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Abstract

Modern Deep Neural Network (DNN) frameworks use tensor operators as the main
building blocks of DNNs. However, we observe that operator-based construction
of DNNSs incurs significant drawbacks in parallelism in the form of synchronization
barriers. Synchronization barriers of operators confine the scope of parallel com-
putation to each operator and obscure the rich parallel computation opportunities
that exist across operators. To this end, we present ASPEN, a novel parallel com-
putation solution for DNNSs that allows fine-grained dynamic execution of DNNZs,
which (1) removes the operator barriers and expresses DNNs in dataflow graphs of
fine-grained tiles to expose the parallel computation opportunities across operators,
and (2) exploits these opportunities by dynamically locating and scheduling them
in runtime. This novel approach of ASPEN enables opportunistic parallelism, a
new class of parallelism for DNNs that is unavailable in the existing operator-based
approaches. ASPEN also achieves high resource utilization and memory reuse
by letting each resource asynchronously traverse depthwise in the DNN graph
to its full computing potential. We provide challenges and solutions to our ap-
proach and show that our proof-of-concept implementation of ASPEN on CPU
shows exceptional performance, outperforming state-of-the-art inference systems
of TorchScript and TVM by up to 3.2 and 4.3 X, respectively.

1 Introduction

Deep Neural Networks (DNN5s) are dataflow graphs of artificial neurons, each of which computes
a mathematical function using the outputs of other artificial neurons as inputs. However, artificial
neurons are rarely treated as individual units of computation, as their role as building blocks of neural
networks has largely been replaced by tensor operators. A tensor operator, or simply an operator,
refers to a large group of artificial neurons with the same functionality. These operators take inputs
from the outputs of other operators, and the multi-dimensional arrays of data transferred between the
operators are referred to as tensors. Modern DNN frameworks, such as TensorFlow [[1]], PyTorch[33]],
and MXNet[3], all utilize these operators as the main building blocks of DNNSs, as grouping many
identical artificial neurons into a single computation unit allows for easier construction, representation,
and execution of DNNSs that are becoming increasingly complex.

However, we find that the operator-based expression of DNNs incurs significant drawbacks in
parallelism. Grouping artificial neurons into operators separates the computation of a DNN into
two hierarchical layers of inter-operator and intra-operator computations[30} [51]]. Inter-operator
computations of a DNN are represented by a dataflow graph of operators, and frameworks such as
Tensorflow or PyTorch delegate the execution of each operator to vendor-provided DNN acceleration
libraries such as oneDNN [19], cuDNN [7]], or ARMNN [33]]. These libraries handle intra-operator
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Figure 1: Depiction of a DNN as (a) operator-based dataflow graph and (b) tile-based DNN dataflow
graph, and its execution using [V parallel computation resources, (c) with operator barriers, and (d)
without operator barriers.

computations by partitioning the computations of an operator into fixed-shape computation units
known as tiles [14} 28 130, 154], that exploit key features of the hardware such as the number of
registers, vector processing width, and cache sizes. For instance, oneDNN may partition single-
precision matrix multiplication of 1024 x 1024 square matrices into 16384 8 x 8 matrix multiplication
tiles, which align with the vector width of 256-bit AVX2 registers of x86 CPUs. The tiles are then
scheduled to the parallel processing resources of the given hardware, and the execution of an operator
is considered complete when all tiles have been computed by the parallel resources.

Unfortunately, this two-level execution of DNNs inevitably introduces a synchronization barrier
between operators. As intra-level computations are treated as black boxes by DNN frameworks,
synchronization barriers are necessary at the end of each operator execution to ensure that all
computations within an operator are completed before scheduling the next operator that depends
on its predecessor [45]]. These barriers make the computation flow simpler and the development
of execution frameworks easier, but they also completely obscure the rich parallel computation
opportunities that exist across the barriers.

