
Under review as a conference paper at ICLR 2024

CAN ADVERSARIAL EXAMPLES BE PARSED TO RE-
VEAL VICTIM MODEL INFORMATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerous adversarial attack methods have been developed to generate impercep-
tible image perturbations that can cause erroneous predictions of state-of-the-art
machine learning (ML) models, in particular, deep neural networks (DNNs). De-
spite intense research on adversarial attacks, little effort was made to uncover
‘arcana’ carried in adversarial attacks. In this work, we ask whether it is possi-
ble to infer data-agnostic victim model (VM) information (i.e., characteristics of
the ML model or DNN used to generate adversarial attacks) from data-specific
adversarial instances. We call this ‘model parsing of adversarial attacks’ – a task
to uncover ‘arcana’ in terms of the concealed VM information in attacks. We
approach model parsing via supervised learning, which correctly assigns classes
of VM’s model attributes (in terms of architecture type, kernel size, activation
function, and weight sparsity) to an attack instance generated from this VM. We
collect a dataset of adversarial attacks across 7 attack types generated from 135
victim models (configured by 5 architecture types, 3 kernel size setups, 3 activation
function types, and 3 weight sparsity ratios). We show that a simple model parsing
network (MPN) is able to infer VM attributes from unseen adversarial attacks if
their attack settings are consistent with the training setting (i.e., in-distribution
generalization assessment). We also provide extensive experiments to justify the
feasibility of VM parsing from adversarial attacks, and the influence of training and
evaluation factors in the parsing performance (e.g., generalization challenge raised
in out-of-distribution evaluation). We further demonstrate how the proposed MPN
can be used to uncover the source VM attributes from transfer attacks, and shed
light on a potential connection between model parsing and attack transferability.

1 INTRODUCTION

Adversarial attacks, in terms of tiny (imperceptible) input perturbations crafted to fool the decisions
of machine learning (ML) models, have emerged as a primary security concern of ML in a wide
range of vision applications (Szegedy et al., 2013; Goodfellow et al., 2014). Given the importance of
the trustworthiness of ML, a vast amount of prior works have been devoted to answering the questions
of ¬ how to generate adversarial attacks for adversarial robustness evaluation (Madry et al., 2017;
Croce and Hein, 2020) and ­ how to defend against these attacks for robustness enhancement (Zhang
et al., 2019; Wong and Kolter, 2017). These two questions are also tightly connected: A solution to
one would help address another.

In the plane of attack generation, a variety of attack methods were developed, ranging from gradient-
based white-box attacks (Goodfellow et al., 2014; Carlini and Wagner, 2017; Croce and Hein,
2020) to query-based black-box attacks (Brendel et al., 2017; Chen et al., 2017; Liu et al., 2019).
Understanding the attack generation process allows us to further understand attacks’ characteristics
and their specialties. For example, different from Deepfake images synthesized by generative models
(Wang et al., 2020a; Asnani et al., 2021), adversarial attacks are typically determined by (a) a simple
non-parametric and deterministic perturbation optimizer (e.g., fast gradient sign method), (b) a
specific input example (e.g., an image), and (c) a specified, well-trained victim model (VM), i.e.
an ML model against which attacks are generated. Here both (a) and (b) are interacted with and
rely on VM for attack generation. The generated adversarial attacks in turn help the development
of adversarial defenses. Examples include robust training (Madry et al., 2017; Zhang et al., 2019),
adversarial detection (Metzen et al., 2017; Wang et al., 2020b), and adversarial purification (Yoon

1

Under review as a conference paper at ICLR 2024

Model parsing
network

Neural Network
(Victim Model)

Activation
function

Weight
sparsity

Kernel
size

Archi-
tecture

Adversar ial image
generation

Architecture

Kernel size

3 x 3

VGG11

Activation function

ReLU

Weight sparsity

37.5%

Model parsing
accuracies

Figure 1: Schematic overview of victim model parsing from adversarial attacks. (Left) Attack generation
based on victim model (with model attributes, architecture type, kernel size, activation function, and weight
sparsity). (Middle) Proposed model parsing network (MPN) that assigns VM attribute class to input adversarial
data. (Right) Highlighted results: The accuracy of model parsing from PGD attacks (Madry et al., 2017) against
ResNet9 on CIFAR-10. Here the performance of MPN is reported under two different input data formats, the
true adversarial perturbations and the estimated adversarial perturbations (proposed in Sec. 4).

et al., 2021; Nie et al., 2022), which exploit attack characteristics to recognize adversarial examples
and produce anti-adversarial input perturbations.

In addition to ordinary attack generation and adversarial defense methods, some very recent works
(Nicholson and Emanuele, 2023; Gong et al., 2022) started to understand and defend adversarial
attacks in a new adversarial learning paradigm, termed reverse engineering of deception (RED). It
aims to infer the adversary’s information (e.g., the attack objective and adversarial perturbations) from
attack instances. Yet, nearly all the existing RED approaches focused on either estimation/attribution
of adversarial perturbations (Gong et al., 2022; Goebel et al., 2021; Souri et al., 2021; Thaker et al.,
2022) or recognition of attack classes/types (Nicholson and Emanuele, 2023; Wang et al., 2023;
Maini et al., 2021; Zhou and Patel, 2022; Guo et al., 2023). None of the prior works investigated the
feasibility of inferring VM attributes from adversarial attacks, given the fact that VM is the model
foundation of attack generation. Thus, we ask (Q):

(Q) Are input-agnostic VM attributes invertible from input-specific adversarial attacks?

We call problem (Q) model parsing of adversarial attacks; see Fig. 1 for an illustration. This is also
inspired by the model parsing problem defined for generative model (GM) (Asnani et al., 2021), which
attempts to infer model hyperparameters of GM from synthesized photo-realistic images. However,
adversarial attacks are data-specific input perturbations determined by hand-crafted optimizers rather
than GM. And the ‘model attributes’ to be parsed from adversarial attacks are associated with the VM
(victim model), which has a weaker correlation with attacked data compared to synthesized images
by GM. The latter is easier to encode data-independent GM attribute information (Wang et al., 2020a;
Asnani et al., 2021; Yu et al., 2019; Frank et al., 2020; Guarnera et al., 2020).

1% cat

98% dog

1% bird

Adversarial
perturbations

Adversarial
example

Source victim model
for attack generation Transfer attack model

Model Parsing

True attack source
model?

True attack source
model?

Adversary misclassification

Model A Model B

Figure 2: Motivating example on model parsing of transfer attack. A success-
ful model parsing module can reveal the true source victim model.

The significance of the pro-
posed model parsing prob-
lem can also be demon-
strated through a transfer at-
tack example (Fig. 2). Sup-
pose that adversarial attacks
are generated from model
A but used as transfer at-
tacks against model B. If
model parsing is possible,
we will then be able to in-
fer the true victim model
source of these adversarial
instances and shed light on
the hidden model attributes.

Contributions. We summarize our contributions below.

2

Under review as a conference paper at ICLR 2024

•We formalize the problem of model parsing to infer VM attributes from adversarial attacks.

• We approach the model parsing problem of adversarial attacks as a supervised learning task
and show that the learned model parsing network (MPN) could exhibit a surprising amount of
generalization to recognize VM attributes from testing attack instances (see Fig. 1 for highlighted
results). We also peer into the influence of designing factors (including input data format, backbone
network, and evaluation metric) in MPN’s generalization.

• We make a comprehensive study on the feasibility of model parsing from adversarial attacks,
including the in-distribution generalization on unseen adversarial images as well as the out-of-
distribution generalization on unseen attack types and model architectures. We demonstrate how
the model parsing approach can be used to uncover the source victim model attributes from transfer
attacks (Fig. 2), and show connection between model parsing and attack transferability.

2 RELATED WORK

Adversarial attacks and defenses. Intensive research efforts have been made for the design of
adversarial attacks and defenses. Adversarial attacks in the digital domain (Goodfellow et al., 2014;
Carlini and Wagner, 2017) typically deceive DNNs by integrating carefully-crafted tiny perturbations
into input data. Adversarial attacks in the physical domain (Eykholt et al., 2018; Li et al., 2019)
are further developed to fool victim models under complex physical environmental conditions,
which require stronger adversarial perturbations than digital attacks. The white-box attack typically
leverages the local gradient information of VM to generate attacks (Goodfellow et al., 2014; Carlini
and Wagner, 2017; Madry et al., 2017), while the black-box attack takes input-output queries of
VM in attack generation; Examples include score-based attacks (Liu et al., 2019; Chen et al., 2017;
Andriushchenko et al., 2020) and decision-based attacks (Brendel et al., 2017; Cheng et al., 2019;
Chen and Gu, 2020). Given the vulnerability of ML models to adversarial attacks, methods to defend
against these attacks are now a major focus in research. One line of research focuses on advancing
model training methods to learn adversarially robust models (Madry et al., 2017; Zhang et al., 2019).
Examples include min-max optimization-based adversarial training and its many variants, which can
equip models with empirical robustness. To make models provably robust, certified training is also
developed by integrating robustness certificate regularization into model training (Boopathy et al.,
2021; Raghunathan et al., 2018) or leveraging randomized smoothing (Salman et al., 2020; 2019).
In addition to training robust models, another line of research on adversarial defense is to detect
adversarial attacks by exploring and exploiting the differences between adversarial data and benign
data (Zhou and Patel, 2022; Grosse et al., 2017).

