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Abstract

Generative flow networks utilize a flow-matching loss to learn a stochastic pol-
icy for generating objects from a sequence of actions, such that the probability
of generating a pattern can be proportional to the corresponding given reward.
However, a theoretical framework for multi-agent generative flow networks (MA-
GFlowNets) has not yet been proposed. In this paper, we propose the theory
framework of MA-GFlowNets, which can be applied to multiple agents to generate
objects collaboratively through a series of joint actions. We further propose four
algorithms: a centralized flow network for centralized training of MA-GFlowNets,
an independent flow network for decentralized execution, a joint flow network for
achieving centralized training with decentralized execution, and its updated condi-
tional version. Joint Flow training is based on a local-global principle allowing to
train a collection of (local) GFN as a unique (global) GEN. This principle provides
a loss of reasonable complexity and allows to leverage usual results on GFN to
provide theoretical guarantees that the independent policies generate samples with
probability proportional to the reward function. Experimental results demonstrate
the superiority of the proposed framework compared to reinforcement learning and
MCMC-based methods.

1 Introduction

Generative flow networks (GFlowNets) [1] can sample a diverse set of candidates in an active learning
setting, where the training objective is to approximate sampling of the candidates proportionally to a
given reward function. Compared to reinforcement learning (RL), where the learned policy is more
inclined to sample action sequences with higher rewards, GFlowNets can perform exploration tasks
better. The goal of GFlowNets is not to generate a single highest-reward action sequence, but rather
is to sample a sequence of actions from the leading modes of the reward function [2]. However, based
on current theoretical results, GFlowNets cannot support multi-agent systems.

A multi-agent system is a set of autonomous interacting entities that share a typical environment,
perceive through sensors, and act in conjunction with actuators [3l]. Multi-agent reinforcement
learning (MARL), especially cooperative MARL, is widely used in robot teams, distributed control,
resource management, data mining, etc [4, |5, |6]. There two major challenges for cooperative MARL.:
scalability and partial observability [[7, |8]. Since the joint state-action space grows exponentially
with the number of agents, coupled with the environment’s partial observability and communication
constraints, each agent needs to make individual decisions based on the local action observation
history with guaranteed performance [9, 10} [11]. In MARL, to address these challenges, a popular
centralized training with decentralized execution (CTDE) paradigm [[12} [13]] is proposed, in which
the agent’s policy is trained in a centralized manner by accessing global information and executed
in a decentralized manner based only on the local history. However, extending these techniques to
GFlowNets is not straightforward, especially in constructing CTDE-architecture flow networks and
finding IGM conditions for flow networks need investigating.
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In this paper, we propose the multi-agent generative flow networks (MA-GFlowNets) framework for
cooperative decision-making tasks. Our framework can generate more diverse patterns through se-
quential joint actions with probabilities proportional to the reward function. Unlike vanilla GFlowNets,
the proposed method analyzes the interaction of multiple agent actions and shows how to sample
actions from multi-flow functions. Our approach consists of building a virtual global GFN capturing
the policies of all agents and ensuring consistency of local (agent) policies. Variations of this approach
yield different flow-matching losses and training algorithms.

Furthermore, we propose the Centralized Flow Network (CFN), Independent Flow Network (IFN),
Joint Flow Network (JFN), and Conditioned Joint Flow Network (CJFN) algorithms for multi-agent
GFlowNets framework. CFN considers multi-agent dynamics as a whole for policy optimization
regardless of the combinatorial complexity and demand for independent execution, so it is slower;
while IFN is faster, but suffers from the flow non-stationary problem. In contrast, JEN and CJFN,
which are trained based on the local-global principle, takes full advantage of CFN and IFN. They can
reduce the complexity of flow estimation and support decentralized execution, which are beneficial to
solving practical cooperative decision-making problems.

Main Contributions: 1) We first generalize the measure GFlowNets framework to the multi-agent
setting, and propose a theory of multi-agent generative flow networks for cooperative decision-making
tasks; 2) We propose four algorithms under the measure framework, namely CFN, IFN, JFN and
CJFN, for training multi-agent GFlowNets, which are respectively based on centralized training,
independent execution, and the latter two algorithms are based on the CTDE paradigm; 3) We propose
a local-global principle and then prove that the joint state-action flow function can be decomposed
into the product form of multiple independent flows, and that a unique Markovian flow can be trained
based on the flow matching condition; 4) Control tasks experiments demonstrate that the proposed
algorithms can outperform current cooperative MARL algorithms in terms of exploration capabilities.

1.1 Preliminaries and Notations

Measurable GFlowNets [[14, [15, [16], extending the original definition of GFlowNets [17, [1]
to non-acyclic continuous and mixed continuous-discrete statespaces, are defined by a tuple
(8, A,S,T, R, F,) in the single-agent setting, where S and A denote the state and action space, S
and T are the state and transition map, 7 and Fj, are the forward policy and outflow respectively.

More precisely, the state space S and the state-dependent action spaces s
A are measurable spaces; for each state s € S, the environment comes = R

. . o | T, . . A S=—=R,
with a stochastic transition map|’|. A — S. We formalize this dependency ~—7  Fou

on state by bundling (packing) state and action together into a bundle T

{(s,a) | s € S,aec A} =A 2T, S where S(s,a) := sand T(s,a) := Ts(a). For graphs, a
bundled action is an edge s — s’; the state map S returns the origin s while the transition map returns
the destination s’. The forward policy 7 is a section of S, i.e., a kernel S I, Asuch that S o 7 is
identity on S. The outflow (or state-flow) Fy,+ and the reward R are non-negative finite measure on
S. The state space S has two special states so and s such that T'(so, a) # so and T'(sf,a) = s¢ for
all actions a; furthermore, there is a special action STOP such that T'(s, STOP) = s ¢ for all state s.
The reward R is generally non-trainable and unknown but implicitly a component of Fi,,+ and 7; since
the reward may not be tractable in the multi-agent setting, we favor a reward-free parameterization
of GFlowNets, ie we restrict all objects to S* := S\ {sg, sy }. Therefore, we parameterize them
by triplets F = (7%, F,(, Finit) Where 7*(a|s) = w(als,a # STOP), FZ,, := Fou, — R and
Finit = Fout(s0)T o m(sg). We define a Markov chain (s;);>1 by sampling a first state s; from
Fipit, then a; = w(s;) and s;41 = T'(a;). The sample generated by the GFlowNet is the last position
before hitting s¢. The sampling time 7 is then the first ¢ such that a; = STOP. The distribution of
s, is controlled by the so-called flow-matching constraint

Fout :E = imit_‘_F‘;k tﬂ-*T; (1)

u

as measures on S, and the sampling Theorem first proved in [[1]]:

'We adopt the naming convention of [I8]. The kernel K : X — ) is a stochastic map which is formalized as
follows: for all z € X, K(x — -) is a probability distribution on Y. In addition, K (z — -) varies measurably
with z in the sense that for all measurable set A C J/, the real valued map z — K (x — A) is measurable.
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Theorem 1 ([I5] Theorem 2). Let F := (m, F,;, Finit) be a GFlowNets on (S, A, S, T, R). If the

out?
reward R is non-zero and F satisfies the flow-matching constraint, then its sampling time is almost

surely finite and the sampling distribution is proportional to R. More precisely:

P(r < +o0) = 1,E(7) < Fou(S)

1
< R(S) —1, and s; ~ ——=R. 2)

R(S)

In passing we introduce R:= Fin — Fly,

—— * R
FY = F* 7T and Fycgion = Fous ® 7.

ou

Flow-matching losses (FM), denoted by Lg), are used to enforce the flow-matching constraint
E} They compare the outflow Fy, with the inflow Fi, := Fini + FJ7*7T; and are minimized
when F;, = Fiy; so that a gradient descent on GFlowNets parameters may enforce equation|l} The
previous works [2,[19] used divergence-based FM losses valid as long as the state space is acyclic
while [15} 120} [14] introduced stable FM losses and regularization allowing training in the presence of
cycles:

iv dE?l stable d‘Fl% ch?u
ERU) = B 08 (J8(6) ) L) = Bumsnas (2060~ 220

3)
where g is some positive function, decreasing on | — o0, 0], g(0) = 0 and increasing on [0, +-co[. The
simplest choices are g(z) = z2 or g(z) = log(1 + alz|?).

1.2 Multi-agent Problem Formulation

The multi-agent setting formalizes the data of state, actions, and transitions for multiple agents.
Each agent ¢ € I in the finite agent set I has its own observation

A
o in its observation space @(); it depends on the state via p% N>
() X S ({7 T
the projection S ~— O, For simplicity sake, we identify e
! S

S = [I;c; ©9. Bach agent has its own action space A and AV)
each of the agent observation-dependent action space .4, contains » NO) P .
a special action STOP; the environment is such that once an st R sY
agent chooses STOP, it is put on hold until all agents do as well. o) R, o)

The game finishes when all agents have chosen STOP; a reward
is given based on the last state. The reward received is formalized
by a non-negative function r : S — S. We assume that each agent may freely choose its own action

Figure 1: Multi-agent formalism

independently from the actions chosen by other agents: this is formalized via A, = ], ; AE)Z()) / ~ie
the Cartesian product of agent actions space up to the identification of the STOP actions. A trajectory
of the system of agents is a, possibly infinite, sequence of states (s )t<r+1 With 7 € NU{oo} starting
at the source state sg € S and may eventually calling STOP; the space of trajectories is 7. A policy
on S induces a Markov chain hence a distribution on trajectories.

