
Theoretical Analyses of Hyperparameter Selection in Graph-Based
Semi-Supervised Learning

Ally Yalei Du 1 Eric Huang 1 Dravyansh Sharma 1

Abstract
Graph-based semi-supervised learning (SSL) is a
powerful paradigm in machine learning for model-
ing and exploiting the underlying graph structure
that captures the relationship between labeled and
unlabeled data. A large number of classical as
well as modern deep learning based algorithms
have been proposed for this problem, often hav-
ing tunable hyperparameters. Different values of
hyperparameters define different node feature em-
bedding in the underlying geometry and lead to
different performances in terms of classification
error. We initiate a formal study of hyperparam-
eter tuning from parameterized algorithm fami-
lies for this problem. We obtain novel Θ(log n)
pseudo-dimension upper bounds for hyperparam-
eter selection in one of the classical label propa-
gation based algorithm families, where n is the
number of nodes, implying bounds on the amount
of data needed for learning provably good param-
eters. We extend our study to hyperparameter se-
lection in modern graph neural networks. We pro-
pose a novel tunable architecture that interpolates
graph convolutional networks (GCN) and graph
attention networks (GAT) in every layer, which
we call GCAN. We then provide Rademacher
complexity bounds for tuning the interpolation
coefficient and study the influence of the interpo-
lation coefficient on the node feature in the latent
space. Finally, we empirically verify the effective-
ness of GCAN on benchmark datasets.

1. Introduction
Semi-Supervised Learning (SSL) is a popular machine learn-
ing paradigm with significant theoretical interest (Zhou

1Carnegie Mellon University. Correspondence to: Dravyansh
Sharma <dravyans@andrew.cmu.edu>.

Accepted as an extended abstract for the Geometry-grounded Rep-
resentation Learning and Generative Modeling Workshop at the
41 st International Conference on Machine Learning, ICML 2024,
Vienna, Austria. Copyright 2024 by the author(s).

et al., 2003; Delalleau et al., 2005; Garg et al., 2020). In
graph-based SSL, the graph nodes consist of labeled and
unlabeled data points, and the graph edges denote feature
similarity between the nodes. Classical algorithms focus
on label-propagation based techniques, such as Zhou et al.
(2003), Zhu et al. (2003), and many more. In recent years,
graph neural networks (GNNs) have become increasingly
popular in a wide range of application domains (Kipf &
Welling, 2017; Veličković, Petar et al., 2018; Iscen et al.,
2019). A large number of different architectures have been
proposed, including graph convolution networks, graph at-
tention networks, and so on (Dwivedi et al., 2023).

Hyperparameters, such as the weight for self-loop, play im-
portant roles in the performance of both classical methods
and GNNs. Different values of the hyperparameter define
different node feature embeddings in the underlying graph
structure and therefore influence the performance of algo-
rithms. Recent work (Donnat & Jeong, 2023) introduces
and empirically studies parametric GCN-based families, but
there are no existing theoretically principled studies on hy-
perparameter tuning. Another recent line of work (Balcan &
Sharma, 2021; Sharma & Jones, 2023) considers the prob-
lem of learning hyperparameters through multiple problem
instances drawn i.i.d. from a fixed distribution. However,
their goal is to learn the best graph hyperparameter rather
than the algorithm hyperparameter, and they do not consider
deep learning structures like GNNs.

Moreover, focusing on the popular architecture Graph Atten-
tion Neural Network (GAT) and Graph Convolution Neural
Network (GCN), we often observe that one architecture out-
performs another on different problem instances (Dwivedi
et al., 2023). However, there is no principled way of select-
ing the better of the two algorithms.

Contributions. In this paper, we take important initial
steps to build the theoretical foundations of hyperparameter
selection in graph-based semi-supervised learning, propose
a novel GCAN architecture that outperforms both GAT and
GCN, and empirically verifies our findings.

• We study hyperparameter tuning in a label propagation
based SSL algorithm, the local and global consistency

1

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

algorithms (Zhou et al., 2003). We prove new Θ(log n)
pseudo-dimension bound for the family, where n is the
number of graph nodes. This result implies that it
requires m = O(log n/ϵ2) problem instances to learn
a ϵ-optimal hyperparameter.

• Next, we consider the modern graph neural networks
(GNNs). We propose a novel architecture (GCAN)
where a hyperparameter η interpolates two canoni-
cal GNN architectures: graph convolutional networks
(GCNs) and graph attention networks (GATs). Theoret-
ically, we bound the Rademacher complexity of tuning
the interpolation coefficient and study the influence of
η on the embedding through toy examples. Empiri-
cally, we test our novel GCAN interpolation method
on 10 benchmark datasets to verify its empirical effec-
tiveness.

Key Technical Insights. We address several challenges
and introduce novel ideas in our proofs, setting our work
apart from prior studies. To the best of our knowledge, this
is the first work to study the pseudodimension guarantees of
learning hyperparameters in label propagation-based algo-
rithm families. While inspired by (Balcan & Sharma, 2021),
our proof diverges significantly in its details. For the up-
per bound proof, we analyze changes in node classification
predictions using a novel determinant evaluation and root
counting argument, which may be of independent interest.
For the lower bound proof, we construct instances based on
connected components of graphs, resulting in instances with
highly oscillating loss functions.

Additionally, we study GNN-based algorithm families and
propose a novel architecture that interpolates between GCN
and GAT. This architecture not only aims to select the better
structure out of GCN and GAT but also has the potential to
outperform both. We then provide Rademacher complexity
bounds for our proposed GCAN architecture. Previous work
(Garg et al., 2020) focuses on the Rademacher complexity of
GNN-based algorithms for graph classification with a single
problem instance and a fixed hyperparameter. In contrast,
we consider node classification with multiple problem in-
stances to learn the optimal hyperparameter. We bound our
0-1 loss using margin loss, reduce the Rademacher complex-
ity of a sample set of graphs to that of the computation trees
of single nodes, and bound the Rademacher complexity of
each computation tree by studying the change in margin loss
due to parameter variations and using a covering argument.

2. Preliminaries
Notations. Throughout this paper, f(n) = O(g(n)) de-
notes that there exists a constant c > 0 such that |f(n)| ≤
c|g(n)|. f(n) = Ω(g(n)) denotes that there exists a con-
stant c > 0 such that |f(n)| ≥ c|g(n)|. f(n) = Θ(g(n))

denotes that f(n) = O(g(n)) and f(n) = Ω(g(n)). The
indicator function is indicated by I, taking values in {0, 1}.
In addition, we define the shorthand [c] = {1, 2, . . . , c}. For
a matrix W , we denote its Frobenius norm by ∥W∥F and
spectral norm by ∥W∥. We also denote the Euclidean norm
of a vector v by ∥v∥.

Graph-based Semi-supervised Learning. We are given
n data points, where some are labeled, denoted by L ⊆ [n],
and the rest unlabeled. We may have features associated
with each data point, denoted by zi ∈ Rd for i ∈ [n].
We can construct a graph G by placing (possibly weighed)
edges w(u, v) between pairs of data points u, v. The created
graph G is denoted by G = (V,E), where V represents
the vertices and E represents the edges. We can calculate
W ∈ Rn×n as the adjacency matrix, i.e., Wij = w(i, j).
We let D ∈ Rn×n be the corresponding degree matrix.

We define input X as X = (n, {zi}ni=1, L,G), or X =
(n,L,G) (if no features). We denote the label matrix by Y ∈
{0, 1}n×c where c is the number of classes. Throughout the
paper, we assume c = On(1), which matches most practical
scenarios. Here, Yij = 1 if data point i ∈ L has label j and
Yij = 0 otherwise. The goal is to predict the labels of the
unlabeled data.

An algorithm F in this setting may be considered as a func-
tion that takes in (X,Y) and outputs a predictor f that
predicts a label in [c] for each data. We denote f(zi) as our
prediction on the i-th data.

Hyperparameter Selection. We consider several parame-
terized families of classification algorithms. Given a family
of algorithms Fρ parameterized by some hyperparameter ρ,
and a set of m problem instances {(X(k), Y (k))}mk=1 i.i.d.
generated from the data distribution D of the input space X
and the label space Y , our goal is to select a ρ̂ such that the
corresponding prediction function fρ̂ of algorithm Fρ̂ mini-
mizes ρ̂ = argminρ

1
mn

∑m
k=1

∑n
i=1 ℓ0−1(fρ(z

(k)
i), y

(k)
i).