For example, Figure[I] (a) illustrates a traditional operator-based dataflow graph of a DNN at the
inter-operator level. However, when we apply tile-wise partitioning at the intra-operator level and
express the dataflow graph with tile-based granularity as shown in Figure[I] (b), we discover the
presence of multiple parallel paths of computation across the operators. Unfortunately, the traditional
two-level execution of DNNs depicted in Figure[T](c) hinders the utilization of these computation
opportunities, due to the synchronization batriers that confine the scope of computation within each
operator. The synchronization barrier forces the resources to remain idle until all tiles within an
operator are executed before allowing the execution of new tiles, resulting in an underutilization of
available resources. A more efficient parallel execution could be achieved by removing the barriers
and enabling each resource to asynchronously execute new parallel computations as soon as they
become ready for computation, as depicted in the parallel computation paths of Figure [T (d).

To utilize this untapped source of parallelism over the synchronization barriers, we propose fine-
grained dynamic execution of DNNs, where we (1) remove the barriers and express DNNs in dataflow
graphs of fine-grained tiles to expose the parallel computation opportunities across operators, and (2)
exploit these opportunities by dynamically locating and scheduling them in runtime. This fine-grained
dynamic execution of DNNs enables opportunistic parallelism [29] 26| [25] for DNNs, a new class of
parallelism that is unavailable in the existing operator-based approaches. In opportunistic parallelism,
each resource asynchronously traverses down a distinct computation path in the graph as depicted in
Figure[T](d). As there are no barriers to halt the execution of computation resources, each resource
can execute its computation path to its maximal computational capabilities, leading to maximum
system utilization and efficient load balancing. Also, as parallel resources are now computing down a
path in the graph, data reuse is maximized as the computation output is reused as input for the next
computation on each resource.

To fully leverage the potential of opportunistic parallelism in DNNs, we find three technical challenges
that must be addressed. The first challenge lies in expressing the tile-wise dataflow graphs, from
designing a partitioning approach that is general enough to be applicable to all DNNS, to determining
the dimensions of the tiles that would allow the most efficient parallelism across the operators.

The second challenge involves developing a runtime system that can enable dynamic tracking of com-
putation opportunities and asynchronous scheduling of many parallel resources over a complex DNN



dataflow graph. While the concept is straightforward, creating a parallel solution that achieves such
asynchronous graph traversal and execution of many computation resources, without encountering
race conditions or data hazards, while also maintaining high scalability and efficiency, is a formidable
task. As existing operator-based frameworks can neither enable nor manage such asynchronous and
dynamic execution of DNNs, a novel algorithm for DNN scheduling must be created to achieve
efficient opportunistic parallelism.

The third challenge entails creating a solution that facilitates concurrent information exchange among
massive numbers of asynchronous parallel resources. Even when each parallel resource executes an
independent computation path, there inevitably comes a need for a resource to know the progression
status of other nodes, for instance when a resource must select a new path to traverse. However, using
synchronization for information exchange would halt the resources and compromise the effectiveness
of opportunistic parallelism. Therefore, information exchange between resources must be performed
asynchronously without impeding the progression of other resources.

To tackle these challenges, we present ASPEN, a novel DNN computation solution comprising three
key components: (1) a tile-based graph partitioning unit that transforms operator-based DNN
dataflow graphs into tile-based dataflow graphs unlocking rich parallel computation opportunities,
(2) a distributed scheduling algorithm that enables each resource to asynchronously track and
compute a distinct computation path without encountering any data hazards or race conditions, and
(3) a highly concurrent data structure that facilitates asynchronous information exchange among
parallel resources. These three components of ASPEN work in unison to address the aforementioned
challenges and achieve efficient utilization of parallel computing opportunities across operators. Our
proof-of-concept implementation of ASPEN on CPU demonstrates remarkable performance gains
on various CNN and transformer-based model inference, achieving up to 3.2x and 4.3 x speedup
against state-of-the-art inference systems such as TorchScript [9] and TVM [6]], respectively.

2 Background and Related Works

Limited parallelism of the current operator-based approach, particularly in the domain of DNN
inference, has become a significant issue in recent years. In DNN training where an abundant number
of inputs are provided, data parallelism or pipeline parallelism [8, [18} 31} [12} 147} 34} |51 144]] are
extensively used to leverage the inherent concurrency between inputs and achieve highly-parallel
DNN computation. However, in DNN inference, the number of inputs is often limited which restricts
the parallelism available from concurrent input data [30]. To address this limitation, several solutions
propose manipulating the operators of the DNN to expose more parallelism within the given DNN
model structure.