MA-GFlowNets are tuples ((F(?);c;,F), where each local GFlowNets F() is defined on
(0D, AD 86 7@ RO for i € I and the global GFlowNets [ is defined on (S, A, S, T, R).
The objective of MA-GFlowNets, similarly to GFlowNets, is to build a policy 7 so that the induced
trajectories are finite and s is distributed proportionally to R := r\ where )\ is some fixed measure
on S and [,_g7(s)d\(s) is finite. In general, some GFlowNets (local or global) may be virtual, i.e.
not implemented.

2  Multi-Agent GFlowNets

This section is devoted to details and theory regarding the variations of algorithms for MA-GFlowNets
training. If resources allow, the most direct approach is included in the training of the global model
directly, leading to a centralized training algorithm in which the local GFlowNets are virtual. As
expected, such an algorithm suffers from high computational complexity, hence, demanding decen-
tralized algorithms. Decentralized algorithms require the agents to collaborate to some extent. We
achieve such a collaboration by enforcing consistency rules between the local and global GFlowNets.
The global GFlowNets is virtual and is used to build a training loss for the local models ensuring the
global model is GFlowNets, so that the sampling Theorem applies. The sampling properties of the
MA-GFlowNets are then deduced from the flow-matching property of the virtual global model.
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2.1 Centralized Training

Centralized training consists in training of the global flow directly. Here, the local flows are vir-
tual:they are theoretically recovered from the global flow as image by the observation maps but
not implemented. We use FM-losses as given in equations [3| applied to the flow on (S,.A). See
Algorithm Implicitly, F5,+ contains a parameterizable component from F,, while Fj, contains
the parameterization of 7* and Fjpj.

Algorithm 1 Centralized Flow Network Training Algorithm for MA-GFlowNets

Require: A multi-agent environment (S, A, O, A®) p; S T R), a parameterized GFlowNets
F := (7, FX, Finit) on (S, A).
while not converged do
Sample and add trajectories (s;);>0 € T to replay buffer with policy 7(s; — a;).
Generate training distribution vgiate.
Apply minimization step of the FM loss £552P1¢(F?) .
end while

From the algorithmic viewpoint, the CFN algorithm is identical to a single GFlowNets. As a
consequence, the usual results on the measurable GFlowNets apply as is. There are, however, a
number of key difficulties: 1) even on graphs, the computational complexity increases as O(].A,|Y)
at any given explored state; 2) centralized training requires all agents to share observations, which is
impractical since in many applications the agents only have access to their own observations.

2.2 Local Training: Independent

The dual training method is embodied in the training of local GFlowNets instead of the global one.
In this case, the local flows F(*) are parameterized and the global flow is virtual. In the same way, a
local FM loss is used for each client. In order to have well-defined local GFlowNets, we need a local
reward, for which a natural definition is R(*" (ogi)) = E(R(s¢) |0§i)). The local training loss function

can be written as: L(FW) =EY"7_ g (Flg (0f) — Fou (oi))

The algorithm 3]in Appendix [B]describes the simplest
training method, which solves the issue of exponen-
tial action complexity with an increasing number of
agents. In this formulation, however, two issues arise:

100

80

60 —— Centralized
Independent

the evaluation of ingoing flow Fi(rf)(o(i)) becomes
harder as we need to find all transitions leading to
a given local observation (and not to a given global
state). This problem may be non-trivial as it is also
related to the actions of other agents. More impor-
tantly, in this case, the local reward is intractable, so
we cannot accurately estimate the reward R(") (o(?)) Figure 2: Performance comparison on Hyper-

of each node. Falling back to using the stochastic &rid task.

reward R (o)) := R(s; |0§i)) instead leads to transition uncertainty and spurious rewards, which
can cause non-stationarity and/or mode collapse as shown in Figure 2]

Mode Found

40
20

10 15 20
Epochs

2.3 Local-Global Training

2.3.1 Local-Global Principle: Joint Flow Network

Local-global training is based upon the following local-global principle, which combined with
Theorem [T]ensures that the MA-GFlowNet has sampling distribution proportional to the reward R.

Theorem 2 (Joint MA-GFlowNets). Given local GFlowNets F& on some environments
(O(l),A(z)7S(z),T(Z)) there exists a global GFlowNets F'°"* on a multi-agent environment
(ITic; O, A, S, T) consistent with the local GFlowNets F"), such that

out — out
el i€l
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Moreover, if Fi%t satisfies equation for a reward R and each R > 0 then R = [Lics R®,

Theorem [2| states that if the 7' guided by the local transition map 7(*) is consistent with the true
transition map 7', and the global reward R is the product of the local rewards, then the local and global
flow function satisfies the (@). Based on this conclusion, our Joint Flow Network (JFN) algorithm
leverages Theorem 2] by sampling trajectories with policy

oz(f) = pi(sgi)) and w(i)(ogi) — ay)), iel 5)

with a; = (agl) 21 € I)and s¢41 = T(st,at), build formally the (global) joint GFlowNet from
local GFlowNets and train the collection of agent via the FM-loss of the joint GFlowNet. Equation 4]
ensures that the inflow and outflow of the (global) joint GFlowNet are both easily computable from
the local inflows and outflows provided by agents. See algorithm 2]

Algorithm 2 Joint Flow Network Training Algorithm for MA-GFlowNets

Require: Number of agents N, A multi-agent environment (S, A, O, A® p, S T R).
Require: Local GFlowNets (r(0*, £ 0y
while not converged do
Sample and add trajectories (s¢);>0 € T to replay buffer with policy according to (3).
Generate training distribution v, from replay buffer
Apply minimization step of £5taPle(F?:ioint) for R
end while

This training regiment presents two key advantages: over centralized training, the action complexity
is linear w.r.t. the number of agents and local actions as in the independent training; over independent
training, the reward is not spurious. Indeed, in £3Ple(F9:ioint) by equation the computation of
Fi, and F; reduces to computing the inflow and star-outflow for each local GFlowNets. Also,
only the global reward R appears. The remaining, possibly difficult, challenge is the estimation of
local ingoing flows from the local observations as it depends on the local transitions 7'(*), see first
point below. At this stage, the relations between the global/joint/local flow-matching constraints
are unclear, and furthermore, the induced policy of the local GFlowNets still depends on the yet
undefined local rewards. The following point clarify those links.

First, the collection of local GFlowNets induces local transitions kernels 7" : O®) — O
which are not uniquely determined in general by a single GFlowNets. Indeed, the local policies
induce a global policy 7(s; — at) = [[;c; ﬂ(ogi) — agi)). Then, the (virtual) transition kernel
T(i)(agi)) = p® (T(at)\agi)) of the GFlowNets ¢ depends on the distribution of states and the
corresponding actions of all local GFlowNets. See appendix for details. Note that 7(") are
derived from the actual environment 7" and the joint GFlowNets on the multi-agent environment with
the true transition 7', while the Theorem above ensures splitting of star-inflows and virtual rewards
only for the approximated T. Furthermore, local rewards may be formalized as stochastic rewards to
take into account the lack of information of a single agent, but they are never used during training:

the allocation of rewards across agents is irrelevant. Only the virtual rewards R(") = Fo(fl)t* - Fl(nl)
are relevant but they are effectively free. As a consequence, Algorithm 2] effectively trains both the
joint flow as well as a product environment model. But since in general T" # T' Algorithm may fail

to reach satisfactory convergence.

Second, beware that in our construction of the joint MA-GFlowNets, there is no guarantee that the
global initial flow is split as the product of the local initial flows. In fact, we favor a construction in
which Fi,j; is non-trivial to account for the inability of local agents to assess synchronization with
another agent. See Appendix [A.§]for formalization details.

Third, we may partially link local and global flow-matching properties.

Theorem 3. Let (F(i))ie 1 be local GFlowNets and let F be their joint GFlowNets. Assume that none

of the local GFlowNets are zero and that each R® >, If F satisfies equation then there exists an
“essential” subdomain of each O on which local GFlowNets satisfy the flow-matching constraint.

The restriction regarding the domain on which local GFlowNets satisfy the flow-matching constraint
is detailed in Appendix this sophistication arises because of the stopping condition of the
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multi-agent system. The essential domain may be informally formulated as “where the local agent
is still playing": an agent may decide (or be forced) to stop playing, letting other agents continue
playing, the forfeited player is then on hold until the game stops and rewards are actually awarded.

To conclude, the joint GFlowNets provides an approximation of the target global GFlowNets, this
approximation may fail if the transition kernel 7" is highly coupled or if the reward is not a product.

2.3.2 Conditioned Joint Flow Network

Training of MA-GFlowNets via training of the virtual joint GFlowNets is an approximation of
the centralized training. In fact, the space of joint GFlowNets is smaller than that of the general
MA-GFlowNets, as only rewards that splits into the product R(s) = [,.; R® (o)) may be exactly
sampled. If the rewards are not of this form, the training may still be subject to a spurious reward or
mode collapse. One may easily build more sophisticated counter-examples based on this one.