Here, we denote fρ̂(z
(k)
i) the predicted label of data point

z
(k)
i in the k-th problem instance. It is helpful to define the

loss family induced by the algorithm family. Specifically,
since each algorithm Fρ maps a problem instance (X,Y)
to a prediction function fρ, which further induces a loss
1
n

∑n
i=1 ℓ0−1(fρ(zi), yi), we can define Hρ as the function

that maps (X,Y) to the loss, and define Hρ = {Hρ′}ρ′ as
the loss function family parameterized by ρ.

We will study the generalization ability of fρ̂ given m prob-
lem instances, i.e., E(X,Y)∼D

[
1
n

∑n
i=1 ℓ0−1 (fρ̂(zi), yi)

]
−

minρ E(X,Y)∼D
[
1
n

∑n
i=1 ℓ0−1 (fρ(zi), yi)

]
.

Note that our problem setting differs from prior theoreti-
cal works on graph-based semi-supervised learning. The
classical setting considers a single algorithm (which may

2

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

come from a family of algorithms) and learning the model
parameter from a single problem instance. We are consider-
ing families of algorithms, each parameterized by a single
hyperparameter, and our goal is to learn the best hyperpa-
rameter from a set of multiple problem instances drawn i.i.d.
from some underlying data distribution.

Complexity Measures and Generalization Bounds. We
study the generalization ability of several representative
families of algorithms. We aim to address the question of
how many problem instances are required to learn a hy-
perparameter ρ such that a learning algorithm can perform
near-optimally for instances drawn from a fixed problem
distribution. We consider two learning-theoretic complexity
measures for characterizing the learnability of algorithm
families: the pseudo-dimension and the Rademacher com-
plexity. Canonical theory gives generalization guarantees
based on these measures (Appendix A).

Definition 2.1 (Pseudo-dimension (Pollard, 2012)). Let H
be a set of real-valued functions from input space X . We
say that C = (X(1), ..., X(m)) ∈ Xm is pseudo-shattered
by H if there exists a vector r = (r1, ..., rm) ∈ Rm (called
“witness”) such that for all b = (b1, ..., bm) ∈ {±1}m
there exists Hb ∈ H such that sign(Hb(X

(k))− rk) = bk.
Pseudo-dimension of H, denoted PDIM(H), is the cardinal-
ity of the largest set pseudo-shattered by H.

In Section 3, we will obtain optimal pseudo-dimension
bounds for three canonical label-propagation algorithm
families. Another classical complexity measure is the
Rademacher complexity:

Definition 2.2 (Rademacher Complexity (Bartlett &
Mendelson, 2002)). Given a space X and a distribution
D, let S = {X(1), . . . , X(m)} be a set of examples drawn
i.i.d. from D. Let H be the class of functions H : X → R.
The (empirical) Rademacher complexity of H is

R̂m(H) = Eσ

[
sup

(
1

m

m∑
k=1

σkH(X(k))

)]
,

where each σk is i.i.d. sampled from {−1, 1}.

To apply Rademacher complexity theory, we restrict to bi-
nary classification c = 2 and change the label space to
Y ∈ {−1, 1}n. For a predictor f , we also overload no-
tation and let f(zi) ∈ [0, 1] be the probability of a single
node zi being classified as 1. In Section 4, we bound the
Rademacher complexity of our proposed GCAN structure.

3. Label Propagation based Families and
Generalization Guarantees

In this section, we consider one popular label propagation
based algorithm family. In Appendix C, we also derive

similar results for the smoothing-based algorithm family
(Delalleau et al., 2005) and normalized adjacency matrix-
based algorithm family. Label propagation families will
output a soft-label score F ∗ ∈ Rn×c where the (i, j)-th
entry represents the score of class j for the i-th sample. The
prediction for the i-th sample is just argmaxj∈[c] F

∗
ij .

3.1. The Algorithm Family

We consider the parametric family which we call the Local
and Global Consistency Algorithm Family (Zhou et al.,
2003), parameterized by α ∈ (0, 1). The optimal scoring
matrix F ∗ is defined as

F ∗
α = (1−α)(I −αS)−1Y, where S = D−1/2WD−1/2.

Here, S is the symmetrically normalized adjacency matrix.
This F ∗

α corresponds to minimizing the following objective

function Q(F) = 1
2

(∑n
i,j=1 Wij

∥∥∥ 1√
di
Fi − 1√

dj

Fj

∥∥∥2 +

1−α
α

∑n
i=1

∥∥∥Fi−Yi

∥∥∥2), where Y is the n×c matrix whose
rows of unlabeled nodes are all zeros. The first term of
Q(F) measures the local consistency, i.e., the prediction
between nearby points should be similar. The second term
measures the global consistency, i.e., large-scale patterns
(manifolds) over the data. Therefore, the hyperparameter
α ∈ (0, 1) induces a trade-off between the local and the
global consistency. We define this family of algorithms as
Fα, and the 0-1 losses as Hα.

3.2. Pseudo-dimension Guarantees

We study the generalization behavior of this algorithm fam-
ily through pseudo-dimension. The following theorem indi-
cates that it has pseudo-dimension Θ(log n), where n is the
number of data in each problem instance. This result indi-
cates that it requires m = O

(
log n/ϵ2

)
problem instances

to learn a ϵ-optimal hyperparameter for the local and global
consistency family. The full proof is in Appendix C.
Theorem 3.1. The pseudo-dimensions of the Local and
Global Consistency algorithm family satisfy Pdim(Hα) =
Θ(log n), where n is the total number of labeled and unla-
beled data points.

4. GCAN Interpolation
In Section 4.1, we introduce a novel architecture, which
we call GCAN, that interpolates two popular GNNS: the
graph convolutional neural networks (GCN) and graph atten-
tion neural networks (GAT). We then obtain a Rademacher
complexity bound for the GCAN algorithm family. A brief
introduction to GAT and GCN is given in Appendix D.

In Section 4.2, we study how the interpolating hyperpa-
rameter influences the embedding of node features in the
underlying graph structure.

3

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

In Section 4.3, we empirically study the effectiveness of
GCAN architecture.

4.1. GCAN and its Generalization Guarantees

In practice, GCN and GAT outperform each other in dif-
ferent problem instances. To effectively choose the better
algorithm, we introduce a family of algorithms that interpo-
lates GCN and GAT, parameterized by η.

Formally, we introduce a hyperparameter η ∈ [0, 1] and
design a novel update rule such that η = 0 corresponds to
GCN and η = 1 corresponds to GAT:

hℓ
i = σ

∑
j∈Ni

(
η · eℓij + (1− η) · 1√

didj

)
U ℓhℓ

j


where

eℓij =
exp(êℓij)∑

j′∈Ni
exp(êℓij′)

, êℓij = σ(V ℓ[U ℓhℓ
i , U

ℓhℓ
j]).

Here eℓij is the attention score of node j for node i. V ℓ

and U ℓ are learnable parameters. σ(·) is the activation
function, which we assume to be 1-Lipschitz. We denote the
concatenation of U ℓhℓ

i and U ℓhℓ
j by [U ℓhℓ

i , U
ℓhℓ

j]. At the
first level, we initialize h0

i = zi. We study the generalization
ability of tuning η through Rademacher complexity.
Theorem 4.1. Assume the parameter U ℓ is shared over
all layers, i.e. U ℓ = U for all ℓ ∈ [L] (the assump-
tion used in (Garg et al., 2020)), and the parameters are
bounded: ∥U∥F ≤ CU , ∥V ℓ∥2 ≤ CV , ∥zi∥ ≤ Cz ,
and di ∈ [Cdl, Cdh]. Denoting the branching factor by
r = maxi∈[n] |

∑
j∈[n] I[wij ̸= 0]|, we have that the

Rademacher complexity of Hγ
η is bounded:

R̂m(Hγ
η) = O

d
√
L log rCU

Cdl+CU
+ log mdCz

γ√
m

 .

The proof is inspired by (Garg et al., 2020), and involves
reducing the problem to bounding the Rademacher complex-
ity of tree networks. Then, we use the peeling technique
and covering number argument to finish the proof. See
Appendix E.1 for details.

4.2. Inherent Embedding Geometry

In this subsection, we study the influence of hyperparameter
η on the node feature embedding of GCAN by two toy
examples inspired by (Donnat & Jeong, 2023).

Toy Example 1: Structurally different neighborhood,
similar feature Consider two nodes u, v, we assume there
exists a feature vector h̄ such that, at level ℓ,

∀j ∈ N (v) ∪N (u) ∪ {u} ∪ {v}, hℓ
j = h̄+ ϵj ,

where ϵj is a vector where each index has a value close
to 0 and we assume ∥ϵj∥ ≤ ∥ϵ∥. We have the following
inequality:

∥hℓ+1
u − hℓ+1

v ∥ ≤ CU∥ϵ∥+

(1− η)CU∥h̄∥

∥∥∥∥∥∥
∑
j∈Nu

1√
dudj

−
∑
j∈Nv

1√
dvdj

∥∥∥∥∥∥
In this toy example, the feature embedding of the two nodes
in the next layer is almost identical if we let η closer to 1. If
we let η closer to 0, the feature embedding of the two nodes
would reflect the underlying graph structure captured by the
degree of the neighboring nodes.

