
Feasibility-Aware Decision-Focused Learning for
Predicting Parameters in the Constraints

Jayanta Mandi
Department of Computer Science

KU Leuven, Leuven, Belgium
jayanta.mandi@kuleuven.be

Marianne Defresne∗
LAAS-CNRS, Université de Toulouse

CNRS, INSA, Toulouse
marianne.defresne@laas.fr

Senne Berden
Department of Computer Science

KU Leuven, Leuven, Belgium
senne.berden@kuleuven.be

Tias Guns
Department of Computer Science

KU Leuven, Leuven, Belgium
tias.guns@kuleuven.be

Abstract

When some parameters of a constrained optimization problem (COP) are uncer-
tain, this gives rise to a predict-then-optimize (PtO) problem, comprising two
stages: the prediction of the unknown parameters from contextual information and
the subsequent optimization using those predicted parameters. Decision-focused
learning (DFL) implements the first stage by training a machine learning (ML)
model to optimize the quality of the decisions made using the predicted param-
eters. When the predicted parameters occur in the constraints, they can lead to
infeasible solutions. Therefore, it is important to simultaneously manage both
feasibility and decision quality. We develop a DFL framework for predicting con-
straint parameters in a generic COP. While prior works typically assume that the
underlying optimization problem is a linear program (LP) or integer LP (ILP), our
approach makes no such assumption. We derive two novel loss functions based
on maximum likelihood estimation (MLE): the first one penalizes infeasibility (by
penalizing predicted parameters that lead to infeasible solutions), while the second
one penalizes suboptimal decisions (by penalizing predicted parameters that make
the true optimal solution infeasible). We introduce a single tunable parameter to
form a weighted average of the two losses, allowing decision-makers to balance
suboptimality and feasibility. We experimentally demonstrate that adjusting this
parameter provides decision-makers control over this trade-off. Moreover, across
several COP instances, we show that adjusting the tunable parameter allows a
decision-maker to prioritize either suboptimality or feasibility, outperforming the
performance of existing baselines in either objective.

1 Introduction

Many real-world optimization problems involve parameters that are unknown at decision time, such
as uncertain customer demand in manufacturing problems or unknown traffic in delivery routing.
This gives rise to predict-then-optimize (PtO) problems [22], where a machine learning (ML) model
first makes point predictions of the unknown parameters from contextual features, after which the
resulting instantiated optimization problem is solved.

∗Affiliated to KU Leuven during submission of this article

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

In prediction-focused learning (PFL), the predictive model is trained solely to maximize the accuracy
of parameter predictions by minimizing standard ML losses. By doing so, PFL does not consider
the effect of prediction errors on the solution to the optimization problem. For example, consider a
vehicle routing problem, where one first needs to predict unknown customer demands, to then make
routing decisions. In this setting, overestimations and underestimations can have differing effects.
Overestimating demand may lead to a conservative suboptimal decision, while underestimating
demand may lead to an infeasible decision. However, these differing effects are not accounted for by
PFL losses.

To address this shortcoming of PFL, decision-focused learning (DFL) directly trains the ML model
to minimize a task-specific decision loss that reflects the quality of the solution produced by using
the predicted parameters. With a slight abuse of notation, we will use the term ‘predicted solution’
to denote the solution produced by using the predicted parameters, although the ML model does
not directly predict the solution, it predicts parameters that are passed to an optimization solver at
inference time.

Most existing DFL works [12, 13, 23, 33] focus on cases where the predicted parameters appear only
in the objective function. In such settings, the decision loss is typically the regret, which measures
suboptimality of the predicted solution. Instead, we focus on predicting parameters that appear in
the constraints of the optimization problem. In this setting too, suboptimal solutions may arise,
because the feasible space defined by the predicted parameters may exclude the true optimal solution.
However, focusing only on suboptimality is insufficient. This is because the predicted solution may
become infeasible with respect to the constraints instantiated by the true parameters. Therefore, the
ML model should also be trained to minimize the likelihood of such infeasible outcomes.

Focusing only on suboptimality or on infeasibility generally does not lead to a desirable balance
between these two objectives. To address this, Hu et al. [14] model decision-making with uncertain
constraint parameters as a two-stage process: first, a solution is generated using the predicted
parameters; then, if needed, corrective actions – incurring additional costs – are carried out to resolve
potential infeasibility. Subsequent works [15, 16] have extended this line of research.

One limitation of their approach is that the corrective action is often problem-specific, and restricted
to a specific form of optimization problem (e.g., a linear program). Instead, we avoid the complexity
of a second stage altogether, and focus on predicting parameters that minimize both the infeasibility
and the suboptimality of the first-stage solution itself. To this end, we first propose two novel loss
functions: the Infeasibility Penalty Loss (IPL) and Optimality-Preserving Loss (OPL). The idea
behind IPL is that when solving with the predicted parameters leads to a solution that is infeasible
according to the true parameters, such infeasibility should be (proportionally) penalized. On the other
hand, the OPL loss will penalize predicted parameters that make the true optimal solution infeasible,
to avoid obtaining a suboptimal solution when solving with the predicted parameters.

These two losses often contradict each other. The IPL term encourages conservative parameter
predictions to guarantee feasibility, even at the expense of producing extremely suboptimal solutions.
In contrast, OPL incentivizes loose parameter predictions to ensure the optimal solution is not cut
away. Moreover, in practice, a decision-maker may favor more feasibility over optimality or vice
versa. To support this subjective preference of one loss over the other, we propose to minimize a
weighted average of the two losses. In this way, we introduce a tunable weighting mechanism that
adjusts the total loss based on the decision-maker’s preference. We refer to our approach as Odece,
for “optimizing decisions through end-to-end constraint estimation”.

We compare Odece with the PFL approach of minimizing the mean squared error (MSE), and with
some existing DFL approaches. These approaches do not allow the decision-maker to adjust the
predicted solution based on their subjective preference between optimality and feasibility. Moreover,
the DFL approaches for constraint prediction are limited to linear programs (LPs) or integer or
mixed-integer LPs (ILPs and MILPs), or they focus on predicting full constraint systems rather than
individual parameters within the constraints. Our experimental results across various optimization
problem instances show that, for a single value of the tunable parameter, Odece matches or out-
performs existing baselines in terms of both suboptimality and feasibility. More importantly, they
show that our approach offers a simple way for decision-makers to control the trade-off between
suboptimality and infeasibility using a single parameter.

2

2 Related Literature

Differentiating through optimization problems. Differentiating through optimization problems
has gained attention in ML, as it allows solvers to be embedded into gradient-based training. This is
often done by ADMM [9, 29] or by implicit differentiation [8] of the optimality conditions. Implicit
differentiation techniques have been developed for quadratic programs [2] and conic optimization [1].
However, for combinatorial optimization problems like ILPs, the true gradient is zero almost every-
where because small changes in the parameters usually do not affect the optimal solution. Hence,
implicit differentiation techniques, which are applicable to smooth optimization problems, cannot be
applied to such combinatorial problems. To address this, Paulus et al. [26] propose CombOptNet, a
technique for ILPs to compute pseudo-gradients based on the Euclidean distance between the solution
and the constraints.

