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Abstract

Large Language Models (LLMs) have become001
a cornerstone in the field of Natural Lan-002
guage Processing (NLP), offering transforma-003
tive capabilities in understanding and generat-004
ing human-like text. However, with their ris-005
ing prominence, the security and vulnerabil-006
ity aspects of these models have garnered sig-007
nificant attention. This paper presents a com-008
prehensive survey of the various forms of at-009
tacks targeting LLMs, discussing the nature010
and mechanisms of these attacks, their poten-011
tial impacts, and current defense strategies.012
We delve into topics such as adversarial at-013
tacks that aim to manipulate model outputs,014
data poisoning that affects model training, and015
privacy concerns related to training data ex-016
ploitation. The paper also explores the effec-017
tiveness of different attack methodologies, the018
resilience of LLMs against these attacks, and019
the implications for model integrity and user020
trust. By examining the latest research, we021
provide insights into the current landscape of022
LLM vulnerabilities and defense mechanisms.023
Our objective is to offer a nuanced understand-024
ing of LLM attacks, foster awareness within025
the AI community, and inspire robust solutions026
to mitigate these risks in future developments.027

1 Introduction028

The emergence of artificial intelligence has029

marked a significant transformation in Natural030

Language Processing through the introduction of031

large language models (LLMs) enabling unprece-032

dented advances in language comprehension, gen-033

eration, and translation (Zhao et al., 2023c;034

Naveed et al., 2023; Achiam et al., 2023). Despite035

their transformative impact, LLMs have become036

susceptible to a variety of sophisticated attacks,037

posing significant challenges to their integrity and038

reliability (Yao et al., 2023; Liu et al., 2023d).039

This survey paper provides a comprehensive ex-040

amination of the attacks targeting LLMs, elucidat-041

ing their mechanisms, consequences, and the fast 042

evolving threat landscape. 043

The significance of investigating attacks on 044

LLMs lies in their extensive integration across var- 045

ious sectors and their consequential societal ram- 046

ifications (Eloundou et al., 2023). LLMs are 047

instrumental in applications ranging from auto- 048

mated customer support to sophisticated content 049

creation. Therefore, understanding their vulnera- 050

bilities is imperative for ensuring the security and 051

trustworthiness of AI-driven systems (Amodei 052

et al., 2016; Hendrycks et al., 2023). This paper 053

categorizes the spectrum of attacks, based on ac- 054

cess to model weights and attack vectors, each pre- 055

senting distinct challenges and requiring specific 056

attention. 057

Additionally, the methodologies employed in 058

executing these attacks are dissected, offering in- 059

sights into the adversarial techniques utilized to 060

exploit LLM vulnerabilities. While acknowledg- 061

ing the limitations of current defense mechanisms, 062

the paper also proposes potential avenues for fu- 063

ture research in enhancing LLM security. 064

We summarize the major contributions of our 065

work as follows: 066

OUR CONTRIBUTIONS

➠ We propose a novel taxonomy of attacks on LLMs,
which can help researchers to better understand the
research landscape and fnd their areas of interest.

➠ We present existing attack and mitigation ap-
proaches in detail, discussing key implementation
details.

➠ We discuss important challenges, highlighting
promising directions for future research.

067

2 Exploring LLM Security: White and 068

Black Box Attacks 069

This section delves into the security challenges of 070

Large Language Models (LLMs) from both white 071

box and black box perspectives. It highlights the 072
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importance of understanding and protecting LLMs073