Toy Example 2: Structurally equivalent neighborhood,
different feature Consider two nodes u, v, we assume
there exists a bijection π : N (v) → N (u) such that

∀j ∈ N (v), dj = dπ(j), hℓ
j − hℓ

π(j) = ϵj ,

where we assume there exists ϵ such that ∥ϵj∥ ≤ ∥ϵ∥ for
all j ∈ N (v) We investigate the difference in the node
embeddings of u and v in the next layer. We have the
following inequality:

∥hℓ+1
u − hℓ+1

v ∥ ≤ (1− η)CU∥ϵ∥/Cdl

+ η ·

∥∥∥∥∥∥
∑
j∈Nu

(eℓujU
ℓhℓ

j − eℓvπ(j)U
ℓhℓ

π(j))

∥∥∥∥∥∥
In this toy example, the feature of the two nodes in the next
layer is almost identical if we let η closer to 0. When η is
closer to 1, the difference in the feature embedding of the
two nodes is defined by the difference in the feature value
of the neighboring nodes.

4.3. Experiments

In this section, we empirically test our proposed GCAN
interpolation methods on ten standard benchmark datasets.
Our goal is to see whether tuning η gives better results than
both GCN and GAT. The setup details of our experiment is
described in Appendix G.

In Table 1 (also Figure 1 in the appendix), we show the
mean accuracy across 30 runs of each η value and the
90% confidence interval associated with each experiment.
The optimal η values are distinct for different datasets, and
the best model is usually interpolated between GCN and
GAT, showing that we can achieve an improvement on both
baselines. The loss also does not change monotonically
as η increases for many datasets. This suggests that one
should learn the best η parameter for each specific dataset.
Moreover, since our family of algorithm includes both GAT
and GCN, the optimal η chosen by GCAN architecture is

4

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

Dataset 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Rel. gain
GCN

Rel. gain
GAT

CIFAR10 0.7888±
0.0010

0.7908±
0.0008

0.7908±
0.0015

0.7907±
0.0012

0.7943±
0.0022

0.7918±
0.0018

0.7975±
0.0017

0.7971±
0.0023

0.7921±
0.0023

0.7986±
0.0028

0.7984 ±
0.0023

+4.55% 0%

WikiCS 0.9525±
0.0007

0.9516±
0.0006

0.9532±
0.0011

0.9545±
0.0008

0.9551±
0.0015

0.9545±
0.0012

0.9539±
0.0012

0.9553 ±
0.0012

0.9530±
0.0007

0.9536±
0.0009

0.9539±
0.0009

+5.89% 3.04%

Cora 0.6132±
0.0218

0.8703±
0.0251

0.8879±
0.0206

0.8396±
0.0307

0.8022±
0.0385

0.8615±
0.0402

0.9011 ±
0.0421

0.8088±
0.0362

0.8505±
0.0240

0.8549±
0.0389

0.8725±
0.0334

+74.43% +22.43%

Citeseer 0.7632 ±
0.0052

0.6944±
0.0454

0.7602±
0.0566

0.7500±
0.0461

0.7339±
0.0520

0.7427±
0.0462

0.7588±
0.0504

0.7193±
0.0567

0.7661±
0.0482

0.7266±
0.0412

0.7471±
0.0444

0% +6.80%

PubMed 0.9350±
0.0009

0.9306±
0.0006

0.9356±
0.0009

0.9281±
0.0007

0.9356 ±
0.0007

0.9319±
0.0009

0.9313±
0.0007

0.9288±
0.0009

0.9313±
0.0006

0.9338±
0.0010

0.9356±
0.0009

+0.92% 0%

CoauthorCS 0.9733±
0.0007

0.9733±
0.0008

0.9765 ±
0.0005

0.9744±
0.0005

0.9733±
0.0009

0.9690±
0.0007

0.9712±
0.0009

0.9722±
0.0005

0.9722±
0.0011

0.9722±
0.0007

0.9744±
0.0007

+11.99% +8.20%

AmazonPhotos 0.9605±
0.0022

0.9617±
0.0007

0.9629±
0.0015

0.9599±
0.0013

0.9641±
0.0017

0.9574±
0.0018

0.9641±
0.0019

0.9592±
0.0133

0.9653 ±
0.0027

0.9635±
0.0031

0.9562±
0.0019

+12.15% +20.78%

Actor 0.5982±
0.0016

0.5919±
0.0022

0.6005 ±
0.0039

0.5959±
0.0039

0.5965±
0.0038

0.5970±
0.0027

0.5976±
0.0037

0.5993±
0.0043

0.5930±
0.0041

0.5970±
0.0037

0.5953±
0.0031

+0.57% +1.28%

Cornell 0.7341±
0.0097

0.7364±
0.0165

0.7364±
0.0073

0.7205±
0.0154

0.7523±
0.0109

0.7795±
0.0120

0.7568±
0.0188

0.7500±
0.0140

0.7477±
0.0138

0.7909±
0.0136

0.8000 ±
0.0423

+24.78% 0%

Wisconsin 0.8688±
0.0077

0.8922 ±
0.0035

0.8688±
0.0080

0.8906±
0.0049

0.8797±
0.0044

0.8578±
0.0120

0.8875±
0.0037

0.8781±
0.0082

0.8563±
0.0128

0.8750±
0.0121

0.8719±
0.0076

+17.83% +15.85%

Table 1. Results on the proposed GCAN interpolation. Each column corresponds to one η value. Each row corresponds to one dataset.
Each entry shows the accuracy and the interval. We find in most cases, the optimal η is neither 0 (pure GCN) nor 1 (pure GAT). In the
rightmost two columns, we also calculate the relative reduction in avergae loss of GCAN over the baseline algorithms GCN (η = 0) and
GAT (η = 1). The relative improvement in the average loss of GCAN over baselines GAT and GCN (last two columns) is calculated as
(LossBaseline − LossGCAN)/LossBaseline

guaranteed to be no worse than both GAT and GCN. We
emphasize this idea in the rightmost two columns of Ta-
ble 1, where we show the relative reduction in the average
loss of GCAN over baselines GAT and GCN, calculated as
(LossBaseline − LossGCAN)/LossBaseline.

5. Conclusion
We study hyperparameter selection in graph-based semi-
supervised learning. We do this by leveraging access to
multiple instances of data from a given domain. We provide
formal guarantees on the number of data samples needed to
learn the best algorithm for classical parameterized families
as well as a novel family (GCAN) that interpolates convolu-
tion (GCN) and attention (GAT) in graph neural networks.
We also study how the hyperparameter influences node fea-
tures in the latent space of GCAN, and empirically test the
effectiveness of GCAN through experiments.

References
Anthony, M. and Bartlett, P. Neural Network Learning:

Theoretical Foundations. Cambridge University Press,
USA, 1st edition, 2009.

Balcan, M.-F. and Sharma, D. Data driven semi-supervised
learning. Advances in Neural Information Processing
Systems, 34, 2021.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463–482, 2002.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. Advances
in Neural Information Processing Systems, 30, 2017.

Delalleau, O., Bengio, Y., and Le Roux, N. Efficient non-
parametric function induction in semi-supervised learn-
ing. In International Workshop on Artificial Intelligence
and Statistics, pp. 96–103. PMLR, 2005.

Donnat, C. and Jeong, S. W. Studying the effect of GNN
spatial convolutions on the embedding space’s geometry.
In Evans, R. J. and Shpitser, I. (eds.), Uncertainty in
Artificial Intelligence (UAI), volume 216 of Proceedings
of Machine Learning Research, pp. 539–548. PMLR, 31
Jul–04 Aug 2023.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Ben-
gio, Y., and Bresson, X. Benchmarking graph neural
networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Garg, V., Jegelka, S., and Jaakkola, T. Generalization and
representational limits of graph neural networks. In III,

5

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

H. D. and Singh, A. (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
3419–3430. PMLR, 13–18 Jul 2020.

Iscen, A., Tolias, G., Avrithis, Y., and Chum, O. Label
propagation for deep semi-supervised learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5070–5079, 2019.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference on Learning Representations (ICLR), 2017.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of Machine Learning. MIT Press, 2012.

