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Abstract

Generative flow networks utilize a flow-matching loss to learn a stochastic pol-1

icy for generating objects from a sequence of actions, such that the probability2

of generating a pattern can be proportional to the corresponding given reward.3

However, a theoretical framework for multi-agent generative flow networks (MA-4

GFlowNets) has not yet been proposed. In this paper, we propose the theory5

framework of MA-GFlowNets, which can be applied to multiple agents to generate6

objects collaboratively through a series of joint actions. We further propose four7

algorithms: a centralized flow network for centralized training of MA-GFlowNets,8

an independent flow network for decentralized execution, a joint flow network for9

achieving centralized training with decentralized execution, and its updated condi-10

tional version. Joint Flow training is based on a local-global principle allowing to11

train a collection of (local) GFN as a unique (global) GFN. This principle provides12

a loss of reasonable complexity and allows to leverage usual results on GFN to13

provide theoretical guarantees that the independent policies generate samples with14

probability proportional to the reward function. Experimental results demonstrate15

the superiority of the proposed framework compared to reinforcement learning and16

MCMC-based methods.17

1 Introduction18

Generative flow networks (GFlowNets) [1] can sample a diverse set of candidates in an active learning19

setting, where the training objective is to approximate sampling of the candidates proportionally to a20

given reward function. Compared to reinforcement learning (RL), where the learned policy is more21

inclined to sample action sequences with higher rewards, GFlowNets can perform exploration tasks22

better. The goal of GFlowNets is not to generate a single highest-reward action sequence, but rather23

is to sample a sequence of actions from the leading modes of the reward function [2]. However, based24

on current theoretical results, GFlowNets cannot support multi-agent systems.25

A multi-agent system is a set of autonomous interacting entities that share a typical environment,26

perceive through sensors, and act in conjunction with actuators [3]. Multi-agent reinforcement27

learning (MARL), especially cooperative MARL, is widely used in robot teams, distributed control,28

resource management, data mining, etc [4, 5, 6]. There two major challenges for cooperative MARL:29

scalability and partial observability [7, 8]. Since the joint state-action space grows exponentially30

with the number of agents, coupled with the environment’s partial observability and communication31

constraints, each agent needs to make individual decisions based on the local action observation32

history with guaranteed performance [9, 10, 11]. In MARL, to address these challenges, a popular33

centralized training with decentralized execution (CTDE) paradigm [12, 13] is proposed, in which34

the agent’s policy is trained in a centralized manner by accessing global information and executed35

in a decentralized manner based only on the local history. However, extending these techniques to36

GFlowNets is not straightforward, especially in constructing CTDE-architecture flow networks and37

finding IGM conditions for flow networks need investigating.38
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In this paper, we propose the multi-agent generative flow networks (MA-GFlowNets) framework for39

cooperative decision-making tasks. Our framework can generate more diverse patterns through se-40

quential joint actions with probabilities proportional to the reward function. Unlike vanilla GFlowNets,41

the proposed method analyzes the interaction of multiple agent actions and shows how to sample42

actions from multi-flow functions. Our approach consists of building a virtual global GFN capturing43

the policies of all agents and ensuring consistency of local (agent) policies. Variations of this approach44

yield different flow-matching losses and training algorithms.45

Furthermore, we propose the Centralized Flow Network (CFN), Independent Flow Network (IFN),46

Joint Flow Network (JFN), and Conditioned Joint Flow Network (CJFN) algorithms for multi-agent47

GFlowNets framework. CFN considers multi-agent dynamics as a whole for policy optimization48

regardless of the combinatorial complexity and demand for independent execution, so it is slower;49

while IFN is faster, but suffers from the flow non-stationary problem. In contrast, JFN and CJFN,50

which are trained based on the local-global principle, takes full advantage of CFN and IFN. They can51

reduce the complexity of flow estimation and support decentralized execution, which are beneficial to52

solving practical cooperative decision-making problems.53

Main Contributions: 1) We first generalize the measure GFlowNets framework to the multi-agent54

setting, and propose a theory of multi-agent generative flow networks for cooperative decision-making55

tasks; 2) We propose four algorithms under the measure framework, namely CFN, IFN, JFN and56

CJFN, for training multi-agent GFlowNets, which are respectively based on centralized training,57

independent execution, and the latter two algorithms are based on the CTDE paradigm; 3) We propose58

a local-global principle and then prove that the joint state-action flow function can be decomposed59

into the product form of multiple independent flows, and that a unique Markovian flow can be trained60

based on the flow matching condition; 4) Control tasks experiments demonstrate that the proposed61

algorithms can outperform current cooperative MARL algorithms in terms of exploration capabilities.62

1.1 Preliminaries and Notations63

Measurable GFlowNets [14, 15, 16], extending the original definition of GFlowNets [17, 1]64

to non-acyclic continuous and mixed continuous-discrete statespaces, are defined by a tuple65

(S,A, S, T,R, Fout) in the single-agent setting, where S and A denote the state and action space, S66

and T are the state and transition map, π and Fout are the forward policy and outflow respectively.67
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More precisely, the state space S and the state-dependent action spaces69

As are measurable spaces; for each state s ∈ S, the environment comes70

with a stochastic transition map1 As
Ts−→ S . We formalize this dependency71

on state by bundling (packing) state and action together into a bundle72

{(s, a) | s ∈ S, a ∈ As} = A S,T−−→ S where S(s, a) := s and T (s, a) := Ts(a). For graphs, a73

bundled action is an edge s → s′; the state map S returns the origin s while the transition map returns74

the destination s′. The forward policy π is a section of S, i.e., a kernel S π−→ A such that S ◦ π is75

identity on S . The outflow (or state-flow) Fout and the reward R are non-negative finite measure on76

S . The state space S has two special states s0 and sf such that T (s0, a) ̸= s0 and T (sf , a) = sf for77

all actions a; furthermore, there is a special action STOP such that T (s,STOP) = sf for all state s.78

The reward R is generally non-trainable and unknown but implicitly a component of Fout and π; since79

the reward may not be tractable in the multi-agent setting, we favor a reward-free parameterization80

of GFlowNets, ie we restrict all objects to S∗ := S \ {s0, sf}. Therefore, we parameterize them81

by triplets F = (π∗, F ∗
out, Finit) where π∗(a|s) = π(a|s, a ̸= STOP), F ∗

out := Fout − R and82

Finit = Fout(s0)T ◦ π(s0). We define a Markov chain (st)t≥1 by sampling a first state s1 from83

Finit, then at = π(st) and st+1 = T (at). The sample generated by the GFlowNet is the last position84

before hitting sf . The sampling time τ is then the first t such that at = STOP. The distribution of85

sτ is controlled by the so-called flow-matching constraint86

Fout = Fin := Finit + F ∗
outπ

∗T, (1)

as measures on S, and the sampling Theorem first proved in [1]:87

1We adopt the naming convention of [18]. The kernel K : X → Y is a stochastic map which is formalized as
follows: for all x ∈ X , K(x → ·) is a probability distribution on Y . In addition, K(x → ·) varies measurably
with x in the sense that for all measurable set A ⊂ Y , the real valued map x 7→ K(x → A) is measurable.
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Theorem 1 ([15] Theorem 2). Let F := (π, F ∗
out, Finit) be a GFlowNets on (S,A, S, T,R). If the88

reward R is non-zero and F satisfies the flow-matching constraint, then its sampling time is almost89

surely finite and the sampling distribution is proportional to R. More precisely:90

P(τ < +∞) = 1,E(τ) ≤ Fout(S)
R(S)

− 1, and sτ ∼ 1

R(S)
R. (2)

In passing we introduce R̂ := Fin − F ∗
out, F

∗
in := F ∗

outπ
∗T and Faction := Fout ⊗ π.91

Flow-matching losses (FM), denoted by LFM, are used to enforce the flow-matching constraint92

1. They compare the outflow Fout with the inflow Fin := Finit + F ∗
outπ

∗T ; and are minimized93

when Fin = Fout so that a gradient descent on GFlowNets parameters may enforce equation 1. The94

previous works [2, 19] used divergence-based FM losses valid as long as the state space is acyclic95

while [15, 20, 14] introduced stable FM losses and regularization allowing training in the presence of96

cycles:97

Ldiv
FM(Fθ) = Es∼νstate

g ◦ log
(

dF θ
in

dF θ
out

(s)

)
Lstable
FM (Fθ) = Es∼νstate

g

(
dF θ

in

dλ
(s)− dF θ

out

dλ
(s)

)
,

(3)

where g is some positive function, decreasing on ]−∞, 0], g(0) = 0 and increasing on [0,+∞[. The98

simplest choices are g(x) = x2 or g(x) = log(1 + α|x|β).99

1.2 Multi-agent Problem Formulation100

The multi-agent setting formalizes the data of state, actions, and transitions for multiple agents.101
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Figure 1: Multi-agent formalism

Each agent i ∈ I in the finite agent set I has its own observation102

o(i) in its observation space O(i); it depends on the state via103

the projection S p(i)

−−→ O(i). For simplicity sake, we identify104

S =
∏

i∈I O(i). Each agent has its own action space A(i) and105

each of the agent observation-dependent action space Ao contains106

a special action STOP; the environment is such that once an107

agent chooses STOP, it is put on hold until all agents do as well.108

The game finishes when all agents have chosen STOP; a reward109

is given based on the last state. The reward received is formalized110

by a non-negative function r : S → S . We assume that each agent may freely choose its own action111

independently from the actions chosen by other agents: this is formalized via As =
∏

i∈I A
(i)

o(i)
/ ∼ ie112

the Cartesian product of agent actions space up to the identification of the STOP actions. A trajectory113

of the system of agents is a, possibly infinite, sequence of states (st)t<τ+1 with τ ∈ N∪{∞} starting114

at the source state s0 ∈ S and may eventually calling STOP; the space of trajectories is T . A policy115

on S induces a Markov chain hence a distribution on trajectories.116

MA-GFlowNets are tuples ((F(i))i∈I ,F), where each local GFlowNets F(i) is defined on117

(O(i),A(i), S(i), T (i), R(i)) for i ∈ I and the global GFlowNets F is defined on (S,A, S, T,R).118

