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Abstract

Mathematical reasoning remains a significant challenge for Large Language Models (LLMs)
due to hallucinations. When combined with formal proof assistants like Lean, these hallu-
cinations can be eliminated through rigorous verification, making theorem proving reliable.
However, even with formal verification, LLMs still struggle with long proofs and complex
mathematical formalizations. While Lean with LLMs offers valuable assistance with re-
trieving lemmas, generating tactics, or even complete proofs, it lacks a crucial capability:
providing a sense of proof progress. This limitation particularly impacts the overall devel-
opment efficiency in large formalization projects. We introduce LeanProgress, a method
that predicts the progress in the proof. Training and evaluating our models made on a
large corpus of Lean proofs from Lean Workbook Plus and Mathlib4 and how many steps
remain to complete it, we employ data preprocessing and balancing techniques to handle
the skewed distribution of proof lengths. Our experiments show that LeanProgress achieves
an overall prediction accuracy of 75.8% in predicting the amount of progress and, hence,
the remaining number of steps. When integrated into a best-first search framework using
Reprover, our method shows a 3.8% improvement on Mathlib4 compared to baseline per-
formances of 41.4%, particularly for longer proofs. These results demonstrate how proof
progress prediction can enhance both automated and interactive theorem proving, enabling
users to make more informed decisions about proof strategies. Our code is merged in this
library here https://github.com/lean-dojo/LeanDojo-v2.

1 Introduction

Formal theorem proving (Avigad, 2023) has emerged as a cornerstone of rigorous mathematical verification,
providing machine-checked guarantees for proofs ranging from foundational results (Gowers et al., 2023)
to industrial applications (Community, 2022). The Lean proof assistant (Moura & Ullrich, 2021), built on
dependent type theory, has witnessed remarkable adoption growth (Best et al., 2023), fueled by collaborative
efforts on large-scale formalization projects (mathlib Community, 2020) and novel mathematical develop-
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ments (Asgeirsson, 2024). This collaborative paradigm shift underscores the urgent need for enhanced tooling
to support mathematicians navigating increasingly complex proof environments.

The recent success of Large Language Models (LLMs) in code generation (Rozière et al., 2024) and symbolic
reasoning (Yu et al., 2024) has spurred innovations at the intersection of LLMs and formal verification. Some
of the works that have been developed include LeanDojo (Yang et al., 2024b) which provides an interactive
environment for training LLMs on tactic-level interactions while LLMStep (Welleck & Saha, 2023) and
LeanCopilot (Song et al., 2024) focuses on next-tactic suggestion through interface as a useful tool. Lean
Agent (Kumarappan et al., 2024) then combines neural suggestion with life-long learning while Lean Aide
(Agrawal et al., 2022) and Lean-STaR(Lin et al., 2024) translates statements written in natural language in
a doc-string like format to Lean types (including theorem statements) and bootstrapping thoughts. While
these systems demonstrate impressive tactic-level accuracy (Johansson, 2023), they primarily optimize for
local correctness rather than global proof progress – a critical limitation when navigating Lean’s vast action
space (Nawrocki et al., 2023).
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Figure 1: The visualization of LeanProgress. LeanProgress is a lightweight framework that collects
the number of remaining steps in proof trees and then balances the data distribution to train the language
model. Then LeanProgress takes the proof state as input to generate the remaining steps for each state as a
signal for search. LeanProgress also integrates the tactic predict_steps in LeanCopilot as a user-friendly
tool.

Reinforcement learning (RL) presents a theoretically appealing framework for automated theorem proving
(Dong et al., 2024), where finding reward signals over proof trajectories is essential. However, the combina-
torial explosion of tactic sequences in Lean (Clune, 2023) renders direct RL applications impractical (Setlur
et al., 2024). Alphaproof (Hubert et al., 2025) has done RL for theorem proving but it’s not open source
and needs enormous compute. Current approaches mitigate this through hybrid architectures (Wang et al.,
2023) but remain fundamentally limited by the absence of reliable progress indicators to guide exploration
– a prerequisite for effective RL in mathematical domains (Gao et al., 2024).