Predicting objective parameters. Most DFL works focus on predicting parameters in the objective
function. Some of these works are based on differentiating through the problem after smoothing it,
either using regularization [13, 18, 33] or perturbation [5, 10, 25, 28]. Another approach is to define
informative surrogates of the decision loss [4, 12, 19, 20, 23, 31]. Regularization-based methods
require differentiable solvers, such as Cvxpylayers [1] or OptNet [2]. In contrast, perturbation and
surrogate-based approaches only need access to solutions. These solutions generally do not need to
come from an exact solver and can be obtained by heuristics or alternative methods. For instance,
surrogate-based techniques have been applied to planning problems solved via approximate automated
planners [21]. We refer readers to a recent survey paper [22] for a more comprehensive overview.

Predicting constraint parameters. Relatively few DFL papers have considered the prediction of
parameters in the constraints. Most of these [14–16] model decision-making as a two-stage process.
In the first stage, a solution is obtained using the predicted parameters, which may be infeasible
with respect to the true parameters. The second stage then applies a corrective action to convert the
first-stage solution into a feasible one. Among these works, Hu et al. [15] also recommend a strategy
for applying their approach to settings where no corrective action is available at inference time. Their
proposal is to assign a very high penalty factor to the corrective action during training. In contrast to
this line of work, we do not introduce corrective actions even during training and focus on balancing
decision quality and feasibility in a single stage. Another approach [11] simultaneously learns the
objective and the constraints, but the constraints are soft and the problem must be formulated as a
discrete graphical model. The work by Nandwani et al. [24] aims to learn the full set of constraints
from the features. They do this by learning a set of hyperplanes that separate the optimal solution
from other negative assignments. A key component of their technique is the generation of such
negative assignments, which must include both infeasible as well as feasible but suboptimal ones. In
contrast to their setting, we focus on learning only the parameters within a known constraint structure.
Their method does not easily generalize to our setting, in which the learned parameters must remain
compatible with the known constraints to make high-quality solutions. Moreover, both Hu et al. [15]
and Nandwani et al. [24] restrict their methods to LPs and ILPs, while the framework proposed in this
paper is more general and applicable to a broader class of optimization problems. The prediction of
constraints is also central in constraint acquisition, for optimization [3, 17] or constraint satisfaction
[6, 32] problems, but the setting differs because the structure of the constraints is unknown and the
uncertainty does not depend on any input features.

3 Preliminaries

Problem setup. We will consider a constrained optimization problem (COP) of the following form:

min
x∈Ω

f(x; q) (1a)

subject to gi(x;ρ) ≤ 0, i ∈ {1, . . . ,M} (1b)

where Ω defines the domain of the decision variable vector x. Ω may be a subset of real numbers
or integers, depending on the type of optimization problem. The upper and lower bounds for each
decision variable are also specified by Ω. We will assume that the constraint functions gi(x;ρ)
are differentiable functions. We do not explicitly express equality constraints, since any constraint

3

of the form hj(x;ρ) = 0 can be represented by two inequality constraints: hj(x;ρ) ≤ 0 and
−hj(x;ρ) ≤ 0. To make the notation simpler, we denote the set of constraints by S and the feasible
set when the constraint parameters take the value ρ by F(ρ). More formally,

F(ρ) = {x ∈ Ω : gi(x;ρ) ≤ 0, ∀i ∈ S} (2)

We use x⋆(q,ρ) to denote a (possibly non-unique) optimal solution to the optimization problem for
a given objective parameter q and constraint parameter ρ. When multiple optimal solutions exist, we
define the set of all optimal solutions as W (q,ρ) = {x : f(x; q) ≤ f(x′; q); ∀x′ ∈ F(ρ)}. Note
that W (q,ρ) is a subset of the feasible region F(ρ). So, if F is empty (i.e., no feasible solution
exists), W is also empty. In the special case of a unique optimal solution, W (q,ρ) is a singleton.
However, our implementation relies on a solver that returns a single solution. When multiple optimal
solutions exist, the commercial solvers we use break ties using a predefined rule.

Example. Consider the multi-dimensional 0-1 knapsack problem (MDKP) [27]. The objective
of this problem is to choose a subset with maximal value from a given set of items, subject to M
capacity constraints. Let ρi be the capacity in dimension i. There are N items, the value of each item
is qn, and ρ(n,i) is the weight of item n in dimension i. Each decision variable xn can be either zero
or one, hence Ω = {0, 1}N . This optimization problem can be modeled as an ILP as follows:

min
x1:N

N∑
n=1

(−qn)xn such that xn ∈ {0, 1} ∀n ∈ [N],

N∑
n=1

ρnixn ≤ ρi ∀i ∈ [M] (3)

Here, S consists of the M capacity constraints.

Predict-then-Optimize problems. In the PtO formulation for uncertainty in the constraints, some
or all components of the parameter vector ρ are unknown and must be estimated before solving
the COP. For example, in the knapsack problem, the item weights ρ(n,i) may be unknown, but the
capacity in each dimension ρi might be known. Additionally, we observe a set of values correlated
with ρ, which we refer to as features and denote by ϕ. These features are used to make estimates
of the unknown parameters. For the estimation task, a predictive model Mθ, parameterized by θ,
is trained using training data of the form D ≡ {(ϕκ,ρκ, qκ,x

⋆(qκ,ρκ))}Kκ=1. Formally, the goal
is to learn a mapping from the feature space to the parameter space. In this work, we assume that
the cost vector qκ is instance-specific but known and not used to learn the mapping. Note that the
structure of the COP is fixed, i.e., the number of constraints and the domains of decision variables are
known. Once trained, given a new feature vector ϕ and a known cost vector q, the model produces an
estimated parameter vector ρ̂ = Mθ(ϕ) using ϕ. Since this is a PtO task, Mθ is ultimately evaluated
based on the quality of the solution x⋆(q, ρ̂) induced by the predicted parameters.

A maximum likelihood perspective on DFL. We will develop a framework based on maximum
likelihood estimation (MLE) to predict constraint parameters. Our goal is to maximize the log-
likelihood of the observed data D. In PFL, the parameters θ of the predictive model would be
estimated to increase the likelihood of the observations ρκ given the features ϕκ. However, in DFL
training, the focus is on the likelihood of x⋆(qκ,ρκ) being the optimal solution, given qκ and ϕκ.
To put it another way, the MLE perspective of DFL consists of learning a θ to predict the constraint
parameter vector ρ̂κ so that x⋆(qκ,ρκ) is the most likely solution to the parameter ρ̂κ = Mθ(ϕκ).

4 Methodology

We start by defining a function UNSAT i(x,ρκ) to indicate whether the i-th constraint is violated by
an assignment x when the constraint parameter is set to the vector ρκ. It is defined as:

UNSAT i(x,ρκ) := 1{gi(x,ρκ) > 0}

Similarly, we define SAT i(x,ρκ) to indicate that the i-th constraint is satisfied. Therefore,
SAT i(x,ρκ) := 1−UNSAT i(x,ρκ). Using these definitions, we introduce Feas(x,ρκ), an indi-
cator variable equal to 1 if the solution x satisfies all the constraints.