Pollard, D. Convergence of stochastic processes. Springer
Science & Business Media, 2012.

Sharma, D. and Jones, M. Efficiently learning the graph
for semi-supervised learning. Uncertainty in Artificial
Intelligence (UAI), 2023.

Veličković, Petar, Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. Interna-
tional Conference on Learning Representations (ICLR),
2018.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 6861–6871. PMLR, 09–15 Jun 2019.

Zhou, D., Bousquet, O., Lal, T., Weston, J., and Schölkopf,
B. Learning with local and global consistency. Advances
in Neural Information Processing Systems, 16, 2003.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using gaussian fields and harmonic
functions. In International conference on Machine learn-
ing (ICML), pp. 912–919, 2003.

6

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

A. Classical learning-theoretic results on generalization
We first state a classical generalization bound based on the pseudo-dimension.

Theorem A.1. (Anthony & Bartlett, 2009) Suppose H is a class of real-valued functions with range in [0, 1] and finite
Pdim(H). Then for any ϵ > 0 and δ ∈ (0, 1), for any distribution D and for any set S = {X(1), . . . , X(m)} of
m = O

(Pdim(H)
ϵ2 + log(1δ)

)
samples from D, with probability at least 1− δ, we have∣∣∣∣∣ 1m

m∑
k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣ ≤ ϵ, for all H ∈ H.

Theorem A.2. (Mohri et al., 2012) Suppose H is a class of real-valued functions with range in [0, 1]. Then for any
δ ∈ (0, 1), any distribution D, and any set S = {X(k)}mk=1 of m samples from D, with probability at least 1− δ, we have∣∣∣∣∣ 1m

m∑
k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣ = O

(
R̂m(H) +

√
1

m
log

1

δ

)
, for all H ∈ H.

B. Additional Label Propagation Based Families
Smoothing-Based Algorithm Family (Fλ) This second class of algorithm is parameterized by λ ∈ (0,+∞) (Delalleau
et al., 2005). Let ∆ ∈ {0, 1}n×n be a diagonal matrix where elements are 1 only if the index is in the labeled set. The
scoring matrix F ∗

λ is
F ∗
λ = (S + λIn∆i∈L)

−1λY, whereS = D −W.

The idea of Fλ is very similar to Fα. λ balances the relative importance of the known labels and the structure of the
unlabeled points . Note that by Lemma C.4, (S + λIn∆i∈L) is invertible as long as every connected component in G has at
least one labeled node. This condition is reasonable because G is the only information we can use to relate the labeled and
unlabeled nodes, and if there is a connected component with no label, then we have no information to label nodes in this
component. Therefore, we will assume (S + λIn∆i∈L) to be invertible in our analysis. Here we denote the set of 0-1 loss
functions corresponding to Fλ as Hλ.

Normalized Adjacency Matrix Based Family (Fδ) Here we consider a new algorithm family which we name Normalized
Adjacency Matrix Based Family. This class of algorithm is parameterized by δ ∈ [0, 1]. The scoring matrix F ∗

δ is

F ∗
δ = (I − c · S)−1Y, where S = D−δWDδ−1

is the normalized adjacency matrix.

This family of algorithms is motivated by Fα and the family of spectral operators defined in (Donnat & Jeong, 2023). We
may notice that the F ∗

δ defined here is very similar to the F ∗
α in Fα when α is set to a constant c, whose default value

considered in (Zhou et al., 2003) is 0.99. Here, instead of focusing on the trade-off between local and global consistency, we
study the spatial convolutions S. With δ = 1, we have the row-normalized adjacency matrix S = D−1W . With δ = 0, we
have the column-normalized adjacency matrix S = WD−1. Finally, with δ = 1/2, we have the symmetrically normalized
adjacency matrix that we used in Fα and many other default implementations (Donnat & Jeong, 2023; Wu et al., 2019). We
denote the set of 0-1 loss functions corresponding to Fδ as Hδ .

B.1. Pseudodimension Guarantees

The pseudodimension of the above-mentioned two algorithm families are the same as the local and global consistency family
mentioned in Section 3.

Theorem B.1. The pseudo-dimension of the Smoothing-Based Algorithmic Family, Fλ, is Pdim(Hλ) = Θ(log n), where n
is the total number of labeled and unlabeled data points.

Theorem B.2. The pseudo-dimension of the Normalized Adjacency Matrix Based Algorithmic Family, Fδ , is Pdim(Hδ) =
Θ(log n), where n is the total number of labeled and unlabeled data points.

7

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

C. Proofs in Section 3
We provide the proof for Theorem 3.1, Theorem B.1, and Theorem B.2 together, since they follow a similar template.

First, we give an overview of the proof idea below.

Upper Bound We investigate the function structure of each index in F ∗. For the function classes Fα and Fλ, the following
lemma is useful.

Lemma C.1. Let A,B ∈ Rn×n, and C(x) = (A+ xB)−1 for some x ∈ R. Each entry of C(x) is a rational polynomial
Pij(x)/Q(x) for i, j ∈ [n] with each Pij of degree at most n− 1 and Q of degree at most n.

This lemma reduces each index in the matrix of form C(x) = (A+ xB)−1 into a polynomial of parameter x with degree at
most n. By definition, we can apply this lemma to F ∗

α and F ∗
λ and conclude that each index of these matrices is a degree-n

polynomial of variable α and λ, respectively.

For the algorithm family Fδ , the following lemma is helpful:

Lemma C.2. Let S = D−xWDx−1 ∈ Rn×n, and C(x) = (I − c · S)−1 for some constant c ∈ (0, 1) and variable
x ∈ [0, 1]. For any i, j ∈ [n], the i, j-the entry of C(x) is an exponential C(x)ij = aij exp(bijx) for some constants
aij , bij .

By definition of F ∗
δ , this lemma indicates that each index of F ∗

δ is a weighted sum of n exponentials of the hyperparameter
δ.

For F ∗ being a prediction matrix of any of the above three algorithmic family. Recall that the prediction on each node
i ∈ [n] is ŷi = argmaxj∈[c]([F

∗]ij), so the prediction on a node can change only when sign([F ∗]ij − [F ∗]ik) changes for
some j, k ∈ [c]. For the families Fα and Fλ, [F ∗]ij − [F ∗]ik is a rational polynomial (Pij(α) − Pik(α))/Q(α) where
(Pij(α)− Pik(α)) and Q(α) are degree of at most n (we can simply replace α with λ for Fλ). Therefore, its sign can only
change at most O(n) times. For the family Fδ , we refer to the following lemma and conclude that the sign of F ∗

ij − F ∗
ik can

only change at most O(n) times as well.

Lemma C.3. Let a1, . . . , an ∈ R be not all zero, b1, . . . , bn ∈ R, and f(x) =
∑n

i=1 aie
bix. The number of roots of f is at

most n− 1.

Therefore, for all three families, the prediction on a single node can change at most
(
c
2

)
O(n) ∈ O(nc2) times as the

hyperparameter is varied. For n nodes, this implies we have at most O(mn2c2) distinct values of the loss function over
the m problem instances. The pseudo-dimension m satisfies 2m ≤ O(mn2c2), which implies Pdim(Hα) = Pdim(Hλ) =
Pdim(Hδ) = O(log n).

Lower Bound Our proof relies on a collection of parameter thresholds and well-designed labeling instances that are
shattered by the thresholds. Here we present the proof idea of pseudo-dimension lower bound of the family Fα. The
pseuodo-dimension lower bound for families Fλ and Fδ depends on a similar construction.

We first describe a hard instance of 4 nodes, using binary labels a and b. We have two points labeled a (namely a1, a2),
and one point labeled b (namely b1) connected with both a1 and a2 with edge weight 1. We also have an unlabeled point u
connected to b1 with edge weight x ≥ 0. That is, the affinity matrix and initial labels are

W =


0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =


1 0
0 1
0 1
0 0

 .

With this construction, the prediction on node u changes and only change when α = (x+2)1/2

2 . Let x = 4β2 − 2 ≥ 0, then
ŷ4 = 0 when α < β and ŷ4 = 1 when α ≥ β.

Now we can create a large graph of n nodes, consisting of n/4 connected components as described above. We assume 4
divides n for simplicity. Given a sequence of α’s such that 0 < α0 < 1/

√
2 ≤ α1 < α2 < ... < αn/4 < 1, we can create

the i-th connected component with x = 4α2
i − 2. Now the predicted label of the unlabeled node in the i-th connected

8

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

component is 0 when α < αi and 1 when α ≥ αi. By alternatively labeling these unlabeled nodes, the 0-1 loss of this
problem instance fluctuates as α increases.

