPdb [57], Hemolytik [58], DBAASP v3 [59], and UniProt
[60]. Each source contributes unique peptide profiles across four functional classes: antibacterial,
antifungal, antiviral, and antiparasitic. This structure encapsulates key differences in mechanisms of
action, such as disarrangement of bacterial membranes [61], inhibition of cell wall biosynthesis [62],
and interference with viral assembly [57]], among others.

For the integration of Non-AMP samples, we follow the methodology outlined in TransImbAMP
[31], focusing on selecting non-antimicrobial sequences from UniProt [60]. We apply stringent
exclusion criteria, removing entries associated with keywords such as “membrane,” “toxic,” “se-
cretory,” “defensive,” “antibiotic,” “anticancer,” “antiviral,” or “antifungal”. To expand this set, we
incorporate peptides from curated datasets known for their non-antimicrobial functions [54}!47]). This
dual strategy of exclusion-based filtering and targeted selection constructs a high-confidence negative
set that effectively distinguishes non-AMP sequences, providing a robust contrast for supervised
training. Supplementary Material Section A offers specific details on the creation of the dataset,
regarding handling the compiled databases and their associated licenses.
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Figure 2: Overview of ESCAPE Dataset Composition and Statistics. (a) Multilabel distribution of
AMPs across the four functional classes in ESCAPE Dataset, (b) Sequence length distribution for
AMPs and non-AMPs, and (c) Distribution of AMP and non-AMP sequences in the two folds and the
test set of the dataset.

3.2 Data Processing and Cleaning

We remove sequences containing synthetic residues such as pyrrolysine (O), selenocysteine (U),
(-alanine (Bal), 3-naphthylalanine (Nal), or 2-aminobutanoic acid (Abu), following the pipeline that
AMP-Net [15] proposes. We exclude entries with undefined amino acids (X) and retain degenerate
codes J, B, and Z, treating them as biologically valid representations of leucine/isoleucine, aspartic
acid/asparagine, and glutamic acid/glutamine, respectively. We also enforce length constraints,
retaining only peptides with lengths between 5 and 250 residues, ensuring structural relevance and
alignment with established peptide standards [[15]. Finally, to mitigate redundancy, we consolidate
duplicate sequences across repositories and integrate their corresponding functional annotations into
a unified multilabel vector.

3.3 ESCAPE Dataset

The ESCAPE Dataset comprises 60 950 non-AMPs and 21 409 AMPs, which are functionally anno-
tated into four major antimicrobial categories: antibacterial, antifungal, antiviral, and antiparasitic.
Figure 2a] shows that most AMPs (16 106) exhibit antibacterial activity, and 10 924 belong exclu-
sively to this class. The most common combination is antibacterial and antifungal sequences (4960
peptides), while only 1671 peptides are solely antifungal. Antiviral entries total 4726 (3479 unique),
and antiparasitic peptides number 417 (130 unique). Rarer multilabel groups include primarily
antiparasitic sequences exhibiting antifungal or antiviral activity.

Fig. [2b] presents the sequence length distribution for AMPs and non-AMPs. AMP sequences are
predominantly centered around 30 amino acids, which is characteristic of this type of peptide structure
[63]. In contrast, non-AMPs exhibit a broader length range, with an average of 90 amino acids, and
most sequences fall between 50 and 100 residues. This distinction highlights the inherent structural
differences between AMPs and non-AMP sequences.

The ESCAPE Dataset is divided into three folds: two used for cross-validation and one reserved
for independent testing. This partitioning strategy ensures comprehensive model evaluation by
maintaining equal label distributions across folds, as shown in Fig. This consistency supports
reliable performance assessment and minimizes overfitting risks between functional classes.