Feas(x,ρκ) =
∏
i∈S

SAT i(x,ρκ) (4)

4

We use Infeas(x,ρκ) to denote that x is infeasible with respect to ρκ. Note that x is an infeasible
assignment if it violates any one of the constraints. Hence, we can write:

Infeas(x,ρκ) = max
i∈S

UNSAT i

(
x,ρκ

)
(5)

As we want to maximize the likelihood of obtaining a feasible solution with optimal ob-
jective value, we first model the probability of violating the constraints using the predicted
parameters. Given predicted parameters Mθ(ϕκ), we model the parametric probability
Pθ

(
UNSAT i(x,Mθ(ϕκ))

∣∣Mθ(ϕκ)
)

in the following manner:

Pθ

(
UNSAT i

(
x,Mθ(ϕκ)

)∣∣∣Mθ(ϕκ)
)
=

1

1 + exp(−gi(x,Mθ(ϕκ)))
(6)

Note that the above is a smooth version of the following non-smooth distribution:

Pθ =

{
1, if gi(x,Mθ(ϕκ)) ≥ 0

0, otherwise
(7)

As Pθ (SAT i (x,Mθ(ϕκ))|Mθ(ϕκ)) = 1− Pθ (UNSAT i (x,Mθ(ϕκ))|Mθ(ϕκ)), we can write:

Pθ

(
SAT i (x,Mθ(ϕκ))

∣∣∣Mθ(ϕκ)
)
=

1

1 + exp(gi(x,Mθ(ϕκ)))
(8)

4.1 Loss Function to Penalize Infeasibility-Inducing Predictions

We first propose a loss function that ensures that true infeasible assignments remain infeasible under
the predicted parameters. Let xneg be an assignment that is infeasible under the true parameters. As
it is easy to determine which constraints are violated by xneg , we develop an MLE framework to
maximize the likelihood of violating those constraints under the predicted parameters. Given a xneg ,
the log-likelihood of violating these constraints can be written in the following form:∑

i∈S
UNSAT i (xneg ,ρκ) logPθ

(
UNSAT i (xneg ,Mθ(ϕκ))

∣∣∣Mθ(ϕκ)
)

(9)

Note that UNSAT i (xneg ,ρκ) can be viewed as a mask that equals 1 when xneg violates constraint
i under the true parameters ρκ. Using the definition of Pθ (UNSAT i (x,Mθ(ϕκ))|Mθ(ϕκ)) from
Eq. 6, we can write the following:

logPθ

(
UNSAT i (xneg ,Mθ(ϕκ))

∣∣∣Mθ(ϕκ)
)
= − log (1 + exp (−gi (xneg ,Mθ (ϕκ)))) (10)

We now propose a loss function to maximize this likelihood (i.e., minimize the negative log-
likelihood). We include a margin parameter Υ > 0 to encourage the constraints to be violated
with a buffer. Since this loss penalizes cases where an infeasible assignment xneg is considered
feasible under the predicted parameters, we refer to it as the Infeasibility-Aware Loss (IAL).

LIAL(xneg ,Mθ(ϕκ)) =
∑
i∈S

UNSAT i (xneg ,ρκ) softplus
(
Υ− gi(xneg ,Mθ(ϕκ))

)
(11)

where we write log(1 + exp(.)) as softplus(.).

Intuition behind IAL. Note that softplus is a smooth approximation to the Relu function. If we
replace the softplus function with a Relu function, Eq. 11 takes the following form:

LIAL(xneg ,Mθ(ϕκ)) =
∑
i∈S

UNSAT i(xneg ,ρκ)max
(
0,Υ− gi(xneg ,Mθ(ϕκ))

)
(12)

From this expression, we see that for a truly violated constraint, i.e., of which UNSAT i

(
xneg ,ρκ

)
=

1, the loss becomes zero only if gi
(
xneg ,Mθ(ϕκ)

)
> Υ. In other words, the predicted constraint

must also be violated. LIAL(xneg ,Mθ(ϕκ)) is zero if this holds for all constraints violated by xneg .

5

Selecting xneg . The IAL loss formulation is based on xneg , a candidate assignment which violates
at least one constraint with respect to the true parameter ρκ. This leads to the question of how to
obtain such a xneg . We adopt the following approach: for each instance, after predicting ρ̂κ, we
solve the COP using ρ̂κ and obtain a solution x⋆(qκ, ρ̂κ). If this solution is infeasible under the true
parameters ρκ, we use it as xneg . Otherwise, we set the loss to zero, since the predicted solution
satisfies all the true constraints, which is the preferred outcome. We call this final loss function the
Infeasibility Penalty Loss (IPL), as it penalizes the predicted parameters when the resulting predicted
solution violates the true constraints.

LIPL(ρκ, ρ̂κ) = (1− Feas (x⋆ (qκ, ρ̂κ) ,ρκ))LIAL(x⋆(qκ, ρ̂κ), ρ̂κ) (13)

We can also define LIPL where LIAL in Eq. 13 is replaced with LIAL.

Lemma 1. For a true parameter ρκ and a predicted parameter ρ̂κ, LIPL(ρκ, ρ̂κ) is zero if and only
if x⋆ (qκ, ρ̂κ), an optimal solution for ρ̂κ, is feasible with respect to ρκ.

Proof. LIPL is by construction zero when x⋆ (qκ, ρ̂κ) is feasible with respect to ρκ. Because if
x⋆ (qκ, ρ̂κ) is feasible with respect to ρκ, Feas (x⋆ (qκ, ρ̂κ) ,ρκ) is equal to one, which makes
LIPL = 0. Hence,

Feas (x⋆ (qκ, ρ̂κ) ,ρκ) = 1 =⇒ LIPL = 0

To prove the other direction, let us assume, LIPL = 0, but Feas (x⋆ (qκ, ρ̂κ) ,ρκ) ̸= 1. Hence,
LIAL(x⋆(qκ, ρ̂κ), ρ̂κ) must be zero. Note that, LIAL(x⋆(qκ, ρ̂κ), ρ̂κ) can be zero only if
gi(x

⋆(qκ, ρ̂κ), ρ̂κ) ≥ Υ > 0 for all the violated constraints. However, as x⋆(qκ, ρ̂κ), ρ̂κ) is
the optimal solution with ρ̂κ being the parameter, gi(x⋆(qκ, ρ̂κ), ρ̂κ) must be less than zero for all
the constraints and we arrived at a contradiction. So,

LIPL = 0 =⇒ Feas (x⋆ (qκ, ρ̂κ) ,ρκ) = 1

4.2 Loss Function for Preserving Optimal Solutions

The IPL loss penalizes predicted parameters when the predicted solution becomes infeasible with
respect to the true parameters. However, minimizing only LIPL can lead to learning a feasible region
that is much stricter than the true feasible region, as any solution therein will be feasible under the true
parameters. For example, when learning the capacity parameter in a knapsack problem, minimizing
only LIPL might result in capacity values so small that no items are selected. While such solutions
are always feasible with respect to the true parameters, they are suboptimal and of no practical value.
Therefore, we also need a loss function to penalize cases where the learned parameters turn out to be
too strict. To do this, we define a loss function that penalizes predicted parameters when they render
known optimal solutions infeasible. Within the MLE framework, this corresponds to maximizing the
likelihood that the true solution is feasible.