Finally, by precisely choosing the subsequences so that the oscillations align with the bit flips in the binary digit sequence,
we can construct m instances that satisfy the 2m shattering constraints.

C.1. Proof of Invertibility

Lemma C.4. Let G = (V,E) be a graph with n vertices and m weighted edges. Let W be its adjacency matrix,
D = diag(W 1⃗n), L = D−W , ∆ ∈ {0, 1}n×n be a diagonal matrix where elements are 1 only if the index is in the labeled
set, and λ > 0. Then, (L+ λ∆) is invertible if, for each connected component in G, there is at least one labeled node.

Proof. Let x ∈ Rn\{0}, then
x⊤(L+ λ∆)x = x⊤B⊤Bx+ λx⊤∆x ≥ 0,

where B ∈ Rm×n is incidence matrix defined by

Be,v =


−
√
We, if v is the initial vertex of edge e√

We, if v is the end vertex of edge e

0, otherwise.

This shows that (L + λ∆) is positive semi-definite, so it is invertible only when it is positive definite, or equivalently,
x⊤(L+ λ∆)x ̸= 0.

Consider when x⊤(L+ λ∆)x = 0, then x⊤B⊤Bx = 0 and λx⊤∆x = 0. For x⊤B⊤Bx = (Bx)⊤(Bx) = 0, this means

[Bx]e =
√
We(xe2 − xe1) = 0, for all edges e,

where e1, e2 are the initial and end vertices of edge e. This implies x⊤B⊤Bx = 0 only when xi = xj for any i, j that are
connected. Let g1, ..., gk ⊆ V represent the sets of vertices in each connected component of G, and (aj)i∈[k] be a sequence
of real numbers that are not all zero. For each j ∈ [k], we assume xi = aj for all i ∈ gj .

Under these assumptions on x, x ̸= 0 and x⊤B⊤Bx = 0 always holds. We now consider when λx⊤∆x = 0:

λx⊤∆x = λ

n∑
i=1

∆iix
2
i = λ

k∑
j=1

a2j

∑
i∈gj

∆ii

 = λ
∑

j∈[k],aj ̸=0

a2j

∑
i∈gj

1label(i)

 = 0.

Since λ > 0 and x ̸= 0, the equation only holds when
∑

i∈gj
1label(i) = 0 for some gj , i.e. there exists some connected

component such that none of its nodes are labeled.

We conclude that the matrix (L+ λ∆) is positive definite and thus invertible if there exists at least one labeled node in each
connected component of G.

C.2. Proof of Lemma C.1

Proof. Using the adjugate matrix, we have

C(x) =
1

det(A+ xB)
adj(A+ xB).

The determinant of A+ xB can be written as

det(A+ xB) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

[A+ xB]iσi

)
,

where Sn represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ. Thus det(A+ xB) is a
polynomial of x with a degree at most n. The adjugate of A+ xB is

adj(A+ xB) = C⊤,

9

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

where C is the cofactor matrix of A+ xB. By definition, each entry of C is Cij = (−1)i+jkij where kij is the determinant
of the (n − 1) × (n − 1) matrix that results from deleting i-th row and j-th column of A + xB. This implies that
each entry of C (and thus adj(A + xB)) is a polynomial of degree at most n − 1. Letting Q(x) = det(A + xB) and
Pij(x) = [adj(A+ xB)]ij concludes our proof.

C.3. Proof of Lemma C.2

Proof. The ij-th element of I − c · S is

[I − c · S]ij =

{
−c · d−δ

i Wijd
δ−1
j = −(d−1

i dj)
δ(c ·Wijd

−1
j) , if i ̸= j

1 = (d−1
i di)

δ , otherwise.

Using adjugate matrix, we have

(I − c · S)−1 =
1

det(I − c · S)
adj(I − c · S).

Note that the determinant of any k × k matrix A can be written as

det(A) =
∑
σ∈Sk

(
sgn(σ)

k∏
i=1

[A]iσi

)
,

where Sk represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ.

Now consider adj(I − c · S). Let Mij be the (n− 1)× (n− 1) matrix resulting from deleting i-th row and j-th column
from [I − c · S]. Then,

[adj(I − c · S)]ij = (−1)i+j det(Mji) =
∑

σ∈Sn−1

(
sgn(σ)

n−1∏
k=1

[Mji]kσk

)
=

∑
σ∈Sn−1

(aσ exp(δ ln bσ)) ,

for some constants aσ, bσ that satisfies

bσ = (
∏

k∈[n]\{j}

d−1
k)(

∏
k∈[n]\{i}

dk) = d−1
i dj .

We can then rewrite [adj(I − c · S)]ij as

[adj(I − c · S)]ij =
∑

σ∈Sn−1

(aσ exp(δ ln(d
−1
i dj))) = aij exp(δ ln(d

−1
i dj)),

where aij =
∑

σ∈Sn−1
aσ .

C.4. Proof of Lemma C.3

Proof. We prove by induction on n. If n = 1, then f(x) = aebx and a ̸= 0, so f(x) has 0 = n− 1 root. Now assume that
the statement holds for some n = m and consider when n = m+ 1. That is, we have

f(x) =

m+1∑
i=1

aie
bix.

Assume for the sake of contradiction that f has n = m+ 1 roots. Define

g(x) =
f(x)

ebm+1x
=

m∑
i=1

aie
(bi−bm+1)x + am+1,

then g also has m+ 1 roots. Since g is continuous,

g′(x) =

m∑
i=1

(bi − bm+1)aie
(bi−bm+1)x

10

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

must have m roots. However, using our induction hypothesis, it should have at most m−1 roots. This means our assumption
is incorrect, i.e. f must have at most m = n− 1 roots.

We conclude that f must have at most n− 1 roots.

C.5. Proof of Theorem 3.1

Upper Bound. Proof is given in Section 3.

Lower Bound. We first construct the small connected component of 4 nodes:

Lemma C.5. Given x ∈ [1/
√
2, 1), there exists a labeling instance (G,L) with 4 nodes, such that the predicted label of the

unlabeled points changes only at α = x as α varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point labeled b (namely b1)
connected with both a1 and a2 with edge weight 1. We also have an unlabeled point u connected to b1 with edge weight
x ≥ 0. That is, the affinity matrix and initial labels are

W =


0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =


1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (1− α)(I − αS)−1Y.

We now calculate:

D−1/2 =


(x+ 2)−1/2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 x−1/2

 ,

S = D−1/2WD−1/2 =


0 (x+ 2)−1/2 (x+ 2)−1/2 x1/2(x+ 2)−1/2

(x+ 2)−1/2 0 0 0
(x+ 2)−1/2 0 0 0

x1/2(x+ 2)−1/2 0 0 0

 ,

(I − αS)−1 =
1

det(I − αS)
adj(I − αS)

=
1

1− α2


1 α

(x+2)1/2
α

(x+2)1/2
αx1/2

(x+2)1/2

α
(x+2)1/2

1− α2(x+1)x
(x+2)

α2

x+2
α2x1/2

(x+2)

α
(x+2)1/2

α2

x+2 1− α2(x+1)x
(x+2)

α2x1/2

(x+2)

αx1/2

(x+2)1/2
α2x1/2

(x+2)
α2x1/2

(x+2) 1− 2α2

x+2

 .

Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) =sign
(
αx1/2(2α− (x+ 2)1/2)

(1 + α)(x+ 2)

)
=sign

(
x1/2(2α− (x+ 2)1/2)

)
. (since α ∈ (0, 1) and x ≥ 0)

Solving the equation x1/2(2α− (x+2)1/2) = 0, we know that the prediction changes and only change when α = (x+2)1/2

2 .
Let x = 4x2 − 2 ≥ 0, then ŷ4 = 0 when α < x and ŷ4 = 1 when α ≥ x, which completes our proof.

11

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

Lemma C.6. Given integer n > 1 and a sequence of α’s such that 0 < α0 < 1/
√
2 ≤ α1 < α2 < ... < αn < 1, there

exists a real-valued witness w > 0 and a problem instance of partially labeled 4n points, such that for 0 ≤ i ≤ n/2− 1,
l < w for α ∈ (α2i, α2i+1), and l > w for α ∈ (α2i+1, α2i+2).

Proof. We create n connected components using the previous lemma, with xi = αi. Let the unlabeled point in the ith
component be ui, then as α increases from αi−1 to αi, the predicted label of ui changes from a to b. If the sequence ui is
alternately labeled with u1 labeled a, then the loss increases and decreases alternately as all the labels turn to b when α
increases to αn. Specifically, as α increases to α1, the point u1 has predicted label changes from a to b. Since its true label
is a and the predicted labels of other ui’s remain unchanged, our loss slightly increases to lmax. Then, as α increases to α2,
the point u2 gets correctly labeled as b and all other nodes unchanged, which slightly decreases our loss back to lmin. The
loss thus fluctuates between lmin and lmax. We therefore set the witness w as something in between.

w =
lmin + lmax

2
.