against complex security threats.074

2.1 White Box075

These attacks exploit full access to the LLM’s ar-076

chitecture, training data, and algorithms, enabling077

attackers to extract sensitive information, manipu-078

late outputs, or insert malicious code. Shayegani079

et al. (2023) discusses whitebox attacks, highlight-080

ing how this access permits crafting adversarial in-081

puts to alter outputs or impair performance. The082

study covers various attack strategies, such as con-083

text contamination and prompt injection, aimed at084

manipulating LLMs for specific outputs or reduc-085

ing their quality.086

Separately, Li et al. (2023a) examines privacy087

concerns in LLMs, emphasizing the importance088

of protecting personal information in the face089

of evolving AI technologies. They discuss the090

privacy risks associated with training and infer-091

ence data, highlighting the critical need to analyze092

whitebox attacks for effective threat mitigation.093

2.2 Black Box094

These attacks exploit LLM vulnerabilities with095

limited knowledge of the model’s internals, fo-096

cusing on manipulating or degrading performance097

through the input-output interface. This approach,098

realistic in practical scenarios, poses risks such099

as sensitive data extraction, biased outputs, and100

diminished trust in AI. Chao et al. (2023) illus-101

trates black-box methods to “jailbreak” LLMs like102

GPT-3.5 and GPT-4, with Qi et al. (2023a); Yong103

et al. (2023) exploring attacks on API-based mod-104

els such as GPT-4 across various surfaces.105

3 LLM Attacks Taxonomy106

3.1 Jailbreaks107

This section delves into jailbreak attacks on108

LLMs, detailing strategies to exploit model vul-109

nerabilities for unauthorized actions, underscoring110

the critical need for robust defense mechanisms.111

Refined Query-Based Jailbreaking: Chao112

et al. (2023) represent a strategic approach in jail-113

breaking, utilizing a minimal number of queries.114

This method doesn’t just exploit simple model115

vulnerabilities but involves a nuanced understand-116

ing of the model’s response mechanism, iteratively117

refining queries to probe and eventually bypass the118

model’s defenses. The success of this approach119

underscores a key vulnerability in LLMs: their120

predictability and manipulability through iterative, 121

intelligent querying. This work introduces Prompt 122

Automatic Iterative Refinement (PAIR), an algo- 123

rithm designed to automate the generation of se- 124

mantic jailbreaks for LLMs. PAIR works by us- 125

ing an attacker LLM to iteratively query a tar- 126

get LLM, refining a candidate jailbreak. This ap- 127

proach, more efficient than previous methods, re- 128

quires fewer queries and can often produce a jail- 129

break in under twenty queries. PAIR demonstrates 130

success in jailbreaking various LLMs, including 131

GPT-3.5/4 and Vicuna, and is notable for its effi- 132

ciency and interpretability, making the jailbreaks 133

transferable to other LLMs. 134

Sophisticated Prompt Engineering Tech- 135

niques: Perez and Ribeiro (2022) delve into the 136

intricacies of LLMs’ prompt processing capabil- 137

ities. They demonstrate that embedding certain 138

trigger words or phrases within prompts can ef- 139

fectively hijack the model’s decision-making pro- 140

cess, leading to the overriding of programmed 141

ethical constraints. (Ding et al., 2023) focus on 142

subtle, hard-to-detect jailbreaking methods using 143

nested prompts. These findings reveal a critical 144

shortcoming in the LLMs’ content evaluation al- 145

gorithms, suggesting the need for more complex, 146

context-aware natural language processing that 147

can discern and neutralize manipulative prompt 148

structures. 149

Cross-Modal and Linguistic Attack Sur- 150

faces: Qi et al. (2023a) reveals that LLMs are 151

susceptible to multimodal inputs that combine text 152

with visual cues. This approach takes advantage of 153

the models’ less robust processing of non-textual 154

information. Similarly, Yong et al. (2023) exposes 155

the heightened vulnerability of LLMs in process- 156

ing low-resource languages. This indicates a sig- 157

nificant gap in the models’ linguistic coverage and 158

comprehension, especially for languages with lim- 159

ited representation in training data. This work 160

demonstrated that by translating unsafe English 161

inputs into low-resource languages, it’s possible to 162

circumvent GPT-4’s safety safeguards. 163

Universal and Automated Attack Strategies: 164

The development of universal and automated at- 165

tack frameworks, as discussed in (Mehrotra et al., 166

2023) marks a pivotal advancement in jailbreaking 167

techniques. These attacks involve appending spe- 168

cially chosen sequences of characters to a user’s 169

query, which can cause the system to provide un- 170

filtered, potentially harmful responses. Shah et al. 171
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Attacks on
LLMs

Techniques to Attack

Jailbreaks §3.1

Query Based Jailbreaking PAIR (Chao et al., 2023)
Competing Objectives (Wei et al., 2023)

Prompt Engineering DeepInception (Li et al., 2023c)
ReNeLLM (Ding et al., 2023)

Cross-Modal Attacks Visual Adversarial Examples (Qi et al., 2023a)
Low Resource JailBreaking (Yong et al., 2023)

Universal Attacks
Universal Jailbreaks on Aligned LLMs (Qi et al., 2023a)

Tree of Attacks (Mehrotra et al., 2023)
Persona Modulation (Shah et al., 2023b)

Prompt Injection §3.2

Objective Manipulation
PromptInject (Perez and Ribeiro, 2022)

Indirect Prompt Injection (Abdelnabi et al., 2023)
Propane (Melamed et al., 2023)

Prompt Leaking HOUYI (Liu et al., 2023b)

Malicious Content Gen AutoDAN (Liu et al., 2023b)
Prompt Packer (Jiang et al., 2023)

Training Data Manipulation ProAttack (Liu et al., 2023b)

Data Poisoning§3.3

PII Extraction Janus (Chen et al., 2023)
PII Scrubing (Lukas et al., 2023)

Safety Alignment Bypass

Safety Degradation (Qi et al., 2023b)
Removing RLHF Protections (Zhan et al., 2023)

Safety-Tuned Llamas (Bianchi et al., 2023)
Forgetting Unsafe Examples (Zhao et al., 2023a)

Backdoor Attacks

LOFT (Shah et al., 2023a)
AutoPoison (Shu et al., 2023)

Backdoor Activation Attacks (Bianchi et al., 2023)
Composite Backdoor Attacks (Zhao et al., 2023a)

Mitigation from Attacks Mitigation
Strategy §4.3

Input/Output Censorship

Baseline Defenses (Jain et al., 2023)
SmoothLLM (Robey et al., 2023)

Adversarial Prompt Shield (Kim et al., 2023)
Llama Guard (Inan et al., 2023)

NeMo-Guardrails (Rebedea et al., 2023)
Self-Examination (Helbling et al., 2023)

Model training/Fine-tuning Llama-2 (Touvron et al., 2023)
Context-Distillation (Askell et al., 2021)

Figure 1: Taxonomy of attacks and defences on LLMs. We focus on prevalent methods across subthemes spanning jailbreaks,
prompt injections and data poisoning. For Mitigation strategies, we divide papers into training based and moderation based
efforts. All branches highlight key works that represent the themes.