Our proposed solution is to build a conditioned JFN inspired by augmented flows [21} 22] methods,
which allow the bypass of architectural constraints for Normalization flows [23]]. The trick is to
add a shared “hidden" state to the joint MA-GFlowNets allowing the agent to synchronize. This
hidden state is constant across a given episode and may be understood as a cooperative strategy
chosen beforehand by the agents. Formally, this simply consist in augmenting the state space and the
observation spaces by a strategy space Q to get S = S x Q and O = O x Q, F;; is augmented
by a distribution PP on (2, the observation projections as well as transition kernel act trivially on €2
ie T(s;w) = T(s) and p(i)(s; w) = (p¥(s),w). The joint MA-GFlowNets theorem applies the
same way, beware that the observation part of 7*) now have a dependency on €2 even though T
does not. In theory, {2 may be big enough to parameterize the whole trajectory space 7, in which
case it is possible to have decoupled conditioned local transition kernels 7°(" (-;w) so that T=T
on a relevant domain. Furthermore, the limitation on the reward is also lifted if the flow-matching
property is enforced on the expected joint flow E,Fi°""*, Two possible losses may be considered:
E,, Ljiable (R0-doint (. ) or L§able(,, F¥3°int (. ;)). The former, which we use in our experiments, is
simpler to implement but does not a priori lift the constraint on the reward.

The training phase of the Conditioned Joint Flow Network (CJFN) is shown in Algorithm [d]in the

appendix. We first sample trajectories with policy 0( D= pi(s; (i )) and ) (o, @ _, ag )), i € I with

ar = (ag Diiel ) and s;41 = T'(s¢,a;). Then we train the sampling policy by minimizing the FM

loss E,, L§igble(F0-3oint (.. ).

3 Related Works

Generative Flow Networks:

Nowadays, GFlowNets has achieved promising performance in many fields, such as molecule genera-
tion [2} 19} 24], discrete probabilistic modeling [235]], structure learning [26]], domain adaptation [27],
graph neural networks training [28|[29]], and large language model training [30} 31} 32]]. This network
could sample the distribution of trajectories with high rewards and can be useful in tasks where
the reward distribution is more diverse. GFlowNets is similar to reinforcement learning (RL) [33]].
However, RL aims to maximize the expected reward favoring mode collapse onto the single highest
reward yielding action sequence, while GFlownets favor diversity. Tiapkin et al. [34] bridged
GFlowNets to entropy-RL.

Comprehensive distributed GFlowNets framework is still lacking. Previously, the meta GFlowNets
algorithm [35]] was proposed to solve the problem of GFlowNets distributed training but it requires
the observation state and task objectives of each agent to be the same, which is not suitable for
multi-agent problems. Later, a multi-agent GFlowNets algorithm was proposed in [36]], but lacked
theoretical support and general framework. Connections between MA-GFlowNets and multi-agent
RL are discussed in Appendix C.

Cooperative Multi-agent Reinforcement Learning: There exist many MARL algorithms to solve
collaborative tasks. Two extreme algorithms for thus purpose are independent learning [37] and
centralized training. Independent training methods regard the influence of other agents as part of the



261
262

263
264
265

267
268
269

270
271
272
273
274
275
276

277

278
279
280
281
282

283

284
285
286
287
288

289

291

292

294
295

Win Rate

e
~

02 f —— QTRAN
— VDN
— UFN

0.0 0.1 0.2 0.3 0.4 05
Million Steps

(a) Win Rate (b) Episode 1 (c) Episode 2

Figure 3: The performance comparison results on the 3m map of StarCraft

environment, but the team reward function often has difficulty in measuring the contribution of each
agent, resulting in the agent facing a non-stationary environment [9].

On the contrary, centralized training treats the multi-agent problem as a single-agent counterpart.
However, this method has high combinatorial complexity and is difficult to scale beyond dozens of
agents [[7]. Therefore, the most popular paradigm is centralized training and decentralized execution
(CTDE), including value-based [9} [11} 38 [10] and policy-based [39, 40} 41]] methods. The goal of
value-based methods is to decompose the joint value function among the agents for decentralized
execution. This requires satisfying the condition that the local maximum of each agent’s value
function should be equal to the global maximum of the joint value function.

The methods, VDN [9] and QMIX employ two classic and efficient factorization structures,
additivity and monotonicity, respectively, despite their strict factorization method. In QTRAN [38]]
and QPLEX [10], extra design features are introduced for decomposition, such as the factorization
structure and advantage function. The policy-based methods extend the single-agent TRPO [42]] and
PPO into the multi-agent setting, such as MAPPO [40], which has shown surprising effectiveness
in cooperative multi-agent games. These algorithms maximize the long-term reward, however, it is
difficult for them to learn more diverse policies in order to generate more promising results.

4 Experiments

We first verify the performance of CFN on a multi-agent hyper-grid domain where partition functions
can be accurately computed. We then compare the performance of CFN and CJFN with standard
MCMC and some RL methods to show that our proposed sampling distributions better match
normalized rewards. All our code is done using the PyTorch library. We re-implemented the
multi-agent RL algorithms and other baselines.

4.1 Hyper-grid Environment

We consider a multi-agent MDP where states are the cells of a /N-dimensional hypercubic grid of
side length H. In this environment, all agents start from the initialization point 2z = (0,0, - - - ), and
are only allowed to increase coordinate 7 with action a;. In addition, each agent has a stop action.
When all agents choose the stop action or reach the maximum H of the episode length, the entire
system resets for the next round of sampling. The reward function is designed as

R(z) = Ry + Ry [ [ 1(0.25 < |2i/H — 0.5]) + Ry [[1(0.3 < |2i/H — 0.5] < 0.4), (6)

where © = [21, - -, 2] includes all agent states and the reward term 0 < Ry < Ry < Ry leads a
distribution of modes. The specific details about the environments and experiments can be found in
the appendix.

We compare CFN and CJFN with a modified MCMC and RL methods. In the modified MCMC
method [43]], we allow iterative reduction of coordinates on the basis of joint action space and cancel
the setting of stop actions to form an ergodic chain. As for the RL methods, we consider the maximum
entropy algorithm, i.e., multi-agent SAC [46]], and a previous cooperative multi-agent algorithm, i.e.,



296
297
298

299
300
301

302
303
304
305
306

308
309
310
311
312
313
314
315
316
317
318
319

321
322
323
324

325

326
327
328
329
330
331
332
333

334

335
336

338
339
340
341

342
343
344
345

347
348

MAPPO, [40]]. To measure the performance of these methods, we use the normalized L1 error as
Ellp(sy) — w(sf)| x N] with p(sy) = R(sy)/Z being the sample distribution computed by the true
reward, where IV is cardinality of the space of sy.

Moreover, we can consider the mode found 100t
theme to demonstrate the superiority of the wl— RN |

. — _/\/_\/\—/\/-\ .
proposed algorithm. R~~~

E — am =g N~ 5 —— MAPPO -
Figure []illustrates the performance superi- 3 < / ot o L6 MASAC I O
ority of our proposed algorithm compared 20 M e A
. S S L =
to other methods in the L1 error and Mode 0 LAl am
0 5 10 15 20 0 5 10 15 20

Epochs

Found. We find that on small-scale envi-
ronments shown in Figure E]-Left, CFN can
achieve the best performance because CFN
can accurately estimate the flow of joint ac-
tions when the joint action space dimension
is small. There are two main reasons for the
large 11-error index. First, we normalized
the standard L1 error and multiplied it by a 0 s 10 15 20 —
constant to avoid the inconvenience of visu- Fpochs

alization of a smaller magnitude. Secondly,

when evaluating L1-error, we only sampled — EE%PAE — s
20 rounds for calculation, and with the in- o

crease of the number of samples, L1-error

will further decrease. As the complexity

of the estimation of action flow increases,
we find that the performance of CFN de- o s Lo B N
grades while the joint-flow-based methods

still achieve good estimation and maintain
the speed of convergence, as shown in Fig-
ure @ Middle.

Mode Found

10 15 20
Epochs

A s
e

Mode Found

100

Figure 4: Mode Found (Left, higher is better) and L1
error (Right, lower is better) performance of different
algorithms on hyper-grid environments. Top: Hyper-
Grid v1, Middle: Hyper-Grid v2, Bot: Hyper-Grid v3.

4.2 StarCraft

Figure 3] shows the performance of the proposed algorithm on the StarCraft 3m map [47]], where (a)
shows the win rate comparison with different algorithms, and (b) and (c) show the decision results
sampled using the proposed algorithm. In the experiment, the outflow flow is calculated when the flow
function is large, and the maximum flow is used to calculate the win rate when sampling. It can be
found that since the experimental environment is not a sampling environment with diversified rewards,
although the proposed algorithm is not significantly better than other algorithms, it still illustrates its
potential in large-scale decision-making. In addition, the proposed algorithm can sample results with
more diverse rewards, such as (b) and (c), and the number of units left implies the trajectory reward.