One approach is Operator Fusion, which aims to merge computations from neighboring operators
into a single, larger operator, creating a more substantial intra-operator computation space. This
expanded computation space allows for greater parallelism opportunities, such as increased utilization
of the vector processing hardware or batched memory accesses. Many high-performance DNN
frameworks and acceleration libraries, such as TVM [6], TorchScript [9], XNNPACK [13]] and
oneDNN [19], have already integrated rule-based operator fusion and fused computation kernels
to accelerate parallel DNN execution. Systems like TASO [22]], Rammer [30], Apollo [49], and
AStitch [52] introduce an advanced fusion technique which combines computation from independent
operators into a single fused operator, unlike conventional fusions where only parent-child operators
of a graph are fused. This technique can be understood as fusing inter-operator parallelism space into
a larger, unified parallelism space, enabling much broader computation space for optimizations.

Another avenue to increase the parallelism opportunities is Model Slicing [50, 48] [17, 53] 21]], which
takes an opposite approach to operator fusion or stitching. Model slicing decomposes tensors and
operators of CNNs into smaller ones, thus increasing inter-operator parallelism while reducing intra-
operator parallelism. This approach is particularly utilized on edge clusters, where a large number
of cluster nodes with limited computation capabilities synergy well with the increased number of
operators and reduced per-operator computation.

Unlike existing works that focus on the manipulation of operators, ASPEN explores tile-based
dynamic execution of DNNs for increased parallelism. Expressing DNNs in a tile-granularity effec-
tively combines the separate inter- and intra-operator computation spaces into a single unified space
of tile-based dataflow graph. This provides a holistic view of the DNN and enables a finer-grained
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Figure 2: The overall workflow of ASPEN. APU compiles operator-based DNNs into ASPEN graphs
to expose parallel computation opportunities across operators. ASPEN runtime, composed of Ready
Pool and DSEzs, utilizes opportunistic parallelism to achieve efficient parallel execution of DNNSs.

analysis and management of both computation and data, allowing contributions that were previously
impossible with the operator-based dataflow graphs. Recent works on tile-based understanding of
DNNs focus on applying tile-based analysis and optimizations on topics such as DNN schedulers [30],
graph compilers [54]], or reducing memory overhead [40].

In contrast, ASPEN explores the benefits of tile-based DNNs during runtime. ASPEN combines (1)
tile-based expression of DNNs, with (2) dynamic parallelism and execution approaches developed
for irregular programs [29, 26| 25| [24] [15 132} [33]] to enable fine-grained dynamic parallelism and
execution of DNNs. Finer granularity allows more parallelism opportunities to be expressed on the
dataflow graph, and dynamic execution allows these opportunities to be located and scheduled right
away during runtime, enabling a novel parallelism in DNNs which we call opportunistic parallelism.

To our knowledge, ASPEN is the first to explore the benefits of tile-based DNNs during runtime using
dynamic scheduling and execution approaches. While we mainly focus on parallelism in this paper,
we find that the benefits of fine-grained dynamic execution of DNNs are not limited to parallelism,
and extend to dynamic load-balancing, reduced memory traffic, and novel functionalities that are
impossible in operator granularity or static scheduling approaches. We cover these additional benefits
in detail in Sectiond and

3 ASPEN Design

To achieve efficient utilization of opportunistic parallelism in DNNs, we design ASPEN with three
key components: the Automated Parallelism Unit (APU), the Distributed Scheduling Engine (DSE),
and the Ready Pool. Each component is designed to overcome the three challenges described in
Section[I] namely exposing computation opportunities across operators, creating an efficient runtime
to leverage these opportunities, and enabling asynchronous information exchange between parallel
resources. The following subsections provide a detailed explanation of how each component tackles
its respective challenge.