We now finish the lower bound proof for Theorem 3.1.

Proof. Arbitrarily choose n′ = n/4 (assumed to be a power of 2 for convenient representation) real numbers 1/
√
2 ≤

α[000..1] < α[000...10] < ... < α[111...11] < 1. The indices are increasing binary numbers of length m = log n′. We create m
labeling instances that can be shattered by these α values. For the i-th instance (X(i), Y (i)), we apply the previous lemma
with a subset of the αb sequence that corresponds to the i-th bit flip in b, where b ∈ {0, 1}m. For example, (X(1), Y (1)) is
constructed using r[100..0], and (X(2), Y (2)) is constructed using r[010..0], r[100.0] and r[110..0]. The lemma gives us both the
instances and the sequence of witnesses wi.

This construction ensures sign(lαb
− wi) = bi for all b ∈ {0, 1}m. Thus the pseudo-dimension is at least log n′ =

log n− log 4 = Ω(log n)

C.6. Proof of Theorem B.1

Upper Bound. The closed-form solution F ∗ is given by

F ∗ = (S + λIn∆i∈L)
−1λY.

By Lemma C.1, each coefficient [F ∗]ij is a rational polynomial in λ of the form Pij(λ)/Q(λ) where Pij and Q are
polynomials of degree n and n respectively. Note that the prediction for each node i ∈ [n] is ŷi = argmaxj∈c fij and
thus the prediction on any node in the graph can only change when sign(fij − fik) changes for some j, k ∈ [c]. Note that
fij − fik is also a rational polynomial (Pij(λ)−Pik(λ))/Q(λ) where both the numerator and denominator are polynomials
in λ of degree n, meaning the sign can change at most O(n) times. As we vary λ, we have that the prediction on a single
node can change at most

(
c
2

)
O(n) ∈ O(nc2). Across the m problem instances and the n total nodes, we have at most

O(n2c2m) distinct values of our loss function. The pseudo-dimension m thus satisfies 2m ≤ O(n2c2m), or m = O(log n)

Lower Bound. We construct the small connected component of 4 nodes as follows:

Lemma C.7. Given λ′ ∈ (1,∞), there exists a labeling instance (X,Y) with 4 nodes, such that the predicted label of the
unlabeled points changes only at λ = λ′ as λ varies in (0,∞).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point labeled b (namely b1).
We also have an unlabeled point u connected to b1 with edge weight x ≥ 0 and connected with both a1 and a2 with edge
weight 1. That is, the weight matrix and initial labels are

W =


0 0 1 0
0 0 1 0
1 1 0 x
0 0 x 0

 , Y =


−1
−1
0
1

 .

12

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

The closed form solution is
F ∗ = (S + λIn∆i∈L)

−1λY

where S = diag(W 1⃗n)−W . We now calculate:

S =


1 0 −1 0
0 1 −1 0
−1 −1 x+ 2 −x
0 0 −x x



S + λIn∆i∈L =


1 + λ 0 −1 0
0 1 + λ −1 0
−1 −1 x+ 2 −x
0 0 −x x+ λ


Recall that the prediction on the unlabeled point is ŷ3 = sign([F∗]32 − [F ∗]31), so we calculate

ŷ3 = sign(F∗]32 − [F ∗]31) =sign
(
−2λ

(
λ+ x

λ2x+ 2λ2 + 3λx

)
+ λ

(
λx+ x

λ2x+ 2λ2 + 3λx

))
=sign (−2λ(λ+ x) + λ(λx+ x)) (since λ > 0 and x ≥ 0)
=sign (−2(λ+ x) + (λx+ x)) (since λ > 0)
=sign (−2λ− x+ λx)

Solving the equation −2λ − x + λx = 0, we know that the prediction changes and only change when λ = x
x−2 . Let

x = 2λ
λ−1 ≥ 0, then ŷ3 = −1 when λ < λ′ and ŷ3 = 1 when λ ≥ λ′, which completes our proof.

The remaining proof is exactly the same as Lemma C.6 and Theorem 3.1, by simply replacing notation α with λ.

C.7. Proof of Theorem B.2

Upper Bound. Using Lemma C.2, we know that each entry of F ∗ is

F ∗
ij(δ) =

1

det(I − c · S)

n∑
k=1

[adj(I − c · S)]ikYkj =
1

det(I − c · S)

n∑
k=1

(aikYkj) exp(δ ln(d
−1
i dk)).

Recall that the prediction on a node is made by ŷi = argmax(F ∗
i), so the prediction changes only when

F ∗
ic1 − F ∗

ic2 =
1

det(I − c · S)

(
n∑

k=1

(aikYkc1) exp(δ ln(d
−1
i dk))−

n∑
k=1

(aikYkc2) exp(δ ln(d
−1
i dk))

)

=
1

det(I − c · S)

(
n∑

k=1

(aik(Ykc1 − Ykc2)) exp(δ ln(d
−1
i dk))

)
= 0.

By Lemma C.3, F ∗
ic1

− F ∗
ic2

has at most n− 1 roots, so the prediction on node i can change at most n− 1 times. As δ vary,
the prediction can change at most

(
c
2

)
O(n) ∈ O(nc2) times. For n nodes and m problem instances, this implies that we have

at most O(mn2c2) distinct values of loss. The pseudo-dimension m then satisfies 2m ≤ O(mn2c2), or m = O(log nc).

Lower Bound We construct the small connected component as follows:

Lemma C.8. Consider when c ≥ 1/2. Given x ∈ [log(2c)/ log(2), 1), there exists a labeling instance (G,L) with 4 nodes,
such that the predicted label of the unlabeled points changes only at δ = x as δ varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point labeled b (namely b1)
connected with both a1 and a2 with edge weight 1. We also have an unlabeled point u connected to b1 with edge weight

13

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

x ≥ 0. That is, the affinity matrix and initial labels are

W =


0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =


1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (I − c · S)−1Y,

where S = D−δWDδ−1 and D is diagonal with Dii =
∑

i Wij . We now calculate:

S = D−δWDδ−1 =


0 (x+ 2)−δ (x+ 2)−δ xδ(x+ 2)−δ

(x+ 2)−δ 0 0 0
(x+ 2)−δ 0 0 0

xδ(x+ 2)−δ 0 0 0

 ,

det(I − c · S) = det


1 −c(x+ 2)−δ −c(x+ 2)−δ −cxδ(x+ 2)−δ

−c(x+ 2)−δ 1 0 0
−c(x+ 2)−δ 0 1 0

−cxδ(x+ 2)−δ 0 0 1


= 1− c2 ̸= 0,

so (I − c · S) is invertible on our instance.

Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) = sign
(
c · x1−δ(2c− (x+ 2)δ)

(1− c2)(x+ 2)

)
= sign

(
2c− (x+ 2)δ

)
. (since c ∈ (0, 1), and x ≥ 0)

Solving the equation 2c− (x+ 2)δ = 0, we know that the prediction changes and only change when δ = ln(2c)
ln(x+2) . Since

x ≤ ln(2c)/ ln(2) ≤ 1, we can let x = (2c)
1/x − 2 ≥ 0, then ŷ4 = 0 when α < x and ŷ4 = 1 when α ≥ x, which

completes our proof.

D. Introduction of GCN and GAT
Graph Convolutional Neural Networks (GCNs) The fundamental idea behind GCNs is to repeatedly apply the convolu-
tion operator on graphs (Kipf & Welling, 2017). Define h0

i = zi as the input feature of the i-th node and let hℓ
i be the feature

of the ℓ-th layer of the i-th node. We have the following update rule for the features of hℓ
i

hℓ
i = σ

∑
j∈Ni

1√
didj

U ℓ−1hℓ−1
j


where di represents the degree of vertex i, U ℓ represents the learnable weights in our model, Ni represents the neighbors of
vertex i, and σ(·) is the activation function.

Graph Attention Neural Networks (GATs) GAT is a more recent architecture that leverages the self-attention mechanisms
to capture the importance of neighboring nodes to generate the features of the next layer (Veličković, Petar et al., 2018).
One of the advantages of GAT is its ability to capture long-range dependencies within the graph while giving more weight
to influential nodes. This makes GAT particularly effective for tasks involving irregular graph structures and tasks where
global context is essential.