2



Published in Transactions on Machine Learning Research (12/2025)

We address this critical gap with LeanProgress (Fig 1), a lightweight framework that predicts remaining
proof steps through learned progress signals with search methods beyond log-probability based search (Song
et al., 2024) or manual heuristics (Ringer et al., 2021).

LeanProgress makes the following key contributions: Balanced Data Generation Pipeline: We construct
a balanced dataset of approximately 80k proof trajectories from Lean Workbook Plus and Mathlib4 by
performing a tree search and selecting the shortest path as ground truth. We employ a data balancing
strategy based on relative proof progress. Since the useful and non-trivial data of long proofs are long-tailed
distributed in the original dataset, we fully utilize long proof data by assigning each state with a remaining
step as a label.

Model for Progress Prediction: We fine-tune a DeepSeek Coder V1 1.3b base model to predict the
remaining steps, achieving a Mean Absolute Error (MAE) of 3.15 and an overall prediction accuracy of
75.8% on the test set with proof history. Unlike tactic suggestion tools, LeanProgress provides a global view
of the proof process by predicting the remaining steps rather than the immediate next tactic.

Progress-Guided Proof Search: We integrate our step prediction model into a best-first search frame-
work. A natural first step for using the progress predictor is combining the predicted remaining steps with
the tactic generator’s log probabilities to guide the search. In the future, we hope to use this, instead of just
relying on the log probabilities, as a reward for RL. We observe on Mathlib4 a significant improvement of
3.8% with the baseline Reprover performance of 41.4%.

Integration with LeanCopilot: Based on the LeanCopilot framework, we provide a new built-in tactic
predict_steps_with_suggestion within the standard Lean user interface. It is a helpful tool that not only
suggest tactics but also offer users immediate feedback on proof progress and potential next steps. All the
development details are in Appendix B and C.

2 Related Work

LLMs for Formal Proof Generation. Large Language Models (LLMs) have demonstrated significant
potential in the field of formal theorem proving (Yang et al., 2024a), finding applications across various proof
assistants (Yang et al., 2024b; Song et al., 2024; Lama et al., 2024). Current research on LLM-based theorem
proving primarily focuses on several key tasks. A prominent application is tactic suggestion. Following GPT-
f (Polu & Sutskever, 2020), LLMs are employed to predict the most promising next tactic given the current
proof state. These methods are often coupled with proof search algorithms, such as best-first search (Yang
et al., 2024b) or majority voting (Zhou et al., 2024), to explore the proof space and discover complete proofs
(Wu et al., 2024). Other techniques, such as retrieval-augmented LLMs (Yang et al., 2024b) and agentic
approaches (Thakur et al., 2024), provides further aids for tactic generation by selecting relevant lemmas
and enabling multi-round proof refinement utilizing environment feedback. Moreover, emerging research
directions include autoformalization (Wu et al., 2022; Jiang et al., 2023), which aims to translate informal
mathematical text into formal proofs, and the direct generation of complete proof sketches (Jiang et al.,
2022; Wang et al., 2024), both of which can be combined with proof generation to enable large-scale training
despite inherent proof data scarcity. Our work addresses the gap from local tactic prediction to a global
understanding of the proof trajectory by focusing on predicting the number of remaining steps required for
proof completion, offering a novel way for new applications of reinforcement learning in automated theorem
proving.

Interactive Tools for Formal Theorem Proving. Mathematicians proving theorems in Lean can sig-
nificantly benefit from interactive tools that integrate seamlessly into the Lean workflow and provide aids.
LLMStep (Welleck & Saha, 2023) extracts current proof states from Lean and sends it to a remote server for
LLM-generated tactic suggestions. LeanCopilot (Song et al., 2024) improves the user experience by having
fully native tactic suggestion and proof search tools in Lean, besides an additional functionality of premise
selection, providing more comprehensive assistance for the proving process. CoqPilot (Kozyrev et al., 2024),
a VS Code extension for Coq, uses LLMs, among other generative methods, to fill in proof holes by an “ad-
mit” tactic. Unlike these tactics or proof-centric approaches, we predict the number of remaining steps by
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adding a new tactic, predict_steps_with_suggestion based on LeanCopilot, providing tactic suggestions
ranked by the output number of remaining steps as a score.