Reverse engineering of deception (RED). RED has emerged as a new adversarial learning to defend
against adversarial attacks and infer the adversary’s knowledge (such as its identifications, attack
objectives, and attack perturbations). For example, a few recent works (Nicholson and Emanuele,
2023; Wang et al., 2023; Maini et al., 2021; Zhou and Patel, 2022; Guo et al., 2023) aim to reverse
engineer the type of attack generation method and the used hyperparameters (e.g., perturbation
radius and step number). In addition, other works focus on estimating or attributing the adversarial
perturbations used to construct adversarial images (Gong et al., 2022; Goebel et al., 2021; Souri et al.,
2021; Thaker et al., 2022). This line of research also relates to adversarial purification (Srinivasan
et al., 2021; Shi et al., 2021; Yoon et al., 2021; Nie et al., 2022), the technique to defend against
adversarial attacks by characterizing and removing their harmful influence in model predictions.
However, none of the prior works investigated if VM attributes are invertible from adversarial attacks.
That is, the proposed model parsing problem remains open in adversarial learning. If feasible, the
insight into model parsing could offer us an in-depth understanding of the encountered threat model
and inspire new designs of adversarial defenses and robust models. Our work is also inspired by
the model parsing problem in GM (generative model) (Asnani et al., 2021), aiming to infer GM
attributes from their synthesized images. The rationale is that GM often encodes model fingerprints
in synthesized images so that these fingerprints can be leveraged for DeepFake detection and model
parsing (Wang et al., 2020a; Asnani et al., 2021; Yu et al., 2019; Frank et al., 2020; Guarnera et al.,
2020). Lastly, we stress that RED is different from the work (Oh et al., 2019; Wang and Gong, 2018)
on reverse engineering of (black-box) model hyperparameters, which estimates model attributes from
the model’s prediction logits. However, in this work VM is unknown for model parsing of adversarial
attacks, and the only information we have is the dataset of attack instances.

3

Under review as a conference paper at ICLR 2024

3 PRELIMINARIES AND PROBLEM SETUPS

Preliminaries: Adversarial attacks and victim models. We first introduce different kinds of
adversarial attacks and exhibit their dependence on VM (victim model), i.e., the ML model from
which attacks are generated. Throughout the paper, we will focus on `p attacks, where the adversary
aims to generate imperceptible input perturbations to fool an image classifier (Goodfellow et al.,
2014). Let x and θ denote a benign image and the parameters of VM. The adversarial attack (a.k.a,
adversarial example) is defined via the linear perturbation model x′ = x + δ, where δ = A(x,θ, ε)
denotes adversarial perturbations, and A refers to an attack generation method relying on x, θ,
and the attack strength ε (i.e., the perturbation radius of `p attacks).

Table 1: Summary of adversarial attack types focused in this work.
Here GD refers to gradient descent, and WB and BB refer to white-
box and black-box dependence on the victim model, respectively.

Attacks Generation method Loss `p norm Strength ε Dependence on θ
FGSM one-step GD CE `∞ {4, 8, 12, 16}/255 WB, gradient-based

PGD multi-step GD CE `∞ {4, 8, 12, 16}/255 WB, gradient-based
`2 0.25, 0.5, 0.75, 1

CW multi-step GD CW `2
soft regularization
c ∈ {0.1, 1, 10} WB, gradient-based

AutoAttack attack ensemble CE / `∞ {4, 8, 12, 16}/255 WB, gradient-based +
or AA DLR `2 0.25, 0.5, 0.75, 1 BB, query-based

SquareAttack random search CE `∞ {4, 8, 12, 16}/255 BB, query-basedor Square `2 0.25, 0.5, 0.75, 1

NES ZOO CE `∞ {4, 8, 12, 16}/255 BB, query-based

ZO-signSGD ZOO CE `∞ {4, 8, 12, 16}/255 BB, query-based

We focus on 7 attack methods given
their different dependencies on the
victim model (θ), including input
gradient-based white-box attacks with
full access to θ (FGSM (Goodfel-
low et al., 2014), PGD (Madry
et al., 2017), CW (Carlini and Wag-
ner, 2017), and AutoAttack or
AA (Croce and Hein, 2020)) as
well as query-based black-box at-
tacks (ZO-signSGD (Liu et al.,
2019), NES (Ilyas et al., 2018), and
SquareAttack or Square (An-
driushchenko et al., 2020)).

F FGSM (fast gradient sign method) (Goodfellow et al., 2014): This attack method is given by
δ = x− ε× sign(∇x`atk(x;θ)), where sign(·) is the entry-wise sign operation, and∇x`atk is the
input gradient of an attack loss `atk(x;θ) evaluated at x under θ.

F PGD (projected gradient descent) (Madry et al., 2017): This extends FGSM via an iterative
algorithm. Formally, the K-step PGD `∞ attack is given by δ = δK , where δk = P‖δ‖∞≤ε(δk−1 −
α× sign(∇x`atk(x;θ))) for k = 1, . . . ,K, P‖δ‖∞≤ε is the projection operation onto the `∞-norm
constraint ‖δ‖∞ ≤ ε, and α is the attack step size. By replacing the `∞ norm with the `2 norm, we
similarly obtain the PGD `2 attack (Madry et al., 2017).

F CW (Carlini-Wager) attack (Carlini and Wagner, 2017): Similar to PGD, CW calls iterative op-
timization for attack generation. Yet, CW formulates attack generation as an `p-norm regularized
optimization problem, with the regularization parameter c = 1 by default. For example, the choice of
c = 1 in CW `2 attack could lead to a variety of perturbation strengths with the average value around
ε = 0.33 on the CIFAR-10 dataset. Moreover, CW adopts a hinge loss to ensure the misclassification
margin. We will focus on CW `2 attack.

F AutoAttack (or AA) (Croce and Hein, 2020): This is an ensemble attack that uses AutoPGD,
an adaptive version of PGD, as the primary means of attack. The loss of AutoPGD is given by the
difference of logits ratio (DLR) rather than CE or CW loss.

F ZO-signSGD (Liu et al., 2019) and NES (Ilyas et al., 2018): They are zeroth-order optimization
(ZOO)-based black-box attacks. Different from the aforementioned white-box gradient-based attacks,
the only interaction mode of black-box attacks with the victim model (θ) is submitting inputs and
receiving the corresponding predicted outputs. ZOO then uses these input-output queries to estimate
input gradients and generate adversarial perturbations. Yet, ZO-signSGD and NES call different
gradient estimators in ZOO (Liu et al., 2020).

F SquareAttack (or Square) (Andriushchenko et al., 2020): This attack is built upon random
search and thus does not rely on input gradient.

Optimization methods, attack losses, `p norms, and dependencies on θ, are summarized in Table 1.

Model parsing of adversarial attacks. It is clear that adversarial attacks contain the information
of VM (θ), although the degree of their dependence varies. Inspired by the above, one may wonder
if the attributes of θ can be inferred from these attack instances, i.e., adversarial perturbations, or
perturbed images. The model attributes of our interest include model architecture types as well as

4

Under review as a conference paper at ICLR 2024

finer-level knowledge, e.g., activation function type. We call the resulting problem model parsing of
adversarial attacks, as described below.

(Problem statement) Is it possible to infer victim model information from adversarial attacks?
And what factors will influence such model parsing ability?

To our best knowledge, the feasibility of model parsing from adversarial attack instances is an open
question. Its challenges stay in two dimensions. First, through the model lens, VM (victim model)
is indirectly coupled with adversarial attacks, e.g., via local gradient information or model queries.
Thus, it remains elusive what VM information is fingerprinted in adversarial attacks and impacts the
feasibility of model parsing. Second, through the attack lens, the diversity of adversarial attacks
(Table 1) makes a once-for-all model parsing solution extremely difficult. Spurred by the above, we
will take the first solid step to investigate the feasibility of model parsing from adversarial attacks and
study what factors may influence the model parsing performance. The insight into model parsing
could offer us an in-depth understanding of the encountered threat model and inspire new designs of
adversarial defenses and robust models.

Table 2: Summary of model attributes of interest.
Each attribute value corresponds to an attribute
class in model parsing.

Model attributes Code Classes per attribute

Architecture type AT
ResNet9, ResNet18

ResNet20, VGG11, VGG13

Kernel size KS 3, 5, 7

Activation function AF ReLU, tanh, ELU

Weight sparsity WS 0%, 37.5%, 62.5%

Model attributes and setup. We specify VMs of
adversarial attacks as convolutional neural network
(CNN)-based image classifiers. More concretely, we
consider 5 CNN architecture types (ATs): ResNet9,
ResNet18, ResNet20, VGG11, and VGG13. Given
an AT, CNN models are then configured by different
choices of kernel size (KS), activation function (AF),
and weight sparsity (WS). Thus, a valued quadruple
(AT, KS, AF, WS) yields a specific VM (θ). Although
more attributes could be considered, the rationale
behind our choices is given below. We focus on KS
and AF since they are the two fundamental building components of CNNs. Besides, we choose
WS as another model attribute since it relates to sparse models achieved by pruning (i.e., removing
redundant model weights) (Han et al., 2015; Frankle and Carbin, 2018). We defer sanity checks of
all-dimension model attributes for future studies.

Table 2 summarizes the focused model attributes and their values to specify VM instances. Given
a VM specification, we generate adversarial attacks following attack methods in Table 1. Unless
specified otherwise, our empirical studies will be mainly given on CIFAR-10 but experiments on
other datasets will also be provided in Sec. 5.

4 METHODS

In this section, we approach the model parsing problem as a standard supervised learning task
applied over the dataset of adversarial attacks. We will show that the learned model parsing network
could exhibit a surprising amount of generalization on test-time adversarial data. We will also show
data-model factors that may influence such generalization.

Model parsing network and training. We approach the model parsing problem as a supervised
attribute recognition task. That is, we develop a parametric model, termed model parsing network
(MPN), which takes adversarial attacks as input and predicts the model attribute values (i.e., ‘classes’
in Table 2). Despite the simplicity of supervised learning, the construction of MPN is non-trivial
when designing data format, backbone network, and evaluation metrics.