(2023b) examine attacks leveraging the persona or172

style emulation capabilities of LLMs, introducing173

a new dimension to the attack strategies.174

3.2 Prompt Injection175

This section outlines attacker strategies to manip-176

ulate LLM behavior using carefully designed ma-177

licious prompts and organizes the research into178

seven key areas.179

Objective Manipulation: Abdelnabi et al.180

(2023) demonstrate a prompt injection attack ca-181

pable of fully compromising LLMs, with prac-182

tical feasibility showcased on applications like183

Bing Chat and Github Copilot. Perez and Ribeiro184

(2022) introduce the PromptInject framework for185

goal-hijacking attacks, revealing vulnerability to186

prompt misalignment and offering insights into in-187

hibiting measures such as stop sequences and post-188

processing model results.189

Prompt Leaking: Liu et al. (2023b) addresses190

security vulnerabilities in Large Language Models191

like GPT-4, focusing on prompt injection attacks.192

It introduces the HOUYI methodology, a black-193

box prompt injection attack approach designed for194

versatility and adaptability across various LLM-195

integrated services/applications. HOUYI com-196

prises three phases: Context Inference (interac-197

tion with the target application to grasp its inher- 198

ent context and input-output relationships), Pay- 199

load Generation (devising a prompt generation 200

plan based on the obtained application context and 201

prompt injection guidelines), and Feedback (gaug- 202

ing the effectiveness of the attack by scrutiniz- 203

ing the LLM’s responses to the injected prompts, 204

followed by iterative refinement for optimal out- 205

comes), aiming to trick LLMs into interpreting 206

malicious payloads as questions rather than data 207

payloads. Experiments on 36 real-world LLM- 208

integrated services using HOUYI show an 86.1% 209

success rate in launching attacks, revealing severe 210

ramifications such as unauthorized imitation of 211

services and exploitation of computational power. 212

Malicious Content Generation: Addressing 213

scalability challenges in malicious prompt genera- 214

tion, Liu et al. (2023a) present AutoDAN, which 215

is designed to preserve meaningfulness and flu- 216

ency in prompts. They highlight the discovery 217

of prompt injection attacks combined with mali- 218

cious questions, can lead LLMs to generate harm- 219

ful or objectionable content by bypassing safety 220

features. Using a hierarchical genetic algorithm 221

tailored for structured discrete data sets AutoDAN 222

apart from existing methods. The initialization of 223

the population is crucial, and the paper employs 224
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handcrafted jailbreak prompts identified by LLM225