The objective of MA-GFlowNets, similarly to GFlowNets, is to build a policy π so that the induced119

trajectories are finite and sτ is distributed proportionally to R := rλ where λ is some fixed measure120

on S and
∫
s∈S r(s)dλ(s) is finite. In general, some GFlowNets (local or global) may be virtual, i.e.121

not implemented.122

2 Multi-Agent GFlowNets123

This section is devoted to details and theory regarding the variations of algorithms for MA-GFlowNets124

training. If resources allow, the most direct approach is included in the training of the global model125

directly, leading to a centralized training algorithm in which the local GFlowNets are virtual. As126

expected, such an algorithm suffers from high computational complexity, hence, demanding decen-127

tralized algorithms. Decentralized algorithms require the agents to collaborate to some extent. We128

achieve such a collaboration by enforcing consistency rules between the local and global GFlowNets.129

The global GFlowNets is virtual and is used to build a training loss for the local models ensuring the130

global model is GFlowNets, so that the sampling Theorem applies. The sampling properties of the131

MA-GFlowNets are then deduced from the flow-matching property of the virtual global model.132
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2.1 Centralized Training133

Centralized training consists in training of the global flow directly. Here, the local flows are vir-134

tual:they are theoretically recovered from the global flow as image by the observation maps but135

not implemented. We use FM-losses as given in equations 3 applied to the flow on (S,A). See136

Algorithm 1. Implicitly, Fout contains a parameterizable component from F ∗
out, while Fin contains137

the parameterization of π∗ and Finit.138

Algorithm 1 Centralized Flow Network Training Algorithm for MA-GFlowNets

Require: A multi-agent environment (S,A,O(i),A(i), pi, S, T,R), a parameterized GFlowNets
F := (π, F ∗

out, Finit) on (S,A).
while not converged do

Sample and add trajectories (st)t≥0 ∈ T to replay buffer with policy π(st → at).
Generate training distribution νstate.
Apply minimization step of the FM loss Lstable

FM (Fθ) .
end while

From the algorithmic viewpoint, the CFN algorithm is identical to a single GFlowNets. As a139

consequence, the usual results on the measurable GFlowNets apply as is. There are, however, a140

number of key difficulties: 1) even on graphs, the computational complexity increases as O(|As|N )141

at any given explored state; 2) centralized training requires all agents to share observations, which is142

impractical since in many applications the agents only have access to their own observations.143

2.2 Local Training: Independent144

The dual training method is embodied in the training of local GFlowNets instead of the global one.145

In this case, the local flows F(i) are parameterized and the global flow is virtual. In the same way, a146

local FM loss is used for each client. In order to have well-defined local GFlowNets, we need a local147

reward, for which a natural definition is R(i)(o
(i)
t ) := E(R(st)|o(i)t ). The local training loss function148

can be written as: L(F(i)) = E
∑τ

t=1 g
(
F θi

in

(
oit
)
− F θi

out
(
oit
))

.149
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Figure 2: Performance comparison on Hyper-
grid task.

The algorithm 3 in Appendix B describes the simplest150

training method, which solves the issue of exponen-151

tial action complexity with an increasing number of152

agents. In this formulation, however, two issues arise:153

the evaluation of ingoing flow F
(i)
in (o(i)) becomes154

harder as we need to find all transitions leading to155

a given local observation (and not to a given global156

state). This problem may be non-trivial as it is also157

related to the actions of other agents. More impor-158

tantly, in this case, the local reward is intractable, so159

we cannot accurately estimate the reward R(i)(o(i))160

of each node. Falling back to using the stochastic161

reward R(i)(o(i)) := R(st|o(i)t ) instead leads to transition uncertainty and spurious rewards, which162

can cause non-stationarity and/or mode collapse as shown in Figure 2.163

2.3 Local-Global Training164

2.3.1 Local-Global Principle: Joint Flow Network165

Local-global training is based upon the following local-global principle, which combined with166

Theorem 1 ensures that the MA-GFlowNet has sampling distribution proportional to the reward R.167

Theorem 2 (Joint MA-GFlowNets). Given local GFlowNets F(i) on some environments168

(O(i),A(i), S(i), T (i)) there exists a global GFlowNets Fjoint on a multi-agent environment169

(
∏

i∈I O(i),A, S, T̃ ) consistent with the local GFlowNets F(i), such that170

F ∗
out =

∏
i∈I

F
(i),∗
out , Fin =

∏
i∈I

F
(i)
in . (4)
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Moreover, if Fjoint satisfies equation 1 for a reward R and each R̂(i) ≥ 0 then R =
∏

i∈I R̂
(i).171

Theorem 2 states that if the T̃ guided by the local transition map T (i) is consistent with the true172

transition map T , and the global reward R is the product of the local rewards, then the local and global173

flow function satisfies the (4). Based on this conclusion, our Joint Flow Network (JFN) algorithm174

leverages Theorem 2 by sampling trajectories with policy175

o
(i)
t = pi(s

(i)
t ) and π(i)(o

(i)
t → a

(i)
t ), i ∈ I (5)

with at = (a
(i)
t : i ∈ I) and st+1 = T (st, at), build formally the (global) joint GFlowNet from176

local GFlowNets and train the collection of agent via the FM-loss of the joint GFlowNet. Equation 4177

ensures that the inflow and outflow of the (global) joint GFlowNet are both easily computable from178

the local inflows and outflows provided by agents. See algorithm 2.179

Algorithm 2 Joint Flow Network Training Algorithm for MA-GFlowNets

Require: Number of agents N , A multi-agent environment (S,A,O(i),A(i), pi, S, T,R).
Require: Local GFlowNets (π(i),∗, F

(i),∗
out , F

(i)
init)i∈I .

while not converged do
Sample and add trajectories (st)t≥0 ∈ T to replay buffer with policy according to (5).
Generate training distribution νstate from replay buffer
Apply minimization step of Lstable

FM (Fθ,joint) for R
end while

This training regiment presents two key advantages: over centralized training, the action complexity180

is linear w.r.t. the number of agents and local actions as in the independent training; over independent181

training, the reward is not spurious. Indeed, in Lstable
FM (Fθ,joint), by equation 4, the computation of182

Fin and F ∗
out reduces to computing the inflow and star-outflow for each local GFlowNets. Also,183

only the global reward R appears. The remaining, possibly difficult, challenge is the estimation of184

local ingoing flows from the local observations as it depends on the local transitions T (i), see first185

point below. At this stage, the relations between the global/joint/local flow-matching constraints186

are unclear, and furthermore, the induced policy of the local GFlowNets still depends on the yet187

undefined local rewards. The following point clarify those links.188

First, the collection of local GFlowNets induces local transitions kernels T (i) : O(i) → O(i)189

which are not uniquely determined in general by a single GFlowNets. Indeed, the local policies190

induce a global policy π(st → at) :=
∏

i∈I π(o
(i)
t → a

(i)
t ). Then, the (virtual) transition kernel191

T (i)(a
(i)
t ) = p(i)(T (at)|a(i)t ) of the GFlowNets i depends on the distribution of states and the192

corresponding actions of all local GFlowNets. See appendix A.5 for details. Note that T (i) are193

derived from the actual environment T and the joint GFlowNets on the multi-agent environment with194

the true transition T , while the Theorem above ensures splitting of star-inflows and virtual rewards195

only for the approximated T̃ . Furthermore, local rewards may be formalized as stochastic rewards to196

take into account the lack of information of a single agent, but they are never used during training:197

the allocation of rewards across agents is irrelevant. Only the virtual rewards R̂(i) = F
(i),∗
out − F

(i)
in198

are relevant but they are effectively free. As a consequence, Algorithm 2 effectively trains both the199

joint flow as well as a product environment model. But since in general T ̸= T̃ Algorithm 2 may fail200

to reach satisfactory convergence.201

Second, beware that in our construction of the joint MA-GFlowNets, there is no guarantee that the202

global initial flow is split as the product of the local initial flows. In fact, we favor a construction in203

which Finit is non-trivial to account for the inability of local agents to assess synchronization with204

another agent. See Appendix A.8 for formalization details.205

Third, we may partially link local and global flow-matching properties.206

Theorem 3. Let (F(i))i∈I be local GFlowNets and let F be their joint GFlowNets. Assume that none207

of the local GFlowNets are zero and that each R̂(i) ≥ 0. If F satisfies equation 1, then there exists an208

“essential" subdomain of each O(i) on which local GFlowNets satisfy the flow-matching constraint.209

The restriction regarding the domain on which local GFlowNets satisfy the flow-matching constraint210

is detailed in Appendix A.8, this sophistication arises because of the stopping condition of the211
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multi-agent system. The essential domain may be informally formulated as “where the local agent212

is still playing": an agent may decide (or be forced) to stop playing, letting other agents continue213

playing, the forfeited player is then on hold until the game stops and rewards are actually awarded.214

To conclude, the joint GFlowNets provides an approximation of the target global GFlowNets, this215

approximation may fail if the transition kernel T is highly coupled or if the reward is not a product.216

2.3.2 Conditioned Joint Flow Network217

Training of MA-GFlowNets via training of the virtual joint GFlowNets is an approximation of218

the centralized training. In fact, the space of joint GFlowNets is smaller than that of the general219

MA-GFlowNets, as only rewards that splits into the product R(s) =
∏

i∈I R
(i)(o(i)) may be exactly220

sampled. If the rewards are not of this form, the training may still be subject to a spurious reward or221

mode collapse. One may easily build more sophisticated counter-examples based on this one.222

Our proposed solution is to build a conditioned JFN inspired by augmented flows [21, 22] methods,223

which allow the bypass of architectural constraints for Normalization flows [23]. The trick is to224

add a shared “hidden" state to the joint MA-GFlowNets allowing the agent to synchronize. This225

hidden state is constant across a given episode and may be understood as a cooperative strategy226

chosen beforehand by the agents. Formally, this simply consist in augmenting the state space and the227

observation spaces by a strategy space Ω to get S̃ = S ×Ω and Õ(i) = O(i) ×Ω, Finit is augmented228

by a distribution P on Ω, the observation projections as well as transition kernel act trivially on Ω229

ie T (s;ω) = T (s) and p(i)(s;ω) = (p(i)(s), ω). The joint MA-GFlowNets theorem applies the230

same way, beware that the observation part of T (i) now have a dependency on Ω even though T231

does not. In theory, Ω may be big enough to parameterize the whole trajectory space T , in which232

case it is possible to have decoupled conditioned local transition kernels T (i)(·;ω) so that T̃ = T233

on a relevant domain. Furthermore, the limitation on the reward is also lifted if the flow-matching234

property is enforced on the expected joint flow EωFjoint. Two possible losses may be considered:235