5 Conclusion

In this paper, we discussed the policy optimization problem when GFlowNets meets the multi-agent
systems. Different from RL, the goal of MA-GFlowNets is to find diverse samples with probability
proportional to the reward function. Since the joint flow is equivalent to the product of independent
flow of each agent, we designed a CTDE method to avoid the flow estimation complexity problem in
a fully centralized algorithm and the non-stationary environment in the independent learning process,
simultaneously. Experimental results on Hyper-Grid environments and StarCraft task demonstrated
the superiority of the proposed algorithms.

Limitation and Future Work: Our theory is incomplete as it does not apply to non-cooperative
agents and has limited support of different game/agent terminations or initialization. A local-global
principle beyond independent agent policies would also be particularly interesting. Our experiments
do not cover the whole range of the theory in particular regarding continuous tasks and CJFN loss on
projected GEN. An ablation study analyzing the tradeoff of small versus big condition space €2 would
enlighten its importance. Finally, a metrization of the space of global GFlowNet would allow a more
precise functional and optimization analysis of JFN/CJFN and their limitations.
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A Joint Flow Theory

The goal of this section is to lay down so elementary points on the measurable theory of MA-
GFlowNets as well as prove the main theorem on the joint GFlowNet.

A.1 Notations on Measures and Kernels

We mostly use notations from [18] regarding kernels and measures. The measurable GFlowNet
formalism is that of [14] In the whole section, since we deal with technicalities, we use kernel
type notations for image by kernels and maps (seen as deterministic kernels). So that for a kernel
K : X — Y and a measure p on X we denote by puK the measure on Y defined by uK(B) =
Joex K(z — B)du(z) for B C Y measurable and y ® K is the measure on X x Y so that

pRK(AXB)= [

sea K(z = B)du(z). Recall that a measure v dominates a measure y which is

denoted p < v, if for all measurable A, v(A) = 0 = pu(A) = 0. The Radon-Nykodim Theorem
ensures that if 1 < v and pu, v are finite then there exists ¢ € L!(v) so that u = v. This function ¢
is called the Radon-Nykodim derivative and is denoted %. We favor notations (A — B) when p is
ameasureon X x Y and A C X and B C Y; also u(A — -) means the measure B — (A — B).
We provide the notations in Table|T]

Table 1: The Descriptions of Different Notations

Notation
S
A
A
SO — o
AD
As
(1)
Ao(i)

S(@)
T
7
R
R®

Descriptions

state space, any measurable space with special elements sg, sf

background measure on S; usually the counting measure on discrete spaces, or the Lebesgue measure on continuous spaces
action space, a measurable space with special element STOP, it is a bundle over S

state/observation space of agent ¢, same properties as S

action space of agent ¢, has a special element STOP®, it is a bundle over S*)

action space on state s, ie the fiber above s of the bundle A 58

action space on observation 0", ie the fiber above 0*) of the bundle A 2500

state map S(s, a) = s, i.e., return the current state s

state map of agent ¢

Transition map T'(s,a) = Ts(a) = s, i.e., transfer the current state s into next state s’

Transition map of agent ¢, depend in general of the chosen action of all agent and is thus stochastic

the reward measure on S \ {so, ss}, usually known via its density r with respect to the background measure A
the perceived reward measure of agent ¢, usually intractable and stochastic

the GFlowNet reward measure on S \ {so, s7} used at inference time instead of R for stop decision making
the GFlowNet reward measure of agent i on O \ {50, sy} used at inference time instead of R for stop decision making
out-flow or state-flow, non-negative measure on S \ {so, sy}

out-flow or state-flow of agent (i), non-negative measure on O \ {so, 57}

star out-flow, non-negative measure on the space S \ {so, sy} such that F}; := Fout — R

star out-flow of agent 4, non-negative measure on the space O¥ \ {so, s} such that Féfl)t* = F(f‘i)t - R®
the forward policy, can call STOP action

the forward policy defined on the space S \ {so, sy}, does not call STOP action

the forward policy of agent ¢, can call STOP action

the star forward policy of agent i defined on the space S \ {so, sy}, does not call STOP action

the unnormalized distribution used to sample s; while moving so — s1

the unnormalized distribution used by agent ¢ to sample sﬁi) while moving sg — s1

the density of reward at s on a continuous statespace

A.2 An Introduction for Notations

We understand that our formalism is abstract, this section is devoted justifying our choices and
providing examples.
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Motivations

To begin with, our motivation to formalize the action space as a measurable bundle A := {(s,a) | s €
S,a € A} 5, Sis three fold:

1.

2.

3.

The available actions from a state may depend on the state itself: on a grid, the actions
available while on the boundary of the grid are certainly more limited than while in the

middle. More generally, on a graph, actions are typically formalized by edges s — s’ of the
graph, the data of an edge contains both the origin s and the destination s’. In other words,
on graphs, actions are bundled with an origin state. It is thus natural to consider the actions
as bundled with the origin state. When an agent is transiting from a state to another via an
action, the state map tells where it comes from while the transition map tells where it is
going.

We want our formalism to cover as many cases as possible in a unified way: Graphs, vector
spaces with linear group actions or mixture of discrete and continuous state spaces. Measures
and measurable spaces provide a nice formalism to capture the quantity of reward on a given
set or a probability distribution.

We want a well-founded and possibly standardized mathematical formalism. In particular,
the policy takes as input a state and returns a distribution of actions. the actions should
correspond to the input state. To avoid having a cumbersome notion of policy as a family of
distributions 7, each on A, we prefer to consider the union of the state-dependent action
spaces A := | J,c s As and define the policy as Markov kernel S — A. However, we still
need to satisfy the constraint that the distribution 7(s) is supported by .A,. Bundles are
usual mathemcatical objects formalizing such situations and constraints and are thus well
suited for this purpose and the constraint is easily expressed as S o 7(s) = s,Vs € S.

Our synthetic formalism comes with a few drawbacks due to the level of abstraction:

1.

2.

The notation 7(s) differs from the more common notation 7 (s, a) as the action already
contains s implicitly.

We need to use Radon-Nikodym derivative. At a given state, on a graph, a GFlowNets has a
probability of stopping
R(s)
P(STOP|s) = ——.
( ) =7 )

On a continuous statespace with reference measure )\, the stop probability is

P(STOP|s) = f(il(tz)

where r(s) is the density of reward at s and f,,(s) is the density of outflow at s. A natural
measure-theoretic way of writing these equations as one is via Radon-Nikodym derivation:
given two measures u, v; if 4(X) =0 = v(X) = 0 for any measurable X C S then p is
said to dominate v and, by Radon-Nikodym Theorem, there exists a measurable function
¢ € L'(u) such that v(X) = Jyex ¢(x)dv(x) for all measurable X C S. This ¢ is the
Radon-Nikodym derivative g—z.

If one has a measure A dominating both R and F,,; and if F,; dominated R then

dR dR dFou\
P(STOP|s) := — t(s):d)\(s)x< dAt) .

When S is discrete, we choose A as the counting measure, and we recover the graph formula
above. When § is continuous, we choose )\ as the Lebesgue measure, and we recover the
second formula.

A.2.2 Example

Consider the D-dimensional W-width hypergrid case with agent set I, see Figure[5} The state space

is the finite set S = ({17 e WP )I, say each agent only observes its own position on the grid
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so that O0) = {1,--- , WP the observation-dependent action space of the i-th agent Aff()l) is a
subset of H := {£1} : 1 < k < W} where 1 is the hot-one array (0,---,0,1,0,---,0) with a
one at the k-th coordinate. The set Aff()) depends on s: if 1 < s < W then Aff()w ={£1p:1<

kE<W}U{STOP} butif s, = 1then —1 ¢ A((f()q) and similarly if s;, = W. The local total action
space is then

AW ={(s,a) |1 < sp < Wand 1 < s, + ay < WIU{STOP} C {1,--- ,W}Px HU{STOP}.

The local state maps S is S (o), a) = 0(?). Since each agent may choose its action freely, for
any s € S, As = [[,c; Ao/ ~ however, since A,) depends on 4 and s then A # [[,.; A,/ ~.

The local transition kernel 7() depends both on the global transition kernel and the policies of all
the agents. Two possible choices of transitions depend on whether the agent interacts or not. In the
non-interacting case T} (s, a) = s + a. If agents may not occupy the same position then the transition
rejects the action if the agent moving would put them in the same position; so Tx(s,a) = s + a if
s + a is legal, otherwise p(*) o Ty(s,a) = o(¥) for some 7. The simplest T5 is to choose T5(s,a) = s
if s 4+ a is illegal. In this case

T (6@, @) = P(s + ais legal 0@, a5 ), .y + P(s + a is illegal 0@, a5, .
2 g oY) 4a g o

Clearly, P(s + a is legal\o(i), a®) depends on the policies and positions of all the agents, then so

does the local transition kernels TQ(i).

A non-negative measure 4 on S is any function of the form p(X) = > ¢ f(z) with f : S — R,
any function. Defining the counting measure A\(X) := > . 1 = Card(X) we have u = f as
measures on S, or equivalently, Z—ﬁ = f. We may thus translate any reward or probability distribution
on such a hypergrid as a measure.