We first create a model parsing dataset by collecting adversarial attack instances against victim
models. Since adversarial attacks are proposed for evading model predictions in the post-training
stage, we choose the test set of an ordinary image dataset (e.g., CIFAR-10) to generate adversarial
data, where an 80/20 training/test split is used for MPN training and evaluation. Following notations
in Sec. 3, the training set of MPN is denoted by Dtr = {(z(A,x,θ), y(θ)) |x ∈ Itr,θ ∈ Θ}, where
z signifies an attack data feature (e.g., adversarial perturbations δ or adversarial example x′) that
relies on the attack method A, the original image sample x, and the VM θ, and y(θ) denotes the true
model attribute label associated with θ. To differentiate with the testing data of MPN, we denote
by Itr the set of original images used for training MPN. We also denote by Θ the set of model
architectures used for generating attack data in Dtr. For ease of presentation, we express the training
set of MPN as Dtr = {(z, y)} to omit the dependence on other factors.

5

Under review as a conference paper at ICLR 2024

Figure 3: The schematic overview of our proposal.
PEN (perturbation estimation network) is a pre-
processing step to transform adversarial examples
into perturbation-alike input data.

Next, we elaborate on the construction of MPN (pa-
rameterized by φ). We intend to make the archi-
tecture of MPN as simple as possible and make it
different from the VM θ. The rationale behind that
has two folds. First, we would like to examine the
feasibility of model parsing from adversarial attacks
even forcing the simplicity of attribution network (φ).
Second, we would like to avoid the ‘model attribute
bias’ of φ when inferring VM attributes from adver-
sarial attacks. Inspired by the above, we specify MPN
by two simple networks: (1) multilayer perceptron
(MLP) containing two hidden layers with 128 hidden
units (0.41M parameters) (LeCun et al., 2015), and
(2) a simple 4-layer CNN (ConvNet-4) with 64
output channels for each layer, followed by one fully-connected layers with 128 hidden units and the
attribution prediction head (0.15M parameters) (Vinyals et al., 2016). As will be evident later (Fig. 4),
the model parsing accuracy of ConvNet-4 typically outperforms that of MLP. Thus, ConvNet-4
will be used as the MPN model by default. Given the datamodel setup, we next tackle the recognition
problem of VM’s attributes (AT, KS, AF, WS) via a multi-head multi-class classifier. We dissect
MPN into two parts φ = [φrep,φatr], where φrep is for data representation acquisition, and φattr
corresponds to the attribute-specific prediction head (i.e., the last fully-connected layer in our design).
Eventually, four prediction heads {φ(i)

atr }4i=1 will share φrep for model attribute recognition; see Fig. 3
for a schematic overview of our proposal. The MPN training problem is then cast as

minimize
φrep,{φ

(i)
atr }4i=1

E(z,y)∈Dtr

4∑
i=1

[`CE(h(z;φrep,φ
(i)
atr), yi)], (1)

where h(z;φrep,φ
(i)
atr) denotes the MPN prediction at input example z using the predictive model

consisting of φrep and φ(i)
atr for the ith attribute classification, yi is the ground-truth label of the ith

attribute associated with the input data z, and `CE is the cross-entropy (CE) loss characterizing the
error between the prediction and the true label.

20 40 60 80 100

FG
SM

PGD

PGD 2CW

AA

AA

2

Square

Square 2 NES

ZO
-si

gn
SG

D
FG

SM

PGD

PGD 2CW

AA

AA

2

Square

Square 2 NES

ZO
-si

gn
SG

D

MLP,
ConvNet-4,

MLP, x′
ConvNet-4, x′

Figure 4: The in-distribution generalization of
MPN using different formats of input data (adver-
sarial perturbations δ vs. adversarial examples
x′) and parsing networks (ConvNet-4 vs. MLP).
The generalization performance is measured by
the averaged testing accuracy of attribute-specific
classifiers; see Sec. 5. The attack data are gener-
ated with `∞ attack strength ε = 8/255 and `2
attack strength ε = 0.5 on CIFAR-10. The VM
architecture is fixed to ResNet-9.

Evaluation methods. Similar to training, we denote
by Dtest = {(z(A,x,θ), y(θ)) |x ∈ Itest,θ ∈ Θ}
the test attack set for evaluating the performance of
MPN. Here the set of benign images Itest is different
from Itr, thus adversarial attacks in Dtest are new to
Dtr. To mimic the standard evaluation pipeline of
supervised learning, we propose the following eval-
uation metrics.

(1) In-distribution generalization: The MPN testing
dataset Dtest follows the attack methods (A) and the
VM specifications (Θ) same asDtr but corresponding
to different original benign images (i.e., Itest 6= Itr).
The purpose of such an in-distribution evaluation is to
examine if the trained MPN can infer model attributes
encoded in new attack data given already-seen attack
methods.

(2) Out-of-distribution (OOD) generalization: In ad-
dition to new test-time images, there could exist at-
tack/model distribution shifts in Dtest due to using
new attack methods or model architectures, leading to unseen attack methods (A) and victim models
(Θ) different from the settings in Dtr.

In the rest of the paper, both in-distribution and OOD generalization capabilities will be assessed.
Unless specified otherwise, the generalization of MPN stands for the in-distribution generalization.

Perturbations or adversarial examples? The input data format matters for MPN. Recall from
Sec. 3 that an adversarial example, given by the linear model x′ = x+δ, relates to θ through δ. Thus,
it could be better for MPN to adopt adversarial perturbations (δ) as the attack data feature (z), rather
than the indirect adversarial example x′. Fig. 4 empirically justifies our hypothesis by comparing

6

Under review as a conference paper at ICLR 2024

the generalization of MPN trained on adversarial perturbations with that on adversarial examples
under two model specifications of MPN, MLP and ConvNet-4. We present the performance of
MPN trained and tested on different attack types. As we can see, the use of adversarial perturbations
(δ) consistently improves the test-time classification accuracy of VM attributes, compared to the use
of adversarial examples (x′). In addition, ConvNet-4 outperforms MLP with a substantial margin.

Although Fig. 4 shows the promise of the generalization ability of MPN when trained and tested
on adversarial perturbations, it may raise another practical question of how to obtain adversarial
perturbations from adversarial examples if the latter is the only attack source accessible to MPN.
To overcome this difficulty, we propose a perturbation estimator network (PEN) that can be jointly
learned with MPN. Once PEN is prepended to the MPN model, the resulting end-to-end pipeline
can achieve model parsing using adversarial examples as inputs (see Fig. 3). We use a denoising
network, DnCNN (Zhang et al., 2017), to model PEN with parameters ψ. PEN obtains perturbation
estimates by minimizing the denoising objective function using the true adversarial perturbations as
supervision. Extended from (1), we then have

minimize
ψ,φrep,{φ

(i)
atr }4i=1

βE(x,x′)∈Dtr [`MAE(gψ(x
′),x′ − x)] + E(x′,y)∈Dtr

4∑
i=1

[`CE(h(gψ(x
′);φrep,φ

(i)
atr), yi)] (2)

where gψ(x′) is the output of PEN given x′ as the input, `MAE is the mean-absolute-error (MAE) loss
characterizing the perturbation estimation error, and β > 0 is a regularization parameter. Compared
with (1), MPN takes the perturbation estimate gψ(x′) for VM attribute classification.

5 EXPERIMENTS

Dataset curation. We use standard image classification datasets (CIFAR-10, CIFAR-100, and
Tiny-ImageNet) to acquire victim models, from which attacks are generated. We refer readers to
Appendix A for details on victim model training and evaluation, as well as different attack setups.
These VM instances are then leveraged to create MPN datasets (as described in Sec. 4). The attack
types and victim model configurations have been summarized in Table 1 and 2. Thus, we collect a
dataset consisting of adversarial attacks across 7 attack types generated from 135 VMs (configured
by 5 architecture types, 3 kernel size setups, 3 activation function types, and 3 weight sparsity levels).

MPN training and evaluation. To solve problem (1), we train the MPN model using the SGD
(stochastic gradient descent) optimizer with cosine annealing learning rate schedule and an initial
learning rate of 0.1. The training epoch number and the batch sizes are given by 100 and 256,
respectively. To solve problem (2), we first train MPN according to (1), and then fine-tune a pre-
trained DnCNN model (Gong et al., 2022) (taking only the denoising objective into consideration)
for 20 epochs. Starting from these initial models, we jointly optimize MPN and PEN by minimizing
problem (2) with β = 1 over 50 epochs. In evaluation, we consider both in-distribution and OOD
generalization. The generalization is measured by testing accuracy averaged over attribute-wise
predictions, namely,

∑
i(NiTA(i))/

∑
iNi, where Ni is the number of classes of the model attribute

i, and TA(i) is the accuracy of the classifier associated with the attribute i (Fig. 3).
Table 3: The in-distribution testing accuracy (%) of MPN trained
using different input data formats (adversarial examples x′, PEN-
estimated adversarial perturbations δPEN, and true adversarial per-
turbations δ) across different attack types on CIFAR-10, with `∞
attack strength ε = 8/255, `2 attack strength ε = 0.5, and CW
attack strength c = 1.