Thus, we formulate the probability of an assignment x being a feasible point, given the parameter
Mθ(ϕκ). Note that x is a feasible assignment only if it satisfies all the constraints. While the
probabilities of satisfying constraints i and j are not independent, they are conditionally independent
[7, Chapter 8] given the constraint parameter vector Mθ(ϕκ). This is because the constraint parameter
vector determines the feasibility of each constraint independently. Once Mθ(ϕκ) is known, the
probability of satisfying constraint i depends only on Mθ(ϕκ), and any additional information about
constraint j being satisfied does not affect that probability. Because of the conditional independence,
we can express the conditional probability of the assignment, x being feasible given Mθ(ϕκ), by:

Pθ

(
Feas (x,Mθ(ϕκ))

∣∣∣Mθ(ϕκ)
)
=

∏
i∈S

Pθ (SAT i (x,Mθ(ϕκ))|Mθ(ϕκ)) (14)

Now using Eq. 8, we can model Pθ (Feas (x,Mθ(ϕκ)|Mθ(ϕκ))), as

Pθ

(
Feas (x,Mθ(ϕκ))

∣∣∣Mθ(ϕκ)
)
=

∏
i∈S

1

1 + exp(gi(x,Mθ(ϕκ)))
(15)

6

Thus, we obtain the log-likelihood function of x being feasible, in the form of:

−
∑
i∈S

log (1 + exp (gi (x,Mθ(ϕκ)))) = −
∑
i∈S

softplus (gi(x
⋆
κ,Mθ(ϕκ)) (16)

We point out that in the training data, we know that x⋆(qκ,ρκ) is a feasible solution. Denoting x⋆
κ as

the known feasible point, we can formulate a loss function by minimizing the negative log-likelihood.
In our implementation, we add a margin parameter Υ as we have done for LIPL. Since this loss is
designed to maximize the probability that the optimal solution remains feasible, we refer to it as the
Optimality-Preserving Loss (OPL). We express it in the following form:

LOPL(ρκ,Mθ(ϕκ)) =
∑
i∈S

softplus
(
Υ+ gi (x

⋆ (qκ,ρκ) ,Mθ(ϕκ))
)

(17)

Intuition behind OPL. By replacing the softplus in Eq. 17 with a Relu function, we can write

LOPL(ρκ, ρ̂κ) =
∑
i∈S

max
((
Υ+ gi (x

⋆ (qκ,ρκ) , ρ̂κ)
)
, 0
)

(18)

where we write Mθ(ϕκ) as ρ̂κ for brevity. From this expression, it is easy to see that LOPL attains
its minimum value of zero when all constraint values are less than or equal to −Υ, i.e., when all the
constraints are satisfied with some margin.

Lemma 2. For a true parameter ρκ and a predicted parameter ρ̂κ, both LOPL(ρκ, ρ̂κ) and
LIPL(ρκ, ρ̂κ) will be zero if and only if x⋆ (qκ, ρ̂κ), a solution of ρ̂κ, is an optimal solution with
respect to ρκ.

Proof. Let LOPL(ρκ, ρ̂κ) and LIPL(ρκ, ρ̂κ) be equal to zero. We have proved in Lemma 1 that
LIPL being zero implies that a solution of ρ̂κ is feasible with respect to κ. So, x⋆ (qκ, ρ̂κ), a solution
of ρ̂κ lies in the set F(ρκ).

Because x⋆(qκ,ρκ) is an optimal solution,

f(x⋆(qκ,ρκ); qκ) ≤ f(x′; qκ) ∀x′ ∈ F(ρκ)

As x⋆ (qκ, ρ̂κ) ∈ F(ρκ), from the above argument, we can write

f(x⋆(qκ,ρκ); qκ) ≤ f(x⋆ (qκ, ρ̂κ) ; qκ) (19)

Now, LOPL(ρκ, ρ̂κ) being zero implies that x⋆(qκ,ρκ), an optimal solution of the true parameter,
ρκ lies in F(ρ̂κ). Note,

f(x⋆(qκ, ρ̂κ); qκ) ≤ f(x′; qκ) ∀x′ ∈ F(ρ̂κ)

As x⋆(qκ,ρκ) ∈ F(ρ̂κ)

f(x⋆(qκ, ρ̂κ); qκ) ≤ f(x⋆ (qκ,ρκ) ; qκ) (20)

Hence, Eq. 19 and Eq. 20 suggests

f(x⋆(qκ, ρ̂κ); qκ) = f(x⋆ (qκ,ρκ) ; qκ)

As x⋆(qκ, ρ̂κ) is a feasible solution with respect to ρκ and its objective value is equal to the optimal
objective value, it is an optimal solution.

Now, to prove the opposite direction, assume that x⋆ (qκ, ρ̂κ) is an optimal solution with respect to
ρκ. This implies that x⋆ (qκ, ρ̂κ) is a feasible solution with respect to ρκ. Therefore, from Lemma 1,
LIPL(ρκ, ρ̂κ) = 0. As x⋆ (qκ, ρ̂κ) adheres to all the constraints when ρ̂κ is the constraints parameter
value, ∑

i∈S
max

(
(Υ + gi(x

⋆ (qκ, ρ̂κ) , ρ̂κ)) , 0
)
= 0 (21)

As x⋆ (qκ, ρ̂κ) is an optimal solution with respect to ρκ, x⋆ (qκ, ρ̂κ) is one of the x⋆ (qκ,ρκ). If
we replace x⋆ (qκ, ρ̂κ) with x⋆ (qκ,ρκ) in Eq. 21, LOPL(ρκ, ρ̂κ) = 0 by definition (Eq. 18).

7

4.3 Minimizing a Convex Combination of LOPL and LIPL

Lemma 2 suggests that by minimizing both LIPL and LOPL to zero, we can obtain a solution
x⋆(qκ, ρ̂κ), which is optimal with respect to ρκ. However, simultaneously minimizing LIPL and
LOPL presents a challenge. This is because LIPL and LOPL represent two conflicting goals. Mini-
mizing only LOPL encourages the model to predict loose constraints so that all true feasible solutions
remain feasible, hence making even infeasible solutions appear feasible. Conversely, minimizing
LIPL encourages stricter constraints, which may render even true optimal solutions infeasible. We
thus propose to minimize a convex combination of these losses, in the following form:

αLIPL(ρκ, ρ̂κ) + (1− α)LOPL(ρκ, ρ̂κ) (22)

α ∈ [0, 1] is a hyperparameter we call the infeasibility-aversion coefficient. It reflects how much
importance the decision-maker places on avoiding infeasible solutions (through IPL) versus maintain-
ing the feasibility of known feasible ones (through OPL). The two extremes are α = 1 and α = 0,
both of which represent unrealistic preferences. α = 1 means the decision-maker prioritizes only
feasibility, possibly ending up with trivial solutions (e.g., picking no items in a knapsack problem). α
near 0 implies a focus on high-reward solutions, even if they are infeasible (e.g., selecting all items).

In this section, we have proposed a novel approach for ‘optimizing decisions through end-to-end
constraint estimation’ (Odece), involving two novel loss functions: LIPL and LOPL. We have
proposed to consider a weighted average of the two losses to reflect the decision-maker’s subjective
preference of infeasibility over suboptimality. Next, we will experimentally investigate how Odece
performs compared to other existing approaches for predicting constraint parameters.