3.4 ESCAPE Benchmark

To evaluate the performance of existing AMP classification methods under the standardized multilabel
framework introduced by ESCAPE, we benchmark seven representative models with publicly avail-
able implementations that allow reproducibility: AMPIlify [11], AMP-BERT [12]], TransImbAMP
[31]], amPEPpy [[13]], AMPs-Net [15], PEP-Net [36], and AVP-IFT [37]. We adapt each model to
support multilabel classification and we train it with a two-fold cross-validation scheme. In Supple-
mentary Section B, we provide per-model implementation details, with the training hyperparameters
summarized in Supplementary Table 2. To establish robust and consistent evaluation, we train each
method three times with the random seeds (42, 1665, 8914) across all models. We perform the
final evaluation with an ensemble that averages the probabilities from the two trained models. We
assess performance using mean Average Precision (mAP) and F1-score, two widely used metrics for
multilabel settings with severe class imbalance typical of AMP prediction [64]. We report the mean
and standard deviation across the three runs.

4 ESCAPE Baseline

Given the limitations of existing models in addressing multiclass classification of antimicrobial pep-
tides, we design a method that combines sequential and structural information to perform the classifi-
cation task on the ESCAPE Database. We introduce the ESCAPE Baseline model, a transformer-based
architecture that integrates sequence and structural modalities through bidirectional cross-attention,
and we provide a detailed account of its design and implementation.

4.1 Input Peptide Representation

Sequence Representation. Let S denote the set of all peptide sequences. Each sequence s € S is
defined as an ordered list of amino acids s = [a1, asg, . .., an] with N residues, where each a; € A.
The vocabulary A consists of 26 amino acid symbols (including rare and ambiguous codes), together
with a special padding token, resulting in a vocabulary length of 27 [I1]]. Let 7 = {¢1,¢2,...,ta7} be
a finite set of discrete tokens, with | 7| = 27, representing the token vocabulary. We define a bijective
mapping f : A — T such that for every a; € A there exists a unique token ¢; = f(a;) € T. This
one-to-one correspondence allows each sequence s to be equivalently represented as a token sequence
t = [t1,ta,...,tz] over the vocabulary 7. All sequences are either truncated or zero-padded to a
fixed length L.

Structural Representation. For each peptide, structural information is collected from the UniProt
[60] and Protein Data Bank (PDB) [65] repositories. When experimental structures are unavailable,
we use RosettaFold [66] and AlphaFold3 [67] to predict the three-dimensional conformations. These
models are state-of-the-art deep learning methods for protein structure prediction. Given a peptide
with N amino acids, we compute a distance matrix M € RN*N pased on the 3D structure. Each
element M; ; corresponds to the Euclidean distance between the Ca atoms of residues ¢ and j:
M, ; = |lr; — rj||, where r; ; € R?® denotes the spatial coordinates of the i, jt residue. To ensure
compatibility across peptides of varying lengths, M is resized to a fixed dimension of 224 x 224,
enabling uniform input to the structural encoder.

4.2 Model Architecture

The ESCAPE Baseline model is built upon a dual-branch transformer architecture designed to
jointly encode the sequence and structural modalities of peptides, as illustrated in Fig. [3] Each
branch independently processes one modality using a specific transformer encoder, and the resulting
representations are fused via a bidirectional cross-attention mechanism to enable cross-domain
interaction.

Sequence Module. The sequence branch takes the tokenized peptide sequence and maps each token
to a 256-dimensional vector using a learnable embedding matrix. In addition, we include a special
[CLS] token to capture global sequence-level information and add positional embeddings to preserve
the order of amino acids. Later, this feeds the resulting embeddings through a stack of D Transformer
encoder layers. This setup enables the model to learn local and long-range dependencies within the



sequence. The [CLS] token at the output serves as a compact representation of the peptide’s primary
structure.