users as prototypes to reduce the search space.226

Different crossover policies for both sentences and227

words are introduced to avoid falling into local op-228

tima and consistently search for the global optimal229

solution. Implementation details include a multi-230

point crossover policy based on a roulette selection231

strategy and a momentum word scoring scheme232

to enhance search capability in the fine-grained233

space. The method achieves lower sentence per-234

plexity, indicating more semantically meaningful235

and stealthy attacks.236

Manipulating Training Data: Zhao et al.237

(2023b) present ProAttack, which boasts near-238

perfect success rates in evading defenses, high-239

lighting the urgency for better handling of prompt240

injection attacks with LLMs’ growing application.241

Prompt Injection Attacks and Defenses in242

LLM-Integrated Applications: Comprehensive243

studies such as (Liu et al., 2023e) emphasize the244

importance of understanding and mitigating the245

risks posed by prompt injection attacks. These246

works highlight sophisticated methodologies like247

’HouYi’ (Liu et al., 2023e) and underscore the ur-248

gent need for more robust security measures.249

Prompt Manipulation Frameworks: Recent250

literature explores various methods for manipu-251

lating LLM behavior, as detailed in works like252

(Melamed et al., 2023; Jiang et al., 2023). Propane253

(Melamed et al., 2023) introduces an automatic254

prompt optimization framework, while Prompt255

Packer (Jiang et al., 2023) introduces Composi-256

tional Instruction Attacks, revealing vulnerabili-257

ties in LLMs to multifaceted attacks.258

Benchmarking and Analyzing LLM Prompt259

Injection Attacks: Toyer et al. (2023) present a260

dataset of prompt injection attacks and defenses,261

offering insights into LLM vulnerabilities and262

paving the way for more resilient systems. This263

benchmarking and analysis are crucial for under-264

standing the intricacies of prompt injection attacks265

and developing effective countermeasures.266

3.3 Data Poisoning267

Contemporary NLP systems follow a two-stage268

process: pretraining and fine-tuning. Pretrain-269

ing involves learning from a large corpus to un-270

derstand general linguistic structures, while fine-271

tuning tailors the model for specific tasks using272

smaller datasets. Recently, providers like OpenAI273

have enabled end-users to fine-tune models, en-274

hancing adaptability. This section explores studies 275

on data poisoning techniques and their impact on 276

safety aspects during training, including privacy 277

risks and susceptibility to adversarial attacks. 278

PII extraction: Chen et al. (2023) investi- 279

gate whether fine-tuning large language models 280

(LLMs) on small datasets containing personal 281

identifiable information (PII) can lead to the mod- 282

els disclosing more PII embedded in their original 283

training data. The authors demonstrate a strawman 284

method where an LLM is fine-tuned on a small PII 285

dataset converted to text, which enables the model 286

to then disclose more PII when prompted. To im- 287

prove on this, they propose Janus methodology 288

which defines a PII recovery task and uses few- 289

shot fine-tuning. Experiments indicate that fine- 290

tuning GPT-3.5 on just 10 PII instances enables it 291

to accurately disclose 650 out of 1000 target PIIs, 292

versus 0 without fine-tuning. The Janus method 293

further improves this divulgence, disclosing 699 294

target PIIs. Analysis shows larger models and 295

real training data have stronger memorization and 296

PII recovery and fine-tuning is more effective than 297

prompt engineering alone for PII leakage. This in- 298

dicates that LLMs can shift from non-disclosure to 299

revealing significant amounts of PII with minimal 300

fine-tuning. 301

Bypassing Safety Alignment: Qi et al. 302

(2023b) investigate safety risks in fine-tuning 303

aligned LLMs, finding that even benign datasets 304

can compromise safety. Backdoor attacks are 305

shown to effectively bypass safety measures, em- 306

phasizing the need for improved post-training pro- 307

tections. 308

Bianchi et al. (2023) analyze the safety 309

risks of instruction tuning, showing that overly 310

instruction-tuned models can still produce harm- 311

ful content. They propose a safety tuning dataset 312

to mitigate these risks, balancing safety and model 313

performance. 314

Zhao et al. (2023a) study how LLMs learn 315

and forget unsafe examples during fine-tuning, 316

proposing a technique called ForgetFilter to filter 317

fine-tuning data and improve safety without sacri- 318

ficing performance. 319

Backdoor Attacks: Shah et al. (2023a) intro- 320

duce Local Fine Tuning (LoFT) for discovering 321

adversarial prompts, demonstrating successful at- 322

tacks on LLMs. Shu et al. (2023) propose Au- 323

topoison, an automated data poisoning pipeline, 324

showcasing its effectiveness in altering model be- 325
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havior without semantic degradation.326