5 Experimental Evaluation

We experiment with predicting constraint parameters in the following optimization problems:

Multi-dimensional knapsack problem. The first is the 0-1 multi-dimensional knapsack problem
(MDKP), introduced in Section 3. In the experimental section, we consider MDKP instances with 50
items and constraints in three dimensions. We consider two settings: 1) predicting the item weight
vectors while keeping the capacity constraints known, and 2) predicting the capacity vectors with
known item weights.

Brass Alloy Production. Our third experimental setting involves the Brass alloy production
problem. We reproduce this experimental setup from the work by Hu et al. [15]. It is a covering LP
problem. We use the publicly available Brass alloy data from their repository.2 The production of the
Brass alloy requires two metals: Copper (Cu) and Zinc (Zn). A factory needs to purchase ores that
contain these two metals. There are 10 potential suppliers, each offering ores at a different price per
unit. The exact metal content in each supplier’s ore is unknown and must be predicted. The goal is to
buy a combination of ores from the 10 suppliers at the lowest possible cost, while ensuring that the
total purchase contains at least 627.54 units of Cu and 369.72 units of Zn.

5.1 Dataset Description

Synthetic parameter generation of the MDKP. We adopt the synthetic data generation process
described by Elmachtoub and Grigas [12]. This data generation approach introduces a non-linear
relationship between input features and the unknown parameters. A linear model is used to predict
the parameters from features. The motivation behind using a linear model is to demonstrate that DFL
methods can produce high-quality solutions despite model misspecification. This approach has been
widely used as a benchmark in DFL studies [12, 20, 22, 30, 31].

Each knapsack instance contains 50 items, with all items correlated with 10 input features. Item
values, which appear in the objective function, are sampled independently from a Gumbel distribution
with location 100 and scale 20. For each run, 1500 instances are generated, split into 900 for training,
100 for validation, and 500 for testing. We took extra caution to ensure that the synthetically-generated
parameters produce non-trivial optimal solutions, avoiding cases where all or none of the items are

2https://github.com/Elizabethxyhu/NeurIPS_Two_Stage_Predict-Optimize/

8

https://github.com/Elizabethxyhu/NeurIPS_Two_Stage_Predict-Optimize/

Figure 1: Infeasibility ratio and regret of feasible solutions on Test instances (best viewed in colors).

selected in the knapsack. To achieve this, we clip the capacity in each dimension to be less than half
the total weight of all items and ensure that individual item weights remain below the respective
capacity values.

Brass Alloy Production. For this experiment, we use the dataset from Hu et al. [15]. In this dataset,
the Cu and Zn contents in each supplier’s ore are predicted using separate sets of 4096 features each.
Out of the available 500 instances, we use 350, 50, and 100 for training, validation, and testing,
respectively. We use a fully-connected neural network with one hidden layer of 512 neurons for
prediction.

The experiments were executed on an Intel i7-13800H (20 cores) CPU with 32GB RAM. Details
on the problems and datasets used in the three experiments are provided in Appendix A. The
source code for reproducing our results is publicly available at: https://github.com/JayMan91/
OdeceDFLforConstraintsNeurips25.

5.2 Experimental Results

We denote the model as Odece(α) (e.g., Odece(0.1)) to indicate Odece is trained with that specific
value of α. We compare the proposed Odece against four competitors: i) MSE: a PFL approach which
trains the ML model to minimize the MSE loss over the parameter predictions, ii) CombOptNet: the
technique proposed by Paulus et al. [26] to compute the gradient of ILP parameters, iii) SFL: the
solver-free learning proposed by Nandwani et al. [24] for learning parameters of an ILP, iv) 2sPtO:
the two-stage predict+optimize approach proposed by Hu et al. [15]. We implement 2sPtO using
a high penalty factor, as recommended in Appendix A.2 of their paper. We could not apply 2sPtO
to predict the knapsack capacity, as it is designed to predict only the left-hand side parameters in
linear constraints. More specifically, it can compute gradients with respect to b in constraints of the
form b⊤x ≤ c, but not with respect to c. For CombOptNet we compute the L1 loss of the predicted
solution and the true solution and backpropagate the L1 loss through CombOptNet.

We evaluate performance using two metrics: the proportion of infeasible solutions and the normalized
regret on the test data. Each technique is run five times with different random seeds. Figure 1 reports
the average proportion of infeasible solutions (x-axis) and average normalized regret (y-axis) across
these runs. Detailed results, including averages and standard deviations across the five runs, are
provided in Appendix B. We compute regret only over predicted solutions that are feasible under the
true parameters. More formally, out of K test instances, let K ′ denote the number of instances where
the solution x⋆ (qκ, ρ̂κ) is feasible under ρκ. The proportion of infeasible solutions is then K′

K . The
normalized regret is defined as follows:

1

K ′

K′∑
κ=1

f (x⋆ (qκ, ρ̂κ) ; qκ)− f(x⋆
κ; qκ)

f(x⋆
κ; qκ)

(23)

Note that normalized regret can be misleading in this setting. This is because in extreme cases, where
most predicted solutions are infeasible, regret is computed over only a small subset of instances.

9

https://github.com/JayMan91/OdeceDFLforConstraintsNeurips25
https://github.com/JayMan91/OdeceDFLforConstraintsNeurips25

Results. The first observation from Figure 1 is that CombOptNet exhibits relatively poor perfor-
mance across the three problems. For both MDKP weight prediction and the Brass Alloy problem,
the proportion of infeasible solutions generated by CombOptNet is very high (> 85%). In MDKP
capacity prediction, the proportion of infeasible solutions is slightly lower but still high (> 65%).
The performance of SFL is similar to CombOptNet for MDKP weight prediction and the Brass Alloy
problem. However, in the MDKP capacity prediction problem, SFL performs significantly better,
with the proportion of infeasible solutions around 25%. We suspect this is because SFL relies more
on c than b to separate the true optimal solution from the negative assignments, resulting in more
informative gradients for c and less informative gradients for b. (For example, in a 3-dimensional
MDKP where the optimal solution is [0, 0, 1], negative samples such as [1, 1, 1],[1, 1, 0], [0, 1, 1] and
[1, 0, 1] can be classified as negative based on the capacity, i.e., the right-hand side parameter, c.)

For MDKP weight prediction, 2sPtO performs very poorly (the proportion of infeasible solutions is
greater than 99%). It is not applicable for MDKP capacity prediction. Figure 1 might suggest that
2sPtO achieves a relatively lower proportion of infeasible solutions for the Brass Alloy problem, but
this is misleading for two reasons. First, it results in extremely high normalized regret (> 850%).
Note that we have to break the y-axis in Figure 1 to accommodate 2sPtO’s regret values. More
importantly, its performance is highly unstable, which is not noticeable in Figure 1, where the average
of five runs is plotted. Table 3 in the Appendix reveals that the standard deviation across the five runs
is very high. In some runs, the proportion of infeasible solutions is near 0, while in others it reaches
≈ 99%. This indicates unstable learning.