Input data
Attack type

FGSM
PGD
`∞

PGD
`2

CW
AA
`∞

AA
`2

Square
`∞

Square
`2

NES
ZO-

signSGD

x′ 78.80 66.62 53.42 35.42 74.78 56.26 38.92 36.21 40.80 42.48

δPEN 94.15 83.20 82.58 64.46 91.09 86.89 44.14 42.30 58.85 61.20

δ 96.89 95.07 99.64 96.66 97.48 99.95 44.37 44.05 83.33 84.87

In-distribution generalization of
MPN is achievable. Table 3 shows
the in-distribution performance of
MPN trained using different input
data formats (i.e., adversarial exam-
ples x′, PEN-estimated adversarial
perturbations δPEN, and true adversar-
ial perturbations δ) given each attack
type in Table 1. Here the choice of AT
(architecture type) is fixed to ResNet9, but adversarial attacks on CIFAR-10 are generated from
VMs configured by different values of KS, AF, and WS (see Table 2). As we can see, the generalization
of MPN varies against the attack type even if model parsing is conducted from the ideal adversarial
perturbations (δ). We also note that model parsing from white-box adversarial attacks (i.e., FGSM,
PGD, and AA) is easier than that from black-box attacks (i.e., ZO-signSGD, NES, and Square).
For example, the worst-case performance of MPN is achieved when training/testing on Square
attacks. This is not surprising, since Square is based on random search and has the least dependence
on VM attributes. In addition, we find that MPN using estimated perturbations (δPEN) substantially
outperforms the one trained on adversarial examples (x′).

7

Under review as a conference paper at ICLR 2024

Table 4: In-distribution generalization (testing accuracy, %) of MPN given different choices of VMs and
datasets, attack types/strengths, and MPN input data formats (x′, δPEN, and δ).

Attack
type

Attack
strength

Dataset and victim model
CIFAR-10

ResNet9
CIFAR-10
ResNet18

CIFAR-10
ResNet20

CIFAR-10
VGG11

CIFAR-10
VGG13

CIFAR-100
ResNet9

Tiny-ImageNet
ResNet18

x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ x′ δPEN δ

FGSM

ε = 4/255 60.13 85.25 96.82 60.00 86.92 97.66 62.41 88.91 97.64 47.42 73.40 91.75 66.28 90.02 98.57 57.99 82.22 94.86 37.23 84.27 97.04
ε = 8/255 78.80 94.15 96.89 80.44 95.49 97.61 82.29 95.90 97.72 63.13 86.76 92.41 84.92 96.91 98.66 75.58 91.65 94.96 70.29 91.17 97.05
ε = 12/255 86.49 95.96 96.94 88.03 96.89 97.68 88.71 97.13 97.81 73.71 90.19 92.66 91.21 98.10 98.71 82.27 94.01 95.55 76.00 93.45 97.02
ε = 16/255 90.16 96.43 96.94 91.71 97.34 97.68 91.84 97.47 97.79 79.51 91.28 92.60 94.22 98.44 98.73 86.50 94.04 94.74 79.63 94.35 96.87

PGD `∞

ε = 4/255 50.54 76.43 96.02 56.94 79.45 96.96 55.01 80.05 97.49 39.33 66.38 91.84 57.12 81.18 98.29 42.27 72.62 92.65 35.48 76.56 97.18
ε = 8/255 66.62 83.20 95.07 73.29 87.29 95.38 67.49 86.19 96.18 56.62 81.14 92.78 69.16 88.46 97.22 59.71 79.55 90.43 61.85 82.90 96.05
ε = 12/255 76.65 89.73 94.91 81.73 91.67 95.55 76.41 90.16 95.67 70.56 88.92 94.13 78.67 92.93 97.26 70.86 85.31 91.28 73.82 88.80 96.38
ε = 16/255 75.58 86.95 91.28 82.46 90.19 93.19 76.58 87.79 92.50 72.13 87.23 91.85 78.28 90.20 94.66 71.29 82.35 86.84 73.19 85.02 93.54

PGD `2

ε = 0.25 36.75 62.20 99.66 46.35 70.17 99.74 48.24 77.22 99.75 36.47 45.17 98.52 35.81 70.62 99.85 35.92 61.91 99.29 35.55 35.68 99.68
ε = 0.5 53.42 82.58 99.64 60.89 84.70 99.56 61.62 89.11 99.61 41.56 66.58 98.68 57.83 87.64 99.83 48.89 79.26 99.01 35.52 54.56 99.71
ε = 0.75 62.66 89.04 99.48 71.01 89.89 99.22 70.76 92.06 99.36 47.02 78.12 98.52 72.76 92.32 99.74 59.19 85.14 98.61 35.56 81.33 99.71
ε = 1 71.65 91.73 99.26 77.09 92.09 98.94 76.84 92.82 98.96 54.20 84.30 98.41 79.93 93.96 99.57 66.97 87.63 97.89 43.48 88.81 99.64

CW
c = 0.1 33.77 55.60 96.71 47.77 63.26 96.11 33.56 63.11 94.10 33.73 48.90 94.37 33.68 65.48 96.95 34.41 46.47 92.55 35.96 35.77 95.52
c = 1 35.42 64.46 96.66 45.75 65.25 97.45 33.74 62.71 97.08 33.89 55.61 91.29 36.12 68.66 98.58 34.25 55.18 93.25 35.54 35.29 89.35
c = 10 36.38 64.45 96.64 45.83 65.32 97.41 33.83 63.52 97.11 38.29 56.83 91.33 38.51 68.28 98.62 34.25 55.89 93.18 35.45 53.18 94.20

Extended from Table 3, Fig. 5 shows the generalization of MPN when evaluated using attack data
with different attack strengths. We observe that in-distribution generalization (corresponding to
the same attack strength for the train-time and test-time attacks) is easier to achieve than OOD
generalization (different attack strengths at test time and train time). A smaller gap between the
train-time attack strength and the test-time strength leads to better generalization.

4/255 8/255 12/255 16/255
Training attack strength ()

0
20
40
60
80

100

Te
st

in
g

ac
cu

ra
cy

 (%
)

96.0

71.9

56.1

39.9
47.2

95.1

66.2 66.1

39.7

61.1

94.9

74.5

35.3

53.2 53.6

91.3

Testing attack strength ()
4/255 8/255 12/255 16/255

Figure 5: Accuracy (%) of MPN when trained on δ
generated by PGD `∞ using different attack strengths
(ε) and evaluated using different attack strengths as well.
Other setups are consistent with in Table 3.

Table 3 and Fig. 5 focused on model parsing of
adversarial attacks by fixing the VM architec-
ture to ResNet9 on CIFAR-10, although differ-
ent model attribute combinations lead to vari-
ous ResNet9-type VM instantiations for attack
generation. Furthermore, Table 4 shows the
in-distribution generalization of MPN under di-
verse setups of victim model architectures and
datasets. The insights into model parsing are
consistent with Table 3: (1) The use of true ad-
versarial perturbations (δ) and PEN-estimated
perturbations (δPEN) can yield higher model
parsing accuracy. And (2) inferring model at-
tributes from white-box, gradient-based adversarial perturbations is easier, as supported by its over
90% testing accuracy. If adversarial examples (x′) or estimated adversarial perturbations (δPEN) are
used for model parsing, the resulting accuracy gets better with a higher attack strength.

PG
D

FGSM
AA CW

PG
D 2

AA 2
NES

ZO-si
gn

SGD

Squ
ar

e
2

Squ
ar

e

Testing attack types

PGD

FGSM

AA

CW

PGD 2

AA 2

NES

ZO-signSGD

Square 2

Square

Combined

Tr
ai

ni
ng

 a
tt

ac
k

ty
pe

s

95.0 64.9 94.3 50.3 52.8 53.7 61.6 64.9 34.5 33.6

85.4 96.8 88.3 42.5 42.3 41.7 42.6 44.3 33.3 32.9

89.5 77.0 97.4 39.0 38.2 38.2 53.8 57.9 31.8 34.2

82.6 88.5 90.9 96.6 97.3 97.7 62.2 64.6 34.0 32.8

51.0 48.5 51.2 64.7 99.6 99.9 41.5 42.9 37.2 32.6

33.7 34.2 35.2 46.0 91.8 99.9 35.0 34.9 35.4 32.4

53.6 52.9 50.3 54.3 66.5 65.7 83.3 83.9 34.8 33.5

64.1 57.8 62.0 54.4 67.5 67.7 83.1 84.8 35.8 33.7

43.4 43.0 49.1 53.0 49.0 49.4 39.2 40.5 44.0 35.6

40.1 40.0 38.8 34.5 35.0 35.0 42.2 43.1 33.7 44.3

96.4 94.9 98.3 97.6 99.7 99.9 88.2 89.9 36.4 33.4
40

50

60

70

80

90

100

Figure 6: Performance (%) of MPN when
trained on a row-specific attack but evalu-
ated on a column-specific attack. The attack
data are given by adversarial perturbations
following the setup of Table 3 on ResNet9
and CIFAR-10. The ‘combined’ denotes
the collection of: PGD `∞, PGD `2, CW, and
ZO-signSGD.

OOD generalization of MPN becomes difficult vs. un-
seen, dissimilar attack types at testing time. In Fig. 6,
we present the generalization matrix of MPN when trained
under one attack type (e.g., PGD `∞ attack at row 1) but
tested under another attack type (e.g., FGSM attack at
column 2) when adversarial perturbations are generated
from the same set of ResNet9-based VMs (with different
configurations of other model attributes) on CIFAR-10.
The diagonal entries of the matrix correspond to the in-
distribution generalization of MPN given the attack type,
while the off-diagonal entries characterize OOD general-
ization when the test-time attack type is different from the
train-time one.

