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ABSTRACT

Recent studies have demonstrated Large Language Models (LLMs) can extend
their zero-shot generalization capabilities to multimodal learning through instruc-
tion tuning. As more modalities and downstream tasks are introduced, nega-
tive conflicts and interference may have a worse impact on performance. While
this phenomenon has been overlooked in previous work, we propose a novel
and extensible framework, called Octavius, for comprehensive studies and ex-
perimentation on multimodal learning with Multimodal Large Language Mod-
els (MLLMs). Specifically, we combine the well-known Mixture-of-Experts
(MoE) and one of the representative PEFT techniques, i.e., LoRA, designing
a novel LLM-based decoder, called LoORA-MoE, for multimodal learning. To
the best of our knowledge, we are one of the pioneering efforts to introduce
MoE into MLLMs to address this problem. The experimental results (about
20% improvement) have shown the effectiveness and versatility of our design
in various 2D and 3D downstream tasks. Code and datasets are available at
https://openlamm.github.io/paper_list/Octavius.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Alayrac et al.|, [2022; [Huang et al.| 2023} Liu et al.,
2023; L1 et al., [2023a; Zhu et al.l [2023)) have been considered as promising general-purpose inter-
faces that can perform various multimodal tasks under few-/zero-shot settings. Apart from lever-
aging the powerful Large Language Models (LLMs) (OpenAll 2023} Touvron et al., 2023a) as the
universal interfaces that unify the responses to different types of tasks as task-specified textual se-
quences, the keys to the success of MLLMs are to reliably perceive more modalities and be effi-
ciently fine-tuned to adapt more downstream tasks.

To achieve this goal, MLLM:s rely on the instruction-tuning scheme (Ouyang et al.,|2022)) where the
model is fine-tuned based on multimodal instruction-following dialogues orchestrated from various
multimodal tasks. Moreover, thanks to the Parameter-Efficient Fine-Tuning (PEFT) techniques (e.g.,
LoRA (Hu et al.,[2021) and Adapter (Houlsby et al., 2019)) where only small trainable components
are injected in the model and updated during fine-tuning, recent MLLMs (Zhang et al., 2023} |Yin
et al., |2023} |Ye et al.| [2023) can efficiently learn to solve downstream tasks with a small scale of
annotated data, while preserve the language proficiency and generalizability to novel situations. Re-
markably, these models achieve comparable performance at low costs in comparison to LLaVA (Liu
et al.| [2023), KOSMOS series (Huang et al., 2023} |Peng et al.||2023) and Shikra (Chen et al.||2023),
which are learned by full model fine-tuning with a large amount of multimodal data.

However, PEFT has to address the crucial tug-of-war problem (Hadsell et al.||2020), where simulta-
neously learning different tasks may cancel each task-specific optimization out, and ultimately com-
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Figure 1: Octavius is a unified, multimodal large language model with a novel capability to com-
prehend various tasks across different modalities, including but not limited to 2D captioning, 2D
detection, 3D VQA, and 3D dense captioning.

promise the performance of each downstream task. This problem is much more severe in MLLMs,
especially when more modalities and tasks are involved, but only a few well-annotated data are
available. First, the features from new modalities are not easy to be aligned with each other, not
to mention compatible with the LLM-based language decoders. Second, simultaneously learning
to acquire knowledge at distinct granularities, such as the instance-level perception (e.g., object de-
tection) and logical reasoning (e.g., VQA), may lead to significant interference. Third, it is more
complicated by using an LLM-based decoder to generate textual responses that meet the special re-
quirements of tasks in modalities other than natural language, such as the bounding box coordinates
in detection tasks, or action sequences for robotics.