Our closest competitor is MSE, but minimizing MSE does not let decision-makers adjust the trade-off
between optimality and feasibility. MSE has infeasibility rates of 33%, 60%, and 53% across the
three problems, respectively. For a decision-maker, these infeasibility rates may be unacceptably
high. Odece allows a decision-maker to attain lower infeasibility rate by varying α, at the cost of
higher normalized regret. For instance, Odece(0.8) brings the infeasibility rates down to 6%, 4%, and
18%, across the three problems, respectively. We have also conducted statistical significance tests
to determine whether the test regret and infeasibility of Odece are lower than those of MSE. Since
each run was conducted using the same random seed for both models, we used a paired t-test with the
alternative hypothesis that MSE has higher regret and higher infeasibility than Odece. The p-values
from the paired t-tests for different values of α are reported in Table 4, 5 and 6 in Appendix B.
The results of the statistical significance test reveal that for α > 0.5, Odece produces a statistically
significantly lower proportion of infeasible solutions than MSE. On the other hand, for α < 0.3, the
normalized regret on feasible instances generated by Odece is statistically significantly lower than
that of MSE. This holds true across all three problems.

6 Conclusion

We proposed Odece, a novel DFL technique for predicting parameters appearing in the constraints of
COPs. Unlike existing DFL methods for constraint predictions – which either depend on problem-
specific second-stage corrective actions or which are designed to predict the full set of constraints –
Odece directly optimizes for feasibility and solution quality in a single stage. Our experiments showed
that by tuning Odece’s α parameter, decision-makers can flexibly manage the trade-off between
infeasibility and suboptimality, allowing them to align solutions with their individual preferences.

One limitation of the current Odece implementation is that it solves the COP for each instance using
the predicted parameters during training. To speed up training, future work could explore caching
candidate assignments, as done by Mulamba et al. [23] for predicting objective parameters. Odece
could also be extended to jointly predict both constraint and objective parameters. Finally, we plan
to apply Odece to a wider range of optimization problems, such as combinatorial problems with
non-linear objective and constraint functions, as well as larger, real-world applications.

Acknowledgments and Disclosure of Funding

This research received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 Research and Innovation Programme (Grant No. 101002802, CHAT-Opt), and
from the Research Foundation Flanders (FWO) project G0G3220N. Senne Berden is a fellow of the
Research Foundation-Flanders (FWO-Vlaanderen, 11PQ024N).

10

References
[1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable convex

optimization layers. Advances in neural information processing systems, 32, 2019.

[2] B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
International Conference on Machine Learning, pages 136–145. PMLR, 2017.

[3] S. Berden, M. Kumar, S. Kolb, and T. Guns. Learning MAX-SAT models from examples using
genetic algorithms and knowledge compilation. In 28th International Conference on Principles
and Practice of Constraint Programming (CP 2022), pages 8–1. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2022.

[4] S. Berden, A. İ. Mahmutoğulları, D. Tsouros, and T. Guns. Solver-free decision-focused
learning for linear optimization problems. arXiv preprint arXiv:2505.22224, 2025.

[5] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and F. Bach. Learning with differen-
tiable pertubed optimizers. Advances in neural information processing systems, 33:9508–9519,
2020.

[6] C. Bessiere, C. Carbonnel, and A. Himeur. Learning constraint networks over unknown con-
straint languages. In IJCAI 2023-32nd International Joint Conference on Artificial Intelligence,
pages 1876–1883. International Joint Conferences on Artificial Intelligence Organization, 2023.

[7] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

[8] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-Lopez, F. Pedregosa, and
J.-P. Vert. Efficient and modular implicit differentiation. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 5230–5242. Curran Associates, Inc., 2022.

[9] A. Butler and R. H. Kwon. Efficient differentiable quadratic programming layers: an ADMM
approach. Comput. Optim. Appl., 84(2):449–476, 2023.

[10] G. Dalle, L. Baty, L. Bouvier, and A. Parmentier. Learning with combinatorial optimization
layers: a probabilistic approach, 2022. URL https://arxiv.org/abs/2207.13513.

[11] M. Defresne, S. Barbe, and T. Schiex. Scalable Coupling of Deep Learning with Logical Rea-
soning. In Thirty-second International Joint Conference on Artificial Intelligence, IJCAI’2023,
2023.

[12] A. N. Elmachtoub and P. Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

[13] A. Ferber, B. Wilder, B. Dilkina, and M. Tambe. Mipaal: Mixed integer program as a layer.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(02):1504–1511, Apr. 2020.

[14] X. Hu, J. C. Lee, and J. H. Lee. Predict+ optimize for packing and covering lps with unknown
parameters in constraints. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 3987–3995, 2023.

[15] X. Hu, J. C. Lee, and J. H. Lee. Two-stage predict+optimize for MILPs with unknown parameters
in constraints. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=0tnhFpyWjb.

[16] X. Hu, J. C. H. Lee, and J. H. man Lee. Branch & learn with post-hoc correction for pre-
dict+optimize with unknown parameters in constraints. In Integration of AI and OR Techniques
in Constraint Programming, 2023.

[17] M. Kumar, S. Kolb, S. Teso, and L. De Raedt. Learning max-sat from contextual examples
for combinatorial optimisation. Artificial Intelligence, 314:103794, 2023. ISSN 0004-3702.
doi: https://doi.org/10.1016/j.artint.2022.103794. URL https://www.sciencedirect.com/
science/article/pii/S0004370222001345.

11

https://arxiv.org/abs/2207.13513
https://openreview.net/forum?id=0tnhFpyWjb
https://www.sciencedirect.com/science/article/pii/S0004370222001345
https://www.sciencedirect.com/science/article/pii/S0004370222001345

[18] J. Mandi and T. Guns. Interior point solving for lp-based prediction+optimisation. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 7272–7282, 2020.

[19] J. Mandi, E. Demirović, P. J. Stuckey, and T. Guns. Smart predict-and-optimize for hard combi-
natorial optimization problems. Proceedings of the AAAI Conference on Artificial Intelligence,
34(02):1603–1610, Apr. 2020.

[20] J. Mandi, V. Bucarey, M. M. K. Tchomba, and T. Guns. Decision-focused learning: Through the
lens of learning to rank. In International conference on machine learning, pages 14935–14947.
PMLR, 2022.

[21] J. Mandi, M. Foschini, D. Höller, S. Thiébaux, J. Hoffmann, and T. Guns. Decision-focused
learning to predict action costs for planning. In Proceedings of the European Conference on
Artificial Intelligence (ECAI-24), pages 4060–4067. IOS Press, 2024.

[22] J. Mandi, J. Kotary, S. Berden, M. Mulamba, V. Bucarey, T. Guns, and F. Fioretto. Decision-
focused learning: Foundations, state of the art, benchmark and future opportunities. Journal of
Artificial Intelligence Research, 80:1623–1701, 2024.

[23] M. Mulamba, J. Mandi, M. Diligenti, M. Lombardi, V. Bucarey, and T. Guns. Contrastive
losses and solution caching for predict-and-optimize. In Z.-H. Zhou, editor, Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 2833–
2840. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi:
10.24963/ijcai.2021/390. Main Track.

[24] Y. Nandwani, R. Ranjan, Mausam, and P. Singla. A solver-free framework for scalable learning
in neural ILP architectures. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022.