EωLstable
FM (Fθ,joint(·;ω)) or Lstable

FM (EωFθ,joint(·;ω)). The former, which we use in our experiments, is236

simpler to implement but does not a priori lift the constraint on the reward.237

The training phase of the Conditioned Joint Flow Network (CJFN) is shown in Algorithm 4 in the238

appendix. We first sample trajectories with policy o
(i)
t = pi(s

(i)
t ) and π

(i)
ω (o

(i)
t → a

(i)
t ), i ∈ I with239

at = (a
(i)
t : i ∈ I) and st+1 = T (st, at). Then we train the sampling policy by minimizing the FM240

loss EωLstable
FM (Fθ,joint(·;ω)).241

3 Related Works242

Generative Flow Networks:243

Nowadays, GFlowNets has achieved promising performance in many fields, such as molecule genera-244

tion [2, 19, 24], discrete probabilistic modeling [25], structure learning [26], domain adaptation [27],245

graph neural networks training [28, 29], and large language model training [30, 31, 32]. This network246

could sample the distribution of trajectories with high rewards and can be useful in tasks where247

the reward distribution is more diverse. GFlowNets is similar to reinforcement learning (RL) [33].248

However, RL aims to maximize the expected reward favoring mode collapse onto the single highest249

reward yielding action sequence, while GFlownets favor diversity. Tiapkin et al. [34] bridged250

GFlowNets to entropy-RL.251

Comprehensive distributed GFlowNets framework is still lacking. Previously, the meta GFlowNets252

algorithm [35] was proposed to solve the problem of GFlowNets distributed training but it requires253

the observation state and task objectives of each agent to be the same, which is not suitable for254

multi-agent problems. Later, a multi-agent GFlowNets algorithm was proposed in [36], but lacked255

theoretical support and general framework. Connections between MA-GFlowNets and multi-agent256

RL are discussed in Appendix C.257

Cooperative Multi-agent Reinforcement Learning: There exist many MARL algorithms to solve258

collaborative tasks. Two extreme algorithms for thus purpose are independent learning [37] and259

centralized training. Independent training methods regard the influence of other agents as part of the260
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Figure 3: The performance comparison results on the 3m map of StarCraft

environment, but the team reward function often has difficulty in measuring the contribution of each261

agent, resulting in the agent facing a non-stationary environment [9].262

On the contrary, centralized training treats the multi-agent problem as a single-agent counterpart.263

However, this method has high combinatorial complexity and is difficult to scale beyond dozens of264

agents [7]. Therefore, the most popular paradigm is centralized training and decentralized execution265

(CTDE), including value-based [9, 11, 38, 10] and policy-based [39, 40, 41] methods. The goal of266

value-based methods is to decompose the joint value function among the agents for decentralized267

execution. This requires satisfying the condition that the local maximum of each agent’s value268

function should be equal to the global maximum of the joint value function.269

The methods, VDN [9] and QMIX [11] employ two classic and efficient factorization structures,270

additivity and monotonicity, respectively, despite their strict factorization method. In QTRAN [38]271

and QPLEX [10], extra design features are introduced for decomposition, such as the factorization272

structure and advantage function. The policy-based methods extend the single-agent TRPO [42] and273

PPO [43] into the multi-agent setting, such as MAPPO [40], which has shown surprising effectiveness274

in cooperative multi-agent games. These algorithms maximize the long-term reward, however, it is275

difficult for them to learn more diverse policies in order to generate more promising results.276

4 Experiments277

We first verify the performance of CFN on a multi-agent hyper-grid domain where partition functions278

can be accurately computed. We then compare the performance of CFN and CJFN with standard279

MCMC and some RL methods to show that our proposed sampling distributions better match280

normalized rewards. All our code is done using the PyTorch [44] library. We re-implemented the281

multi-agent RL algorithms and other baselines.282

4.1 Hyper-grid Environment283

We consider a multi-agent MDP where states are the cells of a N -dimensional hypercubic grid of284

side length H . In this environment, all agents start from the initialization point x = (0, 0, · · · ), and285

are only allowed to increase coordinate i with action ai. In addition, each agent has a stop action.286

When all agents choose the stop action or reach the maximum H of the episode length, the entire287

system resets for the next round of sampling. The reward function is designed as288

R(x) = R0 +R1

∏
i

I (0.25 < |xi/H − 0.5|) +R2

∏
i

I (0.3 < |xi/H − 0.5| < 0.4) , (6)

where x = [x1, · · · , xI ] includes all agent states and the reward term 0 < R0 ≪ R1 < R2 leads a289

distribution of modes. The specific details about the environments and experiments can be found in290

the appendix.291

We compare CFN and CJFN with a modified MCMC and RL methods. In the modified MCMC292

method [45], we allow iterative reduction of coordinates on the basis of joint action space and cancel293

the setting of stop actions to form an ergodic chain. As for the RL methods, we consider the maximum294

entropy algorithm, i.e., multi-agent SAC [46], and a previous cooperative multi-agent algorithm, i.e.,295
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MAPPO, [40]. To measure the performance of these methods, we use the normalized L1 error as296

E[|p(sf )− π(sf )| ×N ] with p(sf ) = R(sf )/Z being the sample distribution computed by the true297

reward, where N is cardinality of the space of sf .298
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Figure 4: Mode Found (Left, higher is better) and L1
error (Right, lower is better) performance of different
algorithms on hyper-grid environments. Top: Hyper-
Grid v1, Middle: Hyper-Grid v2, Bot: Hyper-Grid v3.

Moreover, we can consider the mode found299

theme to demonstrate the superiority of the300

proposed algorithm.301

Figure 4 illustrates the performance superi-302

ority of our proposed algorithm compared303

to other methods in the L1 error and Mode304

Found. We find that on small-scale envi-305

ronments shown in Figure 4-Left, CFN can306

achieve the best performance because CFN307

can accurately estimate the flow of joint ac-308

tions when the joint action space dimension309

is small. There are two main reasons for the310

large l1-error index. First, we normalized311

the standard L1 error and multiplied it by a312

constant to avoid the inconvenience of visu-313

alization of a smaller magnitude. Secondly,314

when evaluating L1-error, we only sampled315

20 rounds for calculation, and with the in-316

crease of the number of samples, L1-error317

will further decrease. As the complexity318

of the estimation of action flow increases,319

we find that the performance of CFN de-320

grades while the joint-flow-based methods321

still achieve good estimation and maintain322

the speed of convergence, as shown in Fig-323

ure 4-Middle.324

4.2 StarCraft325

Figure 3 shows the performance of the proposed algorithm on the StarCraft 3m map [47], where (a)326

shows the win rate comparison with different algorithms, and (b) and (c) show the decision results327

sampled using the proposed algorithm. In the experiment, the outflow flow is calculated when the flow328

function is large, and the maximum flow is used to calculate the win rate when sampling. It can be329

found that since the experimental environment is not a sampling environment with diversified rewards,330

although the proposed algorithm is not significantly better than other algorithms, it still illustrates its331

potential in large-scale decision-making. In addition, the proposed algorithm can sample results with332

more diverse rewards, such as (b) and (c), and the number of units left implies the trajectory reward.333

5 Conclusion334

In this paper, we discussed the policy optimization problem when GFlowNets meets the multi-agent335

systems. Different from RL, the goal of MA-GFlowNets is to find diverse samples with probability336

proportional to the reward function. Since the joint flow is equivalent to the product of independent337

flow of each agent, we designed a CTDE method to avoid the flow estimation complexity problem in338

a fully centralized algorithm and the non-stationary environment in the independent learning process,339

simultaneously. Experimental results on Hyper-Grid environments and StarCraft task demonstrated340

the superiority of the proposed algorithms.341

Limitation and Future Work: Our theory is incomplete as it does not apply to non-cooperative342

agents and has limited support of different game/agent terminations or initialization. A local-global343

principle beyond independent agent policies would also be particularly interesting. Our experiments344

do not cover the whole range of the theory in particular regarding continuous tasks and CJFN loss on345

projected GFN. An ablation study analyzing the tradeoff of small versus big condition space Ω would346

enlighten its importance. Finally, a metrization of the space of global GFlowNet would allow a more347

precise functional and optimization analysis of JFN/CJFN and their limitations.348
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A Joint Flow Theory476

The goal of this section is to lay down so elementary points on the measurable theory of MA-477

GFlowNets as well as prove the main theorem on the joint GFlowNet.478

A.1 Notations on Measures and Kernels479

We mostly use notations from [18] regarding kernels and measures. The measurable GFlowNet480

formalism is that of [14] In the whole section, since we deal with technicalities, we use kernel481

type notations for image by kernels and maps (seen as deterministic kernels). So that for a kernel482

K : X → Y and a measure µ on X we denote by µK the measure on Y defined by µK(B) =483 ∫
x∈X

K(x → B)dµ(x) for B ⊂ Y measurable and µ ⊗ K is the measure on X × Y so that484

µ⊗K(A×B) =
∫
x∈A

K(x → B)dµ(x). Recall that a measure ν dominates a measure µ which is485

denoted µ ≪ ν, if for all measurable A, ν(A) = 0 ⇒ µ(A) = 0. The Radon-Nykodim Theorem486

ensures that if µ ≪ ν and µ, ν are finite then there exists φ ∈ L1(ν) so that µ = φν. This function φ487

is called the Radon-Nykodim derivative and is denoted dµ
dν . We favor notations µ(A → B) when µ is488

a measure on X × Y and A ⊂ X and B ⊂ Y ; also µ(A → ·) means the measure B 7→ µ(A → B).489

We provide the notations in Table 1.490

Table 1: The Descriptions of Different Notations

Notation Descriptions
S state space, any measurable space with special elements s0, sf
λ background measure on S; usually the counting measure on discrete spaces, or the Lebesgue measure on continuous spaces
A action space, a measurable space with special element STOP, it is a bundle over S

S(i) = O(i) state/observation space of agent i, same properties as S
A(i) action space of agent i, has a special element STOP(i), it is a bundle over S(i)

As action space on state s, ie the fiber above s of the bundle A S−→ S

A(i)

o(i)
action space on observation o(i), ie the fiber above o(i) of the bundle A(i) S(i)

−−→ O(i)

S state map S(s, a) = s, i.e., return the current state s

S(i) state map of agent i
T Transition map T (s, a) = Ts(a) = s′, i.e., transfer the current state s into next state s′

T (i) Transition map of agent i, depend in general of the chosen action of all agent and is thus stochastic
R the reward measure on S \ {s0, sf}, usually known via its density r with respect to the background measure λ

R(i) the perceived reward measure of agent i, usually intractable and stochastic
R̂ the GFlowNet reward measure on S \ {s0, sf} used at inference time instead of R for stop decision making