A policy is a Markov kernel S — A such that S o m = Identity. More concretely, it means we have
a function that associates to any state s a probability distribution on A with support on elements of
the form (s, a) with a € A,. From the description of measures, such a policy is fully described by a
function ¢ : A — Ry such that

Vs e S, Z q(s,a) = 1.
ac A,
The policy is then 7(s) = > c 4. q(8,@)d(s.0)-

A GFlowNet on this hypergrid in reward-less notations is given by (Finit, 7, Fiy ). Now, Finit is

any measure on S, it may be given by a pre-chosen family of categorical distribution of the finite set
S. For big W, D and I, since Fip;; have limited number of parameters, we may choose Finit = Cds,
for some s7, and some trainable constant C. The star-policy is similar to 7 except that the STOP
action is absent:

T*(s) = Z q*(s,a), Z(s) := Z q(s,a).

a€A;\STOP a’€ A, \STOP
Finally, Fy, is measure and is thus of the form
Fop(X) =Y fo(@)
rzeX

3 *
for some function fJ.;

. S — R+.

Standard notation GFlowNet is then recovered, given a reward r : S — R, via:
* R(X) =2 exr(@);
* Fou(X) =3 cx four(z) With Vs € S, four(s) = faui(s) +7(s);

* q(s,a) = 2814 (s,a) if a # STOP and q(s, STOP) = -0
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Figure 5: 2 agents on the 2D6W grid with available moves depicted.

A.3 Environment structures

We introduce first a hierarchy of single-agent environment structures.

* An action environment is a triplet (S, .4,.5) with A 5, S a measurable map between
measurable space is called of state space S, action space A and State map S. We denote

As:={a e AlaS = s}.

* An interactive environment is a quadruple (S, A, S, T) where (S, A, S) is an action envi-

ronment and 7" : 4 — S is a quasi-Markov kernel.

* A Game environment is a quintuple (S, A, S, T, R) where (S, A, S,T) is an interactive
environment and R is a finite non-negative non-zero measure on S. We may allow the

reward to be stochastic so formally, R is allowed to be random measure instead [48]].

For multi-agent environment, we have a similar hierarchy:

+ A multi-agent action environment is a tuple (S, A, S, 0¥, AW SO 50, with (S, A, S)
and each (0, A §(?)) being mono-agent action environments. Furthermore, we assume

S =T1ler O and p : S — OO are the natural projection maps. Also

vsesS, AN\{STOP} =T (A%, \{STOP}).

()
iel

* A multi-agent interactive environment is a tuple (S, A, S, T, 0, A® S0 50, where
(S, A, 8,00, A §6) 1), is a multi-agent action environment and (S, A, S, T') is a

mono-agent interactive environment.

+ A multi-agent game environment is a tuple (S, A, S,T, R, 0, AW S@ 5®),; such
that (S, A, S, 7,00, A SO p),c; is multi-agent interactive environment and

(S, A, S, T, R) is a mono-agent game environment.

A.4 GFlowNet in a Game Environment

A generative flow networks may be formally defined on an action environment (S, A, S), as a triple

(m*, F ¢y Finit) where 7* : § — A is a Markov kernel such that 7*S = Ids, F

out» out

and Fi,;; are a

finite non-negative measures on S. Furthermore, we assume that for all s € S, 7*(s — STOP,) = 0.

On an interactive environment (S,.A,S,T), given a GFlowNet (7*, F.¥;, Finit), we define the

out»

ongoing flow as Fi, := FJ,,m*T+ Fiy;; and the GFlowNet induces an virtual reward R := Fj, —

F*

out*

Note that the virtual reward is always finite as the star-outflow and the initial flow are both finite and

7* and T are Markovian.

Definition 1 (Weak Flow-Matching Constraint). The weak flow-matching constraint is defined as

R>0
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If the GFlowNet satisfies the weak flow-matching constraint, we may define a virtual GFlowNet
policy as
A~ dF ;ut
= —out o* ®
where dstop is the deterministic Markov kernel sending any s to STOP,. The virtual action and edge
flows are: .
Faction = lin ® T e M+(S X -A)7 (9)

Fedge = F,® (#T) € MT(S x S). (10)

In a game environment, a GFlowNet comes with an outgoing flow, a natural policy, a natural action
flow and a natural edge flow

Foww = Fy + R (11)
dF",
= 12
" dFoutTr ( )
Feage := Four ® (7TT) S M+(S X 8) (13)
Fioction = Fouy ® ™ € M+(S X A) (14)

By abuse of notation we also write Fyction (resp. Faction) for Fouym (resp. Finm). and the flow-
matching property may be rewritten as follows.

Definition 2 (Flow-Matching Constraint). The flow-matching constraint on a Game environment
(8, A,S,T, R) is defined as

R =E(R). (15)
Remark 1. In an interactive environment (S, A, S, T, 0@, A® S® p@)),.; a GFlowNet satisfy-
ing the weak flow-matching constraint satisfies the (strong) flow-matching constraint on the Game
environment (S, A, S, T, R,00 A g0 pDier

We may recover part of the GFlowNets (7*, F¥ ,, Finit) from any of Fyction, Faction as in general:

dFpction(- — A\ STOP)  dFyction(- — A\ STOP)

mle = A)= dFaction(- = A\ STOP) ~ dF, 4ion(- — A\ STOP) (16)
R = Fuction(- — STOP) R = Fuction(- = STOP) (17)
Fju = Faction(- = A) = R = Fuction(- =+ A) = R (18)
Finiy = F;ut +R (19)

If the flow-matching constraint is satisfied, then
Fini = F3, T + R. (20)

Before going further, the presence densities.

Definition 3. Let T = (7%, Fout, Finit) be a GFlowNet in an interactive environment

(87 A7 S7 T7 O(i)7 A(Z)v S(i)7p(i))iel~

The initial density of F is the probability distribution

1
init = oy Fini
Vi init Fuie(S)” ™

The virtual presence density of F is the probability distribution Uy defined by
oo
Dr oY Ve mit#
t=0

The anticipated presence density of F is the probability distribution Uy defined by

1
U= P
YE T ()

In a game environment, the presence density of F is the probability distribution vy defined by

(oo}

t

Vp X E VR init T .
t=0
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Lemma 1. Let F be a GFlowNet in an interactive environment satisfying the weak flow-matching
constraint. If oy > Uy, then Dy = Dp.

Proof. Let (S, A,S,T,00, A® SO p(i)),c; be the interactive environment and let F =
(7*, Fout, Finit). To begin with, F' := (7%, Finit(S)op — R, Flini) is a GFlowNet satisfying
the strong flow-matching constraint for reward R, its edgeflow F’ edge May be compared to the
edgeflow Fegge of F: by Proposition 2 of [15], we have Fiqge > Fedge, and the difference
Fedge — Fédge is a O-flow in the sense this same article. Also, the domination hypothesis implies that
Fe’dge > Fodge > F2 edge = Fedge—Fédge Since the edge-policy of Feqge is the same as that of Fe’dge
¢+ t—+4o0 O

> F,, we deduce that

we deduce that it is also the same as F?°

edge*
therefore, pmt ~=°% 0 for any p < F!

By the same Proposition 2, we have F 7! ———

Again by domination, F’

out* edge
F! > FO .. Therefore, FO m! —— AmasaN ) Finally, since F° is a O-flow, FO,, 7 = F? ., we deduce
that F, = 0 and thus Fuqge = Fly,, i€ I5 = Tp. O

Remark 2. As long as the GFlowNets considered are trained using an FM-loss on a training training
distribution vgate extracted from trajectory distributions vy or vy of the GFlowNets themselves,
we may assume that Urp >> Ur as flows are only evaluated on a distribution dominated by vg. The
singular part with respect to vy is irrelevant for training purposes as well as inference purposes.
Therefore, we may generally assume that U = U

Remark 3. The main interest of the virtual reward Ris for cases where the reward is not accessible
or expensive to compute. Since a GFlowNet satisfying the weak flow-matching property always

satlsﬁes the strong Sflow-matching property for the reward R, the sampling Theorem usually applies

to R. Therefore, R may be used as a reward during inference instead of the true reward R so that we
actually sample using the policy 7 instead of .

A.5 MA-GFlowNets in multi-agent environments (I): Preliminaries

To begin with, let us define a MA-GFlowNet on a multi-agent environment.
Definition 4. An MA-GFlowNet on a multi-agent action environment is the data of a global GFlowNet
F on (S, A, S) and a collection of local GFlowNets ) on (O™, A®), S(l))fori er

We give ourselves a multi-agent interactive environment (S, A, S, T, O A® S@) () We wish
to clarify the links between local and global GFlowNet.

* A priori, there the local GFlowNets are merely defined on an action environment, they lack
both the local transition kernel 7(*) and the reward R(").
* Given a global GFlowNet, we wish to define local GFlowNets.
* Given a family of local GFlowNets, we wish to define a global GFlowNet.
For simplicity sake, for any GFlowNet [F defined on an interactive environment satisfying the weak
flow-matching constraint, we set R = R and apply remarkassume that oy = Up = vp.