[25] M. Niepert, P. Minervini, and L. Franceschi. Implicit mle: Backpropagating through discrete
exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
14567–14579. Curran Associates, Inc., 2021.

[26] A. Paulus, M. Rolinek, V. Musil, B. Amos, and G. Martius. Comboptnet: Fit the right
np-hard problem by learning integer programming constraints. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 8443–8453. PMLR, 18–24 Jul 2021.

[27] D. Pisinger. Where are the hard knapsack problems? Computers & Operations Research, 32(9):
2271–2284, 2005.

[28] M. V. Pogančić, A. Paulus, V. Musil, G. Martius, and M. Rolinek. Differentiation of blackbox
combinatorial solvers. In International Conference on Learning Representations, 2020.

[29] H. Sun, Y. Shi, J. Wang, H. D. Tuan, H. V. Poor, and D. Tao. Alternating differentiation for
optimization layers. In The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023.

[30] B. Tang and E. B. Khalil. Pyepo: A pytorch-based end-to-end predict-then-optimize library for
linear and integer programming, 2023.

[31] B. Tang and E. B. Khalil. Cave: A cone-aligned approach for fast predict-then-optimize with
binary linear programs. In B. Dilkina, editor, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 21st International Conference, CPAIOR 2024, Uppsala,
Sweden, May 28-31, 2024, Proceedings, Part II, volume 14743 of Lecture Notes in Computer
Science, pages 193–210. Springer, 2024.

[32] D. Tsouros, S. Berden, and T. Guns. Learning to learn in interactive constraint acquisition. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 8154–8162,
2024.

12

[33] B. Wilder, B. Dilkina, and M. Tambe. Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, pages 1658–1665. AAAI Press, 2019.

13

A Problem and Dataset Description

A.1 Multi-dimensional knapsack problem

The formulation of the optimization problem is as follows:

min
x1:N

N∑
n=1

(−qn)xn such that xn ∈ {0, 1}, ∀n ∈ [N],

N∑
n=1

ρnixn ≤ ρi, ∀i ∈ [M] (24)

Here, qn and ρni are the values and weights in dimension i of item n. We synthetically generate
1500 MDKP instances for each run. Of these, 900 are used for training, 100 for validation, and
500 for testing. We represent the dataset as {(ϕκ,ρκ, qκ,x

⋆(qκ,ρκ))}Kκ=1 where ϕκ is the feature
vector, ρκ is the concatenated vector of weights and capacity, qκ is the objective parameter, and
x⋆(qκ,ρκ) denotes the solution to instance κ. In our experiment, ϕκ is of dimension 10. The feature
vectors are sampled from a multivariate Gaussian distribution with zero mean and unit variance, i.e.,
ϕκ ∼ N(0, I10).

A.1.1 Data Generation for Unknown Weight Vectors

We generate our dataset similarly to Elmachtoub and Grigas [12] and Tang and Khalil [30]. While
these works consider predicting parameters in the objective function, we focus on predicting param-
eters in the constraints. We use the same data generation process to synthetically create constraint
parameters from features.

To generate the weight vector, first a matrix B ∈ RM×N×10 is generated, which represents the true
underlying model, unknown to the decision-maker. Each entry of the matrix B is sampled from
independent Bernoulli distributions of probability 0.5. The weight ρ(κ)ni , for κ-th instance, is then
generated according to the following formula:

ρ
(κ)
ni =

[
1

3.5Deg

(
1√
10

(
ϕ⊤

κB[i, n]
)
+ 3

)Deg

+ 1

]
ξ
(κ)
ni (25)

The Deg is ‘model misspecification’ parameter. This is because a linear model is used as a predictive
model in the experiment and a higher value of Deg indicates the predictive model deviates more from
the true underlying model and larger the prediction errors. ξ(κ)ni is a multiplicative noise term sampled
randomly from the uniform distribution ξ

(κ)
ni ∼ U [1− w, 1 + w]. We report results for Deg = 6 and

w = 0.25.

We generated the capacity ρ
(κ)
i , the the following ways:

ρ
(κ)
i = r ∗ ξ(κ)i

[N∑
n=1

10∑
ι=1

B[i, n, ι]

]
(26)

The term inside the summation represents an upper bound on the total weight along dimension i.
Therefore, setting the capacity vector equal to this summation would always allow all items to be
selected in the true solution, resulting in a trivial case. To avoid this, we add r ∈ [0, 1]. It tightens
the capacity constraints, thereby preventing trivial solutions where all items are feasibly selected. In
our experiments, we set r to 0.2. Due to the multiplicative noise term ξ

(κ)
i ∼ U [1− w, 1 + w], the

capacity vectors for each instance are not exactly the same.

A.1.2 Data Generation for Unknown Capacity Vectors

We again follow an approach similar to Tang and Khalil [30] to construct this dataset. To generate
the capacity vector, we first create a matrix, B ∈ RM×10 is generated, which represents the true
underlying model. Each entry of the matrix B is sampled from independent Bernoulli distributions of
probability 0.5 like before. The i-th dimensional capacity ρ

(κ)
i , for κ-th instance, is then generated

according to the following formula:

ρ
(κ)
i =

[
1

3.5Deg

(
1√
10

(
ϕ⊤

κB[i]
)
+ 3

)Deg

+ 1

]
ξ
(κ)
i (27)

14

Table 1: Test Regret and Infeasibility of the Models on MDKP Weight Prediction.
Infeasibility Regret
Avg Sd Avg Sd

Model

MSE 0.335 0.015 0.063 0.003
CombOptNet 0.996 0.003 0.000 0.000
SFL 0.992 0.004 0.010 0.013
2sPtO 0.996 0.003 0.000 0.000
Odece(0.2) 0.952 0.020 0.017 0.002
Odece(0.3) 0.845 0.019 0.024 0.002
Odece(0.4) 0.570 0.050 0.039 0.002
Odece(0.5) 0.134 0.023 0.081 0.004
Odece(0.6) 0.079 0.027 0.110 0.009
Odece(0.7) 0.066 0.021 0.126 0.011
Odece(0.8) 0.065 0.025 0.127 0.007

Table 2: Test Regret and Infeasibility of the Models on MDKP Capacity Prediction.
Infeasibility Regret
Avg Sd Avg Sd

Model

MSE 0.588 0.024 0.171 0.010
CombOptNet 0.647 0.092 0.202 0.024
SFL 0.251 0.124 0.269 0.044
Odece(0.2) 0.791 0.077 0.123 0.022
Odece(0.3) 0.572 0.269 0.175 0.086
Odece(0.4) 0.153 0.184 0.330 0.097
Odece(0.5) 0.053 0.020 0.392 0.039
Odece(0.6) 0.049 0.024 0.412 0.058
Odece(0.7) 0.055 0.020 0.417 0.042
Odece(0.8) 0.038 0.008 0.428 0.042

However, directly using this capacity value would result in capacities that are too low for most
instances, leading to solutions where no items are selected. To obviate such scenarios, we scale the
capacity vector by a factor r = 0.5 ∗N , where N is the number of items. Further, to preserve the
dependency between the feature vector and the capacity vector, we multiply the feature vector by the
same scaling factor r.