4 Human Interference327

Adversarial attacks range from human-crafted328

(slow and non-scalable) to automated methods uti-329

lizing search, target function optimization, LLMs,330

and tools.331

4.1 Human Red Teaming332

Through human-crafted adversarial prompts, indi-333

viduals employ their creativity and expertise to de-334

sign attacks carefully. These attacks often involve335

a deep understanding of the targeted model’s vul-336

nerabilities and limitations.337

In a study performed by Huang et al. (2023),338

600 curated harmful prompts were tested over 11339

LLMs. By simply varying decoding hyperparam-340

eters and sampling methods, they show these cu-341

rated prompts can easily break LLMs. Shen et al.342

(2023a) collect 6,387 malicious prompts and test343

them over 13 forbidden scenarios from OpenAI’s344

policy. These were collected through various on-345

line sources like reddit, discords, datasets and346

other public places on the web. They found 2347

highly effective prompts that have 99% attack suc-348

cess on GPT-3.5 and GPT-4.349

Li et al. (2023b) collected personally identifi-350

able information, like emails and phone numbers,351

to test if they could extract this data from LLMs.352

They crafted a multi-step jailbreaking role-playing353

prompting approach that a human attacker can use354

to break ChatGPT’s ethical constraints and extract355

private data. The website356

The online platform (Jai) is an active website357

for gathering jailbreaking prompts through crowd-358

sourcing. Another study conducted by Liu et al.359

(2023c) utilized this website to analyze 78 mali-360

cious prompts. These prompts were categorized361

into three main classes: Pretending, Attention362

Shifting, and Privilege Escalation, each further di-363

vided into subclasses. In total, they created 10364

categories encompassing various types of harm-365

ful prompts that broke over 10 OpenAI policies.366

Other sources of curated adversarial prompts have367

also surfaced over the web (Shen et al., 2023b;368

Jai).369

Creating interactive systems to facilitate adver-370

sarial sample generation is another way to get hu-371

man expertise into breaking LLMs. Wallace et al.372

(2019) created an interactive UI for leveraging hu-373

man creativity and trivia knowledge to generate374

adversarial examples for Question Answering sys- 375

tems. The authors build an interactive interface 376

that shows question authors model predictions and 377

word importance scores. The authors are trivia 378

enthusiasts who craft tricky questions that fool 379

the model. A similar large scale study (Schul- 380

hoff et al., 2023) collect over 600k adversarial 381

prompts from thousands of participants worldwide 382

through an interactive interface. In another work 383

Ziegler et al. (2022) leveraged human contractors 384

who manually wrote adversarial text snippets that 385

could fool a injurious/non-injurious text classifier. 386

They built an interface to help contractors rewrite 387

snippets to be adversarial, including highlighting 388

salient tokens and suggesting token replacements. 389

Xu et al. (2021) introduce Bot-Adversarial Dia- 390

logue, a human-and-model-in-the-loop framework 391

for enhancing conversational AI safety. Crowd 392

workers converse with chatbots to elicit unsafe/of- 393

fensive responses, categorized by severity. A ver- 394

ification task identifies offensive language types, 395

involving humans in both collecting and labeling 396

adversarial examples for safety and offensiveness 397

type. 398

4.2 Automated Adversarial Attacks 399

Automated adversarial attacks use algorithms to 400

generate and deploy adversarial examples, offer- 401

ing scalability without human expertise. 402

Deng et al. (2023) propose the “MASTERKEY 403

framework”, which uses time-based characteris- 404

tics inherent to the generative process to reverse- 405

engineer the defense strategies behind mainstream 406

LLM chatbot services. They automatically gener- 407

ate jailbreak prompts against well-protected LLMs 408

by fine-tuning another LLM with the jailbreak 409

prompts. Zou et al. (2023) propose a univer- 410

sal automated approach for adversarial attacks on 411

LLMs. It involves generating a suffix to be added 412

to various queries, prompting the LLM to produce 413

inappropriate content. This method merges greedy 414

and gradient-based search techniques to automati- 415

cally create these adversarial suffixes. The adver- 416

sarial prompts produced by this method are highly 417

transferable, even to black-box, publicly available, 418

production LLMs. 419

AutoDAN (Liu et al., 2023a), an automated, 420

interpretable, gradient-based adversarial attack 421

method for LLMs, combines the strengths of man- 422

ual jailbreak attacks and automatic adversarial at- 423

tacks. It generates readable prompts that bypass 424
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perplexity filters while maintaining high attack425