To resolve this issue, we propose LORA-MoE, which combines the well-known Mixture-of-Experts
(MoE) (Jacobs et al.},[1991}; Jordan & Jacobs|,[1994) and one of the representative PEFT techniques,
i.e., LORA (Hu et al), 2021)). Based on LoRA-MoE, an LLM-based decoder can efficiently be in-
volved in more downstream tasks and more modalities by learning more LoRA modules. Different
from conventional MoE models (Shazeer et al.l 2017 [Lepikhin et al.| [2020; [Fedus et al., 2022}
2022), we adopt a simple yet effective instance-based gate routing scheme, sparsely activat-
ing independent LoRA experts with instance-level instructions and further acquiring task-specific
knowledge for better aligning different tasks. Notably, to the best of our knowledge, we are one of
the pioneering efforts to introduce MoE into MLLMs to address the tug-of-war problem.

To validate the effectiveness of LoORA-MOoE, in this work, we investigate a more complicated sce-
nario, where the MLLMs should simultaneously learn downstreaming tasks from more additional
modalities, such as 2D images and 3D point clouds. This scenario is especially useful for embodied
agents (Duan et al.| [2022; Mu et al 2023} [Driess et al, 2023)). Specifically, in addition to the off-
the-shelf image encoder, we design a point cloud encoder called Object-As-Scene, which provides
language-aligned scene-level point cloud representations. This encoder at first gathers language-
aligned point cloud features of each instance in a scene, which are then aggregated
into a scene-level feature based on the attention operation guided by the input instructions.

Based on the aforementioned contributions, we introduce a novel and extensive framework
called Octavius, which learns the MLLMs upon the instruction-following datasets adapted from
LAMM 2023) and ScanNet 2017). As shown in Figure [I] Octavius can
successfully address various 2D/3D vision and language tasks, including but not limited to 2D de-
tection, 2D captioning, 3D VQA, and 3D dense captioning. We conduct various experiments to
validate the effectiveness and versatility of our design, improving multiple downstream tasks by
about 20% while increasing only a few trainable parameters.
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Figure 2: Overall pipeline of Octavius. We design corresponding encoders for different modalities,
with the primary objective of empowering the LLMs to gain a deeper understanding of visual fea-
tures. Additionally, we propose a dynamic gating network that selects distinct LoORA experts based
on input instructions, thereby proficiently mitigating interference arising from multimodal learning.

2 RELATED WORKS

Large Language Models (LLMs) & PEFT. Recently, Large Language Models (LLMs) (Brown
et al., 2020; [Chowdhery et al., 2022} |Chiang et al.; Touvron et al.l [2023b) have gained signif-
icant attention due to their impressive capabilities in language generation (Zhang et al., 2022a)),
in-context learning (Wei et al.l 2022), and reasoning (Touvron et al.l 2023a). For both data- and
compute-efficient adaptation on certain downstream tasks, several PEFT (Parameter-Efficient Fine-
Tuning) (Li & Liang} [2021; Houlsby et al.,|2019; |Karimi Mahabadi et al., [2021}; |[Hu et al., [2021)) are
proposed. For instance, LoRA (Hu et al., [2021) represents weight updates using two smaller matri-
ces through low-rank decomposition, where original weights are kept frozen while the new update
matrices are trained. In this work, we adopt LoRA for efficient MLLMs fine-tuning.

Multimodal Large Language Models (MLLMs). Several recent studies have attempted to extend
the capability of LLMs to multimodal tasks. |Alayrac et al|(2022); [Li et al| (2023b); Liu et al.
(2023));/Zhang et al.[(2023); |Yin et al.|(2023)); (Chen et al.|(2023)); Peng et al.| (2023) introduce image
modality in LLMs for comprehending 2D visual content. [Hong et al.| (2023) combines LLMs with
3D modality by rendering point clouds into 2D images and utilizing them to represent 3D visual
features. |Driess et al.| (2023)); [Mu et al.| (2023)); Brohan et al.| (2023)) establish connections between
visual inputs and embodied controls for robotic tasks. Despite its wide range of multimodal appli-
cations, the performance degradation caused by interference between tasks and modalities during
fine-tuning in MLLMS receives inadequate attention.