LLM Guidance in Search. Effective proof search is essential for automated theorem proving. While scaling
computational resources during search has led to significant advancements, as seen in AlphaGeometry (Trinh
et al., 2024) and AlphaProof (Hubert et al., 2025) for IMO problems and in recent work on natural language
reasoning (Lightman et al., 2023; Yang et al., 2022; Zhang et al., 2024; Xie et al., 2024) (including OpenAI’s
o1, o3 model (Jaech et al., 2024; Xu et al., 2025)), proof search is a bit different. The vast search space of
possible proof steps necessitates effective guiding mechanisms. This highlights the need for methods that
can provide a global perspective on proof progress, which our work addresses by predicting the number of
remaining steps.

Progress Signals for Proof Search. Several systems learn value-like guidance signals for proof search.
GamePad (Huang et al., 2019) introduces a learning environment for Coq and studies both tactic prediction
and position evaluation, producing estimates of how promising a proof state is. More recently, QEDCar-
tographer (Sanchez-Stern et al., 2025) uses reinforcement learning to learn a proof-state evaluation signal
tailored to the branching structure of proofs, improving automated proof synthesis in Coq. LeanProgress
targets a complementary notion of guidance: a supervised, interpretable distance-to-goal signal by predicting
the remaining number of steps to completion from successful traces. Unlike generic value estimates, this
output is directly interpretable as progress, and it composes naturally with existing tactic generators (e.g.,
as a lightweight reranking prior alongside log-likelihood).

3 Data Generation for LeanProgress

This section details the data generation and processing methodology used to train LeanProgress. We describe
the process of generating proof trees using best-first search and the Reprover model, the resulting dataset of
proof trajectories, and the adjustments made to address the skewed distribution of proof lengths.

3.1 Preliminaries: Tactic Prediction as an MDP

Interactive Theorem Provers (ITPs) frame theorem proving as a search problem. As Fig 2 shows, the initial
theorem to be proven represents the initial state, and the application of tactics generates transitions to new
states, each containing subgoals. The objective is to find a sequence of tactics that leads to a state where
all subgoals are proven. This search process is central to automated theorem proving, and our work focuses
on providing valuable information to guide this search within the Lean ITP.

The theorem-proving problem can be formalized as a Markov Decision Process (MDP), denoted as
(S, A, Pa, Ra), where S represents the set of all possible proof states. A represents the set of all avail-
able tactics (actions). Pa represents the state transition probabilities after executing tactic a in state s.
Ra represents the reward obtained by executing tactic a. From an MDP perspective, a proof process can
be viewed as a trajectory of states, tactics, and rewards: (si, ai, ri), where the proof assistant (e.g., Lean)
provides the next state si+1 given the current state si and the applied tactic ai. In typical tactic prediction,
proving a theorem involves providing a proof state s to a language model L, which then generates a tactic
a, i.e., πL(a|s). Typically, final states (where the goal is proven) are assigned a reward of 1, indicating
successful completion of the proof.

3.2 Generating Proof Trees and Trajectories

A common evaluation strategy for neural theorem provers is best-first search, as used in GPT-f and related
research (Han et al., 2021). This method explores the proof space by iteratively expanding the "best" state,
determined by the maximum cumulative log probability of the preceding proof trajectory. Specifically, given
a set of unexpanded states si, the "best" state to expand is chosen according to: maxi

∑i−1
j=0 log p(aj , sj),

where (s0, a0), . . . , (si−1, ai−1) is the proof trajectory before state si and log p(aj , sj) is the average log
probability of the generated tokens for the tactic aj in state sj .
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Figure 2: The visualization of extract proof tree in theorem proving.