R̂(i) the GFlowNet reward measure of agent i on O(i) \ {s0, sf} used at inference time instead of R(i) for stop decision making
Fout out-flow or state-flow, non-negative measure on S \ {s0, sf}
F

(i)
out out-flow or state-flow of agent (i), non-negative measure on O(i) \ {s0, sf}
F ∗

out star out-flow, non-negative measure on the space S \ {s0, sf} such that F ∗
out := Fout −R

F
(i),∗
out star out-flow of agent i, non-negative measure on the space O(i) \ {s0, sf} such that F (i),∗

out = F
(i)
out −R(i)

π the forward policy, can call STOP action
π∗ the forward policy defined on the space S \ {s0, sf}, does not call STOP action

π(i) the forward policy of agent i, can call STOP action
π(i),∗ the star forward policy of agent i defined on the space S \ {s0, sf}, does not call STOP action
Finit the unnormalized distribution used to sample s1 while moving s0 → s1
F

(i)
init the unnormalized distribution used by agent i to sample s

(i)
1 while moving s0 → s1

r(s) the density of reward at s on a continuous statespace

A.2 An Introduction for Notations491

We understand that our formalism is abstract, this section is devoted justifying our choices and492

providing examples.493
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A.2.1 Motivations494

To begin with, our motivation to formalize the action space as a measurable bundle A := {(s, a) | s ∈495

S, a ∈ As}
S−→ S is three fold:496

1. The available actions from a state may depend on the state itself: on a grid, the actions497

available while on the boundary of the grid are certainly more limited than while in the498

middle. More generally, on a graph, actions are typically formalized by edges s a−→ s′ of the499

graph, the data of an edge contains both the origin s and the destination s′. In other words,500

on graphs, actions are bundled with an origin state. It is thus natural to consider the actions501

as bundled with the origin state. When an agent is transiting from a state to another via an502

action, the state map tells where it comes from while the transition map tells where it is503

going.504

2. We want our formalism to cover as many cases as possible in a unified way: Graphs, vector505

spaces with linear group actions or mixture of discrete and continuous state spaces. Measures506

and measurable spaces provide a nice formalism to capture the quantity of reward on a given507

set or a probability distribution.508

3. We want a well-founded and possibly standardized mathematical formalism. In particular,509

the policy takes as input a state and returns a distribution of actions. the actions should510

correspond to the input state. To avoid having a cumbersome notion of policy as a family of511

distributions πs each on As, we prefer to consider the union of the state-dependent action512

spaces A :=
⋃

s∈S As and define the policy as Markov kernel S → A. However, we still513

need to satisfy the constraint that the distribution π(s) is supported by As. Bundles are514

usual mathemcatical objects formalizing such situations and constraints and are thus well515

suited for this purpose and the constraint is easily expressed as S ◦ π(s) = s,∀s ∈ S.516

Our synthetic formalism comes with a few drawbacks due to the level of abstraction:517

1. The notation π(s) differs from the more common notation π(s, a) as the action already518

contains s implicitly.519

2. We need to use Radon-Nikodym derivative. At a given state, on a graph, a GFlowNets has a
probability of stopping

P(STOP|s) = R(s)

Fout(s)
.

On a continuous statespace with reference measure λ, the stop probability is

P(STOP|s) = r(s)

fout(s)

where r(s) is the density of reward at s and fout(s) is the density of outflow at s. A natural520

measure-theoretic way of writing these equations as one is via Radon-Nikodym derivation:521

given two measures µ, ν; if µ(X) = 0 ⇒ ν(X) = 0 for any measurable X ⊂ S then µ is522

said to dominate ν and, by Radon-Nikodym Theorem, there exists a measurable function523

φ ∈ L1(µ) such that ν(X) =
∫
x∈X

φ(x)dν(x) for all measurable X ⊂ S. This φ is the524

Radon-Nikodym derivative dν
dµ .525

If one has a measure λ dominating both R and Fout and if Fout dominated R then

P(STOP|s) := dR

dFout
(s) =

dR

dλ
(s)×

(
dFout

dλ

)−1

.

When S is discrete, we choose λ as the counting measure, and we recover the graph formula526

above. When S is continuous, we choose λ as the Lebesgue measure, and we recover the527

second formula.528

A.2.2 Example529

Consider the D-dimensional W -width hypergrid case with agent set I , see Figure 5. The state space
is the finite set S =

(
{1, · · · ,W}D

)I
, say each agent only observes its own position on the grid
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so that O(i) = {1, · · · ,W}D. the observation-dependent action space of the i-th agent A(i)

o(i)
is a

subset of H := {±1k : 1 ≤ k ≤ W} where 1k is the hot-one array (0, · · · , 0, 1, 0, · · · , 0) with a
one at the k-th coordinate. The set A(i)

o(i)
depends on s: if 1 < sk < W then A(i)

o(i)
= {±1k : 1 ≤

k ≤ W} ∪ {STOP} but if sk = 1 then −1k /∈ A(i)

o(i)
and similarly if sk = W . The local total action

space is then

A(i)

o(i)
= {(s, a) | 1 ≤ sk ≤ W and 1 ≤ sk + ak ≤ W}∪{STOP} ⊂ {1, · · · ,W}D×H∪{STOP}.

The local state maps S(i) is S(i)(o(i), a) = o(i). Since each agent may choose its action freely, for530

any s ∈ S,As =
∏

i∈I Ao(i)/ ∼ however, since Ao(i) depends on i and s then A ≠
∏

i∈I Ao(i)/ ∼.531

The local transition kernel T (i) depends both on the global transition kernel and the policies of all
the agents. Two possible choices of transitions depend on whether the agent interacts or not. In the
non-interacting case T1(s, a) = s+ a. If agents may not occupy the same position then the transition
rejects the action if the agent moving would put them in the same position; so T2(s, a) = s+ a if
s+ a is legal, otherwise p(i) ◦ T2(s, a) = o(i) for some i. The simplest T2 is to choose T2(s, a) = s
if s+ a is illegal. In this case

T
(i)
2 (o(i), a(i)) = P(s+ a is legal|o(i), a(i))δo(i)+a(i) + P(s+ a is illegal|o(i), a(i))δo(i) .

Clearly, P(s + a is legal|o(i), a(i)) depends on the policies and positions of all the agents, then so532

does the local transition kernels T (i)
2 .533

A non-negative measure µ on S is any function of the form µ(X) =
∑

x∈X f(x) with f : S → R+534

any function. Defining the counting measure λ(X) :=
∑

x∈X 1 = Card(X) we have µ = fλ as535

measures on S , or equivalently, dµ
dλ = f . We may thus translate any reward or probability distribution536

on such a hypergrid as a measure.537

A policy is a Markov kernel S → A such that S ◦ π = Identity. More concretely, it means we have
a function that associates to any state s a probability distribution on A with support on elements of
the form (s, a) with a ∈ As. From the description of measures, such a policy is fully described by a
function q : A → R+ such that

∀s ∈ S,
∑
a∈As

q(s, a) = 1.

The policy is then π(s) =
∑

a∈As
q(s, a)δ(s,a).538

A GFlowNet on this hypergrid in reward-less notations is given by (Finit, π
∗, F ∗

out). Now, Finit is
any measure on S , it may be given by a pre-chosen family of categorical distribution of the finite set
S . For big W,D and I , since Finit have limited number of parameters, we may choose Finit = Cδs1
for some s1, and some trainable constant C. The star-policy is similar to π except that the STOP
action is absent:

π∗(s) =
∑

a∈As\STOP

q∗(s, a), Z(s) :=
∑

a′∈As\STOP

q(s, a′).

Finally, Fout is measure and is thus of the form

F ∗
out(X) :=

∑
x∈X

f∗
out(x)

for some function f∗
out : S → R+.539

Standard notation GFlowNet is then recovered, given a reward r : S → R+, via:540

• R(X) =
∑

x∈X r(x);541

• Fout(X) =
∑

x∈X fout(x) with ∀s ∈ S, fout(s) = f∗
out(s) + r(s);542

• q(s, a) =
f∗
out(s)

fout(s)
q∗(s, a) if a ̸= STOP and q(s,STOP) = r(s)

fout(s)
.543
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Figure 5: 2 agents on the 2D6W grid with available moves depicted.

A.3 Environment structures544

We introduce first a hierarchy of single-agent environment structures.545

• An action environment is a triplet (S,A, S) with A S−→ S a measurable map between546

measurable space is called of state space S, action space A and State map S. We denote547

As := {a ∈ A | aS = s}.548

• An interactive environment is a quadruple (S,A, S, T ) where (S,A, S) is an action envi-549

ronment and T : A → S is a quasi-Markov kernel.550

• A Game environment is a quintuple (S,A, S, T,R) where (S,A, S, T ) is an interactive551

environment and R is a finite non-negative non-zero measure on S. We may allow the552

reward to be stochastic so formally, R is allowed to be random measure instead [48].553

For multi-agent environment, we have a similar hierarchy:554

• A multi-agent action environment is a tuple (S,A, S,O(i),A(i), S(i), p(i))i∈I with (S,A, S)
and each (O(i),A(i), S(i)) being mono-agent action environments. Furthermore, we assume
S =

∏
i∈I O(i) and p(i) : S → O(i) are the natural projection maps. Also

∀s ∈ S, As \ {STOP} =
∏
i∈I

(
A(i)

p(i)(s)
\ {STOP}

)
.