Figure [2] depicts an overall workflow of ASPEN. The APU takes a traditional operator-based de-
scription of a DNN and automatically generates a computation tile-wise dataflow graph, which we
call the ASPEN graph. The ASPEN runtime, which consists of DSEs and a Ready Pool, initializes
the computation by loading the graph and input data. DSE is a scheduler that exists separately for
each parallel resource and handles the asynchronous traversal and execution of parallel paths of the
designated resource. As the execution progresses, information on the path progression of the DNN
by each resource is updated in the Ready Pool as ready nodes. Ready nodes are nodes that have all
their parent nodes computed but have not been computed themselves, and they represent the tail ends
of execution paths. The DSEs can refer to the Ready Pool whenever they need information about
other paths, enabling asynchronous information exchange between parallel resources.

3.1 Automated Parallelism Unit

The goal of APU is to transform an operator-based DNN into a tile-wise dataflow graph that
exposes finer-grained parallel computation opportunities across operators. As mentioned in Section|T}
existing computation kernels partition and execute operators using computation tiles [[11} 43} 130} 54],
with synchronization barriers to ensure the completion of all tile execution within an operator.
APU removes these barriers and expresses dependencies between individual tiles to expose more
parallelism. To create a generalized method applicable to any operator, we propose partitioning the



_______________

- b

(a) DNN description | (b) Tile-wise Tensor Partitioning i(c) Graph Reconstruction : (d) Node Merging E(e) ASPEN Graph
. EEEEERE EEEE 2029
O o o )
S il SVAVAVAVAVAVAR™ SAVIRVAAVA~
£, oooooo ! 000
i-EEEEEE T OHEBEE o
©__ Sonvoluton Tles _ | Tie-wise Node Dependency : Graph Simplification |

Figure 3: Illustration of the three-step APU operation on an example DNN.

output tensor of each operator into fine units to maximize parallelism and then merging them into
graph nodes. Merging reduces scheduling overhead and allows for increased weight data reuse and
better utilization of computation resources.

We observe that many DNN computations kernels are executed using matrix multiplication. Naturally,
DNN computations form a chain of matrix multiplications where the output of one multiplication
serves as the input for the next. We focus on the property that in matrix multiplication A x B = C,
only a single column-wise vector of matrix B is required for the computation of the column-wise
vector of matrix C' with the matching row index. If we fix the weight matrices as A, the chain of
matrix multiplication in DNNs can be understood as a set of independent, parallel-running matrix-
vector multiplication chains. Therefore, we conclude that partitioning operators into column-wise
matrix tiles exposes the most parallel path within the DNN graph.

ASPEN leverages this insight by splitting output tensors into fine-grained matrix tiles aligned with
the smallest hardware features such as SIMD register length or L1 cache size, and then merging them
column-wise and subsequently row-wise. APU automates this process using a three-step approach
illustrated in Figure [3(b) to (d). First, (a) APU parses the given DNN and (b) partitions the output
tensors into fine-grained matrix tiles. (c) It merges the tiles column-wise into graph nodes, creating a
directed acyclic graph (DAG) based on the element-wise dependencies. (d) The performance of the
resulting graph is evaluated, and nodes are further merged or split column-wise and then row-wise
until a sufficient level of parallelism is exposed. (e) The resulting ASPEN graph now represents
computation opportunities across operators as separate dataflow edges between nodes. The ASPEN
graph is saved as a file and later loaded into the ASPEN runtime for execution.

3.2 Distributed Scheduling Engine

DSE aims to maximize the utilization of parallel resources by continuously scheduling new com-
putation opportunities while dynamically traversing a barrier-free path in the DNN graph. Each
parallel resource has its own DSE, operating in isolation to eliminate idling and loss of utilization due
to synchronization. This decentralized approach distributes scheduling and graph overhead among
the resources, enabling high scalability. We show our novel DNN scheduling algorithm ensures the
correctness and completeness of DNN execution while operating in complete isolation.

In the ASPEN runtime, graph nodes transition between three states: executed, ready, and not-ready.
An executed node is a node that has been processed by a computation backend after all of its parent
nodes have been executed, or is an input (source) node of the DAG. A ready node has all its parent
nodes executed but has not been processed itself. A not-ready node has one or more parents that are
not executed. The state transitions always occur in the order of not-ready, ready, to executed.