Different from GCN, GAT uses the update rule for each layer

hℓ
i = σ(

∑
j∈Ni

eℓ−1
ij U ℓ−1hℓ−1

j),

14

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

where

eℓij =
exp(êℓij)∑

j′∈Ni
exp(êℓij′)

, êℓij = σ(V ℓ[U ℓhℓ
i , U

ℓhℓ
j]). (1)

Here eℓij is the attention score of node j for node i and V ℓ and U ℓ are learnable parameters.

E. Proofs in Section 4
First, we show that, to show that an algorithm family Fρ is strong for new problem instances, it suffices to bound the
empirical Rademacher complexity R̂m(Hγ

ρ).

We define the margin loss as τ(f(zi), yi) = (2f(zi)− 1)yi. Then, τ(f(zi), yi) < 0 if and only if there is a classification
error. The margin loss with a loss hyperparameter γ > 0 is defined as

ℓγ(f(zi), yi) = 1[ai > 0] + (1 + ai/γ)1 [ai ∈ [−γ, 0]]

where ai = −τ(f(zi), yi).

Now we define Hγ
ρ (X) = 1

n

∑n
i=1 ℓγ (fρ(zi), yi) to be the margin loss of the entire graph when using a parameterized

algorithm Fρ. Based on this definition, we have an induced loss function family Hγ
ρ . Now given m instances, for any γ > 0,

we can obtain an upper bound for all Hγ
ρ ∈ Hγ

ρ :

E(X,Y)∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ̂(zi), yi)

]

=
1

m

m∑
i=1

Hγ
ρ (X

(k)) +O

(
R̂m(Hγ

ρ) +

√
log (1/δ)

m

)
. (by Theorem A.2)

Therefore, suppose we find a ρ̂ whose empirical margin loss 1
m

∑m
i=1 H

γ
ρ̂ (X

(k)) is small, and if we can show R̂m(Hγ
ρ) is

small, then Fρ̂ is a strong algorithm for the new problem instances.

We provide additional proof details from Section 4 below.

E.1. Proof of Theorem 4.1

Lemma E.1. For any z, z′,∈ Rd×r and b, b′ ∈ Rr×t such that ∥z∥F ≤ Cz, ∥z′∥F ≤ Cz, ∥b∥F ≤ Cb, ∥b′∥F ≤ Cb, we
have

∥zb− z′b′∥F ≤ Cz∥b− b′∥F + Cb∥z − z′∥F .

The result also holds when z, b, z′, b′ are vectors or real numbers. The corresponding norms are ∥ · ∥ and | · |.

Also, by recursively using the inequality above, we may have that for any z1, . . . , zn and z′1, . . . , z
′
n such that ∥zi∥ ≤

Ci, ∥z′i∥ ≤ Ci,

∥z1z2 . . . zn − z′1z
′
2 . . . z

′
n∥ ≤

n∑
i=1

∥zi − z′i∥
∏

j∈[n],j ̸=i

Cj

 .

Here, for simplicity of notation, we used ∥ · ∥ to denote the type of norm that corresponds to the dimension of the zi’s.

Proof.

∥ab− a′b′∥F = ∥ab− a′b′ + ab′ − ab′∥F
≤ ∥ab− ab′∥F + ∥ab′ − a′b′∥F (by triangle inequality)
≤ ∥a∥F ∥b− b′∥F + ∥b′∥F ∥a− a′∥F (by Cauchy-Schwarz inequality)
≤ Cz∥b− b′∥F + Cb∥a− a′∥F

15

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

Lemma E.2. The l2 norm of different embedding vectors at level L, hL
i , produced by (α,U, V), (α′, U ′, V ′) after they

process the tree all the way from the leaf level to the root can be bounded as

∆i,L ≤CU (max
j∈Ni

∥hL−1
j ∥)|η − η′|+ rCU (max

j∈Ni

∥hL−1
j ∥) + (max

j∈Ni

∥hL−1
j ∥)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥

+
2r

Cdl
∥hL−1

i ∥∥U − U ′∥+ 2rCU

Cdl
|η − η′|

Proof.

∆i,L =∥hL
i (η, U, V)− hL

i (η
′, U ′, V ′)∥

=∥σ

∑
j∈Ni

(
η · eL−1

ij + (1− η) · 1√
didj

)
UhL−1

j


− σ

∑
j∈Ni

(
η′ · e′(L−1)

ij + (1− η′) · 1√
didj

)
U ′h

′(L−1)
j

 ∥

≤∥
∑
j∈Ni

(
(η · eL−1

ij UhL−1
j)− (η′ · e′(L−1)

ij U ′h
′(L−1)
j)

)

+
∑
j∈Ni

(
(1− η) · 1√

didj
UhL−1

j − (1− η′) · 1√
didj

U ′h
′(L−1)
j

)
∥ (since σ is 1-Lipschitz)

≤
∑
j∈Ni

∥(η · eL−1
ij UhL−1

j)− (η′ · e′(L−1)
ij U ′h

′(L−1)
j)∥

+
∑
j∈Ni

∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i ∥ (by triangle inequality)

Using Lemma E.1, we can bound each term in the first summation as

∥(η · eL−1
ij UhL−1

j)− (η′ · e′(L−1)
ij U ′h

′(L−1)
j)∥

≤CU ē
L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j · |eL−1

ij − e
′(L−1)
ij |

+ ēL−1
ij h̄L−1

j ∥U − U ′∥+ CU ē
L−1
ij ∥hL−1

j − h
′(L−1)
j ∥

Here, h̄L−1
j is an upper bound on ∥hL−1

j ∥ and ∥h′(L−1)
j ∥, and ēL−1

ij is an upper bound on |eL−1
ij | and |e′(L−1)

ij |.

Bounding each term in the second summation, we have

∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i ∥

≤∥ 1√
didj

UhL−1
i − 1√

didj
U ′h

′(L−1)
i ∥+ ∥η · 1√

didj
UhL−1

i − η′ · 1√
didj

U ′h
′(L−1)
i ∥ (by triangle inequality)

≤ 1

Cdl
∥UhL−1

i − U ′h
′(L−1)
i ∥+ 1

Cdl
∥η · UhL−1

i − η′ · U ′h
′(L−1)
i ∥

≤ 1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥
)

+
1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
(using Lemma E.1)

=
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
.

16

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

Combining the above results, we have

∆L
i ≤

∑
j∈Ni

(
CU ē

L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j · |eL−1

ij − e
′(L−1)
ij |

+ ēL−1
ij h̄L−1

j ∥U − U ′∥+ CU ē
L−1
ij ∥hL−1

j − h
′(L−1)
j ∥

+
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

))
≤CU (max

j∈Ni

h̄L−1
j)|η − η′|+ rCU (max

j∈Ni

h̄L−1
j) + (max

j∈Ni

h̄L−1
j)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥

+
2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′| (since eℓij ≤ 1,

∑
j∈Ni

eℓij = 1, and the branching factor is r)

It remains for us to derive h̄L−1
j for all j.

Lemma E.3. We can upper bound the norm of node feature embedding at level ℓ+ 1 by

∥hℓ
i∥ ≤ rℓCℓ+1

U Cz max(1,
1

Cdl
)ℓ.

Proof.

∥hℓ+1
i ∥ = ∥σ

∑
j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j

 ∥

≤ ∥
∑
j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j∥ (since ∥σ(x)∥ ≤ ∥x∥)

≤
∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥U∥∥hℓ
j∥ (by triangle inequality and Cauchy-Schwarz inequality)

≤ CU

∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥hℓ
j∥

≤ rCU max(1,
1

Cdl
)(max

j∈Ni

∥hℓ−1
j ∥)

Recursively bounding the terms, we have

∥hℓ
i∥ ≤ rℓCℓ

U max(1,
1

Cdl
)ℓ max

j∈[n]
∥h0

j∥ ≤ rℓCℓ+1
U Cz max(1,

1

Cdl
)ℓ.