• A multi-agent interactive environment is a tuple (S,A, S, T,O(i),A(i), S(i), p(i))i∈I where555

(S,A, S,O(i),A(i), S(i), p(i))i∈I is a multi-agent action environment and (S,A, S, T ) is a556

mono-agent interactive environment.557

• A multi-agent game environment is a tuple (S,A, S, T,R,O(i),A(i), S(i), p(i))i∈I such558

that (S,A, S, T,O(i),A(i), S(i), p(i))i∈I is multi-agent interactive environment and559

(S,A, S, T,R) is a mono-agent game environment.560

A.4 GFlowNet in a Game Environment561

A generative flow networks may be formally defined on an action environment (S,A, S), as a triple562

(π∗, F ∗
out, Finit) where π∗ : S → A is a Markov kernel such that π∗S = IdS , F ∗

out and Finit are a563

finite non-negative measures on S . Furthermore, we assume that for all s ∈ S, π∗(s → STOPs) = 0.564

On an interactive environment (S,A, S, T ), given a GFlowNet (π∗, F ∗
out, Finit), we define the565

ongoing flow as Fin := F ∗
outπ

∗T+Finit and the GFlowNet induces an virtual reward R̂ := Fin−F ∗
out.566

Note that the virtual reward is always finite as the star-outflow and the initial flow are both finite and567

π∗ and T are Markovian.568

Definition 1 (Weak Flow-Matching Constraint). The weak flow-matching constraint is defined as569

R̂ ≥ 0 (7)
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If the GFlowNet satisfies the weak flow-matching constraint, we may define a virtual GFlowNet570

policy as571

π̂ :=
dF ∗

out

dFin
π∗ (8)

where δSTOP is the deterministic Markov kernel sending any s to STOPs. The virtual action and edge572

flows are:573

F̂action := Fin ⊗ π̂ ∈ M+(S ×A); (9)
574

F̂edge := Fin ⊗ (π̂T ) ∈ M+(S × S). (10)

In a game environment, a GFlowNet comes with an outgoing flow, a natural policy, a natural action575

flow and a natural edge flow576

Fout := F ∗
out +R (11)

577

π :=
dF ∗

out

dFout
π∗ (12)

578

Fedge := Fout ⊗ (πT ) ∈ M+(S × S) (13)
579

Faction := Fout ⊗ π ∈ M+(S ×A). (14)
By abuse of notation we also write Faction (resp. F̂action) for Foutπ (resp. Finπ). and the flow-580

matching property may be rewritten as follows.581

Definition 2 (Flow-Matching Constraint). The flow-matching constraint on a Game environment582

(S,A, S, T,R) is defined as583

R̂ = E(R). (15)
Remark 1. In an interactive environment (S,A, S, T,O(i),A(i), S(i), p(i))i∈I , a GFlowNet satisfy-584

ing the weak flow-matching constraint satisfies the (strong) flow-matching constraint on the Game585

environment (S,A, S, T, R̂,O(i),A(i), S(i), p(i))i∈I .586

We may recover part of the GFlowNets (π∗, F ∗
out, Finit) from any of Faction, F̂action as in general:587

π∗(x → A) =
dFaction(· → A \ STOP)

dFaction(· → A \ STOP)
=

dF̂action(· → A \ STOP)

dF̂action(· → A \ STOP)
(16)

588

R = Faction(· → STOP) R̂ = F̂action(· → STOP) (17)
589

F ∗
out = Faction(· → A)−R = F̂action(· → A)− R̂ (18)

590

Finit = F ∗
outT + R̂ (19)

If the flow-matching constraint is satisfied, then591

Finit = F ∗
outT +R. (20)

Before going further, the presence densities.592

Definition 3. Let F = (π∗, Fout, Finit) be a GFlowNet in an interactive environment593

(S,A, S, T,O(i),A(i), S(i), p(i))i∈I .594

The initial density of F is the probability distribution

νF,init :=
1

Finit(S)
Finit

The virtual presence density of F is the probability distribution ν̂F defined by

ν̂F ∝
∞∑
t=0

νF,initπ̂
t.

The anticipated presence density of F is the probability distribution νF defined by

νF :=
1

Fin(S)
Fin.

In a game environment, the presence density of F is the probability distribution νF defined by

νF ∝
∞∑
t=0

νF,initπ
t.
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Lemma 1. Let F be a GFlowNet in an interactive environment satisfying the weak flow-matching595

constraint. If ν̂F ≫ νF, then ν̂F = νF.596

Proof. Let (S,A, S, T,O(i),A(i), S(i), p(i))i∈I be the interactive environment and let F =597

(π∗, Fout, Finit). To begin with, F′ := (π∗, Finit(S)ν̂F − R̂, Finit) is a GFlowNet satisfying598

the strong flow-matching constraint for reward R̂, its edgeflow F ′
edge may be compared to the599

edgeflow Fedge of F: by Proposition 2 of [15], we have Fedge ≥ F ′
edge, and the difference600

Fedge − F ′
edge is a 0-flow in the sense this same article. Also, the domination hypothesis implies that601

F ′
edge ≫ Fedge ≫ F 0

edge := Fedge−F ′
edge. Since the edge-policy of Fedge is the same as that of F ′

edge602

we deduce that it is also the same as F 0
edge. By the same Proposition 2, we have F ′

outπ
t t→+∞−−−−→ 0,603

therefore, µπt t→+∞−−−−→ 0 for any µ ≪ F ′
out. Again by domination, F ′

edge ≫ F 0
edge we deduce that604

F ′
out ≫ F 0

out. Therefore, F 0
outπ

t t→+∞−−−−→ 0. Finally, since F0 is a 0-flow, F 0
outπ = F 0

out, we deduce605

that F 0
out = 0 and thus Fedge = F ′

edge ie ν̂F = νF.606

Remark 2. As long as the GFlowNets considered are trained using an FM-loss on a training training607

distribution νstate extracted from trajectory distributions ν̂F or νF of the GFlowNets themselves,608

we may assume that ν̂F ≫ νF as flows are only evaluated on a distribution dominated by νF. The609

singular part with respect to νF is irrelevant for training purposes as well as inference purposes.610

Therefore, we may generally assume that ν̂ = ν611

Remark 3. The main interest of the virtual reward R̂ is for cases where the reward is not accessible612

or expensive to compute. Since a GFlowNet satisfying the weak flow-matching property always613

satisfies the strong flow-matching property for the reward R̂, the sampling Theorem usually applies614

to R̂. Therefore, R̂ may be used as a reward during inference instead of the true reward R so that we615

actually sample using the policy π̂ instead of π.616

A.5 MA-GFlowNets in multi-agent environments (I): Preliminaries617

To begin with, let us define a MA-GFlowNet on a multi-agent environment.618

Definition 4. An MA-GFlowNet on a multi-agent action environment is the data of a global GFlowNet619

F on (S,A, S) and a collection of local GFlowNets F(i) on (O(i),A(i), S(i)) for i ∈ I .620

We give ourselves a multi-agent interactive environment (S,A, S, T,O(i),A(i), S(i), p(i)). We wish621

to clarify the links between local and global GFlowNet.622

• A priori, there the local GFlowNets are merely defined on an action environment, they lack623

both the local transition kernel T (i) and the reward R(i).624

• Given a global GFlowNet, we wish to define local GFlowNets.625

• Given a family of local GFlowNets, we wish to define a global GFlowNet.626

For simplicity sake, for any GFlowNet F defined on an interactive environment satisfying the weak627

flow-matching constraint, we set R = R̂ and apply remark 2 assume that ν̂F = νF = νF.628

Definition 5. Let (S,A, S, T,O(i),A(i), S(i), p(i)) be a multi-agent interactive environment and let629

F = (π∗, F ∗
out, Finit) be a GFlowNet on (S,A) satisfying the weak flow-matching constraint. We630

introduce the following:631

• the local presence probability distribution ν
(i)
F := νFp

(i);632

• the measure map o(i) 7→ νF|o(i) as the disintegration of νF by p(i)633

• the Markov kernel π̃(i) : O(i) → A by δo(i) π̃
(i) := νF|o(i)π ;634

• the Markov kernel π(i) : O(i) → A(i) by π(i) = π̃(i)p(i);635

• the Markov kernel T (i) : A(i) → O(i) by T (i) = S(i)π̃(i)Tp(i);636
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The situation may be summarized by the following diagram:

(S, νF)

p(i)

��

π --
(A, νFπ)

T

mm

p(i)

��

S
qq

(O(i), ν
(i)
F )

π̃(i)

99

π(i)

..
(A(i), ν

(i)
F π(i))

T (i)

mm S(i)
qq

Before going further, we need to check that these definitions are somewhat consistent.637

Lemma 2. The following diagrams are commutative in the category of probability spaces.

(S, νF)

p(i)

��

π --
(A, νFπ)

p(i)

��

S
qq

(O(i), ν
(i)
F )

π̃(i)

99

π(i)

..
(A(i), ν

(i)
F π(i))S(i)

qq

(S, νFπT )

p(i)

��

(A, νFπ)
T

mm

p(i)

��
(O(i), ν

(i)
F π(i)T (i)) (A(i), ν

(i)
F π(i))

T (i)

nn

Proof. For the left diagram, with the definition chosen, we only need to check that ν(i)F π̃(i) = νFπ.638

For all φ ∈ L1(A, νFπ) we have639 ∫
s∈A

φ(a)d(νFπ)(a) =

∫
s∈S

∫
a∈A

φ(a)dπ(s, a)dνF(s)

=

∫
o(i)∈O(i)

∫
s∈(p(i))−1(o(i))

∫
a∈A

φ(a)dπ(s, a)dνF|o(i)(s)dν
(i)
F (o(i))

=

∫
o(i)∈O(i)

∫
a∈A

φ(a)dπ̃(i)(a)dν
(i)
F (o(i))

=

∫
a∈A

φ(a)d(ν
(i)
F π̃(i))(a).

For the right diagram, we need to check that νFπp(i) = ν(i)π(i) and that νFπTp(i) = ν
(i)
F π(i)T (i).

We already proved the first equality for the left diagram and for the second:

νFπp
(i)T (i) := νF πp

(i)S(i)︸ ︷︷ ︸
=p(i)

π̃(i)Tp(i) = νFp
(i)︸ ︷︷ ︸

ν
(i)
F

π̃(i)Tp(i) = ν
(i)
F π(i)T (i)

640

We see that from a global GFlowNet, we may build local policies as well as local transition kernels.641

These policies and transitions are natural in the sense that of local the induced local agent policy an642

transition are exactly the one wed would have if the observations of the other agents were provided as643

a random external parameter. The local rewards are then stochastics depending on the state of the644

global GFlowNet.645

A.6 MA-GFlowNets in multi-agent environments (II): from local to global646

We would like to settle construction of global GFlowNet from local ones, key difficulties arise:647

• the global distributions induce local ones but the coupling of the local distributions may be648

non trivial;649
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• the defining the star-outflow and initial flow requires to find proportionality constants

Fin(O(i)) ∝ ν
(i)
F F

(i)
init ∝ νF(i),init;

• The coupling of the local transition kernels T (i) and the global one is in general non-trivial.650

We try to solve these issues by looking at the simplest coupling: independent local agents. Recall651

that A∗
s =

∏
i∈I A

(i),∗
s therefore, independent coupling means that π∗(s → ·) =

∏
i∈I π

(i),∗(o(i) →652

·). We may generalize this relation to a coupling of GFlowNets writing Faction(
∏

i∈I O
(i) →653 ∏

i∈I A
(i)) =

∏
i∈I F

(i)
action(O

(i) → A(i)). We are led to following the definition:654

Definition 6. Let (S,A, S, T,O(i),A(i), S(i), p(i)) be a multi-agent interactive environment and let655