Structure Module. The structural branch receives as input a single-channel 224 x 224 distance
matrix M, where each entry indicates the Euclidean distance between a pair of C'a atoms in the
peptide’s 3D structure. A 2D convolution with kernel size and stride of 16 partitions this matrix into
non-overlapping 16 x 16 patches, producing a grid of flattened patches. The model projects each
patch into a 192-dimensional embedding, creating a sequence of patch embeddings. The model adds
a learnable [CLS] token at the beginning of the sequence to aggregate global structural information
and appends fixed positional encodings to preserve spatial relationships. The model processes the
sequence through a stack of D Transformer encoder layers that capture local and long-range spatial
dependencies. The structure branch outputs the [CLS] token, which captures a compact representation
of the peptide’s 3D conformation.
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Figure 3: ESCAPE Baseline Architecture Overview. The model encodes each peptide using
two parallel branches: the sequence module tokenizes amino acid residues. It extracts a [CLS]
representation through a Transformer encoder. In contrast, the structure module processes a 224 x 224
distance matrix by embedding non-overlapping patches and applying a Transformer stack to produce
a structural [CLS] token. A bidirectional cross-attention mechanism fuses these two representations
by allowing each modality to attend to the other. The model concatenates the resulting attended CLS
vectors and passes them through a linear layer to generate the final multilabel prediction vector.

Bidirectional Cross-Attention. We apply a bidirectional cross-attention mechanism to integrate
information from sequence and structure modalities after independently encoding each branch. As
detailed in the Sequence and Structure Modules, our model processes the amino acid sequence and the
distance matrix separately through their transformer encoders. Each encoder produces a contextual
embedding matrix and a corresponding [CLS] token that summarizes global information.

Let X € RA*256 and Y € R7*192 denote the sequence and structure embedding matrices, respec-
tively, where £ and P are the modality-specific lengths, including the [CLS] token. The corresponding
[CLS] embeddings are denoted as X5 and Y 5.

To enable cross-modal interaction, we apply attention in both directions. First, the sequence attends
to the structural features where Q, = XW{, are the queries derived from the sequence, and
K, = YWY, V, = YWY, are the keys and values projected from the structure branch. The
attention output A, is added to the original sequence embeddings via a residual connection and
refined through a feedforward network. Conversely, the structural representation attends to the
sequence where Q, = YW}, and K, = XW%, V, = XW¥, are the projections from the
sequence encoder.

K
Qiy Vy,
Vd

KT
A, = softmax A, = softmax (Qy L ) V.,

Vd



The bidirectional attention mechanism enables each modality to gather contextual information from
the other by focusing on the most informative regions of the complementary representation. After
bidirectional cross-attention, we concatenate the updated [CLS] from both modalities and pass the
resulting vector through a classification head to produce the final prediction.

4.3 Implementation Details

We train the ESCAPE Baseline on a NVIDIA GPU A100 with a batch size 64 for 100 epochs, using
the AdamW optimizer and a learning rate of 1 x 10~*. We incorporate dropout layers within each
transformer encoder block to mitigate overfitting and enhance generalization. In the sequence branch,
we tokenize each input peptide and pad it to a fixed length of S = 200, embedding each amino acid
into a 256-dimensional space. The sequence encoder comprises 4 transformer layers, each with 8
attention heads. In the structural branch, we represent each peptide’s distance matrix as a 224 x 224
single-channel image and divide it into non-overlapping 16 x 16 patches. We flatten each patch and
project it into a 192-dimensional embedding. We then process the resulting patch embeddings with a
transformer encoder that shares the same configuration as the sequence branch, consisting of 4 layers
and 8 attention heads, to capture spatial and geometric dependencies within the peptide structure.

5 Experiments and Discussion

5.1 Main Results

Table [T|reports the mean and standard deviations over the three random seeds of the overall and per-
class Fl-scores, while Table 2] presents the corresponding mAP values. The results demonstrate that
our baseline consistently surpasses all seven state-of-the-art methods across both metrics, reaching
relative improvements of 1.90% in overall F1-score and 2.56% in mAP compared to the second-best
method.

The per-class evaluation reveals that ESCAPE Baseline achieves the most substantial gains in the least
represented categories. In particular, it increases the AP for the antiparasitic class by 35.7% relative
to the second-best method. Among sequence-based models, AMPIlify attains the highest performance,
with an average F1-score of 68.5% and mAP of 70.3%. AVP-IFT follows closely, achieving 66.5%
F1 and 68.8% mAP by integrating physicochemical descriptors through a feature-augmented design.
These comparisons indicate that no single modeling strategy, whether sequence-focused or feature-
augmented, consistently dominates the others.