DSE executes Algorithm|[I] The idea of Algorithm [I]is that the DSE only needs to be aware of the
ready nodes for its traversal, as ready nodes are always at the tail end of execution paths. Executing a
ready node may turn one or more of its child nodes into ready nodes. If so, DSE selects one node for
further traversal and stores the rest in the Ready Pool as new computation heads. If no new ready
node is created, the DSE fetches a new path head from the Ready Pool. Algorithm|[I]is also designed
to be DNN-agnostic. That is, DSE will continuously fetch and execute new computations from the
ready pool regardless of the layer or DNN graph it belongs to, to maximize resource utilization.

Figure {4]illustrates an example of DSE execution. When a DNN is loaded into the ASPEN runtime,
the nodes from the first operator are always ready, as input nodes are always executed. These ready
nodes are pushed into the Ready Pool to initiate execution. (a) DSEs of resources A and B fetch
ready nodes as the heads of their execution paths. (b) Resource A reaches a dead end without any
new ready nodes. (c) Resource A fetches a new path head from the pool, while resource B also hits a



Algorithm 1 DSE’s asynchronous graph traversal and scheduling algorithm

Require: Computation Resource C, Current ready node IV, Ready Pool R

1: struct GRAPH NODE

2 K : COMPUTATION KERNEL OF THE NODE

3 A. : ARRAY OF CHILD NODES

4 P,, : NUMBER OF PARENT NODES

5: P. : NUMBER OF EXECUTED PARENT NODES

6: end struct

7: while True do

8 if V is NULL then

9: N « pop(R) > Pop a new path head from pool. NULL returned if empty.
10: else
11: Execute N.K on C > Execute current node. V. X denotes the struct member X of N.
12: a. — N.A.
13: N < NULL
14: for n. in a. do > Iterate through all children of current node
15: pe < atomic_fetch_add(n..Fe, 1) > Atomic post-increment
16: if p. + 1is n.. P, then > If child is ready
17: if N is NULL then
18: N < n. > Traverse to first readied child
19: else
20: push(R,n.) > Push remaining readied children to pool
21: end for

22: end while
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Figure 4: Two parallel DSEs for Resource A and B executing Algorithm on the example DNN from
Figure E} Resource A is assumed to be faster than B for demonstration purposes.

dead-end. (d) On its second computation path, resource A finds that both children of the executed
node become ready. It proceeds with the first ready child while pushing the other child into the pool
as a new computation head. (e) After all executions, the DNN computation is completed with five
different computation paths taken by the resources. This novel execution enables asynchronous and
continuous scheduling of new computation nodes to parallel resources, achieving highly efficient
parallel execution of DNNGs.

Algorithm [I| can be further optimized to certain DNNs or hardware. For instance, we find that
dependency patterns in DNN graphs formed by pooling or strided layers create tiles of higher
importance, and executions can be accelerated by prioritizing these tiles. Also, having a cache
of child nodes on each DSE decreases the access to shared memory, which increases throughput.
However, to focus on providing a general solution that first enables the novel approach of tile-based
opportunistic parallelism, we leave optimizations for future work.

Correctness: We now show the correctness of the asynchronous parallel execution of ASPEN. We
first show that race conditions are impossible. Let v be a ready node. From Algorithm I} a node is
considered ready when P, = P,,. Since the increment of P, is atomic, the DSE whose increment
resulted in P, = P, for v is uniquely determined. The said DSE can choose to either set v as its
N or push v to the Ready Pool. If the former option is chosen, exclusiveness is guaranteed during
the execution of v as the DSE responsible for v is unique. If the latter option is chosen, v is stored
in the Ready Pool until it is eventually popped by a DSE. As the Ready Pool is a concurrent data
structure, only a single DSE can pop v, ensuring exclusiveness during the execution of v. Therefore,
exclusiveness is guaranteed in all node executions of ASPEN.

Furthermore, all executed nodes of ASPEN yield correct execution output as long as a correct input
to the DNN is provided. From Algorithm[I] a ready node v becomes an executed node when it is
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Figure 5: Illustration of concurrent access to Ready Pool queue matrix.

executed on a computation resource R using kernel K. We assume R and K are correct, as they
are externally supplied to the runtime. By the definition of a ready node, all parent nodes of v are
executed nodes. Since DSEs can only execute a ready node, no other DSE can modify the parent
nodes of v, or the input of v, during the execution of v. This eliminates data hazards during execution
and, when combined with exclusiveness in execution, guarantees correct execution results as long as
the parent nodes of v have correct execution results. Therefore, through recursion, ASPEN computes
correct execution results for all nodes as long as a correct input to the DNN is provided.