F = (π∗, F ∗
out, Finit) be a global GFlowNet on it satisfying the weak flow-matching constraint. The656

GFlowNet F is said to be657

• star-split if for some local GFlowNets F(i) and ∀A(i) ⊂ A(i) \ STOP we have:658

Faction(
∏
i∈I

A(i)) =
∏
i∈I

F
(i)
action(A

(i)). (21)

• strongly star-split if for some local GFlowNets F(i) and ∀A(i), B(i) ⊂ O(i) we have:659

Fedge(
∏
i∈I

A(i) →
∏
i∈I

B(i)) =
∏
i∈I

F
(i)
edge(A

(i) → B(i)). (22)

The local GFlowNets F(i) are called the components of the global GFlowNet F.660

However we encounter an additional difficulty: what happens when an agent decides to stop the game661

? Indeed, local agents have their own STOP action, we then have at least three behaviors.662

1. Unilateral Stop: if any agent decides to stop, the game stops and reward is awarded.663

2. Asynchronous Unanimous Stop: if an agent decides to stop, it does not act anymore, waits664

for the other to leave the game and then reward is awarded only when all agents stopped.665

3. Synchronous Unanimous Stop: if an agent decides to stop but some other does not, then the666

stop action is rejected and the agent plays a non-stopping action.667

Similar variations may be considered for how the initialization of agents:668

1. Asynchronous Start: the game has a free number of player, agents may enter the game while669

other are already playing.670

2. Synchronous Start: the game has a fixed number of players, and agents all start at the same671

time.672

These 6 possible combinaisons leads to slight variations on the formalization of MA-GFlowNets673

from local GFlowNets.674

A.7 Initial local-global consistencies675

Let us formalize Asynchronous and Synchronous starts. In synchronous case, the agents are initially
distributed according to their own initial distributions and independently. Therefore, νinit is a product
and

Finit ∝ νinit =
∏
i∈I

ν
(i)
init ∝

∏
i∈I

F
(i)
init.

Also, by strong star-splitting property, F ∗
in =

∏
i∈I F

(i),∗
in . By Fin = Finit + F ∗

in we obtain the676

definition below.677

Definition 7. A strongly star-split global GFlowNet is said to have Synchronous start if

Fin =
∏
i∈I

F
(i)
init +

∏
i∈I

F
(i),∗
in
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On the other hand, in the asynchronous case, an incoming agent may "bind" to agent arriving at the
same time and other already there hence, the initial flow is a combination of any of the products

Finit =
∑ ∏

i∈{incoming}

F
(i)
init

∏
j∈{already in}

F
(j),∗
init =

∏
i∈I

(F
(i)
init + F

(i),∗
in )−

∏
i∈I

F
(i),∗
in .

Definition 8. A strongly star-split global GFlowNet is said to have Asynchronous start if

Fin =
∏
i∈I

(F
(i)
init + F

(i),∗
in ).

A.8 Terminal local-global consistencies678

We focus on terminal behaviors 1 and 2 which we formalize as follows. Local-global consistency679

consists in describing the formal structure linking local environments with global ones. The product680

structure of the action space is slightly different depending on the terminal behavior. It happens that681

we may up to formalization, we may cast Asynchronous Unanimous STOP as a particular case of682

Unilateral STOP local-global consistency. More precisely:683

Definition 9 (Unilateral STOP Local-Global Consistency). With the same notations as above, we say684

that a multi-agent action environment has unilateral STOP if685

As :=

(∏
i∈I

Ao(i)

)
/ ∼ a1 ∼ a2 ⇔ ∃i, j ∈ I, a

(i)
1 = STOP(i), a

(j)
2 = STOP(j). (23)

Definition 10 (Asynchronous Unanimous STOP Local-Global Consistency). With the same notations
as above, we say that a multi-agent game environment has Asynchronous Unanimous STOP if is has
Unilateral STOP and the observation space O(i) may be decomposed into O(i) = O(i)

life ∪ O(i)
purgatory

and for any observation o(i) ∈ O(i)
life we have some õ(i) ∈ O(i)

purgatory such that :

o(i)

STOP(i)

0

77// õ(i)

ε

��
R(i)(õ(i))

STOP(i)

// sf

where the value on top of arrows are constrained flow values.686

The formal definition of Unilateral STOP is straightforward as any local STOP activates the global687

STOP so that any combination of local actions that contains at least one STOP is actually a global688

STOP. The quotient by the equivalence relation formalizes this property. Regarding Asynchronous689

Unanimous STOP, the chosen formalization allows to store the last observation of an agent while it is690

put on hold until global STOP. Indeed, a standard action (̸= STOP) is invoked to enter purgatory,691

the reward is supported on purgatory and as long as all the agent are not in purgatory its value is692

zero (recall that from the viewpoint of a given agent, R(i) is stochastic but in fact depends on the693

whole global state). The local STOP action is then never technically called on an "alive" observation,694

once in purgatory the ε self-transition is called by default as long as the reward is non zero, hence695

until all agents are in purgatory. When the reward is activated, the policy at a purgatory state õ(i) is696

then dε
d(ε+R(i))

δõ(i) +
dR(i)

d(ε+R(i))
δSTOP. As ε → 0+, the policy becomes equivalent to "if reward then697

STOP, else WAIT". This behavior is exactly the informal description of Asynchronous Unanimous698

STOP, the formalization is rather arbitrary and does not limit the applicability as it simply helps699

deriving formulas more easily.700

We now prove Theorem 2 and 3, which have been integrated into the following theorem:701

Theorem 4. Let (S,A, S, T,O(i),A(i), S(i), p(i)) be a multi-agent interactive environment. Let F(i)702

be non-zero GFlowNets on (O(i),A(i), S(i)) for i ∈ I satisfying the weak flow-matching constraint,703

then there exists a transition kernel T̃ and a star-split GFlowNet on (S,A, S, T̃ ,O(i),A(i), S(i), p(i))704

whose components are the F(i).705

Furthermore,706
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• if the multi-agent environment is a game environment with Asynchronous Unanimous STOP707

and if the global GFlowNet satisfies the strong flow-matching constraint on
∏

i∈I O
(i)
life then708

each local GFlowNet satisfies the strong flow-matching constraint on O(i)
life;709

• if the multi-agent environment is a game environment with Asynchronous Unanimous STOP710

and if each local GFlowNets satisfy the strong flow-matching constraint on O(i)
life then711

R̂ =
∏

i∈I R̂
(i).712

Proof. We simply define F = (π∗, F ∗
out, Finit) by π∗(s) := (

∏
i∈I π

(i),∗(o(i)))/ ∼ ie the projection713

on A of the policy toward
∏

i∈I A(i), then F ∗
out as the product of the measures F (i),∗

out . Then we define714

T̃ =
∏

i∈I T
(i) so that F ∗

in(
∏

i∈I A
(i)) =

∏
i∈I F

(i),∗
in (A(i)) and Finit :=

∏
i∈I(F

(i),∗
in + F

(i)
init) −715 ∏

i∈I F
(i),∗
in as the product measure of the F

(i)
init. By construction this GFlowNet is star-split.716

Assume that F satisfies the strong flow-matching constraint. It follows that for any A(i) ⊂ O(i)
life we

have ∏
i∈I

F
(i)
in (A(i)) =

∏
i∈I

F
(i)
out(A

(i)) =
∏
i∈I

F
(i),∗
out (A(i)).

Since, by assumption, all local GFlowNets satisfy the weak flow-matching constraint, all terms in717

the left-hand side product are bigger than those in the right-hand side product. Equality may only718

occur if some term is zero on both sides or if for all i ∈ I , We conclude that the strong flow-matching719

constraint is satisfied for all local GFlowNets on O(i)
life.720

If the strong flow-matching constraint is satisfied on O(i)
life, then R̂(i) = R(i) = 0 on O(i)

life. By
construction, F (i),∗

out = F
(i),∗
init = 0 on O(i)

purgatory. Therefore, on purgatory, we have

R̂ = Fin − Fout = F ∗
in − F ∗

out =
∏
i∈I

F
(i),∗
in −

∏
i∈I

F
(i),∗
out =

∏
i∈I

F
(i),∗
in =

∏
i∈I

R̂(i).

721

B Algorithms722

Algorithm 3 shows the training phase of the independent flow network (IFN). In the each round of723

IFN, the agents first sample trajectories with policy724

o
(i)
t = pi(s

(i)
t ) and π(i)(o

(i)
t → a

(i)
t ), i ∈ I (24)

with at = (a
(i)
t : i ∈ I) and st+1 = T (st, at). Then we train the sampling policy by minimizing the725

FM loss Lstable
FM (F(i),θ) for i ∈ I .726

Algorithm 3 Independent Flow Network Training Algorithm for MA-GFlowNets

Require: Number of agents N , A multi-agent environment (S,A,O(i),A(i), pi, S, T,R).
Require: Local GFlowNets (π(i),∗, F

(i),∗
out , F

(i)
init)i∈I parameterized by θ.

while not converged do
Sample and add trajectories (st)t≥0 ∈ T to replay buffer with policy according to (24)
Generate training distribution of observations ν(i)state for i ∈ I from train buffer
Apply minimization step of FM-loss Lstable

FM (F
(i),θ
action, R

(i)) for i ∈ I .
end while

Algorithm 4 shows the training phase of Conditioned Joint Flow Network (CJFN). In the each round727

of CJFN, we first sample sample trajectories with policy728

o
(i)
t = pi(s

(i)
t ) and π(i)

ω (o
(i)
t → a

(i)
t ), i ∈ I (25)

with at = (a
(i)
t : i ∈ I) and st+1 = T (st, at). Then we train the sampling policy by minimizing the729

FM loss EωLstable
FM (F θ,joint

action (·;ω), R).730
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Algorithm 4 Conditioned Joint Flow Network Training Algorithm for MA-GFlowNets

Require: Number of agents N , A multi-agent environment (S,A,O(i),A(i), pi, S, T,R).
Require: Simple Random distribution (Ω,P)
Require: Local GFlowNets (π(i),∗, F

(i),∗
out , F

(i)
init)i∈I parameterized by θ and ω ∈ Ω.

while not converged do
Sample ω1, · · · , ωb ∼ P and then trajectories (sωt )t≥0 ∈ T to replay buffer with policy

according to (25) for ω ∈ {ω1, · · · , ωb}
Generate training distribution of states/omega νΩstate from the train buffer
Apply minimization step of the FM loss EωLstable