A.2 Brass alloy production problem

We reproduce this experimental setup from the work by Hu et al. [15]. It is actually a covering LP
problem. The production of the Brass alloy requires two metals – Copper (Cu) and Zinc (Zn). A
factory needs to purchase ores that contain these two metals. These metals must be sourced from
multiple suppliers, each offering metal ores at different prices per unit. The factory’s goal is to
purchase a combination of ores from these suppliers that minimizes the total cost while ensuring that
the total quantity of each metal meets the production requirements. The optimization problem can be
formally written as:

min
x1:N

N∑
n=1

qnxn such that xn ≥ 0 ∀n ∈ [N],

N∑
n=1

ρnixn ≥ ρi, ∀i ∈ [M] (28)

where the decision variable xn represents the amount of ore to be purchased from supplier n, and qn
is the cost per unit from that supplier. ρni denotes amount of metal i in one unit of ore from supplier
n. The constraints ensure that the total acquired amount of each metal i across all suppliers sums up
more than ρi, the required quantity for production.

15

Table 3: Test Regret and Infeasibility of the Models on Alloy Production Problem.
Infeasibility Regret
Avg Sd Avg Sd

Model

MSE 0.532 0.005 0.169 0.004
CombOptNet 0.896 0.233 0.181 0.002
SFL 0.991 0.013 0.019 0.001
2sPtO 0.400 0.548 8.539 6.691
Odece(0.2) 0.790 0.064 0.081 0.033
Odece(0.3) 0.729 0.078 0.123 0.025
Odece(0.4) 0.571 0.085 0.195 0.041
Odece(0.5) 0.471 0.123 0.270 0.054
Odece(0.6) 0.324 0.042 0.365 0.045
Odece(0.7) 0.276 0.026 0.406 0.037
Odece(0.8) 0.174 0.029 0.486 0.037

In the Brass alloy problem instances, there are 10 customers and the factory needs at least 627.54 units
of Cu and 369.72 units of Zn. We consider the data for Brass alloy, which is publicly available in the
repository 3. The dataset contains 500 instances. In each instance, there are 4096-dimensional feature
vector for predicting the values of each ρni. We use 350 instances for training, 50 for validation, and
100 for testing.

B Additional Experimental Results

In this section of the Appendix, we provide additional details on the experimental results that could
not be included in the main text due to space limitations. Specifically, we report the average and
standard deviation of test regret and infeasibility across five runs for each model. Table 1, Table 2 and
Table 3 present the average average and standard deviation of test regret and infeasibility across five
runs for MDKP weight prediction, MDKP capacity prediction and Brass alloy production problem
respectively.

α p-value (infeasibility) p-value (regret)

0.8 3× 10−6 0.999
0.7 3× 10−5 0.999
0.6 5× 10−6 0.999
0.5 5× 10−5 0.999
0.4 0.999 1.50× 10−4

0.3 0.999 4× 10−6

0.2 0.999 3× 10−6

Table 4: P-values from paired t-tests comparing MSE and Odece for infeasibility and regret with
different values of α for MDKP weight predictions.

Test of statistical significance. For predicting capacity, we observe in Table 5, Odece has signif-
icantly lower infeasibility and higher regret till α = 0.4. We also observe the same for the alloy
production problem in Table 6. We conducted statistical significance tests to determine whether the
test regret and infeasibility of Odece are lower than those of MSE. Since each run was conducted
using the same random seed for both models, we used a paired t-test with the alternative hypothesis
that MSE has higher regret and higher infeasibility than Odece. The p-values from the paired t-tests
for different values of α for MDKP weight predictions are reported in Table 4. It tells that for α ≥ 0.5,
Odece has significantly lower infeasibility and higher regret than MSE. The opposite is true when α
goes below 0.4.

3https://github.com/Elizabethxyhu/NeurIPS_Two_Stage_Predict-Optimize/

16

https://github.com/Elizabethxyhu/NeurIPS_Two_Stage_Predict-Optimize/

α p-value (infeasibility) p-value (regret)

0.8 6× 10−7 0.995
0.7 2× 10−7 0.995
0.6 9× 10−7 0.999
0.5 1× 10−6 0.997
0.4 0.003 0.999
0.3 0.450 0.545
0.2 0.997 0.040

Table 5: P-values from paired t-tests comparing MSE and Odece for infeasibility and regret with
different values of α for MDKP capacity predictions.

α p-value (infeasibility) p-value (regret)

0.8 4× 10−6 0.999
0.7 7× 10−6 0.999
0.6 0.002 0.999
0.5 0.160 0.993
0.4 0.848 0.882
0.3 0.999 0.007
0.2 0.999 0.002

Table 6: P-values from paired t-tests comparing MSE and Odece for infeasibility and regret with
different values of α for Alloy Production Problem.

17

C Details about Hyperparameter Configuration

Finally, in Table 7, we provide the hyperparameter configurations used for each model to reproduce
the results reported above.

Table 7: Hyperparameter configurations for each model and task.
Task Hyperparameter MSE Odece CombOptNet SFL 2sPtO

MDKP Weight Prediction
Learning Rate 0.05 0.05 0.05 0.05 0.05
τ (CombOptNet) 0.50
Temperature (SFL) 0.50
damping (2sPtO) 0.01
thr (2sPtO) 0.1

MDKP Capacity Prediction
Learning Rate 0.005 0.005 0.005 0.01
τ (CombOptNet) 0.1
Temperature (SFL) 0.1

Brass Alloy
Learning Rate 0.001 0.001 0.005 0.001 0.05
τ (CombOptNet) 0.5
Temperature (SFL) 0.5
damping (2sPtO) 0.01
thr (2sPtO) 0.1

18

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope. Yes, the main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope. The paper is motivated by the need to
develop a novel approach for predicting unknown parameters of an optimization problem
using correlated features, while explicitly accounting for the subjective preferences of the
decision-maker regarding infeasibility and suboptimality. This motivation, along with the
core contributions, is clearly stated in both the abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper provides a brief summary of the limitations, which we aim to
address in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

19

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, we have provided proofs for the theorems proposed in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We are providing the code and data to reproduce the main experimental results
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will make the data and code publicly accessible upon acceptance of the
paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we have described the training, test, and validation split, as well as the ap-
proach used for hyperparameter selection. For detailed information on the hyperparameters,
we refer the reader to the Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the main text, we report only average of five runs for all the techniques. But
we report standard deviation and conduct statistical significance in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We have provided sufficient information on the computational resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not resort to crowdsourcing or contract work for our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is on fundamental research and we do not find any direct path to any
negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

22

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper presents a fundamental research and does not release any model or
data that can be easily misused.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we cite the source of the data used in the paper
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

23

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will be making our implementation publicly available along with docu-
mentation to support reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects are involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

24

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Literature
	Preliminaries
	Methodology
	Loss Function to Penalize Infeasibility-Inducing Predictions
	Loss Function for Preserving Optimal Solutions
	Minimizing a Convex Combination of LOPL and LIPL

	Experimental Evaluation
	Dataset Description
	Experimental Results

	Conclusion
	Problem and Dataset Description
	Multi-dimensional knapsack problem
	Data Generation for Unknown Weight Vectors
	Data Generation for Unknown Capacity Vectors

	Brass alloy production problem

	Additional Experimental Results
	 Details about Hyperparameter Configuration