Completeness: We show that all graph nodes become executed in ASPEN. Suppose there exists a
node v in the DAG that is never executed. v cannot be a ready node since a ready node will be either
executed as soon as it is created, or stored in the Ready Pool until it is eventually popped and executed.
Therefore, v must be a not-ready node, and by definition of a not-ready node, at least one parent of v
is also a node that is never executed. By recursion, there must exist a path from some source node s
to v where all nodes on the path are not-ready nodes. However, this leads to a contradiction as source
node s is an executed node by definition. Therefore, v cannot exist in ASPEN.

3.3 Ready Pool

Ready Pool is our fast, flexible, and scalable solution for managing dependencies among a large
number of computation nodes and parallel resources. It acts as a barrier, separating nodes that can
be computed from those that cannot, similar to existing synchronization barriers in operator-based
approaches. However, Ready Pool offers a significant advantage over traditional synchronization
barriers in that the dependency information exchange happens on-demand, and only between the
producer and consumer of the information, without involving other resources.

Synchronization barriers inserted in compile time are unaware of which computation tile is scheduled
to which resources on runtime. As a result, they must synchronize all resources to ensure the
correctness of dependent computations, which limits parallelization scope and hampers the utilization
of faster resources. In contrast, Ready Pool allows resources to dynamically update the satisfaction of
dependencies to the pool and enables asynchronous retrieval by other resources when they require
new computations, minimizing the overhead of data exchange.

However, if not properly designed, Ready Pool can be a bottleneck in the system. To ensure constant
access time, flexible scheduling policies, and scalability over many parallel resources regardless of
DNNs used, we design Ready Pool using a matrix of concurrently accessible FIFO queues, as shown
in Figure[5] Each DSE is assigned a row of queues, and accesses from a DSE are prioritized within
its assigned row to minimize conflicts between DSEs. A simple hash function determines the column
index of the accessed queue during the push() operation, while a multi-level priority queue is used
during the pop() operation to facilitate fast accesses and support scheduling policies.

To be specific, during push(), ready nodes from each DSE are batched to reduce overhead. The target
queue’s column index is determined using a user-defined hash function H (k). In our proof-of-concept
code, key k is the depth of the pushed nodes, and H (k) returns a smaller column index if the depth is
shallow, and a larger index if the depth is deep. When combined with row-wise priority queue access
of pop(), this implementation enables the scheduling policy of prioritizing nodes of shallower depth,
which accelerates execution by allowing DSEs to traverse longer computation paths. During pop(), a
DSE first pops nodes from its assigned row to maximize data reuse. If the assigned row is empty,
the DSE searches rows of other DSEs similarly to work-stealing queues [4]], to automatically load
balance and improve resource utilization. When a DNN enters the ASPEN runtime, ready nodes are
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uniformly distributed among the rows. This design of Ready Pool ensures fast and concurrent access
while enabling scheduling policies and automatic load balancing throughout the DNN execution.

4 Evaluations

Implementation Details: As no existing DNN framework supports the use of opportunistic
parallelism, we implement our proof-of-concept code of ASPEN targeting CPUs with approximately
12k lines of C code from scratch. We create our own tile-wise GEMM kernels using AVX?2 extensions
and conv2D kernels using the GEMM kernels and im2col. The remaining operators are computed
using simple C for-loops. For memory, output tensors for each operator are created in NHWC order as
in the existing approaches, and each tile holds a pointer to its respective location in each tensor. Our
implementation is publicly available at https://github.com/cakeng/ASPEN/tree/ ASPEN_NeurIPS/.