First, we find that MPN generalizes better across attack
types when they share similarities, leading to the following
generalization communities: `∞ attacks (PGD `∞, FGSM,
and AA `∞), `2 attacks (CW, PGD `2, or AA `2), and ZOO-
based black-box attacks (NES and ZO-signSGD). Sec-
ond, Square attacks are difficult to learn and generalize,
as evidenced by the low test accuracies in the last two
rows and the last two columns. This is also consistent with Table 3. Third, given the existence of
generalization communities, we then combine diverse attack types (including PGD `∞, PGD `2, CW,
and ZO-signSGD) into an augmented MPN training set and investigate if such a data augmentation
can boost the OOD generalization of MPN. The results are summarized in the ‘combined’ row of

8

Under review as a conference paper at ICLR 2024

Fig. 6. As we expect, the use of combined attack types indeed makes MPN generalize better across
all attack types except for the random search-based Square attack. In Fig. A1 of Appendix B, we
find the consistent OOD generalization of MPN when PEN-based perturbations are used in MPN.

We refer readers to Appendix C for more results for parsing results of different model architectures
and AT prediction.

(R
eL

U
,3

,0
%

)
(R

eL
U

,3
,3

7.
5%

)
(R

eL
U

,3
,6

2.
5%

)
(R

eL
U

,5
,0

%
)

(R
eL

U
,5

,3
7.

5%
)

(R
eL

U
,5

,6
2.

5%
)

(R
eL

U
,7

,0
%

)
(R

eL
U

,7
,3

7.
5%

)
(R

eL
U

,7
,6

2.
5%

)
(t

an
h,

3,
0%

)
(t

an
h,

3,
37

.5
%

)
(t

an
h,

3,
62

.5
%

)
(t

an
h,

5,
0%

)
(t

an
h,

5,
37

.5
%

)
(t

an
h,

5,
62

.5
%

)
(t

an
h,

7,
0%

)
(t

an
h,

7,
37

.5
%

)
(t

an
h,

7,
62

.5
%

)
(E

LU
,3

,0
%

)
(E

LU
,3

,3
7.

5%
)

(E
LU

,3
,6

2.
5%

)
(E

LU
,5

,0
%

)
(E

LU
,5

,3
7.

5%
)

(E
LU

,5
,6

2.
5%

)
(E

LU
,7

,0
%

)
(E

LU
,7

,3
7.

5%
)

(E
LU

,7
,6

2.
5%

)

Transfer attack model

(ReLU,3,0%)
(ReLU,3,37.5%)
(ReLU,3,62.5%)

(ReLU,5,0%)
(ReLU,5,37.5%)
(ReLU,5,62.5%)

(ReLU,7,0%)
(ReLU,7,37.5%)
(ReLU,7,62.5%)

(tanh,3,0%)
(tanh,3,37.5%)
(tanh,3,62.5%)

(tanh,5,0%)
(tanh,5,37.5%)
(tanh,5,62.5%)

(tanh,7,0%)
(tanh,7,37.5%)
(tanh,7,62.5%)

(ELU,3,0%)
(ELU,3,37.5%)
(ELU,3,62.5%)

(ELU,5,0%)
(ELU,5,37.5%)
(ELU,5,62.5%)

(ELU,7,0%)
(ELU,7,37.5%)
(ELU,7,62.5%)

So
ur

ce
 v

ic
tim

 m
od

el
0

20

40

60

80

100

(R
eL

U
,3

,0
%

)
(R

eL
U

,3
,3

7.
5%

)
(R

eL
U

,3
,6

2.
5%

)
(R

eL
U

,5
,0

%
)

(R
eL

U
,5

,3
7.

5%
)

(R
eL

U
,5

,6
2.

5%
)

(R
eL

U
,7

,0
%

)
(R

eL
U

,7
,3

7.
5%

)
(R

eL
U

,7
,6

2.
5%

)
(t

an
h,

3,
0%

)
(t

an
h,

3,
37

.5
%

)
(t

an
h,

3,
62

.5
%

)
(t

an
h,

5,
0%

)
(t

an
h,

5,
37

.5
%

)
(t

an
h,

5,
62

.5
%

)
(t

an
h,

7,
0%

)
(t

an
h,

7,
37

.5
%

)
(t

an
h,

7,
62

.5
%

)
(E

LU
,3

,0
%

)
(E

LU
,3

,3
7.

5%
)

(E
LU

,3
,6

2.
5%

)
(E

LU
,5

,0
%

)
(E

LU
,5

,3
7.

5%
)

(E
LU

,5
,6

2.
5%

)
(E

LU
,7

,0
%

)
(E

LU
,7

,3
7.

5%
)

(E
LU

,7
,6

2.
5%

)

Predicted model

(ReLU,3,0%)
(ReLU,3,37.5%)
(ReLU,3,62.5%)

(ReLU,5,0%)
(ReLU,5,37.5%)
(ReLU,5,62.5%)

(ReLU,7,0%)
(ReLU,7,37.5%)
(ReLU,7,62.5%)

(tanh,3,0%)
(tanh,3,37.5%)
(tanh,3,62.5%)

(tanh,5,0%)
(tanh,5,37.5%)
(tanh,5,62.5%)

(tanh,7,0%)
(tanh,7,37.5%)
(tanh,7,62.5%)

(ELU,3,0%)
(ELU,3,37.5%)
(ELU,3,62.5%)

(ELU,5,0%)
(ELU,5,37.5%)
(ELU,5,62.5%)

(ELU,7,0%)
(ELU,7,37.5%)
(ELU,7,62.5%)

Tr
ue

 s
ou

rc
e

vi
ct

im
 m

od
el

1

2

2

2

0

20

40
60
80
100

(a) Attack successful rate (%) (b) Confusion matrix (%)
Figure 7: Model parsing of transfer attacks: Transfer attack success rate
matrix (a) and model parsing confusion matrix (b). Given the architecture type
ResNet9, the dataset CIFAR-10, and the attack type PGD `∞ (with strength
ε = 8/255), each model attribute combination (AF, KS, WS) defines a model
instance to be attacked, transferred, or parsed.

MPN to uncover real VM
attributes of transfer at-
tacks. As a use case of
model parsing, we next in-
vestigate if MPN can cor-
rectly infer the source VM
attributes from transfer at-
tacks when applied to at-
tacking a different model
(see Fig. 2). Given the VM
architecture ResNet9, we
vary the values of model
attributes KS, AF, and WS
to produce 27 ResNet9-type
VMs. Fig. 7 shows the
transfer attack success rate
(ASR) matrix (Fig. 7a) and
the model parsing confusion matrix (Fig. 7b). Here the attack type is given by PGD `∞ attack with
strength ε = 8/255 on CIFAR-10, and the resulting adversarial perturbations (generated from dif-
ferent VMs) are used for MPN training and evaluation. In Fig. 7a, the off-diagonal entries represent
ASRs of transfer attacks from row-wise VMs to attacking column-wise target models. As we can see,
adversarial attacks generated from the ReLU-based VMs are typically more difficult to transfer to
smooth activation function (ELU or tanh)-based target models. By contrast, given the values of KS
and AF, attacks are easier to transfer across models with different weight sparsity levels.

Fig. 7b presents the confusion matrix of MPN trained on attack data generated from all 27 ResNet9-
alike VMs. Each row of the confusion matrix represents the true VM used to generate the attack
dataset, and each column corresponds to a predicted model attribute setting. The diagonal entries and
the off-diagonal entries in Fig. 7b denote the correct model parsing accuracy and the misclassification
rate on the incorrectly predicted model attribute configuration. As we can see, attacks generated from
ReLU-based VMs result in a low misclassification rate of MPN on ELU or tanh-based predictions
(see the marked region ¬). Meanwhile, a high misclassification occurs for MPN when evaluated on
attack data corresponding to different values of WS (see the marked region ­). The above results,
together with our insights into ASRs of transfer attacks in Fig. 7a, suggest a connection between
transfer attack and model parsing: If attacks are difficult to transfer from the source model to the
target model, then inferring the source model attributes from these attacks turns to be easy.

Model parsing vs. model robustness. Further, we examine the adversarial robustness of victim
models in the generalization of MPN; see Fig. A3 in Appendix D. We find that adversarial attacks
against robust VMs is harder to parse than attacks against standard VMs.

6 CONCLUSION

We studied the model parsing problem of adversarial attacks to infer victim model attributes, and
approached this problem as a supervised learning task by training a model parsing network (MPN).
We studied both in-distribution and out-of-distribution generalization of MPN considering unseen
attack types and model architectures. We demystified several key factors, such as input data formats,
backbone network choices, and VM characteristics (like attack transferability and robustness), which
can influence the effectiveness of model parsing. Extensive experiments are provided to demonstrate
when, how, and why victim model information can be inferred from adversarial attacks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing
properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013. 1

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv
preprint arXiv:1412.6572, 2014. 1, 3, 4

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017. 1, 2, 3, 4, 17

F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks,” in International conference on machine learning. PMLR, 2020, pp.
2206–2216. 1, 4

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, “Theoretically principled trade-off
between robustness and accuracy,” ICML, 2019. 1, 3

E. Wong and J. Z. Kolter, “Provable defenses against adversarial examples via the convex outer
adversarial polytope,” arXiv preprint arXiv:1711.00851, 2017. 1

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 ieee
symposium on security and privacy (sp). Ieee, 2017, pp. 39–57. 1, 3, 4

W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models,” arXiv preprint arXiv:1712.04248, 2017. 1, 3

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order optimization based
black-box attacks to deep neural networks without training substitute models,” in Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security. ACM, 2017, pp. 15–26. 1, 3

S. Liu, P.-Y. Chen, X. Chen, and M. Hong, “signSGD via zeroth-order oracle,” in International
Conference on Learning Representations, 2019. 1, 3, 4

S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “Cnn-generated images are surprisingly
easy to spot... for now,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 8695–8704. 1, 2, 3

V. Asnani, X. Yin, T. Hassner, and X. Liu, “Reverse engineering of generative models: Inferring
model hyperparameters from generated images,” arXiv preprint arXiv:2106.07873, 2021. 1, 2, 3