success rates. It formulates the attack as an op-426

timization problem and employs a hierarchical ge-427

netic algorithm to search for effective prompts428

in the space initialized by handcrafted prompts.429

Their method operates at multiple levels - sen-430

tence and word - to ensure both diversity and fine-431

grained optimization.432

Jones et al. (2023) present ARCA, a coordi-433

nate ascent discrete optimization algorithm effi-434

ciently searching for input output text pairs match-435

ing a desired behavior in LLMs. It uncovers unex-436

pected behaviors like derogatory completions or437

language-switching inputs. Several tools to auto-438

matically generate adversarial samples for LLMs439

exist. PromptAttack (Xu et al., 2023), a tool440

for evaluating the adversarial robustness of LLMs,441

converts adversarial textual attacks into an attack442

prompt that causes the LLM to output an adver-443

sarial sample, essentially fooling itself. The attack444

prompt consists of the original input, the attack ob-445

jective, and the attack guidance.446

Casper et al. (2023) present a red-teaming447

framework for LLMs, starting with output explo-448

ration via clustering, establishing undesired be-449

haviors through classifier training, and using re-450

inforcement learning to train a “red” model gener-451

ating adversarial prompts, focusing on controver-452

sial topics. They successfully red-team GPT-2 for453

toxic text and GPT-3 for false claims, particularly454

in controversial political contexts, demonstrating455

more impactful attacks than traditional methods.456

4.3 Mitigation Strategies457

Mitigation strategies for protecting LLMs can be458

broadly divided into two categories based on de-459

fense deployment strategy.460

4.3.1 External: Input/Output filtering or461

Guarding462

In guarding-based mitigation for LLMs, external463

systems play a crucial role by detecting adver-464

sarial inputs (input filtering) or anomalous out-465

puts (output filtering), negating the need for model466

retraining. Popular tools like OpenChatKit1 and467

NeMo-Guardrails Rebedea et al. (2023) exem-468

plify this approach, and have been adopted by a469

number of production-LLM systems. Guarding470

techniques can further be bifurcated into defenses471

against gradient-based jailbreaks that employ ad-472

1https://github.com/togethercomputer/OpenChatKit

versarial suffixes to augment prompts, and man- 473

ual jailbreaks aiming to misalign the model’s re- 474

sponses. 475

Defense against gradient-based jailbreaks: 476

The current state-of-the-art literature in the area 477

of mitigating gradient-based adversarial attacks on 478

LLMs can be broadly categorized into two main 479

strategies: one focusing on detecting malicious 480

prompts based on characteristic features of the in- 481

put (e.g., high perplexity, character-level perturba- 482

tions) and the other utilizing classifier-based ap- 483

proaches where models, such as DistilBERT(Sanh 484

et al., 2019), are employed to distinguish between 485

adversarial and non-adversarial prompts. 486

In the former category, Jain et al. (2023) dis- 487

cuss baseline defenses like input filtering, which, 488

despite their effectiveness, may inadvertently al- 489

ter the intended output through techniques such as 490

paraphrasing and retokenization, or flag legitimate 491

queries due to perplexity-based filtering. Simi- 492

larly, Robey et al. (2023) introduce SmoothLLM, 493

which leverages the vulnerability of adversarial 494

attacks to character-level perturbations, adopting 495

a scatter-gather approach for prompt processing. 496

This method aims to nullify adversarial content 497

by averaging out the final response based on the 498

aggregated responses produced by the model for 499

the perturbed input prompts. Similarly, Hu et al. 500

(2023) propose token-level adversarial prompt de- 501

tection, capitalizing on the high perplexity charac- 502

teristic of adversarial prompts to identify and clas- 503

sify adversarial tokens within a prompt, leveraging 504

the relationship between neighbouring tokens. As 505

with other perplexity-based techniques, this might 506

not be feasible for black-box LLMs where per- 507

plexity calculation cannot be done directly. 508

On the classifier-based side, Kim et al. (2023) 509

propose the Adversarial Prompt Shield (APS), a 510

DistilBERT(Sanh et al., 2019)-based model de- 511

signed for prompt classification into safe or un- 512

safe categories. This approach is complemented 513

by a method for generating training data that simu- 514

lates adversarial attacks by adding synthetic noise 515

to legitimate conversations. However, the neces- 516

sity for frequent retraining to stay abreast of new 517

attack vectors and reduce false positives presents 518

a challenge to this approach. 519

The characteristic feature-based methods pro- 520

vide a more direct approach to detecting adversar- 521

ial content, potentially allowing for real-time mit- 522

igation without the need for extensive retraining. 523
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Conversely, classifier-based approaches, while re-524