Lemma E.4. The change in margin loss due to the change in parameter values after L layers satisfies

Λi ≤
2

k
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥,

where

k1 = rLCL+1
U Cz max(1,

1

Cdl
)L−1

k2 = rL−1CL+1
U Cz max(1,

1

Cdl
)L−1 +

2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

17

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

Proof. Using the previous two lemmas, we know

∥hL
i (η, U, V)− hL

i (η
′, U ′, V ′)∥

≤CU (max
j∈Ni

h̄L−1
j)|η − η′|+ rCU (max

j∈Ni

h̄L−1
j) + (max

j∈Ni

h̄L−1
j)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥+ 2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′|

≤k1 + k2|η − η′|+ k3∥U − U ′∥+ k4(max
j∈[n]

∥hL−1
j − h

′(L−1)
j ∥)

= (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4(max
j∈[n]

∥h0
j − h′0

j ∥)

≤ (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥

where

k1 = rLCL+1
U Cz max(1,

1

Cdl
)L−1

k2 = rL−1CL+1
U Cz max(1,

1

Cdl
)L−1 +

2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

The change in margin loss for each node after L layers is then

Λi = |gγ(−τ(fη,U,V (xi), yi))− gγ(−τ(fη′,U ′,V ′(xi), yi))|

≤ 1

γ
|τ(fη,U,V (xi), yi))− τ(fη′,U ′,V ′(xi), yi))| (since gγ is 1/γ-Lipschitz)

=
1

γ
|(2fβ,θ(xi)− 1)yi − (2fβ′,θ′(xi)− 1)yi)|

≤ 2

γ
|yi| |fη,U,V (xi)− fη′,U ′,V ′(xi)| (by Cauchy-Schwarz inequality)

≤ 2

γ

∣∣σ(hL
i (η, U, V)[0])− σ(hL

i (η
′, U ′, V ′)[0])

∣∣ (since yi ∈ {−1, 1})

≤ 2

γ

∣∣hL
i (η, U, V)[0]− hL

i (η
′, U ′, V ′)[0]

∣∣ (since σis 1-Lipschitz)

≤ 2

γ
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥.

Lemma E.5. The change in margin loss Λi for each node can be bounded by ϵ, using a covering of size P , where P depends
on ϵ, with

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Proof. We let A =
2k2(k

L
4 −k4)

k(k4−1) and B =
2k3(k

L
4 −k4)+γ(k2

4−k4)Cz

γ(k4−1) for simplicity of notation. Note that we have Λi ≤
A|η − η′|+B∥U − U ′∥.

We begin by noting that we can find a covering C(η, ϵ
2A , | · |) of size

N (η,
ϵ

2A
, | · |) ≤ 1 +

4A

ϵ
.

18

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

We can also find a covering C(U, ϵ
2B , ∥ · ∥F) with size

N (U,
ϵ

2B
, ∥ · ∥F) ≤

(
1 +

4BCU

√
d

ϵ

)d2

.

For any specified ϵ, we can ensure that Λi is at most ϵ with a covering number of

P ≤N (η,
ϵ

2A
, | · |) · N (U,

ϵ

2B
, ∥ · ∥F)

≤
(
1 +

4A

ϵ

)(
1 +

4BCU

√
d

ϵ

)d2

≤ (1 +
4max{A,BCU

√
d}

ϵ
)d

2+1

Moreover, when ϵ ≤ 4max{A,BCU

√
d}, we have

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Now we can finish our proof for Theorem 4.1.

Proof. Using Lemma A.5 from (Bartlett et al., 2017), we obtain that

R̂T (Hγ
(η,U,V))) ≤ inf

α>0

(
4α√
m

+
12

m

∫ √
m

α

√
logN (Hγ

(η,U,V)), ϵ, ∥ · ∥)dϵ

)
.

Using the previous lemmas, we have∫ √
m

α

√
logN (Hγ

(η,U,V)), ϵ, ∥ · ∥)dϵ =
∫ √

m

α

√
logPdϵ

≤
∫ √

m

α

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
dϵ

≤
√
m

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

α

)

Plugging in α =
√

1
m , we have

R̂T (Hγ
(η,U,V))) ≤

4

m
+

12

√
(d2 + 1) log

(
8
√
mmax{A,BCU

√
d}
)

√
m

.

F. Proofs in Section 4.2
First, we can bound the difference in the feature of the two nodes as follows:

∥hℓ+1
u − hℓ+1

v ∥

=∥σ

∑
j∈Nu

(
η · eℓuj + (1− η) · 1√

dudj

)
U ℓhℓ

j

− σ

∑
j∈Nv

(
η · eℓvj + (1− η) · 1√

dvdj

)
U ℓhℓ

j

 ∥

≤∥

∑
j∈Nu

(
η · eℓuj + (1− η) · 1√

dudj

)
U ℓhℓ

j

−

∑
j∈Nv

(
η · eℓvj + (1− η) · 1√

dvdj

)
U ℓhℓ

j

 ∥. (σ is 1-Lipschitz)

19

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

F.1. Proof for Toy Example 1

∥hℓ+1
u − hℓ+1

v ∥

≤∥

∑
j∈Nu

(
η · eℓuj + (1− η) · 1√

dudj

)
U ℓhℓ

j

−

∑
j∈Nv

(
η · eℓvj + (1− η) · 1√

dvdj

)
U ℓhℓ

j

 ∥

≤∥
∑
j∈Nu

(
η · eℓuj + (1− η) · 1√

dudj

)
−
∑
j∈Nv

(
η · eℓvj + (1− η) · 1√

dvdj

)
∥∥U ℓh̄∥+ CU∥ϵ∥

(Triangle Inequality and Cauchy-Schwartz Inequality)

≤CU∥h̄∥η · ∥
∑
j∈Nu

eℓuj −
∑
j∈Nv

eℓvj∥+ CU∥h̄∥(1− η) · ∥
∑
j∈Nu

1√
dudj

−
∑
j∈Nv

1√
dvdj

∥+ CU∥ϵ∥

=CU∥h̄∥(1− η) · ∥
∑
j∈Nu

1√
dudj

−
∑
j∈Nv

1√
dvdj

∥+ CU∥ϵ∥ (because
∑

j∈Nu
eℓuj =

∑
j∈Nv

eℓvj = 1)

F.2. Proof for Toy Example 2

∥hℓ+1
u − hℓ+1

v ∥

≤∥

∑
j∈Nu

(
η · eℓuj + (1− η) · 1√

dudj

)
U ℓhℓ

j

−

∑
j∈Nv

(
η · eℓvj + (1− η) · 1√

dvdj

)
U ℓhℓ

j

 ∥

≤∥
∑
j∈Nu

(
η · eℓuj + (1− η) · 1√

dudj

)
U ℓhℓ

j −

(
η · eℓvπ(j) + (1− η) · 1√

dvdπ(j)

)
U ℓhℓ

π(j)∥ (By assumption on π)

≤η · ∥
∑
j∈Nu

(eℓujU
ℓhℓ

j − eℓvπ(j)U
ℓhℓ

π(j))∥+ (1− η) · ∥
∑
j∈Nu

(
1√
dudj

U ℓhℓ
j −

1√
dvdπ(j)

U ℓhℓ
π(j))∥

(Triangle Inequality)

We can further simplify the second term as

∥
∑
j∈Nu

(
1√
dudj

U ℓhℓ
j −

1√
dvdπ(j)

U ℓhℓ
π(j))∥ =∥

∑
j∈Nu

1√
dudj

U ℓ(hℓ
j − hℓ

π(j))∥ ≤ CU∥ϵ∥
Cdl

G. Additional Experiment Details
G.1. Experiment Setup for GCAN

We apply dropout with a probability of 0.4 for all learnable parameters, apply 1 head of the specialized attention layer
(with new update rule), and then an out attention layer. The activation we choose is eLU activation (following prior work
(Veličković, Petar et al., 2018)), with 8 hidden units, and 3 attention heads. We start training with an initial learning rate of
7× 10−5 and a weight decay of 5× 10−4.

These GCAN interpolation experiments are all run with only 20% of the dataset being labeled datapoints, and the remaining
80% representing the unlabeled datapoints that we test our classification accuracy on. Table 2 notes the exact setup of each
dataset, and the overall training time of each experiment.

In Figure 1, we plot the accuracy of GCAN on different η values, visualizing the result of Table 1.

20

Theoretical Analyses of Hyperparameter Selection in Graph-Based Semi-Supervised Learning

Figure 1. Accuracies and confidence intervals of the proposed GCAN interpolation method on different datasets. “Threshold” on the
x-axis refers to the η hyperparameter in the GCAN interpolation method.

Dataset Num of training nodes Learning rate Epoch Num of exp Training time(sec) Dim of hidden layers Num of Attention Heads

CiFAR10 400 7e-3 1000 30 13.5354 1 3
WikiCS 192 7e-3 1000 30 6.4742 1 3
Cora 170 7e-3 1000 30 7.4527 1 3
Citeseer 400 7e-3 1000 30 6.4957 1 3
Pubmed 400 7e-3 1000 30 13.1791 1 3
CoAuthor CS 400 0.01 1000 30 6.8015 1 3
Amazon Photos 411 0.01 400 30 11.0201 1 3
Actor 438 0.01 1000 30 14.7753 1 3
Cornell 10 0.01 1000 30 6.9423 1 3
Wisconsin 16 0.01 1000 30 6.9271 1 3

Table 2. Experiment setup

21