Our work utilizes best-first search in conjunction with the Reprover model (Yang et al., 2024b) to generate
successful proof trees. By systematically applying Reprover to all reachable states within a certain depth in
a best-first manner, we construct a tree of successful proofs. This approach allows us to collect a dataset
of complete proof trajectories, which is then used to train our model to predict the number of remaining
steps. This data generation process is crucial for training our model to understand the relationship between
proof states and the number of steps required for completion. In particular, if multiple proofs are found for
a theorem (i.e., multiple no_goals nodes are reached), we select the proof with the minimum depth (the
length of the path from the root node to the no_goals node) to ensure the quality and consistency of the
training data.

Formally, let T = {t1, t2, ..., tM } be the set of theorems in our dataset. For each theorem ti ∈ T , we
perform best-first search using the Reprover model to generate a set of successful proof trajectories Pi =
{pi,1, pi,2, ..., pi,ki}, where ki is the number of proofs found for theorem ti. Each proof trajectory pi,j is a
sequence of proof states: pi,j = (si,j,1, si,j,2, ..., si,j,ni,j

), where ni,j is the length (number of steps) of the j-th
proof for theorem ti.

If ki > 1, we select the proof trajectory pi,j∗ with the minimum depth: j∗ = arg minj{ni,j | 1 ≤ j ≤ ki}

Our training dataset D is then constructed by extracting (state, remaining steps) pairs from the selected
proof trajectories:

D = {(si,j∗,l, ni,j∗ − l) | ti ∈ T, 1 ≤ l ≤ ni,j∗}

where si,j∗,l is the l-th state in the selected proof trajectory pi,j∗ for theorem ti, and ni,j∗ − l represents the
number of remaining steps from state si,j∗,l to the end of the proof.

3.3 Data Balancing

We evaluated our models on a dataset of Lean proofs extracted from Lean Workbook Plus and Mathlib4. The
original dataset exhibited a skewed distribution of proof lengths, with an average proof length of Loriginal =
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(a) Original dataset of steps distribution (b) Adjusted dataset of steps distribution by balancing dif-
ferent ranges

Figure 3: Proof-length distributions before and after length balancing. Panel (a) plots all collected states
prior to balancing (dominated by 1–2-step proofs; average length Loriginal = 2.47). Panel (b) shows the
training set after balancing, where we down-sample short proofs and (lightly) up-sample longer ones, yielding
fewer total states and a higher average length Lbalanced = 10.1. Bar heights are raw counts, so the totals
differ and the y-axes are not directly comparable.

2.47. This distribution is shown in Figure 3(a). We adjusted the data distribution based on relative progress
within each proof to address this imbalance and ensure a more representative sample of different proof stages.
The adjustment was performed by assigning different sampling ratios to five ranges of proof lengths: 1-5 steps
(Basic progress, 0.01 ratio), 6-10 steps (Intermediate progress, 0.3 ratio), 11-15 steps (Moderate progress, 0.5
ratio), 16-20 steps (Advanced progress, 0.7 ratio), and 21+ steps (Expert progress, 1.0 ratio). This strategy
effectively upsamples longer proofs and downsamples shorter ones, resulting in a more balanced dataset. The
resulting adjusted distribution has an average proof length of Ladjusted = 10.1, and the comparison is shown
in Figure 3(b).

The dataset was then split into training, validation, and test sets. The test set contains 8820 proof states.
The training set contains Ntrain proof states, and the validation set contains Nval proof states. The dataset
was partitioned randomly at the theorem level, meaning that all states from a given theorem belong to the
same split (either training, validation, or test). This prevents data leakage between splits.

4 Model Training & Experiments

This section describes the experimental setup, including model training and results of evaluating Lean-
Progress’s Step Predictor: Prediction accuracy and search pass rate improvement compared to traditional
best-first search via log probability.

4.1 Language Model: Remaining Step Predictor

Our approach uses a language model to predict the number of steps remaining to reach a no_goals state
(proof completion) given a current proof state. While the language model architecture can be varied, we
employ a fine-tuned DeepSeek Coder 1.3B model (Guo et al., 2024). This model is trained to predict the
number of remaining steps based on the current proof state and, optionally, the history of applied tactics.