Experimental Setup: Our evaluations are conducted on an AMD Threadripper 3990X 64-core
processor and an Intel i9-12900K 16-core processor using Ubuntu 22.04. We compare ASPEN
against the popular DNN framework of TensorFlow (v2.7) [1]] as well as highly-optimized inference
solutions of TorchScript (v2.0.0) [9], TensorFlow XLA (v2.6.2) [39], and TVM (v0.11.0) [6]], all
using C/C++ API. We evaluate inference latency of various CNN and Transformer-based [46] NLP
models, namely VGG-16 [42], ResNet-50 [16]], Yolo-v3 (416) [38], BERT-base, BERT-large [10]],
and GPT-2 (124M) [37]. For the GPT-2 model, we evaluate the first model iteration, where no
past attention values are provided. We measure the end-to-end latency of DNN model execution,
which excludes pre- or post-processing such as image cropping or text tokenization. We average the
measurements over 100 runs to obtain representative values.

4.1 Execution Latency

Figure [6] presents the inference latency speedup of ASPEN and other frameworks compared to
TensorFlow on Threadripper 3990X for various DNN models. Overall, ASPEN demonstrates strong
performance, achieving speedups up to 6.2x against TensorFlow (BERT-base S480 B8) and 4.3 x
against TVM (GPT-2 S1024 B1). We find ASPEN performs better when more layers with multiple
execution paths, such as residual connections or multi-head attention layers, are contained within the
model. These network designs provide multiple computation paths across operators, which synergize
effectively with the opportunistic parallelism of ASPEN.

ASPEN also exhibits amplified speedup with larger batch sizes, as larger batches further facilitate
the isolation of computation between DSEs. In existing operator-based solutions, dependent compu-
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Figure 9: Heterogeneous resource utilization of ASPEN and other frameworks over various DNNs on
Intel i9-12900K. B refers to the batch size, and S on the NLP models refers to the number of input
tokens. Both the performance cores and efficiency cores are utilized after 8 threads.

tations across operators are not guaranteed to be scheduled to the same resource. This necessitates
scatter/gather-like data exchanges between resources causing memory overheads, and this overhead
only increases with larger batch sizes and more resources used. In contrast, depth-first computation of
ASPEN allows dependent tiles to be scheduled to the same resource as much as possible, achieving
effects similar to operator fusion. With large enough batch sizes, each DSE is allocated paths in
different batch indexes similar to data parallelism, greatly reducing the memory overhead. Also, even
when there are data exchanges between resources, only a few resources are involved simultaneously,
relieving the pressure on the memory system.

4.2 Parallel Scaling

Figure [/| presents the strong scaling throughput results of ASPEN against other frameworks on
Threadripper 3990X, detailing the results of Figure[6] We observe that ASPEN exhibits superior per-
resource scaling performance over other frameworks, thanks to its asynchronous design and distributed
scheduling. To quantitatively evaluate the scaling performance, we introduce the experimental parallel
fraction, denoted as p., in Figure[§] p. represents the proportion of computation executed in parallel,
which directly influences the scaling and upper limit of parallel speedup according to Amdahl’s

law [2]. We use Karp-Flatt metric [23] p. =1 — % to calculate p., N being the number of

parallel resources, and v being the measured speedup while using N parallel resources. ASPEN
achieves remarkably high p. values ranging from 0.97 to 0.99 across all cases, indicating that
more than 97% of ASPEN computations are performed in parallel, which allows ASPEN to exhibit
exceptional scaling performance following Amdahl’s law.

4.3 Resource Utilization

Figure 9] presents the resource utilization of ASPEN and other frameworks on Intel’s i9-12900K
heterogeneous processor for various DNN models. i9-12900K has 8 performance cores (P-cores) and
8 efficiency cores (E-cores) with different computing capabilities. We observe that ASPEN shows
a linear summation of all utilized core performance, clearly highlighting the higher performance
inclination of P-cores on 1 to 8 threads and the lower performance inclination of E-cores on 9 to 16
threads. In contrast, existing solutions exhibit sub-optimal resource utilization when using both the P-
cores and E-cores, suffering from stale performance increases (TensorFlow, XLLA), sharp performance
drops (TorchScript, XLLA), or performance bottlenecks to the slower E-cores (TorchScript, TVM).
ASPEN, on the other hand, effectively utilizes all available resources to their full potential, thanks to
its dynamic scheduling and automatic load-balancing capabilities provided by the ASPEN runtime.