quiring more maintenance, offer a more nuanced525

understanding of the intricacies of adversarial and526

non-adversarial prompts, potentially leading to527

more accurate and robust defenses against a wider528

range of attacks.529

Defense against manual jailbreaks: Inan et al.530

(2023) introduce Llama Guard, a safeguard model531

leveraging Llama2-7b Touvron et al. (2023) for532

input-output protection in LLMs. It employs533

taxonomy-based task classification for customiz-534

ing responses through few-shot prompting or fine-535

tuning. Rebedea et al. (2023) present NeMo-536

Guardrails, an open-source framework enhancing537

LLM conversational systems with programmable538

guardrails. It uses a proxy layer with Colang-539

defined rules to manage user interactions, though540

its reliance on chain-of-thought (CoT) prompting541

may limit scalability. Helbling et al. (2023) pro-542

pose a similar approach and suggest an output543

filtering method involving a secondary LLM to544

assess the malicious nature of responses, facing545

challenges in language compatibility and opera-546

tional costs.547

Glukhov et al. (2023) argue that semantic cen-548

sorship in LLMs is inherently undecidable, given549

their ability to follow instructions and generate550

outputs through arbitrary rule-based encodings.551

They propose viewing LLM censorship as a secu-552

rity issue, necessitating specific countermeasures553

rather than treating it solely as a machine learning554

challenge.555

4.3.2 Internal: Model training/fine-tuning556

The state of the art methods in this differ primar-557

ily in the stage at which the model is trained for558

providing safe outputs, as well as the source of the559

data used for providing the safe output. In this sec-560

tion, we highlight the current trends.561

Supervised Safety fine-tuning: Touvron et al.562

(2023), collect adversarial prompts along with563

their safe demonstrations and then use these sam-564

ples as a part of the general supervised fine tuning565

pipeline. While the examples in this case are cu-566

rated manually, automated collection techniques567

and red-teaming are an effective methods to dis-568

cover harmful prompts. A detailed discussion of569

red-teaming and collecting data both manually and570

automatically is discussed in section 4.1.571

Safety-tuning as a part of the RLHF pipeline:572

RLHF has been shown to make models more ro-573

bust to jailbreak attempts Bai et al. (2022). Tou-574

vron et al. (2023) train a safety reward model 575

based on manually collected adversarial prompts 576

and responses from multiple models where the re- 577

sponse that is deemed the safest is selected, this 578

reward model is then used as a part of RLHF 579

pipeline in order to safety-tune the model. 580

Safety Context Distillation: In using Context 581

Distillation Askell et al. (2021) for model safety, 582

Touvron et al. (2023) prepend the prompt with a 583

persona of a safe model such as “You are a re- 584

sponsible and safe assistant,” and then while fine- 585

tuning, they remove this prepended prompt, distill- 586

ing this safe context into the model, enhancing its 587

proclivity to deny any requests that create a prob- 588

lematic response. 589

5 Challenges and Future Research 590

Here, we discuss a few potential directions that are 591

promising for future research on defending the at- 592

tacks on LLMs, enhancing their robustness, and 593

gaining trust from the end-users. 594

5.1 Real-time Monitoring Systems 595

The growing use of Large Language Models 596

(LLMs) in diverse fields brings various applica- 597

tions, but it requires robust monitoring to detect 598

anomalies effectively. Current evaluation mech- 599

anisms are inadequate, leaving LLMs vulnerable 600

to threats like data exposure, misinformation, il- 601

legal content, and aiding criminal activities. Un- 602

derstanding and countering these attacks are chal- 603

lenging due to adversaries’ ability to manipulate 604

LLMs with deceptive prompts. Therefore, it is 605

imperative to not only introduce LLM safeguard 606

systems but also to fortify them with advanced 607

detection capabilities. Future research can focus 608

on building such systems, equipped to scrutinize 609

outputs comprehensively, identifying and flagging 610

any undesirable content swiftly and accurately. 611

Additionally, efforts should be directed towards 612

ensuring the resilience and adaptability of these 613

guard mechanisms, making them resistant to po- 614

tential evasion tactics employed by adversaries. 615

5.2 Multimodal Approach 616

The integration of multimodal capabilities 617

presents both exciting opportunities and 618

formidable challenges for ensuring the safety 619

and reliability of LLMs. Future research should 620

prioritize developing techniques to mitigate these 621

challenges, such as improving input sanitization 622
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and validation, and creating custom defense623

prompts to prevent jailbreaking attempts. These624

efforts are crucial for strengthening the security625

and resilience of LLMs amidst evolving threats in626

multimodal environments.627

5.3 Benchmark628

It becomes apparent that safeguarding LLMs629

alone falls short of addressing the broader con-630

cerns. Hence, the pertinent inquiry emerges: How631

can we reliably determine the comparative effi-632

cacy of attacks ‘A’ versus ‘B’ on LLMs through633

quantifiable and rational observations? The estab-634

lishment of a standardized benchmark for evaluat-635

ing attacks on LLMs becomes important, ensuring636

ethical reliability and factual performance. While637

considerable research has been devoted to bench-638

marking (Jin et al., 2024), the existing frameworks639

often prove insufficient for practical deployment640

in real-world scenarios. Consequently, the devel-641

opment of a scalable, near-real-time evaluation in-642

frastructure emerges as a crucial requirement for643

both LLMs and their enterprise applications.644

5.4 Explainable LLMs645

Explainability of LLMs is pivotal, not just for en-646

hancing the transparency and trustworthiness of647

these models but also for identifying and mitigat-648

ing vulnerabilities to linguistic attacks. Future re-649

search in explainable LLMs must pivot towards650

developing and refining methods that illuminate651

the complex decision-making processes inherent652

within these models. This entails a focused in-653

vestigation into explainability techniques that un-654

ravel the intricacies of attention mechanisms, de-655

lineates the significance of features contributing656

to the models’ outputs, and trace the reasoning657

pathways that underpin their decisions. Such ef-658

forts are critical for enabling a deeper understand-659

ing and interpretation of LLM outputs by a broad660

spectrum of stakeholders, from developers to end-661

users. There are existing work (Chefer et al.,662

2021; Voita et al., 2019; Dosovitskiy et al., 2020)663

that try to explain transformer architecture outputs664

but because of the black box nature of neural net-665

works, they fall short to give reliable explanations666

and leave room for further fundamental develop-667

ments. Moreover, the endeavor to make LLMs668

explainable presents multifaceted challenges, in-669

cluding the technical difficulty of dissecting often670

opaque neural network architectures, the need for671

methodologies that can reliably attribute decision-672

making in a manner that is both accurate and ac- 673

cessible to non-experts, and the ethical implica- 674

tions of creating transparent systems that respect 675

user privacy and data security. Addressing these 676

challenges requires a multidisciplinary approach 677

that bridges computational techniques with prin- 678

ciples of ethical AI, aiming to foster models that 679

are not only robust and efficient but also intrinsi- 680

cally interpretable and aligned with societal val- 681

ues. This push towards explainable LLMs is not 682

just a technical necessity but a foundational step 683

towards ensuring that AI technologies remain ac- 684

countable, understandable, and beneficial across 685

diverse applications. 686

6 Conclusion 687

This paper provides a comprehensive overview of 688

attacks targeting LLMs. We start by categoriz- 689

ing the LLM attacks literature into a novel taxon- 690

omy to provide a better structure and aid for fu- 691

ture research. Through the examination of these 692

attack vectors, it is evident that LLMs are vul- 693

nerable to a diverse range of threats, posing sig- 694

nificant challenges to their security and reliabil- 695

ity in real-world applications. Furthermore, this 696

paper has highlighted the importance of imple- 697

menting effective mitigation strategies to defend 698

against LLM attacks. These strategies encom- 699

pass a variety of approaches, including data fil- 700

tering, guardrails, robust training techniques, ad- 701

versarial training and safety context distillation. 702

To summarize, although LLMs present significant 703

opportunities for enhancing natural language pro- 704

cessing capabilities, their vulnerability to adver- 705

sarial exploitation highlights the critical need to 706

address security issues. Through ongoing explo- 707

ration and advancement in detecting attacks, im- 708

plementing mitigative measures, and enhancing 709

model resilience, we can aim to fully leverage the 710

advantages of LLM technology while fortifying 711

defenses against potential risks. 712

7 Limitations 713

This study, while comprehensive in its examina- 714

tion of attacks on Large Language Models (LLMs) 715

and mitigation strategies, is subject to several lim- 716

itations: 717

Scope and Coverage: Despite our efforts 718

to conduct a thorough survey, the fast-paced 719

advancements in LLM technologies and attack 720

methodologies mean that some emerging threats 721
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might not be covered. The landscape of cyberse-722