Table 1: Overall and Per-Class F1-Scores on the ESCAPE Benchmark. F1-scores for each model
averaged over the 42, 1665, and 8914 random seeds on the 5-class multilabel classification task in the
ESCAPE Benchmark (%).

Method | F1-Score | Antibacterial Antiviral Antifungal  Antiparasitic Antimicrobial

AMPs-Net [15] 57.7+0.70 78.9+£0.77 59.2+£0.79 61.1+0.51 5.9+£0.71 83.5£0.79
TranslmbAMP [31] 62.0 +0.70 87.1 £0.96 59.2+£0.50 54.7+0.51 21.8 £0.81 87.2+0.75
AMP-BERT [12] 64.7 £ 0.64 89.3 £0.27 63.0£0.95 60.2+0.26 20.6 £ 3.52 90.5 £+ 0.22
PEP-Net [36] 65.5+0.61 | 89.5+0.10 581+0.78 65.2+0.55 22.8+0.61 91.2+0.15
amPEPpy [13] 66.5 + 0.37 87.6 £0.07 61.6 £2.02 60.4+1.90 34.7£0.98 90.9 £3.78
AVP-IFT [37] 66.5 £ 0.59 89.1+£0.47 64.8+0.06 60.7=£0.55 28.0 £ 3.84 89.9 £0.31
AMPIlify [11] 68.5 £0.77 88.8 £0.26 60.0£1.05 65.0+1.57  40.9+248 90.0 £0.30

ESCAPE Baseline (Ours) | 69.8 £0.43 | 88.8£0.34 64.4+0.88 61.0+£0.75 44.8+£0.50 90.0 +0.32

Overall, performance trends highlight that the effectiveness of the model depends on the synergy
between input representations and architectural design, rather than on the mere inclusion of additional
descriptors. By combining sequence and structural modalities, ESCAPE Baseline leverages richer
biological representations to improve generalization. The architecture also supports flexible operation
under different configurations using only sequence information, only 3D structural data, or both,
achieving its best performance when integrating the two. This versatility comes from its higher
capacity and ability to align complementary modalities during training, establishing ESCAPE Baseline
as both a robust and adaptable framework for multilabel AMP classification.

Furthermore, as shown in Figure 2 of the Supplementary Material, model size does not exhibit a
consistent relationship with predictive performance across the evaluated methods. Notably, although



the top-performing model has nearly 9 million parameters, the second-best model overall is based on
a Random Forest classifier, making it the least computationally demanding method in our benchmark.
Conversely, as Table [T]and Table 2] report, BERT-based approaches do not rank among the top three
performing models. These findings suggest that more complex architectures do not necessarily yield
superior results for multilabel AMP classification. Additionally, our results underscore the limitations
of large language models when applied to domains outside of natural language. Despite the domain
adaptation efforts through BERT fine-tuning in models such as TransImbAMP and AMP-BERT, these
methods fail to fully accommodate the peptide-specific data and, as a result, underperform in this
task.

Table 2: Mean and Per-Class AP Results on the ESCAPE Benchmark. AP for each model
averaged over the 42, 1665, and 8914 random seeds on the 5-class multilabel classification task in the
ESCAPE Benchmark (%).