The input format for our model is as follows:

[STATE_BEFORE]state [STEPS_TO_NO_GOALS]steps

Here, state represents the current proof state, encoded as a string representing the current goals. The model
is trained to generate the number of remaining steps after this prompt. This input format allows the model
to focus specifically on the task of predicting the remaining steps, distinct from predicting the next tactic.

We fine-tuned the DeepSeek Coder 1.3B model on (state, remaining steps) pairs extracted from successful
proof trajectories generated using best-first search and the Reprover model as described in the previous
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subsection. The DeepSeek Coder model was chosen for its strong performance in code understanding tasks
with less than 2B parameters so that personal computers can support inference locally, which we believe
translates well to the task of predicting a numerical value representing the remaining steps. The model was
fine-tuned using a Mean Squared Error (MSE) loss function with the AdamW optimizer. The training was
conducted batch size of 4 and a learning rate of 1e − 5. Other parameters are like betas (0.9, 0.999) with
weight decay 0.01 and warmup ratio 0.03. We experimented with other models, such as DeepSeek coder V2
or Prover V1.5, but the model size of 7B is not capable of being used on personal computers. We found
that the DeepSeek Coder 1.3B model provided the best balance between performance and computational
efficiency.

4.2 Proof History Utilization

We investigated the impact of incorporating proof history into the input for remaining step prediction. We
compared the performance of our model when using only the current proof state (state_before) as input
against using both the current state and the preceding tactic sequence (state_proof). The results, shown
in Table 1, demonstrate the importance of including proof history. The prompt formats used for these two
settings are as follows:

• state_before: --- STATE_BEFORE: {state_before}
--- STEPS_TO_NO_GOALS:

• state_proof: --- STATE_BEFORE: {state_before}
--- PROOF: {proof}
--- STEPS_TO_NO_GOALS:

Where {state_before} represents the current proof state, and {proof} represents the sequence of tactics
applied so far.

4.3 Evaluation

We evaluate our model in two ways. First, we assess the accuracy of our step predictions directly on our
generated dataset by calculating the Mean Absolute Error (MAE). Second, we investigate the potential of
using our step predictions as a ranking score within a best-first search framework, comparing its performance
against standard best-first search based solely on log probabilities.

4.3.1 MAE Evaluation on Steps Dataset

To evaluate the accuracy of our step predictions, we calculate the Mean Absolute Error (MAE) on our
generated dataset D. Given a state si,j∗,l in the selected proof trajectory for theorem ti, our model predicts
the number of remaining steps as n̂i,j∗,l = f(si,j∗,l). The actual number of remaining steps is ni,j∗ − l. The
MAE is then calculated as: MAE = 1

|D|
∑

(s,n)∈D |n̂ − n| where |D| is the total number of (state, remaining
steps) pairs in our dataset. This metric provides a direct measure of the average difference between our
model’s predictions and the true number of remaining steps.

4.3.2 Proof History Helps Step Prediction

We evaluate the prediction accuracy using Mean Absolute Error (MAE), which measures the average absolute
difference between the predicted number of remaining steps and the actual number of remaining steps. A
lower MAE indicates better prediction accuracy. Table 1 presents the MAE and accuracy results for both
input formats across different ranges of proof lengths and overall. The table shows the total number of
samples for each range, along with the accuracy and MAE achieved by each input format.

From the results in Table 1, we observe a significant performance drop when only the input state is used
(state_before). Including all previous tactics in the prompt (state_proof) provides a “direction” for
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Input Range Total Samples Accuracy (%) MAE

state 1–5 2,820 70.5 ± 2.1 1.48 ± 0.18
6–10 1,170 58.3 ± 2.4 3.05 ± 0.28
11–15 567 49.2 ± 3.1 6.95 ± 0.55
16–20 563 61.8 ± 2.9 4.25 ± 0.42
21+ 3,700 61.1 ± 2.6 8.45 ± 0.68