J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial perturbations,”
arXiv preprint arXiv:1702.04267, 2017. 1

R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M. Wang, “Practical detection of trojan neural
networks: Data-limited and data-free cases,” in ECCV, 2020. 1

J. Yoon, S. J. Hwang, and J. Lee, “Adversarial purification with score-based generative models,” in
International Conference on Machine Learning. PMLR, 2021, pp. 12 062–12 072. 1, 3

W. Nie, B. Guo, Y. Huang, C. Xiao, A. Vahdat, and A. Anandkumar, “Diffusion models for adversarial
purification,” arXiv preprint arXiv:2205.07460, 2022. 2, 3

D. A. Nicholson and V. Emanuele, “Reverse engineering adversarial attacks with fingerprints from
adversarial examples,” arXiv preprint arXiv:2301.13869, 2023. 2, 3

Y. Gong, Y. Yao, Y. Li, Y. Zhang, X. Liu, X. Lin, and S. Liu, “Reverse engineering of imperceptible
adversarial image perturbations,” arXiv preprint arXiv:2203.14145, 2022. 2, 3, 7

M. Goebel, J. Bunk, S. Chattopadhyay, L. Nataraj, S. Chandrasekaran, and B. Manjunath, “Attribu-
tion of gradient based adversarial attacks for reverse engineering of deceptions,” arXiv preprint
arXiv:2103.11002, 2021. 2, 3

H. Souri, P. Khorramshahi, C. P. Lau, M. Goldblum, and R. Chellappa, “Identification of attack-
specific signatures in adversarial examples,” arXiv preprint arXiv:2110.06802, 2021. 2, 3

10

Under review as a conference paper at ICLR 2024

D. Thaker, P. Giampouras, and R. Vidal, “Reverse engineering `p attacks: A block-sparse optimization
approach with recovery guarantees,” in International Conference on Machine Learning. PMLR,
2022, pp. 21 253–21 271. 2, 3

X. Wang, Y. Li, C.-J. Hsieh, and T. C. M. Lee, “CAN MACHINE TELL THE DISTORTION
DIFFERENCE? a REVERSE ENGINEERING STUDY OF ADVERSARIAL ATTACKS,” 2023.
[Online]. Available: https://openreview.net/forum?id=NdFKHCFxXjS 2, 3

P. Maini, X. Chen, B. Li, and D. Song, “Perturbation type categorization for multiple ℓp bounded
adversarial robustness,” 2021. [Online]. Available: https://openreview.net/forum?id=Oe2XI-Aft-k
2, 3

M. Zhou and V. M. Patel, “On trace of pgd-like adversarial attacks,” arXiv preprint arXiv:2205.09586,
2022. 2, 3

Z. Guo, K. Han, Y. Ge, W. Ji, and Y. Li, “Scalable attribution of adversarial attacks via multi-task
learning,” arXiv preprint arXiv:2302.14059, 2023. 2, 3

N. Yu, L. S. Davis, and M. Fritz, “Attributing fake images to gans: Learning and analyzing gan
fingerprints,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019,
pp. 7556–7566. 2, 3

J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer, D. Kolossa, and T. Holz, “Leveraging frequency
analysis for deep fake image recognition,” in International conference on machine learning.
PMLR, 2020, pp. 3247–3258. 2, 3

L. Guarnera, O. Giudice, and S. Battiato, “Deepfake detection by analyzing convolutional traces,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops,
2020, pp. 666–667. 2, 3

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and
D. Song, “Robust physical-world attacks on deep learning visual classification,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 3

J. Li, F. Schmidt, and Z. Kolter, “Adversarial camera stickers: A physical camera-based attack on
deep learning systems,” in International Conference on Machine Learning, 2019, pp. 3896–3904.
3

M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square attack: a query-efficient
black-box adversarial attack via random search,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII. Springer, 2020, pp.
484–501. 3, 4

M. Cheng, S. Singh, P. Chen, P.-Y. Chen, S. Liu, and C.-J. Hsieh, “Sign-opt: A query-efficient
hard-label adversarial attack,” arXiv preprint arXiv:1909.10773, 2019. 3

J. Chen and Q. Gu, “Rays: A ray searching method for hard-label adversarial attack,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020, pp. 1739–1747. 3

A. Boopathy, L. Weng, S. Liu, P.-Y. Chen, G. Zhang, and L. Daniel, “Fast training of provably robust
neural networks by singleprop,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 8, 2021, pp. 6803–6811. 3

A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial examples,”
in International Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=Bys4ob-Rb 3

H. Salman, M. Sun, G. Yang, A. Kapoor, and J. Z. Kolter, “Denoised smoothing: A provable defense
for pretrained classifiers,” NeurIPS, 2020. 3

H. Salman, J. Li, I. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck, and G. Yang, “Provably robust
deep learning via adversarially trained smoothed classifiers,” Advances in Neural Information
Processing Systems, vol. 32, 2019. 3

11

https://openreview.net/forum?id=NdFKHCFxXjS
https://openreview.net/forum?id=Oe2XI-Aft-k
https://openreview.net/forum?id=Bys4ob-Rb

Under review as a conference paper at ICLR 2024

K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (statistical) detection of
adversarial examples,” arXiv preprint arXiv:1702.06280, 2017. 3

V. Srinivasan, C. Rohrer, A. Marban, K.-R. Müller, W. Samek, and S. Nakajima, “Robustifying
models against adversarial attacks by langevin dynamics,” Neural Networks, vol. 137, pp. 1–17,
2021. 3

C. Shi, C. Holtz, and G. Mishne, “Online adversarial purification based on self-supervision,” arXiv
preprint arXiv:2101.09387, 2021. 3

S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-box neural networks,” Ex-
plainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 121–144, 2019. 3

B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,” in 2018 IEEE symposium
on security and privacy (SP). IEEE, 2018, pp. 36–52. 3

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with limited queries and
information,” in International conference on machine learning. PMLR, 2018, pp. 2137–2146. 4

S. Liu, P.-Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K. Varshney, “A primer on
zeroth-order optimization in signal processing and machine learning: Principals, recent advances,
and applications,” IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 43–54, 2020. 4

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for efficient neural
network,” Advances in neural information processing systems, vol. 28, 2015. 5

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable neural networks,”
arXiv preprint arXiv:1803.03635, 2018. 5, 13

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
6

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one shot learning,”
Advances in neural information processing systems, vol. 29, 2016. 6

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual learning
of deep cnn for image denoising,” IEEE transactions on image processing, vol. 26, no. 7, pp.
3142–3155, 2017. 7

X. Ma, G. Yuan, X. Shen, T. Chen, X. Chen, X. Chen, N. Liu, M. Qin, S. Liu, Z. Wang et al., “Sanity
checks for lottery tickets: Does your winning ticket really win the jackpot?” Advances in Neural
Information Processing Systems, vol. 34, pp. 12 749–12 760, 2021. 13

G. Leclerc, A. Ilyas, L. Engstrom, S. M. Park, H. Salman, and A. Madry, “FFCV:
Accelerating training by removing data bottlenecks,” 2023. [Online]. Available: https:
//openreview.net/forum?id=Ew9gIwAQ7wr 13

12

https://openreview.net/forum?id=Ew9gIwAQ7wr
https://openreview.net/forum?id=Ew9gIwAQ7wr

Under review as a conference paper at ICLR 2024

Appendix

A VICTIM MODEL TRAINING, EVALUATION, AND ATTACK SETUPS

When training all CIFAR-10, CIFAR-100, and Tiny-ImageNet victim models (each of which
is given by an attribute combination), we use the SGD optimizer with the cosine annealing learn-
ing rate schedule and an initial learning rate of 0.1. The weight decay is 5e − 4, and the batch
size is 256. The number of training epochs is 75 for CIFAR-10 and CIFAR-100, and 100 for
Tiny-ImageNet. When the weight sparsity (WS) is promoted, we follow the one-shot magnitude
pruning method Frankle and Carbin (2018); Ma et al. (2021) to obtain a sparse model. To obtain
models with different activation functions (AF) and kernel sizes (KS), we modify the convolutional
block design in the ResNet and VGG model family accordingly from 3, ReLU to others, i.e., 5/7,
tanh/ELU. Table A1 shows the testing accuracy (%) of victim models on different datasets, given any
studied (AF, KS, WS) tuple included in Table 2. It is worth noting that we accelerate victim model
training by using FFCV Leclerc et al. (2023) when loading the dataset.

Table A1: Victim model performance (testing accuracy, %) given different choices of datasets and model
architectures.