4.4 Ablation Studies

Figure|10|(a) provides the execution throughput of ASPEN in FLOP/s against the number of ASPEN
tiles per layer. The throughputs of other frameworks are presented in dotted horizontal lines. The
throughput of ASPEN increases on 1 to 128 tiles, as increasing the number of tiles provides more
parallelism. The throughput drops after 128, as there are not enough resources in the machine to
utilize the increased parallelism, while the smaller tiles increase overhead and reduce computation
efficiency. As such, ASPEN shows a concave performance characteristic against the number of tiles.

Figure [I0](b) to (d) provides the execution throughput scaling of ASPEN and other solutions against
various DNN parameters, normalized to the throughput on the smallest parameter size. ASPEN shows
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Figure 10: Performance and scaling against differing parameter sizes, on Threadripper 3990X using
64 cores. All tests are executed with a batch size of 1, using a synthetic DNN with 32 identical
convolution layers. All layers have 64x64 inputs, 3 %3 filters, input and output channels of 128,
padding and stride of 1, and a fixed 128 tiles per layer for ASPEN, except for the specified parameters.

a noticeable speedup with an increasing number of layers, owing to the utilization of computation
opportunities and depthwise computation across the layer boundaries. Against height, width, and
channel sizes, existing frameworks except TVM exhibit large performance speedup as larger tensor
sizes allow more parallelism in each layer for these solutions. The performance of TVM is largely
unaffected as it creates optimized kernels for each of the given parameter sizes, achieving constant
performance across tensor sizes. The performance of ASPEN is also less affected by tensor sizes as
ASPEN is able to source its parallelism from other sources.

5 Limitations and Discussions

ASPEN on GPUs: While our current proof-of-concept implementation of ASPEN targets CPUs, we
expect ASPEN to be easily applicable to GPUs as well if given proper tile-level kernel support. For
example, Nvidia GPUs can leverage the CUDA Streams and CUDA Events API to dispatch tile-level
kernel calls asynchronously, while DSEs on the CPU perform graph traversal to identify computation
opportunities. Using ASPEN on GPUs would allow for a seamless interleaving of data movement,
kernel launches, and tile executions. This would greatly reduce the host-device scheduling and
communication overhead, which are often reported as a limiting factor of GPU utilization [30, 27].
The asynchronous nature also means that the computing resources would be at differing stages of
kernel execution, which distributes memory access requests across the temporal domain and mitigates
the limitations in memory bandwidth that DNN executions on GPUs often face [51} 40].

ASPEN on DNN training: ASPEN can potentially be used for DNN training as it offers a general
solution for leveraging opportunistic parallelism on DNNs. However, as DNN training can exploit the
abundant input data as an alternative source of parallelism, it is unlikely that ASPEN’s dynamic ap-
proach would outperform static optimization solutions [41}[36] due to runtime overhead. Nonetheless,
ASPEN remains appealing in environments with varying capabilities, such as edge computing.

ASPEN for diverse applications: Fine-grained dynamic DNN execution of ASPEN also brings
several novel functionalities to DNN execution. Since the execution of DSEs is DNN-agnostic,
different DNNs can be co-executed easily for increased system utilization [20] by simply placing
them in the same Ready Pool. Parallel resources can be dynamically added or removed from the
ASPEN system without disrupting the execution of other resources, allowing for enhanced flexibility.
For DNN applications that operate on continuous input streams like videos, ASPEN’s dynamic
dependency tracking enables the execution of only the relevant tiles affected by the changes in the
input, significantly reducing computation requirements. In computation offloading, ASPEN can
interleave computation and transmission at the tile level to hide most of the networking overhead. In
inference servers, inference requests can be immediately pushed into the Ready Pool and executed
concurrently with other users’ requests, reducing turnaround time and improving system utilization.

6 Conclusion

We present ASPEN, a novel parallel computation approach for DNNs that aims to (1) eliminate
the synchronization barriers of tensor operators and (2) leverage opportunistic parallelism on the
tile-wise dependency graph of DNNs. This allows ASPEN to dynamically locate and execute any
parallel computation opportunities, resulting in high scalability and efficient utilization of parallel
resources. Through evaluation, we validate that ASPEN outperforms the existing solutions and
delivers exceptional parallel computing performance for DNNs.
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