Overall 8,820 62.5 ± 1.8 5.08 ± 0.32

proof 1–5 2,820 78.5 ± 1.8 1.12 ± 0.15
6–10 1,170 62.1 ± 2.1 2.95 ± 0.25
11–15 567 69.8 ± 2.5 4.15 ± 0.35
16–20 563 75.4 ± 2.8 2.85 ± 0.30
21+ 3,700 78.2 ± 2.2 5.05 ± 0.45

Overall 8,820 75.8 ± 1.5 3.15 ± 0.20

Table 1: Comparison of accuracy and MAE (mean ± std over 3 runs) with and without proof history.

the proof, leading to better performance and more accurate predictions, as evidenced by the consistently
lower MAE values across all ranges and overall. This improvement is likely due to the fact that proof
history encodes information beyond the current state, such as consistent application of specific mathematical
techniques (e.g., repeated use of exponentiation or logarithms) or the overall strategy being employed. This
contextual information allows the model to make more informed predictions about the remaining steps.

4.3.3 Combining Best-First Search with Steps Prediction

Beyond direct prediction accuracy, we explore the potential of using our step predictions to guide proof
search. We integrate our model into a best-first search framework by combining the predicted remaining
steps with the log probabilities of the tactic sequence. Specifically, when selecting the next state to expand,
instead of using only the cumulative log probability L(si) =

∑i−1
j=0 log p(aj |sj), where (s0, a0), . . . , (si−1, ai−1)

is the proof trajectory before state si and log p(aj |sj) is the average log probability of the generated tokens
for the tactic aj given state sj , we use a combined score: C(si) = αN(si)+(1−α)P (si), where α ∈ [0, 1] is a
hyperparameter that controls the relative importance of the normalized steps N(si) and the log probability
P (si). The normalized steps are calculated as N(si) = −2n̂i/Nmax, where n̂i = f(si) is the predicted number
of remaining steps for state si, and Nmax is the maximum possible number of steps from all states in a proof.

We compare the performance of this combined approach(where α = 0.2) with a standard best-first search
using only log probabilities (equivalent to setting α = 0). We evaluate both approaches by measuring
the number of theorems solved within a fixed number of expansions and the average number of expansions
required to find a proof. This comparison demonstrates the effectiveness of incorporating our step predictions
into the search process. Proof search requires a search algorithm and a method for interacting with Lean.
So, we chose the best-first search for LeanDojo’s implementation. Best-first search is parameterized by the
maximum number of generated tactics, defined as the number of attempts × expansion size per iteration ×
maximum iterations, subject to a timeout. We use a 2-minute timeout and use beam search with a size of 1
× 32 due to memory constraints.

We compare our method, which combines predicted remaining steps with log probabilities, against standard
best-first search using only log probabilities. We evaluate the LeanDojo v4 test dataset. The primary metric
for evaluating proof search performance is the percentage of theorems solved within the timeout. The results
of this comparison are shown in Table 2, which demonstrate the effectiveness of incorporating our step
predictions into the proof search process.

5 Future Work and Conclusion

There are several promising avenues for future work that could further enhance LeanProgress.

8



Published in Transactions on Machine Learning Research (12/2025)

Method Mathlib4-test Pass Rate (%)
Original LogP† 41.4 ± 0.7
Steps as Critic† 45.2 ± 0.6

Table 2: Proof search pass rates on the Mathlib4-test dataset. We report mean ± standard deviation over
3 independent runs. Sampling used temperature 0.7; for each problem we sampled 32 candidates once.

1) Incorporating Tree-of-Thought and Chain-of-Thought Approaches: One potential direction
for future research is to integrate tree-of-thought (ToT) and chain-of-thought (CoT) methodologies into
LeanProgress. These approaches could provide a more structured and interpretable way of reasoning about
proof progress. By incorporating ToT and CoT, we could potentially improve the model’s ability to explain
its predictions and provide more detailed insights into the proof process.