FM (Fθ,joint(·;ω)) under the constraint of Weak
flow-matching.
end while

C Discussion: Relationship with MARL731

Interestingly, there are similar independent execution algorithms in the multi-agent reinforcement732

learning scheme. Therefore, in this subsection, we discuss the relationship between flow conservation733

networks and multi-agent RL. The value decomposition approach has been widely used in multi-agent734

RL based on IGM conditions, such as VDN and QMIX. For a given global state s and joint action735

a, the IGM condition asserts the consistency between joint and local greedy action selections in the736

joint action-value Qtot(s, a) and individual action values [Qi(oi, ai)]
k
i=1:737

argmax
a∈A

Qtot(s, a) =

(
arg max

a1∈A1

Q1(o1, a1), · · · , arg max
ak∈Ak

Qk(ok, ak)

)
,∀s ∈ S. (26)

assumption 1. For any complete trajectory in an MADAG τ = (s0, ..., sf ), we assume that738

Qµ
tot(sf−1, a) = R(sf )f(sf−1) with f(sn) =

∏n
t=0

1
µ(a|st) .739

Remark 1. Although Assumption 1 is a strong assumption that does not always hold in practical740

environments. Here we only use this assumption for discussion analysis, which does not affect the741

performance of the proposed algorithms. A scenario where the assumption directly holds is that we742

sample actions according to a uniform distribution in a tree structure, i.e., µ(a|s) = 1/|A(s)|. The743

uniform policy is also used as an assumption in [2].744

Lemma 3. Suppose Assumption 1 holds and the environment has a tree structure, based on Theorem 2745

and IGM conditions we have:746

1) Qµ
tot(s, a) = F (s, a)f(s);747

2) (argmaxai
Qi(oi, ai))

k
i=1 = (argmaxai

Fi(oi, ai))
k
i=1.748

Based on Assumption1, we have Lemma 3, which shows the connection between Theorem 2 and749

the IGM condition. This action-value function equivalence property helps us better understand the750

multi-flow network algorithms, especially showing the rationality of Theorem 2.751

C.1 Proof of Lemma 3752

Proof. The proof is an extension of that of Proposition 4 in [2]. For any (s, a) satisfies sf = T (s, a),753

we have Qµ
tot(s, a) = R(sf )f(s) and F (s, a) = R(sf ). Therefore, we have Qµ

tot(s, a) = F (s, a)f(s).754

Then, for each non-final node s′, based on the action-value function in terms of the action-value at755

the next step, we have by induction:756

Qµ
tot(s, a) = R̂(s′) + µ(a|s′)

∑
a′∈A(s′)

Qµ
tot(s

′, a′; R̂)

(a)
= 0 + µ(a|s′)

∑
a′∈A(s′)

F (s′, a′;R)f(s′),
(27)

where R̂(s′) is the reward of Qµ
tot(s, a) and (a) is due to that R̂(s′) = 0 if s′ is not a final state. Since757

the environment has a tree structure, we have758

F (s, a) =
∑

a′∈A(s′)

F (s′, a′), (28)
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which yields759

Qµ
tot(s, a) = µ(a|s′)F (s, a)f(s′) = µ(a|s′)F (s, a)f(s)

1

µ(a|s′)
= F (s, a)f(s).

According to Theorem 2, we have F (st, at) =
∏

i Fi(o
i
t, a

i
t), yielding760

argmax
a

Qtot(s, a)
(a)
= argmax

a
logF (s, a)f(s)

(b)
= argmax

a

k∑
i=1

logFi(oi, ai)

(c)
=

(
arg max

a1∈Ai

F1(o1, a1), · · · , arg max
ak∈Ak

Fk(ok, ak)

)
,

(29)

where (a) is based on the fact F and f(s) are positive, (b) is due to Theorem 2. Combining with the761

IGM condition762

argmax
a∈A

Qtot(s, a) =

(
arg max

a1∈A1

Q1(o1, a1), · · · , arg max
ak∈Ak

Qk(ok, ak)

)
,∀s ∈ S. (30)

we can conclude that(
arg max

ai∈Ai

Fi(oi, ai)

)k

i=1

=

(
arg max

a1∈A1

Qi(oi, ai)

)k

i=1

.

Then we complete the proof.763

D Additional Experiments764

D.1 Hyper-Grid Environment765

D.1.1 Effect of Sampling Method:766

We consider two different sampling methods of JFN; the first one is to sample trajectories using the767

flow function Fi of each agent independently, called JFN (IS), and the other one is to combine the768

policies πi of all agents to obtain a joint policy π, and then performed centralized sampling, named769

JFN (CS). As shown in Figure 6, we found that the JFN (CS) method has better performance than770

JFN (IS) because the error of the policy π estimated by the combination method is smaller, and771

several better samples can be obtained during the training process. However, the JFN (IS) method772

can achieve decentralized sampling, which is more in line with practical applications.
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Figure 6: The performance of JFN with different methods.
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D.1.2 Effect of Different Rewards:774

We study the effect of different rewards in Figure 7. In particular, we set R0 = {10−1, 10−2, 10−4}775

for different task challenge. A smaller value of R0 makes the reward function distribution more776

sparse, which makes policy optimization more difficult [2, 49, 50]. As shown in Figure 7, we found777

that our proposed method is robust with the cases R0 = 10−1 and R0 = 10−2. When the reward778

distribution becomes sparse, the performance of the proposed algorithm degrades slightly.779
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Figure 7: The effect of different reward R0 on different algorithm.

D.1.3 Flow Match Loss Function:780

Figure 8 shows the curve of the flow matching loss function with the number of training steps. The loss781

of our proposed algorithm gradually decreases, ensuring the stability of the learning process. For some782

RL algorithms based on the state-action value function estimation, the loss usually oscillates. This783

may be because RL-based methods use experience replay buffer and the transition data distribution is784

not stable enough. The method we propose uses an on-policy based optimization method, and the785

data distribution changes with the current sampling policy, hence the loss function is relatively stable.786

Then we present the experimental details on the Hyper-Grid environments. We set the same number787

of training steps for all algorithms for a fair comparison. Moreover, we list the key hyperparameters788

of the different algorithms in Tables 3-7.789
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Figure 8: The flow matching loss of different algorithm.

In addition, as shown in Table 2, both the reinforcement learning methods and our proposed method790

can achieve the highest reward, but the average reward of reinforcement learning is slightly better791

for all found modes. Our algorithms do not always have higher rewards compared to RL, which is792

reasonable since the goal of MA-GFlowNets is not to maximize rewards.793

D.2 StarCraft794

We present a visual analysis based on 3m with three identical entities attacking to win. All comparison795

experiments adopted PyMARL framework and used default experimental parameters. Figure 9 shows796

24



Environment MAPPO MASAC MCMC CFN JFN

Hyper-Grid v1 2.0 1.84 1.78 2.0 2.0
Hyper-Grid v2 1.90 1.76 1.70 1.85 1.85
Hyper-Grid v3 1.84 1.66 1.62 1.82 1.82

Table 2: The best reward found using different methods.

the decision results of different algorithms on the 3m map. It can be found that the proposed algorithm797

can obtain results under different reward distributions, that is, win at different costs. The costs of798

other algorithms are often the same, which shows that the proposed algorithm is suitable for scenarios799

with richer rewards. Figure 10 shows the performance of the different algorithms on 2s3z, which800

shows a similar conclusion that the algorithm based on GFlowNets may be difficult to get the best801

yield, but the goal is not to do this, but to fit the distribution better. Moreover, on StarCraft missions,802

we did not use a clear metric to indicate the diversity of different trajectories, mainly because the803

status of each entity includes multiple aspects, its movement range, health, opponent observation,804

etc., which can easily result in different trajectories, but these differences do not indicate a good805

fit for the reward distribution. As a result, it is not presented in the same way as Hyper-Grid and806

Simple-Spread. Therefore, we used a visual method to compare the results. The maximized reward-807

oriented algorithms such as QMIX will improve the reward by reducing the death of entities, while808

the GFlowNets method can better fit the distribution on the basis of guaranteeing higher rewards.

Figure 9: The sample results of different algorithm on 3m map. Upper: QMIX, Bottom: JFN
809
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Figure 10: Average rate on 2s3z

D.3 Sparse-Simple-Spread Environment810

In order to verify the performance of the CFN and JFN algorithms more extensively, we also conducted811

experiments on Simple-Spread in the multi-agent particle environment. We compared two classic812
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Multi-agent RL algorithms, QMIX [11] and MAPPO [40], which have achieved State-of-the-Art813

performance in the standard simple-spread environment. Since the decision-making problems solved814

by GFlowNets are usually the setting of discrete state-action space, we modified Simple-Spread815

to meet the above conditions and named it discrete Sparse-Simple-Spread. Specifically, we set the816

reward function such that if the agent arrives at or near a landmark, the agent will receive the highest817

or second-highest reward. And this reward is given to the agent only after each trajectory ends. In818

addition, we fix the speed of the agent to keep the state space discrete and all agents start from the819

origin.820

We adopt the average return and the number of distinguishable trajectories as performance metrics.821

When calculating the average return, JFN and CFN select the action with the largest flow for testing.822

As shown in Figure 11-Left, although the MAPPO and QMIX algorithms converge faster than the823

JFN, the JFN eventually achieves comparable performance. The performance of JFN is better than824

that of the CFN algorithm, which also shows that the method of flow decomposition can better learn825

the flow Fi of each agent. In each test round, we collect 16 trajectories and calculate the number of826

trajectories, which can be accumulated for comparison. The number of different trajectories found827

by JFN is 4 times that of MAPPO in Figure 11-Right, which shows that MA-GFlowNets can obtain828

more diverse results by sampling with the flow function. Moreover, the performance of JFN is not829

as good as that of the RL algorithm. This is because JFN lacks a guarantee for monotonic policy830

improvement [42, 43]. It pays more attention to exploration and does not fully use the learned policy,831

resulting in fewer high-return trajectories collected. MAPPO finds more high-return trajectories in832

Figure 11-Right, but it still struggles to generate more diverse results. In each sampling process, the833

trajectories found by MAPPO are mostly the same, while JFN does better.834
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Figure 11: Average return and the number of distinctive trajectories performance of different algo-
rithms on Sparse-Simple-Spread environments.