Definition 5. Let (S, A, S, T,0W, A® SO 1)) be a multi-agent interactive environment and let
F = (n*, FZ%,;, Finit) be a GFlowNet on (S, A) satisfying the weak flow-matching constraint. We

. out’ /
mtroduce the following:

* the local presence probability distribution Vﬂg) = vpp®;

o the measure map 0" — Vg|o(») as the disintegration of vy by p®
o the Markov kernel 7 : ©O() — Aby§ o G0 = = Vp|o) T 5

o the Markov kernel 7@ : O — A®) py () = 7)),

e the Markov kernel T : A — O by T = S(i)ﬁ'(i)Tp(i);

17



The situation may be summarized by the following diagram:

(S,vr) Z s (A, vp)

(OO N T 5o (AD, 070
(@)

637 Before going further, we need to check that these definitions are somewhat consistent.
Lemma 2. The following diagrams are commutative in the category of probability spaces.

R
(87 VF) N (A7 V]F7T) (87 V]F’]TT) (A’ VFﬂ—)
T
p® p(3) p® p(3)
e
(0, 1) = 0 (AO), @) (00 D7) (AD 070
7@

638 Proof. For the left diagram, with the definition chosen, we only need to check that Z/Igi)fr(i) = UpT.
s30 Forall p € L'(A, vpm) we have

/S _ Pl @) = / . / _ playin(s,a)ive(s)
/(i)eo(i) /e( oy (i))/ A<p(a)d7r(s,a)dVF|O<,,)(s)dVI(Fi) (O(i))

/ / a)di( )du]ff)(o(i))
(Heo®

= [ vlaao5 0.
acA

For the right diagram, we need to check that vgmp(9 = D 7() and that vprTp() = V]P(‘i)w(i)T(i).
We already proved the first equality for the left diagram and for the second:

vpp DT = pp mp® 5O 7O TP = pp® 7O TP = OO
=p@ Q)

640 O

641 We see that from a global GFlowNet, we may build local policies as well as local transition kernels.
e42 These policies and transitions are natural in the sense that of local the induced local agent policy an
643 transition are exactly the one wed would have if the observations of the other agents were provided as
644 arandom external parameter. The local rewards are then stochastics depending on the state of the
645 global GFlowNet.

646 A.6 MA-GFlowNets in multi-agent environments (II): from local to global
647 We would like to settle construction of global GFlowNet from local ones, key difficulties arise:
648 * the global distributions induce local ones but the coupling of the local distributions may be

649 non trivial;
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* the defining the star-outflow and initial flow requires to find proportionality constants
F; (O(i)) X V]B(‘i) Fi(nii)t X VR(i) inits
* The coupling of the local transition kernels 7() and the global one is in general non-trivial.

We try to solve these issues by looking at the simplest coupling: independent local agents. Recall
that A% = [[,c; A9 therefore, independent coupling means that 7 (s — -) = [Tic; 7@ (0 —
-). We may generalize this relation to a coupling of GFlowNets writing Fiction([],c; O —
[Tic: AD) = TLies F. (00 — A®). We are led to following the definition:

Definition 6. Let (S, A, S,T,0, AD 8@ 1)) be a multi-agent interactive environment and let
F = (7%, F*,;, Finit) be a global GFlowNet on it satisfying the weak flow-matching constraint. The

out’

GFlowNet F is said to be

el

o star-split if for some local GFlowNets F") and VA" < A% \ STOP we have:
Faction(H A(i)) = H Fagizion (A(i))~ @2y

i€l i€l
o strongly star-split if for some local GFlowNets F) and VA® | B() < O we have:
Fuage(JJAD = [[ BY) = [] F2e(A® — BD). (22)

iel iel i€l
The local GFlowNets F) are called the components of the global GFlowNet F.

However we encounter an additional difficulty: what happens when an agent decides to stop the game
? Indeed, local agents have their own STOP action, we then have at least three behaviors.
1. Unilateral Stop: if any agent decides to stop, the game stops and reward is awarded.

2. Asynchronous Unanimous Stop: if an agent decides to stop, it does not act anymore, waits
for the other to leave the game and then reward is awarded only when all agents stopped.

3. Synchronous Unanimous Stop: if an agent decides to stop but some other does not, then the
stop action is rejected and the agent plays a non-stopping action.
Similar variations may be considered for how the initialization of agents:
1. Asynchronous Start: the game has a free number of player, agents may enter the game while
other are already playing.
2. Synchronous Start: the game has a fixed number of players, and agents all start at the same

time.

These 6 possible combinaisons leads to slight variations on the formalization of MA-GFlowNets
from local GFlowNets.

A.7 Initial local-global consistencies

Let us formalize Asynchronous and Synchronous starts. In synchronous case, the agents are initially
distributed according to their own initial distributions and independently. Therefore, vy is a product

and 1+ = [ £°)
1 1
}Qrﬁt X Vinit = Vinit X lﬂrﬂt'
el icl

Also, by strong star-splitting property, Fi; = [[;c; F'I(If)* By Fi, = Finit + F;; we obtain the
definition below.

Definition 7. A strongly star-split global GFlowNet is said to have Synchronous start if

Fo =] P+ T A"

el iel
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On the other hand, in the asynchronous case, an incoming agent may "bind" to agent arriving at the
same time and other already there hence, the initial flow is a combination of any of the products

Enit - Z H Fl(rfl)t H F1(njrzc’ = H(F‘l(nl)t Flgf H 111
i€{incoming} j€{already in} icl iel
Definition 8. A strongly star-split global GFlowNet is said to have Asynchronous start if

Fin = H(FI(I;LI) 'F‘l(l'l) )
i€l

A.8 Terminal local-global consistencies

We focus on terminal behaviors 1 and 2 which we formalize as follows. Local-global consistency
consists in describing the formal structure linking local environments with global ones. The product
structure of the action space is slightly different depending on the terminal behavior. It happens that
we may up to formalization, we may cast Asynchronous Unanimous STOP as a particular case of
Unilateral STOP local-global consistency. More precisely:

Definition 9 (Unilateral STOP Local-Global Consistency). With the same notations as above, we say
that a multi-agent action environment has unilateral STOP if

= (H AO@-)) / ~ a1 ~ay < Ji,j € I,al) = STOP® of) = STOPY).  (23)
iel

Definition 10 (Asynchronous Unanimous STOP Local-Global Consistency). With the same notations

as above, we say that a multi-agent game environment has Asynchronous Unanimous STOP if is has

Unilateral STOP and the observation space O\") may be decomposed into O = (’),(;e U (’)‘,(,Z,,gm,,r)

and for any observation o\ € O,(lfz, we have some 6 € O such that :

purgatory

&€

)
) L R (50
o0 50 S

sTop®
0

STOP(®

Sf

where the value on top of arrows are constrained flow values.

The formal definition of Unilateral STOP is straightforward as any local STOP activates the global
STOP so that any combination of local actions that contains at least one STOP is actually a global
STOP. The quotient by the equivalence relation formalizes this property. Regarding Asynchronous
Unanimous STOP, the chosen formalization allows to store the last observation of an agent while it is
put on hold until global STOP. Indeed, a standard action (% STOP) is invoked to enter purgatory,
the reward is supported on purgatory and as long as all the agent are not in purgatory its value is
zero (recall that from the viewpoint of a given agent, R(*) is stochastic but in fact depends on the
whole global state). The local STOP action is then never technically called on an "alive" observation,
once in purgatory the ¢ self-transition is called by default as long as the reward is non zero, hence
until all agents are in purgatory When the reward is activated, the policy at a purgatory state 6(*) is

then méo( y + deop As e — 07, the policy becomes equivalent to "if reward then

STOP, else WAIT". This behavior is exactly the informal description of Asynchronous Unanimous
STOP, the formalization is rather arbitrary and does not limit the applicability as it simply helps
deriving formulas more easily.

We now prove Theorem [2]and 3] which have been integrated into the following theorem:

Theorem 4. Let (S, A, S,T,0 A® S( D, p) be a multi-agent interactive environment. Let F(*)
be non-zero GFlowNets on ((’)(i A 0 S ) for i € I satisfying the weak ﬂow matching constraint,
then there exists a transition kernel T and a star-split GFlowNet on (S, A, S, T, 0" A® 80 p(i))
whose components are the F().

Furthermore,
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* if the multi-agent environment is a game environment with Asynchronous Unanimous STOP

and if the global GFlowNet satisfies the strong flow-matching constraint on [[,; Ol(iif)o then

each local GFlowNet satisfies the strong flow-matching constraint on Ohfe,

* if the multi-agent environment is a game environment with Asynchronous Unanimous STOP
and if each local GFlowNets satisfy the strong flow-matching constraint on (’)l(ff)e then

R = Hiel R(i)'

Proof. We simply define F = (7%, Fly, Finic) by 7*(s) := ([[;c; 7" (0()))/ ~ ie the projection

out»

el AU then F% , as the product of the measures Fcfu)t Then we define
T = [Lic: T so that Fi (ILier AW) = [Lics Flgﬂ) “(AW) and Fips, := HveI(F(z) + F;(I;th)

[Lics Fi(ni)’* as the product measure of the Y

on A of the policy toward [,

By construction this GFlowNet is star-split.

init*

Assume that F satisfies the strong flow-matching constraint. It follows that for any A®) ¢ Ol(iif)e we

have

HF( D A( H out A(’L l_I'FCEU)t7

i€l el el
Since, by assumption, all local GFlowNets satisfy the weak flow-matching constraint, all terms in
the left-hand side product are bigger than those in the right-hand side product. Equality may only
occur if some term is zero on both sides or if for all 7 € I, We conclude that the strong flow-matching

constraint is satisfied for all local GFlowNets on Ol(iT;)e.