Method | mAP | Antibacterial Antiviral Antifungal  Antiparasitic =~ Antimicrobial
AMPs-Net [15] 54.6 + 0.86 82.5+£0.72 51.2+0.88 53.1+£0.84 5.3 £0.67 82.1+£0.80
TransImbAMP [31] 64.9 +£1.11 92.5£1.23 65.0 £1.63 56.3 £ 0.96 16.7 +0.86 94.0 £ 0.90
AMP-BERT [12] 66.9+1.17 92.3 £ 0.59 65.9£1.84 61.5 £2.28 21.4+2.61 93.6 £1.25
amPEPpy [13] 68.5 £ 0.48 93.9 £0.24 67.7+0.28 62.2 +£0.27 23.8£1.61 95.2£0.05
PEP-Net [36] 68.4+0.53 | 95.24+0.21 61.2+0.67 72.6+0.78 16.2+0.84 96.7 £+ 0.26
AVP-IFT [37] 68.8 £0.50 94.3+049 71.1+£0.36 63.3+£1.36 20.0 £4.25 95.5 £ 0.50
AMPIify [11] 70.3 £0.87 94.0 £0.19 66.1 £ 5.56 68.3 +4.27 27.7+1.33 95.3 £0.31

ESCAPE Baseline (Ours) | 72.1 £0.60 | 94.2+0.21 69.8 + 0.46 63.4+£0.74 37.6 £ 2.87 95.6 £ 0.04

Per-class analysis reveals substantial variation in predictive performance across functional categories.
As the number of samples per class decreases, most models exhibit a proportional decline in both
mAP and F1-score, independent of their underlying architecture or feature design. The antiparasitic
and antiviral classes, which contain the fewest examples, yield the lowest scores across all evaluated
methods, highlighting the intrinsic difficulty of learning under severe data scarcity. In contrast,
categories with broader representation, such as antibacterial and antifungal, display more stable
results and narrower variability among models. This trend underscores the impact of label imbalance
as the dominant factor shaping overall performance, suggesting that future improvements should
focus on better representation learning rather than on increasing model complexity alone.

5.2 Ablation Experiments

To assess the individual contribution of each peptide representation modality in our baseline, we
conduct an ablation experiment using the 42 seed. We evaluate three configurations: one using only
the sequence module, another using only the structural module based on distance matrices, and a third
combining both through the cross-attention module. Table [3|shows that the sequence representation
provides considerably more informative features than the structural one: with sequence-only input,
our model achieves 21.7% higher mAP and 20.7% higher F1 score than with the distance matrix
alone. This gap likely arises because the structural view captures spatial arrangement but omits
explicit biochemical identities, thereby limiting the model’s ability to exploit residue-level patterns
critical for antimicrobial activity. These findings highlight that the biological composition of the
peptide encoded in the sequence plays a decisive role in classification performance. Yet Table [3]also
shows that combining both representations via cross-attention yields the best overall results: while
the sequence-only variant is already strong, adding structural cues provides a complementary signal
that further improves prediction quality.

Table 3: ESCAPE Baseline Ablation Experiments. mAP (%) and Overall F1-score (%) reported
for the 42 random seed trained model.

Structure Module | Sequence Module | Cross Attention | mAP || F1 |

7 : . 47.7 || 46.9
: v : 69.4 || 67.6
v v v 727 || 69.5

As detailed in Section ] we obtain structural information for most peptides from UniProt and
PDB, and infer the remaining structures using public generative models [66, 67]. We also run a
sensitivity experiment to assess the impact of using predicted structures. Supplementary Section C



(Table 5) shows that relying solely on predicted structures leads to reduced performance compared
to experimental structures, with absolute drops of 1.5% in mAP and 1.9% in F1. These results
suggest that artificially generated structures may introduce additional sources of error inherent to
those models, potentially degrading the quality of the structural data and impairing the model’s ability
to accurately classify peptides.

5.3 Limitations and Broader Impact

In this work, we present a carefully curated and extensive dataset for AMP discovery. An important
limitation arises from the scope of the domain, as the diversity of peptides in nature is vast and it is
not feasible to capture all existing variants or ensure that our dataset fully represents the underlying
distribution. Nonetheless, our benchmark provides a standardized and transparent framework for
evaluating AMP classification models, helping to identify methodological gaps and guide future
improvements. By promoting reproducibility and comparative analysis in this area, our work
contributes to advancing computational tools for AMP discovery, which may support efforts in global
health, particularly in the context of antibiotic resistance. However, further validation in real-world
biological and clinical settings is required before deployment of such models.