2) Integration with Reinforcement Learning: A particularly promising avenue for future work is the
integration of LeanProgress with reinforcement learning (RL) techniques. LeanProgress’s ability to predict
the number of remaining steps in a proof can provide a continuous and informative reward signal for RL.
Unlike binary rewards only indicating success or failure at the end, this continuous feedback allows the
agent to learn from partial progress throughout the proving process. They could also learn efficiently by
receiving feedback throughout the proving process while developing better long-term strategies. This could
then enable the model to adapt its behavior based on the difficulty and progress of the current theorem and
achieve higher success rates.

3) Lightweight and Scalable Implementations: Future work could also focus on developing more
lightweight implementations of LeanProgress. This could involve exploring model compression techniques
or developing more efficient architectures that maintain prediction accuracy while reducing computational
requirements. Such improvements would make LeanProgress more accessible and easier to integrate into
existing theorem-proving workflows.

In conclusion, we introduce LeanProgress, an approach enhancing interactive theorem proving by integrating
a remaining step predictor into the LeanCopilot frontend. Our work makes several contributions to auto-
mated theorem proving. We generated a balanced dataset of proof trajectories by adjusting the sampling
ratio based on proof length, addressing the challenge of skewed distributions in proof complexity. We then
trained a remaining step prediction model using the current proof state and, optionally, the proof history.
Integrating this model into the LeanCopilot interface provides users with both tactic suggestions and remain-
ing step predictions, offering a more comprehensive tool for guiding the proof process. Our results highlight
the potential of proof progress prediction in enhancing both automated and interactive theorem proving,
enabling users to make more informed decisions about proof strategies and bridging the gap between local
tactic prediction and global proof trajectory understanding.

6 Broader Impact

This work aims to make formal proof development more efficient by providing an interpretable progress sig-
nal that can guide search and assist users. Potential benefits include faster iteration in interactive theorem
proving, easier onboarding for new contributors, and clearer diagnostics when proofs stall. We have open
sourced all code and artifacts with this work. The complete codebase of data generation pipeline, data pro-
cessing, tool development based on LeanCopilot, and main algorithm are available in the Github repository
https://github.com/lean-dojo/LeanDojo-v2.
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A Additional Experiments

A.1 Sensitivity Analysis: α, Temperature, and Sampling Budget

We study the sensitivity of progress-guided best-first search to three key hyperparameters: the mixing weight
α (between the step-progress prior and tactic log-probability), sampling temperature, and the number of
sampled tactic candidates. Unless otherwise stated, we use α = 0.2, temperature = 0.7, and 32 samples. We
report Mathlib4-test pass rate (mean ± std over 3 independent runs).

Effect of α (weight of the progress term). We vary α while fixing temperature 0.7 and 32 samples.

α Setting Pass rate (%)

0.0 Pure LogP 41.4 ± 0.7
0.2 Default 45.2 ± 0.6
0.5 Heavier progress weight 44.5 ± 0.5
1.0 Pure Steps 18.5 ± 1.1

Table 3: Pass rate vs. α. Moderate weighting (α ∈ [0.2, 0.5]) performs best, while relying only on the progress
predictor (α = 1.0) degrades substantially.

Effect of sampling temperature. We vary temperature while fixing α = 0.2 and 32 samples.

Temperature Pass rate (%)

0.3 43.8 ± 0.6
0.7 45.2 ± 0.6
1.0 44.6 ± 0.7

Table 4: Pass rate vs. temperature. Mid-range temperature (≈ 0.7) performs best in our setup; lower
temperature reduces exploration, while higher temperature adds generation noise.

Effect of number of samples. We vary the sampling budget while fixing α = 0.2 and temperature 0.7.

Samples Pass rate (%)

8 42.9 ± 0.7
32 45.2 ± 0.6
128 47.2 ± 0.6

Table 5: Pass rate vs. sampling budget. Increasing samples improves pass rate, with diminishing returns as
generations become more correlated and search saturates.
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Model Robustness: DeepSeek Coder 1.3B vs. Qwen 2.5 Coder

We evaluated our progress estimator with two backbones trained under the same data and optimization
settings. Qwen 2.5 Coder yields higher step-prediction accuracy and lower MAE across ranges, which
translates into a consistent downstream pass-rate gain.