Table 3: Hyper-parameter of MAPPO under different environments
Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Agent 2 2 3

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001
Batchsize 64 64 64

Discount Factor 0.99 0.99 0.99
PPO Entropy 1e-1 1e-1 1e-1

A Technical Appendices and Supplementary Material835

Technical appendices with additional results, figures, graphs and proofs may be submitted with836

the paper submission before the full submission deadline (see above), or as a separate PDF in the837
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Table 4: Hyper-parameter of MASAC under different environments
Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Actor Network Hidden Layers [256,256] [256,256] [256,256]
Critic Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001

Batchsize 64 64 64
Discount Factor 0.99 0.99 0.99

SAC Alpha 0.98 0.98 0.98
Target Network Update 0.001 0.001 0.001

Table 5: Hyper-parameter of JFN under different environments
Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
R2 2 2 2
R1 0.5 0.5 0.5

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001

ϵ 0.0005 0.0005 0.0005

Table 6: Hyper-parameter of CJFN under different environments
Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
R2 2 2 2
R1 0.5 0.5 0.5

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Trajectories per steps 16 16 16
Flow Network Hidden Layers [256,256] [256,256] [256,256]

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001

ϵ 0.0005 0.0005 0.0005
Number of ω 4 4 4

Table 7: Hyper-parameter of CFN under different environments
Hyper-Grid-v1 Hyper-Grid-v2 Hyper-Grid-v3

Train Steps 20000 20000 20000
Trajectories per steps 16 16 16

R2 2 2 2
R1 0.5 0.5 0.5

Grid Dim 2 3 3
Grid Size [8,8] [8,8] [8,8]

Flow Network Hidden Layers [256,256] [256,256] [256,256]
Optimizer Adam Adam Adam

Learning Rate 0.0001 0.0001 0.0001
ϵ 0.0005 0.0005 0.0005

ZIP file below before the supplementary material deadline. There is no page limit for the technical838

appendices.839
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NeurIPS Paper Checklist840

The checklist is designed to encourage best practices for responsible machine learning research,841

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove842

the checklist: The papers not including the checklist will be desk rejected. The checklist should843

follow the references and follow the (optional) supplemental material. The checklist does NOT count844

towards the page limit.845

Please read the checklist guidelines carefully for information on how to answer these questions. For846

each question in the checklist:847

• You should answer [Yes] , [No] , or [NA] .848

• [NA] means either that the question is Not Applicable for that particular paper or the849

relevant information is Not Available.850

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).851

The checklist answers are an integral part of your paper submission. They are visible to the852

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it853

(after eventual revisions) with the final version of your paper, and its final version will be published854

with the paper.855

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.856

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a857

proper justification is given (e.g., "error bars are not reported because it would be too computationally858

expensive" or "we were unable to find the license for the dataset we used"). In general, answering859

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we860

acknowledge that the true answer is often more nuanced, so please just use your best judgment and861

write a justification to elaborate. All supporting evidence can appear either in the main paper or the862

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification863

please point to the section(s) where related material for the question can be found.864

IMPORTANT, please:865

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",866

• Keep the checklist subsection headings, questions/answers and guidelines below.867

• Do not modify the questions and only use the provided macros for your answers.868

1. Claims869

Question: Do the main claims made in the abstract and introduction accurately reflect the870

paper’s contributions and scope?871

Answer:[Yes]872

Justification: Section 1 provides the MA-GFN formulation, section 2 provides theoretical873

motivations for the Multi-agent loss, section 4 provides experimental support.874

Guidelines:875

• The answer NA means that the abstract and introduction do not include the claims876

made in the paper.877

• The abstract and/or introduction should clearly state the claims made, including the878

contributions made in the paper and important assumptions and limitations. A No or879

NA answer to this question will not be perceived well by the reviewers.880

• The claims made should match theoretical and experimental results, and reflect how881

much the results can be expected to generalize to other settings.882

• It is fine to include aspirational goals as motivation as long as it is clear that these goals883

are not attained by the paper.884

2. Limitations885

Question: Does the paper discuss the limitations of the work performed by the authors?886

Answer: [Yes]887
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Justification: They are discussed in section 5888

Guidelines:889

• The answer NA means that the paper has no limitation while the answer No means that890

the paper has limitations, but those are not discussed in the paper.891

• The authors are encouraged to create a separate "Limitations" section in their paper.892

• The paper should point out any strong assumptions and how robust the results are to893

violations of these assumptions (e.g., independence assumptions, noiseless settings,894

model well-specification, asymptotic approximations only holding locally). The authors895

should reflect on how these assumptions might be violated in practice and what the896

implications would be.897

• The authors should reflect on the scope of the claims made, e.g., if the approach was898

only tested on a few datasets or with a few runs. In general, empirical results often899

depend on implicit assumptions, which should be articulated.900

• The authors should reflect on the factors that influence the performance of the approach.901

For example, a facial recognition algorithm may perform poorly when image resolution902

is low or images are taken in low lighting. Or a speech-to-text system might not be903

used reliably to provide closed captions for online lectures because it fails to handle904

technical jargon.905

• The authors should discuss the computational efficiency of the proposed algorithms906

and how they scale with dataset size.907

• If applicable, the authors should discuss possible limitations of their approach to908

address problems of privacy and fairness.909

• While the authors might fear that complete honesty about limitations might be used by910

reviewers as grounds for rejection, a worse outcome might be that reviewers discover911

limitations that aren’t acknowledged in the paper. The authors should use their best912

judgment and recognize that individual actions in favor of transparency play an impor-913

tant role in developing norms that preserve the integrity of the community. Reviewers914

will be specifically instructed to not penalize honesty concerning limitations.915

3. Theory assumptions and proofs916

Question: For each theoretical result, does the paper provide the full set of assumptions and917

a complete (and correct) proof?918

Answer: [Yes]919

Justification: Comprehensive justifications and proofs are provided in appendix A and C920

Guidelines:921

• The answer NA means that the paper does not include theoretical results.922

• All the theorems, formulas, and proofs in the paper should be numbered and cross-923

referenced.924

• All assumptions should be clearly stated or referenced in the statement of any theorems.925

• The proofs can either appear in the main paper or the supplemental material, but if926

they appear in the supplemental material, the authors are encouraged to provide a short927

proof sketch to provide intuition.928

• Inversely, any informal proof provided in the core of the paper should be complemented929

by formal proofs provided in appendix or supplemental material.930

• Theorems and Lemmas that the proof relies upon should be properly referenced.931

4. Experimental result reproducibility932

Question: Does the paper fully disclose all the information needed to reproduce the main ex-933

perimental results of the paper to the extent that it affects the main claims and/or conclusions934

of the paper (regardless of whether the code and data are provided or not)?935

Answer: [Yes]936

Justification: The code is not disclosed but the pseudo-code is provided.937

Guidelines:938

• The answer NA means that the paper does not include experiments.939
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• If the paper includes experiments, a No answer to this question will not be perceived940

well by the reviewers: Making the paper reproducible is important, regardless of941

whether the code and data are provided or not.942

• If the contribution is a dataset and/or model, the authors should describe the steps taken943

to make their results reproducible or verifiable.944

• Depending on the contribution, reproducibility can be accomplished in various ways.945

For example, if the contribution is a novel architecture, describing the architecture fully946

might suffice, or if the contribution is a specific model and empirical evaluation, it may947

be necessary to either make it possible for others to replicate the model with the same948

dataset, or provide access to the model. In general. releasing code and data is often949

one good way to accomplish this, but reproducibility can also be provided via detailed950

instructions for how to replicate the results, access to a hosted model (e.g., in the case951

of a large language model), releasing of a model checkpoint, or other means that are952

appropriate to the research performed.953

• While NeurIPS does not require releasing code, the conference does require all submis-954

sions to provide some reasonable avenue for reproducibility, which may depend on the955

nature of the contribution. For example956

(a) If the contribution is primarily a new algorithm, the paper should make it clear how957

to reproduce that algorithm.958

(b) If the contribution is primarily a new model architecture, the paper should describe959

the architecture clearly and fully.960

(c) If the contribution is a new model (e.g., a large language model), then there should961

either be a way to access this model for reproducing the results or a way to reproduce962

the model (e.g., with an open-source dataset or instructions for how to construct963

the dataset).964

(d) We recognize that reproducibility may be tricky in some cases, in which case965

authors are welcome to describe the particular way they provide for reproducibility.966

In the case of closed-source models, it may be that access to the model is limited in967

some way (e.g., to registered users), but it should be possible for other researchers968

to have some path to reproducing or verifying the results.969

5. Open access to data and code970

Question: Does the paper provide open access to the data and code, with sufficient instruc-971

tions to faithfully reproduce the main experimental results, as described in supplemental972

material?973

Answer: [No]974

Justification: Only pseudo-code and environment description are provided.975

Guidelines:976

• The answer NA means that paper does not include experiments requiring code.977

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/978

public/guides/CodeSubmissionPolicy) for more details.979

• While we encourage the release of code and data, we understand that this might not be980

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not981

including code, unless this is central to the contribution (e.g., for a new open-source982

benchmark).983

• The instructions should contain the exact command and environment needed to run to984

reproduce the results. See the NeurIPS code and data submission guidelines (https:985

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.986

• The authors should provide instructions on data access and preparation, including how987

to access the raw data, preprocessed data, intermediate data, and generated data, etc.988

• The authors should provide scripts to reproduce all experimental results for the new989

proposed method and baselines. If only a subset of experiments are reproducible, they990

should state which ones are omitted from the script and why.991

• At submission time, to preserve anonymity, the authors should release anonymized992

versions (if applicable).993
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• Providing as much information as possible in supplemental material (appended to the994

paper) is recommended, but including URLs to data and code is permitted.995

6. Experimental setting/details996

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-997

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the998

results?999

Answer: [Yes]1000

Justification: Only the Starcraft experiment requires particular Hyperparamter tuning effort1001

due to the difference between the reward maximization objective and the GFlowNet diversity1002

objective. Manual tuning was sufficient using standard reward temperature tuning method1003

for similar GFlowNets training.1004

Guidelines:1005

• The answer NA means that the paper does not include experiments.1006

• The experimental setting should be presented in the core of the paper to a level of detail1007

that is necessary to appreciate the results and make sense of them.1008

• The full details can be provided either with the code, in appendix, or as supplemental1009

material.1010

7. Experiment statistical significance1011

Question: Does the paper report error bars suitably and correctly defined or other appropriate1012

information about the statistical significance of the experiments?1013

Answer: [Yes]1014

Justification: Standard deviations at 2-sigma are provided on most plots.1015

Guidelines:1016

• The answer NA means that the paper does not include experiments.1017

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1018

dence intervals, or statistical significance tests, at least for the experiments that support1019

the main claims of the paper.1020

• The factors of variability that the error bars are capturing should be clearly stated (for1021
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