If the strong flow-matching constraint is satisfied on (’)l(iifl, then R = R(® = 0 on Ol(ffl By

construction, Fr* = FU* = 0 on O[()lurgatory Therefore, on purgatory, we have
R:En_Fout— out_HF > HFO(Q{*:HR(;))*:HR(Q)

el el iel el

B Algorithms

Algorithm 3| shows the training phase of the independent flow network (IFN). In the each round of
IFN, the agents first sample trajectories with policy

ogi) = pi(sgi)) and ﬂ'(i)(o,(f) — agi)), iel (24)

with a; = (agi) ;1 € 1T)and s;11 = T(s¢, at). Then we train the sampling policy by minimizing the
FM loss £;ia0e(F():9) for i € I.

Algorithm 3 Independent Flow Network Training Algorithm for MA-GFlowNets

Require: Number of agents N, A multi-agent environment (S, A, O, A® p; S T R).
Require: Local GFlowNets (7()*, F* g
while not converged do

Sample and add trajectories (s¢):>0 € T to replay buffer with policy according to (24)
(4)

)ic1 parameterized by 6.

Generate training distribution of observations v, . for ¢ € I from train buffer

Apply minimization step of FM-loss £j&le(F{)0  R()) fori e I.
end while

Algorithm 4] shows the training phase of Conditioned Joint Flow Network (CJFN). In the each round
of CJFN, we first sample sample trajectories with policy

( ) = = pi(s (Z)) and 7V (oﬁi) — a,gi)), 1el (25)
with a; = (a,ﬁi) i € I)and s;11 = T(s¢,a;). Then we train the sampling policy by minimizing the

FM loss |, Cjable(pr-dome . ) Ry,

action
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Algorithm 4 Conditioned Joint Flow Network Training Algorithm for MA-GFlowNets

Require: Number of agents NV, A multi-agent environment (S, A, O, A® p, S T R).
Require: Simple Random distribution (2, P)
Require: Local GFlowNets (), 00 p()
while not converged do
Sample wq,--- ,w, ~ P and then trajectories (s¥);>0 € 7T to replay buffer with policy
according to (23) forw € {wi,-- ,wp}
Generate training distribution of states/omega /¢, ., from the train buffer
Apply minimization step of the FM loss E,, £§{b'¢(F?-3°nt (.. )) under the constraint of Weak
flow-matching.
end while

)ic1 parameterized by 6 and w € Q.

C Discussion: Relationship with MARL

Interestingly, there are similar independent execution algorithms in the multi-agent reinforcement
learning scheme. Therefore, in this subsection, we discuss the relationship between flow conservation
networks and multi-agent RL. The value decomposition approach has been widely used in multi-agent
RL based on IGM conditions, such as VDN and QMIX. For a given global state s and joint action
a, the IGM condition asserts the consistency between joint and local greedy action selections in the
joint action-value Q (s, @) and individual action values [Q;(0;, a;)]¥_;:

arg max Qut(s,a) = (arg arlneaj(l Q1(01,a1),- - ,arg ameaj(k Q. (o, ak)> ,Vs € S. (26)

k

assumption 1. For any complete trajectory in an MADAG T = (sq,...,sf), we assume that
Qlor(s7-1,a) = R(sy) f(sy—1) with f(sn) = [T} m

Remark 1. Although Assumption(l|is a strong assumption that does not always hold in practical
environments. Here we only use this assumption for discussion analysis, which does not affect the
performance of the proposed algorithms. A scenario where the assumption directly holds is that we

sample actions according to a uniform distribution in a tree structure, i.e., p(a|s) = 1/].A(s)|. The
uniform policy is also used as an assumption in [2]].

Lemma 3. Suppose Assumption 1 holds and the environment has a tree structure, based on Theorem|2]
and IGM conditions we have:

1) Qior(s, a) = F(s,a) f(s);

2) (argmax,, Qi(0;,a;))k | = (argmax,, Fi(0;,a;))k_,.

Based on AssumptionI} we have Lemma 3] which shows the connection between Theorem [2]and
the IGM condition. This action-value function equivalence property helps us better understand the
multi-flow network algorithms, especially showing the rationality of Theorem 2]

C.1 Proof of Lemmal[3

Proof. The proof is an extension of that of Proposition 4 in [2]]. For any (s, a) satisfies sy = T'(s, a),
we have Q{ (s, a) = R(sy) f(s) and F(s,a) = R(sy). Therefore, we have Qi (s, a) = F(s,a)f(s).
Then, for each non-final node s’, based on the action-value function in terms of the action-value at
the next step, we have by induction:

Qla(s,a) = R( Z Qla(s',d's R)
aEA(s’)
(@) 27
D o4 plals) 3 (RS,
a’€A(s")

where R(s') is the reward of Q¥ (s, a) and (a) is due to that R(s') = 0if s’ is not a final state. Since
the environment has a tree structure, we have

F(s,a)= Y F(s,a), (28)

a’€A(s")
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759

which yields

Qly(s,a) = p(als')F(s,a)f(s") = u(als')F(s,a)f(s) (als")

760 According to Theorem[2] we have F(s¢, a;) =[], Fi(o}, i), yielding

761
762

764

765

766

767
768
769
770
771
772

773

arg max Qo (s, a) @ arg max log F'(s,a) f(s)

k
Y arg max > log Fi(0i, a;) (29)
=1

a1 €EA; arEAL

© (arg max Fj(o01,a1),- - ,arg max Fk(ok,ak)> ,

where (a) is based on the fact F" and f(s) are positive, (b) is due to Theorem[2} Combining with the
IGM condition

arg gleaﬁc Quot(s,a) = (arg arlnezﬁ(l Q1(01,a1), -+ ,arg majc Qk(ok,ak)> ,Vs e S. (30)

apEAL
we can conclude that
Kk Kk
arg max F;(o;, a;) = | arg max Q;(0;,a;)
a; €EA; i=1 a1 €A, i=1

Then we complete the proof. O

D Additional Experiments

D.1 Hyper-Grid Environment

D.1.1 Effect of Sampling Method:

We consider two different sampling methods of JEN; the first one is to sample trajectories using the
flow function F; of each agent independently, called JEN (IS), and the other one is to combine the
policies 7; of all agents to obtain a joint policy 7, and then performed centralized sampling, named
JEN (CS). As shown in Figure|§|, we found that the JFN (CS) method has better performance than
JFN (IS) because the error of the policy 7 estimated by the combination method is smaller, and
several better samples can be obtained during the training process. However, the JFN (IS) method
can achieve decentralized sampling, which is more in line with practical applications.

1.9 —— JFN(IS)
80 — JEN(CS)
- 5 1.8
c c
560 5
[} (9]
340 316
= =
1.5
20 — JFN(IS)
—— JFN (CS) 1.4
0 5 10 15 20 0 5 10 15 20
Epochs Epochs
(a) Mode Found (b) L1-Error

Figure 6: The performance of JEN with different methods.
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D.1.2 Effect of Different Rewards:

We study the effect of different rewards in Figure[7} In particular, we set Ry = {1071,1072,10~}
for different task challenge. A smaller value of Ry makes the reward function distribution more
sparse, which makes policy optimization more difficult [2,49}150]. As shown in Figure we found
that our proposed method is robust with the cases Ry = 10~! and Ry = 10~2. When the reward
distribution becomes sparse, the performance of the proposed algorithm degrades slightly.

—e— CFNRy=10"1

1.9
80 —v— CFNRo=1072
- 1.8 = CFNRo=10"*
S60 5 X —— JFNRy=10"1
2 o SNAW=I0 | By e —— JFN Ry =102
g40 —v— CFN R0=10:§ 5 ' _me JFNRo=10*
§ - CFN Ro =10 —-1.6 I R
—— JFNRo=10"1
20 —v— JFN Ro=10"2 1.5
wm JFNRo=10"* S
1.4
0 5 10 15 20 0 5 10 15 20
Epochs Epochs

Figure 7: The effect of different reward Ry on different algorithm.

D.1.3 Flow Match Loss Function:

Figure[§]shows the curve of the flow matching loss function with the number of training steps. The loss
of our proposed algorithm gradually decreases, ensuring the stability of the learning process. For some
RL algorithms based on the state-action value function estimation, the loss usually oscillates. This
may be because RL-based methods use experience replay buffer and the transition data distribution is
not stable enough. The method we propose uses an on-policy based optimization method, and the
data distribution changes with the current sampling policy, hence the loss function is relatively stable.
Then we present the experimental details on the Hyper-Grid environments. We set the same number
of training steps for all algorithms for a fair comparison. Moreover, we list the key hyperparameters
of the different algorithms in Tables [3{7]

8
—— CFN
| — JFN
6
()]
84
-
2
0
0 100 200 300

Training Steps

Figure 8: The flow matching loss of different algorithm.

In addition, as shown in Table 2] both the reinforcement learning methods and our proposed method
can achieve the highest reward, but the average reward of reinforcement learning is slightly better
for all found modes. Our algorithms do not always have higher rewards compared to RL, which is
reasonable since the goal of MA-GFlowNets is not to maximize rewards.