DeepSeek Coder 1.3B Qwen 2.5 Coder
Range Acc. (%) MAE Acc. (%) MAE

1–5 78.5 ± 1.8 1.12 ± 0.15 82.1 ± 1.6 1.02 ± 0.12
6–10 62.1 ± 2.1 2.95 ± 0.25 65.4 ± 2.0 2.75 ± 0.22
11–15 69.8 ± 2.5 4.15 ± 0.35 72.9 ± 2.3 3.88 ± 0.30
16–20 75.4 ± 2.8 2.85 ± 0.30 78.9 ± 2.6 2.62 ± 0.28
21+ 78.2 ± 2.2 5.05 ± 0.45 81.5 ± 2.0 4.72 ± 0.40

Overall 75.8 ± 1.5 3.15 ± 0.20 79.4 ± 1.4 2.95 ± 0.18

Table 6: Step-prediction with proof history (state_proof). Accuracy is exact-match on remaining steps;
MAE is mean absolute error in steps. Results are mean ± std over 3 seeds; overall rows are sample-count
weighted across ranges.

Backbone for Progress Estimator Mathlib4-test Pass Rate (%)

DeepSeek Coder 1.3B (ours) 45.2 ± 0.6
Qwen 2.5 Coder (ours) 46.4 ± 0.7

Table 7: Downstream proof search on Mathlib4-test using identical search settings (temperature 0.7, 32
samples, same α and reranking).

The progress estimator is model agnostic: it takes the same inputs and uses the same loss regardless of
backbone, so swapping in a larger or more reasoning-focused model requires no architectural changes to our
framework or search layer. We therefore expect strictly better step-prediction accuracy and downstream
pass rates as stronger backbones (including specialized reasoning models) are used. In practice, this lets
practitioners trade compute for quality without modifying the method itself.

B Qualitative Examples

In this section, we showcase LeanProgress successfully predicting the number of remaining steps, in a variety
of representative qualitative examples.

Figure 4: Qualitative Example 1/6 of running our Step Predictor on real-world Lean problems.

C Practical Tool Development.

With the Step Predictor, one immediate practical application is to couple with tactic suggestion and offer
indications of proof progress. While LeanCopilot provides a general framework of developing LLM-based
tools natively in Lean, and supports a suggest_tactic functionality that offers tactic suggestions, it lacks
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Figure 5: Qualitative Example 2/6 of running our Step Predictor on real-world Lean problems.

Figure 6: Qualitative Example 3/6 of running our Step Predictor on real-world Lean problems.

concrete feedback to help users choose among tactic candidates, which creates inefficiency due to repetitive
trial-and-error during the theorem proving process. With each tactic candidate, LeanCopilot only offers the
resulting state if applying that tactic, together with a log probability score from the tactic generation model.
While the log probability score hard to concretize and the resulting state oftentimes too complicated to
interpret directly, using prediction of numbers of remaining steps helps guide users directly and concretely
in choosing tactics.

Thus, to complement existing tactic suggestion, we leverage LeanCopilot’s neural network inference frame-
work in Lean, and builds a practical tool upon suggest_tactic that additionally shows the number
of remaining steps from each tactic candidate. The whole functionality is wrapped into a single tactic
predict_steps_with_suggestion that is directly usable within a standard Lean workflow.

This theorem was successfully proven with the aid of our Progress Predictor. A key observation is that a
naive application of norm_num would not suffice to complete the proof. The Progress Predictor leverages the
recorded proof history and inferred the application of the difference of squares factorization. By leveraging
proof history and remaining steps, the Progress Predictor likely guided the prover to apply norm_num multiple
times, ultimately leading to the successful derivation of the target value. A standard Reprover, lacking access
to the proof history, would struggle with this theorem.
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Figure 7: Qualitative Example 4/6 of running our Step Predictor on real-world Lean problems.

Figure 8: Qualitative Example 5/6 of running our Step Predictor on real-world Lean problems.

Figure 9: Qualitative Example 6/6 of running our Step Predictor on real-world Lean problems.
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