curity threats evolves rapidly, and new vulnerabil-723

ities could emerge following this publication.724

Generalizability of Mitigation Strategies:725

The effectiveness of the mitigation strategies dis-726

cussed may vary across different models, contexts,727

and against specific attacks. While we aimed for728

broad applicability in our recommendations, the729

specificity of certain defenses to particular models730

or scenarios limits their universal applicability.731

Ethical and Societal Implications: Our focus732

was primarily on the technical aspects of LLM se-733

curity, which led to a less comprehensive explo-734

ration of the broader ethical and societal implica-735

tions of both the attacks and the countermeasures.736

The dual-use nature of many AI technologies, in-737

cluding those discussed, necessitates careful con-738

sideration of ethical implications beyond the scope739

of this paper.740

Dynamic Nature of Threats: The adversar-741

ial landscape is characterized by an ongoing race,742

with attackers continually evolving their strategies743

in response to new defenses. This paper captures744

a snapshot of the current state, but continuous re-745

search and vigilance are required to address the746

adaptive nature of threats.747

Scalability and Practicality of Defenses: Im-748

plementing robust defense mechanisms in practi-749

cal settings poses challenges, including computa-750

tional overhead, scalability issues, and the need for751

ongoing updates. Balancing security with usabil-752

ity remains a critical, yet underexplored, area.753

In summary, while this work provides signif-754

icant insights into LLM security, it highlights755

the importance of continued research, interdisci-756

plinary collaboration, and an agile response to the757

complex and evolving landscape of AI security.758
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A Appendix 1078

Paper Name Category
Threat Model Attack Strategy Evaluated

LLM ModelsWhite
Box

Gray
Box

Black
Box

Prompt or
Response

Model
Based

(Chao et al., 2023) Jailbreak ✓ ✓ GPT-3.5/4, Vicuna, and PaLM-2
(Wei et al., 2023) Jailbreak ✓ ✓ GPT-4, GPT-3.5 Turbo, Claude v1.3
(Li et al., 2023c) Jailbreak ✓ ✓ ✓ Falcon, Vicuna, Llama-2, GPT-3.5, GPT-4, GPT-4V
(Ding et al., 2023) Jailbreak ✓ ✓ ✓ ChatGPT, GPT-4
(Qi et al., 2023a) Jailbreak ✓ ✓ ✓ MiniGPT-4, BLIP-2, GPT-4
(Yong et al., 2023) Jailbreak ✓ ✓ GPT-4
(Zou et al., 2023) Jailbreak ✓ ✓ ✓ ✓ Vicuna, ChatGPT, Claude, Llama-2, Pythia, Falcon
(Mehrotra et al., 2023) Jailbreak ✓ ✓ ✓ GPT-4, GPT-4 Turbo
(Abdelnabi et al., 2023) Prompt Injection ✓ ✓ ✓ GPT-3.5, GPT-4
(Perez and Ribeiro, 2022) Prompt Injection ✓ ✓ GPT-3.5
(Zhao et al., 2023b) Prompt Injection ✓ ✓ ✓ GPT-NEO
(Liu et al., 2023e) Prompt Injection ✓ ✓ ✓ ✓ GPT-3.5
(Toyer et al., 2023) Prompt Injection ✓ ✓ Llama-2 (7B, 13B, 70B), CodeLaMMA-34B
(Melamed et al., 2023) Prompt Injection ✓ GPT Model suits: Pythia
(Jiang et al., 2023) Prompt Injection ✓ ✓ GPT-4, GPT-3.5, and ChatGLM2-6B
(Chen et al., 2023) Data Poisoning ✓ ✓ GPT-3.5
(Lukas et al., 2023) Data Poisoning ✓ ✓ ✓ GPT-3.5
(Qi et al., 2023b) Data Poisoning ✓ ✓ ✓ GPT-3.5 Turbo, Llama-2
(Zhan et al., 2023) Data Poisoning ✓ ✓ ✓ GPT-4
(Bianchi et al., 2023) Data Poisoning ✓ ✓ LLaMA, Falcon
(Zhao et al., 2023a) Data Poisoning ✓ LLaMA 7B
(Shah et al., 2023a) Data Poisoning ✓ ✓ ChatGPT, GPT-4, and Claude
(Shu et al., 2023) Data Poisoning ✓ ✓ OPT (350M, 1.3B, 6.7B)

Table 1: A comprehensive summary detailing attacks targeting LLMs is provided, categorized into three primary categories:
Jailbreak, Prompt Injection, and Data Poisoning. We outline the threat model, attack strategy, and the list of evaluated LLM
models for each of the papers listed.
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