Another limitation arises from the inherent differences in sequence length distributions. Antimicrobial
peptides are naturally shorter than most non-AMPs, a characteristic tied to their biological function.
In constructing ESCAPE, we aim to preserve this molecular distinction while avoiding strong
correlations that could bias classification. The resulting dataset maintains realistic differences
between classes without allowing sequence length to dominate predictive performance, supporting a
fairer evaluation of computational models.

5.4 Ethical Considerations

From an ethical standpoint, ESCAPE is constructed entirely from publicly available, experimentally
validated datasets, each distributed under its respective license. While the benchmark provides a
foundation for advancing computational methods in antimicrobial peptide research, our contribu-
tion remains focused on methodological innovation rather than direct therapeutic or drug design
applications.

At the same time, we acknowledge the potential risks arising from irresponsible use of this resource.
Models trained on ESCAPE could, if misused, be employed to generate peptides without appropriate
experimental validation, raising concerns about toxicity or biosecurity. To mitigate such risks, we
encourage the research community to operate within established ethical, biosafety, and regulatory
standards and to ensure that all experimental and computational findings are reported transparently
and with accountability.

6 Conclusions

We introduce ESCAPE, the first standardized benchmark for multilabel antimicrobial peptide classi-
fication, designed to overcome key limitations of existing resources, including data fragmentation,
inconsistent annotations, and limited functional scope. ESCAPE integrates over 80.000 peptides from
27 curated repositories into a biologically grounded multilabel framework encompassing antibacterial,
antifungal, antiviral, antiparasitic and antimicrobial classes. It also includes a rigorously filtered set
of non-antimicrobial sequences to support reliable supervised training and better reflect real-world
prediction settings. Building upon this foundation, we propose a baseline using a transformer-based
architecture that leverages sequence and structural information. We demonstrate that ESCAPE
Benchmark enables fair and reproducible comparison across models and functional classes, setting
a new standard for Al-driven AMP discovery, particularly in underrepresented categories such as
antiviral and antiparasitic.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately articulate the dataset and benchmark
proposed in Section [3]and then the baseline model proposed in Section [4]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we address the limitations of our work in Section[5.3}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results that require formal proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section [3.3|details the procedure to create the proposed dataset with clearly
defined partitions that strictly follow the experimental protocol. For complete reproducibility,
the Supplementary Material provides full details. Section[d]describes the training procedure
and the information needed to reproduce baseline results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:The ESCAPE Dataset is already available here, and the source code for ES-
CAPE Baseline is already available here.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [4.3]details the hyperparameters and type of optimizer for our model
baseline. We include these details for the other models in the Supplementary Material.
Section [3.4] describes the data splits used for all models. These sections ensure both
reproducibility and interpretability of the reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The Supplementary Material provides the results with error bars for each fold,
ensuring a complete understanding of the statistical significance. The main results in Section
include error bars as we report the ensemble from the 2 cross-folds for each model in
the benchmark across 3 random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources used for the experiments are detailed in Section

4.3l

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: ESCAPE uses publicly available data, follows community adopted standards
for dataset curation, and does not involve human subjects or sensitive personal information.
All contributions comply with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We address potential societal impacts in Section[5.3] The paper highlights
positive impacts by advancing antimicrobial peptide discovery to support public health
efforts against antibiotic resistance and notes the need for further validation. However, all
results derived from this benchmark require subsequent experimental validation before any
practical or societal application, substantially reducing the risk of negative societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve models or data with a high risk of misuse. The
dataset consists of curated peptide sequences from licensed public sources, and we cite
properly all datasets and comply with its usage terms.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We properly cite all employed methods from other authors and respect the li-
censes of the datasets that contributed to the creation of the main dataset. The Supplementary
Material provides more information about these licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not include new assets. Section [3.1]shows all the datasets from
which this benchmark was compiled.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any experiments with human subjects or crowd-
sourcing.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This research does not involve LLMs as a core component.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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