Dataset AT

Attribute combination
ReLU tanh ELU

3 5 7 3 5 7 3 5 7
0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5%

CIFAR-10

ResNet9 94.4 93.9 94.2 93.3 93.5 93.5 92.4 92.8 92.8 89.0 88.8 89.9 88.4 88.6 88.2 87.0 87.2 88.0 91.0 91.2 90.7 90.3 90.2 90.5 89.3 90.0 89.6
ResNet18 94.7 94.9 95.0 94.2 94.5 94.5 93.9 93.5 93.6 87.1 87.5 88.2 84.2 84.9 85.5 81.3 81.2 85.1 90.6 90.8 90.6 90.1 91.1 90.5 85.7 83.4 84.3
ResNet20 92.1 92.5 92.3 92.0 92.2 92.0 90.9 91.8 91.5 89.7 89.7 89.7 89.5 89.4 89.6 88.3 88.2 88.9 90.7 91.2 90.9 90.3 90.5 90.6 89.2 89.7 89.7
VGG11 91.0 91.1 90.4 89.8 89.9 89.4 88.2 88.4 88.0 88.7 89.1 88.9 87.2 87.6 87.6 87.0 86.8 87.0 89.4 89.5 89.5 88.0 88.2 88.5 87.1 87.1 87.2
VGG13 93.1 93.3 93.0 92.0 92.2 92.6 91.2 91.1 91.0 90.1 90.1 90.1 89.3 89.1 89.3 88.2 88.8 88.8 90.8 90.9 90.8 89.2 89.5 89.4 88.4 88.7 88.9

CIFAR-100

ResNet9 73.3 73.6 73.5 71.8 71.9 71.2 69.1 69.8 69.2 58.6 60.1 60.3 60.1 61.2 62.0 58.2 59.8 60.3 70.8 70.7 70.8 69.5 69.6 69.8 67.3 68.3 68.7
ResNet18 74.4 75.0 75.6 73.6 73.0 74.6 71.2 71.0 70.9 62.0 62.0 62.9 57.3 59.3 60.1 51.3 53.4 57.1 70.1 70.8 71.1 66.8 69.7 69.7 63.1 61.8 65.7
ResNet20 68.3 68.4 67.5 67.8 67.5 67.7 66.8 66.7 67.6 59.9 61.3 59.6 61.9 62.0 62.1 59.9 61.2 61.2 66.4 67.6 67.7 67.0 67.3 67.2 66.2 66.9 66.8
VGG11 68.3 68.4 67.7 65.2 65.7 65.8 62.4 62.0 62.6 65.2 65.5 65.5 63.6 63.6 63.9 62.1 61.8 62.5 66.2 66.5 65.9 64.6 64.0 64.6 61.5 62.3 61.9
VGG13 71.0 70.6 71.1 69.9 70.5 70.3 66.5 66.5 67.2 66.7 67.5 67.5 65.2 65.5 67.1 63.9 63.4 65.0 68.9 69.3 69.5 66.3 66.7 67.1 64.2 64.5 64.7

Tiny-ImageNet ResNet18 63.7 64.1 63.5 61.5 62.7 62.6 59.6 61.0 61.7 47.0 48.1 50.0 46.6 47.9 48.3 41.0 43.5 44.6 57.2 57.9 58.1 52.7 53.8 53.6 52.3 51.5 52.3

For different attack types, we list all the attack configurations below:

F FGSM. We set the attack strength ε equal to 4/255, 8/255, 12/255, and 16/255, respectively.

F PGD `∞. We set the attack step number equal to 10, and the attack strength-learning rate
combinations as (ε = 4/255, α = 0.5/255), (ε = 8/255, α = 1/255), (ε = 12/255, α = 2/255),
and (ε = 16/255, α = 2/255).

F PGD `2. We set the step number equal to 10, and the attack strength-learning rate combinations as
(ε = 0.25, α = 0.05), (ε = 0.5, α = 0.1), (ε = 0.75, α = 0.15), and (ε = 1.0, α = 0.2).

F CW. We use `2 version CW attack with the attack conference parameter κ equal to 0. We also set
the learning rate equal to 0.01 and the maximum iteration number equal to 50 to search for successful
attacks.

F AutoAttack `∞. We use the standard version of AutoAttack with the `∞ norm and ε equal
to 4/255, 8/255, 12/255, and 16/255, respectively.

F AutoAttack `2. We use the standard version of AutoAttack with the `2 norm and ε equal to
0.25, 0.5, 0.75, and 1.0, respectively.

F SquareAttack `∞. We set the maximum query number equal to 5000 with `∞ norm ε equal to
4/255, 8/255, 12/255, and 16/255, respectively.

F SquareAttack `2. We set the maximum query number equal to 5000 with `∞ norm ε equal to
0.25, 0.5, 0.75, and 1.0, respectively.

F NES. We set the query number for each gradient estimate equal to 10, together with µ = 0.01 (i.e.,
the value of the smoothing parameter to obtain the finite difference of function evaluations). We
also set the learning rate by 0.0005, and the maximum iteration number by 500 for each adversarial
example generation.

F ZO-signSGD. We set the query number for each gradient estimate equal to 10 with µ = 0.01. We
also set the learning rate equal to 0.0005, and the maximum iteration number equal to 500 for each
adversarial example generation. The only difference between ZO-signSGD and NES is the gradient
estimation method in ZOO. ZO-signSGD uses the sign of forward difference-based estimator while
NES uses the central difference-based estimator.

13

Under review as a conference paper at ICLR 2024

B OOD GENERALIZATION PERFORMANCE OF MPN ACROSS ATTACK TYPES
WHEN PEN IS USED

Similar to Fig. 7, Fig. A1 shows the generalization performance of MPN when trained on a row-
specific attack type but evaluated on a column-specific attack type when δPEN is given as input. When
MPN is trained on the collection of four attack types PGD `∞, PGD `2, CW, and ZO-signSGD (i.e.,
the ‘Combined’ row), such a data augmentation can boost the OOD generalization except for the
random search-based Square attack.

PG
D

FGSM
AA CW

PG
D 2

AA 2
NES

ZO-si
gn

SGD

Squ
ar

e
2

Squ
ar

e

Testing attack types

PGD

FGSM

AA

CW

PGD 2

AA 2

NES

ZO-signSGD

Square 2

Square

Combined

Tr
ai

ni
ng

 a
tt

ac
k

ty
pe

s

82.2 66.3 85.3 34.9 34.9 36.0 32.7 33.1 30.9 32.2

62.1 94.0 71.7 35.4 34.3 34.9 33.8 34.3 31.4 32.4

80.5 74.3 91.0 36.2 35.9 36.8 38.7 40.2 30.8 32.3

48.0 66.5 61.2 64.3 58.8 56.3 34.7 35.4 33.8 33.1

39.2 40.9 43.1 45.4 82.5 86.6 40.2 40.7 32.1 33.3

36.5 39.9 38.3 41.5 76.1 86.8 36.3 36.6 32.4 33.2

55.5 55.2 61.5 39.6 50.0 51.1 58.7 60.3 33.0 33.1

55.1 54.7 61.8 41.1 54.5 55.6 59.2 61.0 33.5 32.8

42.9 41.3 47.1 33.6 32.8 32.2 38.2 38.7 42.1 32.9

38.3 42.0 40.7 33.6 33.2 33.4 32.9 33.1 33.6 44.0

88.5 87.4 92.9 67.2 87.9 90.9 65.5 67.7 33.4 33.4
40

50

60

70

80

90

100

Figure A1: Generalization performance matrix of MPN when trained on a row-specific attack type but evaluated
on a column-specific attack type given δPEN as input. The attack data are given by adversarial perturbations
with strength ε = 8/255 for `∞ attacks, ε = 0.5 for `2 attacks, and c = 1 for CW attack. The victim model
architecture and the dataset are set as ResNet9 and CIFAR-10. The ‘combined’ row represents MPN training
on the collection of four attack types: PGD `∞, PGD `2, CW, and ZO-signSGD.

14

Under review as a conference paper at ICLR 2024

C MPN FOR ARCHITECTURE TYPE (AT) PREDICTION

VGG11 VGG13 ResNet9 ResNet18 ResNet20
Testing victim architecture

VG
G

11
VG

G
13

R
es

N
et

9
R

es
N

et
18

R
es

N
et

20
C

om
bi

ne
d

Tr
ai

ni
ng

 v
ic

tim
 a

rc
hi

te
ct

ur
e

92.4 45.6 40.2 42.3 38.1

44.2 98.7 47.7 40.9 46.4

44.0 46.7 96.9 46.8 35.6

37.9 49.3 55.1 97.6 53.5

34.5 53.6 46.9 53.6 97.7

89.0 96.2 93.8 95.0 95.2

VGG11 VGG13 ResNet9 ResNet18 ResNet20
Testing victim architecture

VG
G

11
VG

G
13

R
es

N
et

9
R

es
N

et
18

R
es

N
et

20
C

om
bi

ne
d

Tr
ai

ni
ng

 v
ic

tim
 a

rc
hi

te
ct

ur
e

92.8 48.1 42.7 50.3 42.8

46.9 97.2 52.4 49.1 51.3

38.1 49.6 95.1 49.5 36.9

38.0 54.1 55.8 95.4 58.9

40.5 59.4 51.4 62.5 96.2

87.4 93.5 90.0 91.7 92.1

VGG11 VGG13 ResNet9 ResNet18 ResNet20
Testing victim architecture

VG
G

11
VG

G
13

R
es

N
et

9
R

es
N

et
18

R
es

N
et

20
C

om
bi

ne
dTr

ai
ni

ng
 v

ic
tim

 a
rc

hi
te

ct
ur

e

91.3 45.2 39.2 41.1 37.6

42.7 98.6 47.8 42.3 47.3

39.2 47.9 96.7 47.2 36.1

34.6 50.2 53.6 97.5 54.6

34.7 52.7 46.3 55.8 97.1

87.1 95.5 93.1 94.1 93.9 40

50

60

70

80

90

100

(a) FGSM (b) PGD `∞ (c) CW
Figure A2: Generalization matrix (%) of MPN when trained on attack
data generated from a row-specific architecture but evaluated on attack data
generated from a column-specific architecture. Both the train-time and test-
time architectures share the same VM attributes in KS, AF, and WS. The attack
type is specified by FGSM, PGD `∞, or CW on CIFAR-10, with the attack
strength ε = 8/255 for `∞ attacks and c = 1 for CW.

Fig. A2 demonstrates the
generalization matrix of
MPN when trained and
evaluated using adversar-
ial perturbations generated
from different VM archi-
tectures (i.e., different val-
ues of AT in Table 1) by
fixing the configurations of
other attributes (KS, AF,
and WS). We observe that
given an attack type, the in-
distribution MPN general-
ization remains well across
VM architectures. Yet,
the OOD generalization of
MPN (corresponding to the
off-diagonal entries of the
generalization matrix) rapidly degrades if the test-time VM architecture is different from the train-
time one. Thus, if MPN is trained on data with AT classes as supervision, then the in-distribution
generalization on AT retains.