D.2 StarCraft

We present a visual analysis based on 3m with three identical entities attacking to win. All comparison
experiments adopted PYMARL framework and used default experimental parameters. Figure[9] shows
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Environment MAPPO MASAC MCMC CFN JEN

Hyper-Grid v1 2.0 1.84 1.78 20 20
Hyper-Grid v2 1.90 1.76 1.70 1.85 1.85
Hyper-Grid v3 1.84 1.66 1.62 1.82 1.82

Table 2: The best reward found using different methods.

the decision results of different algorithms on the 3m map. It can be found that the proposed algorithm
can obtain results under different reward distributions, that is, win at different costs. The costs of
other algorithms are often the same, which shows that the proposed algorithm is suitable for scenarios
with richer rewards. Figure [I0] shows the performance of the different algorithms on 2s3z, which
shows a similar conclusion that the algorithm based on GFlowNets may be difficult to get the best
yield, but the goal is not to do this, but to fit the distribution better. Moreover, on StarCraft missions,
we did not use a clear metric to indicate the diversity of different trajectories, mainly because the
status of each entity includes multiple aspects, its movement range, health, opponent observation,
etc., which can easily result in different trajectories, but these differences do not indicate a good
fit for the reward distribution. As a result, it is not presented in the same way as Hyper-Grid and
Simple-Spread. Therefore, we used a visual method to compare the results. The maximized reward-
oriented algorithms such as QMIX will improve the reward by reducing the death of entities, while
the GFlowNets method can better fit the distribution on the basis of guaranteeing higher rewards.

Figure 9: The sample results of different algorithm on 3m map. Upper: QMIX, Bottom: JFN

283z
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Figure 10: Average rate on 253z

D.3 Sparse-Simple-Spread Environment

In order to verify the performance of the CFN and JFN algorithms more extensively, we also conducted
experiments on Simple-Spread in the multi-agent particle environment. We compared two classic
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Multi-agent RL algorithms, QMIX [11] and MAPPO [40], which have achieved State-of-the-Art
performance in the standard simple-spread environment. Since the decision-making problems solved
by GFlowNets are usually the setting of discrete state-action space, we modified Simple-Spread
to meet the above conditions and named it discrete Sparse-Simple-Spread. Specifically, we set the
reward function such that if the agent arrives at or near a landmark, the agent will receive the highest
or second-highest reward. And this reward is given to the agent only after each trajectory ends. In
addition, we fix the speed of the agent to keep the state space discrete and all agents start from the
origin.

We adopt the average return and the number of distinguishable trajectories as performance metrics.
When calculating the average return, JEN and CFN select the action with the largest flow for testing.
As shown in Figure[TT}Left, although the MAPPO and QMIX algorithms converge faster than the
JFN, the JEN eventually achieves comparable performance. The performance of JFN is better than
that of the CFN algorithm, which also shows that the method of flow decomposition can better learn
the flow F; of each agent. In each test round, we collect 16 trajectories and calculate the number of
trajectories, which can be accumulated for comparison. The number of different trajectories found
by JFN is 4 times that of MAPPO in Figure[TT}Right, which shows that MA-GFlowNets can obtain
more diverse results by sampling with the flow function. Moreover, the performance of JFN is not
as good as that of the RL algorithm. This is because JFN lacks a guarantee for monotonic policy
improvement [42} 43]. It pays more attention to exploration and does not fully use the learned policy,
resulting in fewer high-return trajectories collected. MAPPO finds more high-return trajectories in
Figure [TT}Right, but it still struggles to generate more diverse results. In each sampling process, the
trajectories found by MAPPO are mostly the same, while JFN does better.
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Figure 11: Average return and the number of distinctive trajectories performance of different algo-
rithms on Sparse-Simple-Spread environments.

Table 3: Hyper-parameter of MAPPO under different environments
Hyper-Grid-vl  Hyper-Grid-v2  Hyper-Grid-v3

Train Steps 20000 20000 20000
Agent 2 2 3
Grid Dim 2 3 3
Grid Size [8.,8] [8,8] [8,8]
Actor Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99
PPO Entropy le-1 le-1 le-1

A Technical Appendices and Supplementary Material

Technical appendices with additional results, figures, graphs and proofs may be submitted with
the paper submission before the full submission deadline (see above), or as a separate PDF in the
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Table 4: Hyper-parameter of MASAC under different environments
Hyper-Grid-vl  Hyper-Grid-v2  Hyper-Grid-v3

Train Steps 20000 20000 20000
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8.8]
Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99
SAC Alpha 0.98 0.98 0.98
Target Network Update 0.001 0.001 0.001

Table 5: Hyper-parameter of JEN under different environments
Hyper-Grid-vl  Hyper-Grid-v2  Hyper-Grid-v3

Train Steps 20000 20000 20000
Ry 2 2 2
R, 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005

Table 6: Hyper-parameter of CJFN under different environments
Hyper-Grid-vl  Hyper-Grid-v2  Hyper-Grid-v3

Train Steps 20000 20000 20000
Ry 2 2 2
Ry 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005
Number of w 4 4 4

Table 7: Hyper-parameter of CFN under different environments
Hyper-Grid-vl  Hyper-Grid-v2  Hyper-Grid-v3

Train Steps 20000 20000 20000
Trajectories per steps 16 16 16
Ry 2 2 2
Ry 0.5 0.5 0.5
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]
Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
€ 0.0005 0.0005 0.0005

szs ZIP file below before the supplementary material deadline. There is no page limit for the technical
839 appendices.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: Section 1 provides the MA-GFN formulation, section 2 provides theoretical
motivations for the Multi-agent loss, section 4 provides experimental support.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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888 Justification: They are discussed in section 5

889 Guidelines:

890 * The answer NA means that the paper has no limitation while the answer No means that
891 the paper has limitations, but those are not discussed in the paper.

892 * The authors are encouraged to create a separate "Limitations" section in their paper.
893 * The paper should point out any strong assumptions and how robust the results are to
894 violations of these assumptions (e.g., independence assumptions, noiseless settings,
895 model well-specification, asymptotic approximations only holding locally). The authors
896 should reflect on how these assumptions might be violated in practice and what the
897 implications would be.

898 * The authors should reflect on the scope of the claims made, e.g., if the approach was
899 only tested on a few datasets or with a few runs. In general, empirical results often
900 depend on implicit assumptions, which should be articulated.

901 * The authors should reflect on the factors that influence the performance of the approach.
902 For example, a facial recognition algorithm may perform poorly when image resolution
903 is low or images are taken in low lighting. Or a speech-to-text system might not be
904 used reliably to provide closed captions for online lectures because it fails to handle
905 technical jargon.

906 * The authors should discuss the computational efficiency of the proposed algorithms
907 and how they scale with dataset size.

908 * If applicable, the authors should discuss possible limitations of their approach to
909 address problems of privacy and fairness.

910 * While the authors might fear that complete honesty about limitations might be used by
911 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
912 limitations that aren’t acknowledged in the paper. The authors should use their best
913 judgment and recognize that individual actions in favor of transparency play an impor-
914 tant role in developing norms that preserve the integrity of the community. Reviewers
915 will be specifically instructed to not penalize honesty concerning limitations.

916 3. Theory assumptions and proofs

917 Question: For each theoretical result, does the paper provide the full set of assumptions and
918 a complete (and correct) proof?

919 Answer: [Yes]

920 Justification: Comprehensive justifications and proofs are provided in appendix A and C
921 Guidelines:

922 » The answer NA means that the paper does not include theoretical results.

923 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
924 referenced.

925 * All assumptions should be clearly stated or referenced in the statement of any theorems.
926 * The proofs can either appear in the main paper or the supplemental material, but if
927 they appear in the supplemental material, the authors are encouraged to provide a short
928 proof sketch to provide intuition.

929 ¢ Inversely, any informal proof provided in the core of the paper should be complemented
930 by formal proofs provided in appendix or supplemental material.

931 * Theorems and Lemmas that the proof relies upon should be properly referenced.

932 4. Experimental result reproducibility

933 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
934 perimental results of the paper to the extent that it affects the main claims and/or conclusions
935 of the paper (regardless of whether the code and data are provided or not)?

936 Answer: [Yes]

937 Justification: The code is not disclosed but the pseudo-code is provided.

938 Guidelines:

939 » The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Only pseudo-code and environment description are provided.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Only the Starcraft experiment requires particular Hyperparamter tuning effort
due to the difference between the reward maximization objective and the GFlowNet diversity
objective. Manual tuning was sufficient using standard reward temperature tuning method
for similar GFlowNets training.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard deviations at 2-sigma are provided on most plots.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Even though details of hardware used are not provided, all experiments were
conducted on consumer grade hardware. Moreover, the work focuses on relative performance
between algorithms.

Guidelines:
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0.

10.

11.

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All contributors to the work are accounted for, no non-public dataset, envi-
ronment or code were used. The theoretical nature of the work does not exclude military
applications or societal consequences, but they are not the main expected outcome.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is mainly theoretical and would only help scaling existing applica-
tions.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Theoretical work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The starcraft asset is cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new asset are introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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