MPN is also trained on (AT, AF, KS, WS) tuple by merging AT into the attribute classification task.
We conduct experiments considering different architectures mentioned in Table 2 on CIFAR-10
and CIFAR-100, with δ and δPEN as MPN’s inputs, respectively. We summarize the in-distribution
generalization results in Table A2, Table A3, Table A4, and Table A5. Weighted accuracy refers
to the testing accuracy defined in Sec. 5, i.e.,

∑
i(NiTA(i))/

∑
iNi, where Ni is the number of

classes of the model attribute i, and TA(i) is the testing accuracy of the classifier associated with
the attribute i (Fig. 3). In the above tables, we also show the testing accuracy for each attribute, i.e.,
TA(i). Combined accuracy refers to the testing accuracy over all victim model attribute-combined
classes, i.e., 135 classes for 5 AT classes, 3 AF classes, 3 KS classes, and 3 WS classes. The insights
into model parsing are summarized below: (1) MPN trained on δ and δPEN can effectively classify
all the attributes AT, AF, KS, WS in terms of per-attribute classification accuracy, weighted testing
accuracy, and combined accuracy. (2) Compared to AT, AF, and KS, WS is harder to parse.

Table A2: MPN performance (%) on different attack types given different evaluation metrics with adversarial
perturbation δ as input on CIFAR-10.

Metrics
Attack types

FGSM PGD `∞ PGD `2 CW
ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 0.25 ε = 0.5 ε = 0.75 ε = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 97.77 97.85 97.91 97.91 97.23 96.13 96.16 94.22 99.77 99.64 99.37 99.12 96.73 97.30 97.28
AF accuracy 95.67 95.73 95.79 95.71 95.86 95.26 95.77 94.05 99.51 99.36 99.04 98.68 95.12 94.84 94.68
KS accuracy 98.66 98.66 98.65 98.71 98.22 97.55 97.43 95.52 99.83 99.79 99.64 99.48 96.94 98.13 98.09
WS accuracy 87.16 87.16 87.29 87.52 84.36 79.99 80.01 71.68 98.51 97.83 96.86 95.57 88.42 85.28 85.03

Weighted accuracy 95.24 95.28 95.34 95.38 94.39 92.79 92.89 89.63 99.46 99.23 98.82 98.34 94.65 94.38 94.27

Combined accuracy 81.85 82.00 82.19 82.33 78.65 73.11 73.33 62.67 97.79 96.89 95.38 93.55 83.00 79.29 78.88

Table A3: MPN performance (%) on different attack types given different evaluation metrics with estimated
perturbation δPEN as input on CIFAR-10.

Metrics
Attack types

FGSM PGD `∞ PGD `2 CW
ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 0.25 ε = 0.5 ε = 0.75 ε = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 88.98 95.68 97.20 97.64 75.81 84.58 90.27 88.50 61.09 81.41 87.80 90.48 56.10 64.11 64.30
AF accuracy 83.48 92.21 94.56 95.22 74.95 85.04 90.72 89.81 57.62 76.90 83.95 87.36 54.61 58.77 58.98
KS accuracy 91.57 96.63 97.96 98.41 81.10 88.18 92.67 90.99 67.85 84.50 89.93 92.18 62.46 69.81 70.15
WS accuracy 69.99 81.42 84.92 86.59 56.07 63.92 70.19 64.80 50.09 67.26 74.02 77.70 46.40 47.53 47.77

Weighted accuracy 84.29 92.08 94.17 94.92 72.53 81.02 86.58 84.23 59.44 78.07 84.48 87.44 55.07 60.63 60.87

Combined accuracy 54.83 72.66 78.63 80.83 32.59 46.05 57.10 50.60 18.38 45.39 57.10 63.00 14.62 19.44 19.70

15

Under review as a conference paper at ICLR 2024

Table A4: MPN performance (%) on different attack types given different evaluation metrics with adversarial
perturbation δ as input on CIFAR-100.

Metrics
Attack types

FGSM PGD `∞ PGD `2 CW
ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 0.25 ε = 0.5 ε = 0.75 ε = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 97.70 97.76 97.76 97.75 97.03 95.40 95.23 92.52 99.59 99.29 98.91 98.50 93.84 96.23 96.30
AF accuracy 95.17 95.14 94.96 95.11 94.79 93.73 93.87 91.87 99.14 98.63 97.97 97.31 90.83 92.32 92.47
KS accuracy 97.66 97.65 97.69 97.62 96.75 95.16 94.44 91.25 99.62 99.43 99.16 98.70 93.11 95.77 95.81
WS accuracy 81.13 80.77 80.90 80.94 76.57 69.85 68.16 59.42 96.58 95.04 92.70 90.43 76.61 74.64 74.77

Weighted accuracy 93.60 93.54 93.53 93.55 92.11 89.52 88.97 85.02 98.85 98.27 97.43 96.56 89.34 90.67 90.76

Combined accuracy 75.08 74.76 74.82 74.95 69.72 61.27 59.31 48.37 95.27 93.06 89.89 86.73 67.19 66.24 66.56

Table A5: MPN performance (%) on different attack types given different evaluation metrics with estimated
perturbation δPEN as input on CIFAR-100.

Metrics
Attack types

FGSM PGD `∞ PGD `2 CW
ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255 ε = 0.25 ε = 0.5 ε = 0.75 ε = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 88.17 95.25 96.92 97.45 72.40 82.48 88.11 85.47 62.77 80.01 85.88 88.33 47.31 51.80 52.48
AF accuracy 81.81 91.14 93.53 94.52 71.43 81.93 87.76 86.71 58.16 74.06 80.88 84.18 49.98 49.49 49.96
KS accuracy 88.62 94.92 96.58 97.12 76.97 84.74 88.78 86.46 69.38 84.09 88.68 90.56 56.07 59.68 59.72
WS accuracy 64.19 74.98 78.60 79.85 50.64 56.88 60.32 54.94 46.50 61.73 67.79 70.59 39.46 39.85 40.37

Weighted accuracy 81.76 89.95 92.19 92.98 68.51 77.36 82.22 79.40 59.71 75.69 81.53 84.12 48.08 50.43 50.90

Combined accuracy 47.75 65.27 71.05 73.27 25.56 37.49 45.28 38.97 16.27 38.87 49.04 54.06 7.31 9.20 9.59

16

Under review as a conference paper at ICLR 2024

D MODEL PARSING VS. MODEL ROBUSTNESS

We re-use the collected ResNet9-type victim models in Fig. 7, and obtain their adversarially robust
versions by conducting adversarial training Madry et al. (2017) on CIFAR-10. Fig. A3 presents the
generalization matrix of MPN when trained on a row-wise attack type but evaluated on a column-wise
attack type. Yet, different from Fig. 6, the considered attack type is expanded by incorporating ‘attack
against robust model’, besides ‘attack against standard model’. It is worth noting that every attack
type corresponds to attack data generated from victim models (VMs) instantiated by the combinations
of model attributes KS, AF, and WS. Thus, the diagonal entries and the off-diagonal entries of the
generalization matrix in Fig. A3 reflect the in-distribution parsing accuracy within an attack type and
the OOD generalization across attack types. Here are two key observations. First, the in-distribution
generalization of MPN from attacks against robust VMs is much poorer (see the marked region ¬),
compared to that from attacks against standard VMs. Second, the off-diagonal performance shows
that MPN trained on attacks against standard VMs is harder to parse model attributes from attacks
against robust VMs, and vice versa (see the marked region ­). Based on the above results, we
posit that model parsing is easier for attacks generated from VMs with higher accuracy and lower
robustness.

(R
ob

us
t)

FGSM

(R
ob

us
t)

PG
D

(R
ob

us
t)

PG
D 2

(R
ob

us
t)

CW

(S
tan

da
rd

) F
GSM

(S
tan

da
rd

) P
GD

(S
tan

da
rd

) P
GD 2

(S
tan

da
rd

) C
W

Testing attack types

(Robust) FGSM

(Robust) PGD

(Robust) PGD 2

(Robust) CW

(Standard) FGSM

(Standard) PGD

(Standard) PGD 2

(Standard) CW

Tr
ai

ni
ng

 a
tt

ac
k

ty
pe

s

53.0 42.4 34.4 33.0 33.9 35.9 41.0 47.1

36.1 54.1 33.3 33.2 33.9 33.3 48.9 35.6

32.1 33.0 81.0 34.0 26.2 31.6 43.1 30.7

34.8 34.7 43.7 35.5 33.9 33.5 36.9 33.6

33.6 33.3 34.4 33.3 96.8 85.4 42.3 42.5

34.7 34.5 33.4 32.8 64.9 95.0 52.8 50.3

35.7 35.0 35.0 32.8 48.5 51.0 99.6 64.7

33.3 33.3 31.7 32.2 88.5 82.6 97.3 96.6

1

2

2

40

50

60

70

80

90

100

Figure A3: Generalization performance (%) matrix of MPN across attack types, ranging from FGSM, PGD `∞,
PGD `2, and CW attacks against standard victim models to their variants against robust victim models, termed
(Standard or Robust) Attack. Other setups are consistent with Fig. 6.

17

	Introduction
	Related Work
	Preliminaries and Problem Setups
	Methods
	Experiments
	Conclusion
	Victim model training, evaluation, and attack setups
	OOD generalization performance of MPN across attack types when PEN is used
	MPN for architecture type (AT) prediction
	Model parsing vs. model robustness