Mixture-of-Experts (MoE). Deep MoE models are proposed to increase the number of model pa-
rameters without adding computational overhead in the field of computer vision (Riquelme et al.,
2021; Mustafa et al.l 2022; |Shen et al.| [2023)) and natural language processing (Shazeer et al., 2017;
Lepikhin et al.,2020; |[Fedus et al., [2022). Different from these approaches, we aim to address con-
flicts between tasks with MoE. Adamix (Wang et al.,|2022a), an approach related to but distinct from
ours, randomly selects experts during training and uses the average weights of experts in inference,
which may be analogous to dropout (Srivastava et al.l 2014) in certain cases. In this paper, we de-
sire for a dynamic gate routing strategy to automatically calculate the weights of each LoRA expert
according to the input instructions, adapting MLLMs for broader multimodal applications.

3 METHODOLOGY

As illustrated in Figure [2] we propose an extensible framework called Octavius for multimodal
instruction tuning. In Section[3.1] we first elaborate on the tug-of-war problem and propose a unified
LoRA-MOoE decoder to break through the bottleneck caused by interference between different tasks
and modalities. We then verify our design using both image and point cloud modality in this work
and describe corresponding encoders in Section
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3.1 MULTIMODAL DECODER

3.1.1 THE TUG-OF-WAR PROBLEM

Interference among different modalities and tasks is a common and critical issue
[Vandenhende et al.l 2021) in multimodal and multitask learning. While MLLMs can alleviate this
problem by adopting the same learning objective, i.e., next-token prediction loss, for all tasks, there
still exists task-specific divergences that limit their potential in various downstream tasks. Since
previous works have yet to delve into the tug-of-war phenomenon in MLLMs, we conduct a simple
pilot study on image modality to reveal this problem.

The pipeline of image encoders in MLLMs are simple and similar in previous works. Here, we select
LAMM [2023)) as our model due to its rich benchmarks on downstream tasks. We fine-
tune LoRA and projector in LAMM following and validate zero-shot performance
on PASCAL VOC (Everingham et al.},2010) and ScienceQA datasets. We report
the recall and precision at an Intersection over Union (IoU) threshold of 0.5 on PASCAL VOC and
the accuracy of multiple-choice questions on ScienceQA.

The results are shown in Figure 3] Although the original dataset of LAMM, referred to as “LAMM
v1”, contains numerous images from MS-COCO 2014), the lack of sufficient detection
instructions results in poor performance on PASCAL VOC. To overcome this problem, we lever-
age the entire COCO detection annotations and GPT-API to generate additional
detection instructions as supplementation, constructing a new dataset called “LAMM v2” for better
generalization of detection tasks. After verifying the detection ability of LAMM by using COCO
detection instructions alone, we find using a mixed dataset does not lead to a huge improvement in
detection performance. Also, there is a decline in the VQA tasks. Moreover, we can achieve the
same results on another dataset used in LLaVA 2023). It can be concluded that MLLMs
suffer from a severe tug-of-war problem on image modality, not to mention incorporating more
modalities for training simultaneously.

3.1.2 LoRA-MoE
Some prior works (Kendall et al.} 2018} [Chen et al., 2018)) have attempted to balance the magnitudes

of losses or gradients across different tasks to address the tug-of-war issue. However, considering
that different objectives are defined for each task in multitask learning, it is challenging to directly
extend existing methods to MLLMs that adopt a unified optimization objective for all tasks. In

this section, we introduce the concept of Mixture-of-Experts (Jacobs et all,[1991}; [Jordan & Jacobs),
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1994; [Shazeer et al.| [2017), proposing a unified LoORA-MOoE decoder based on a instance-based gate
routing strategy.

Revisiting MoE Models. A typical MoE Model injects multiple MoE layers into LLM to accom-
modate a greater number of parameters. The MoE layer consists of a group of N expert networks
E,, Es, ..., EN and a gating network G, taking the previous tokens as input and producing the prob-
ability of the next token:
N
tok; = » G(toko. .i-1)kEk(toko. i-1), (1)
k

where t ok; denotes ¢-th token. We refer to this kind of gating network, which based on token-level
input, as token-based gate. Furthermore, to prevent G' from consistently producing imbalanced
weights that favor only a few experts, an auxiliary loss Lpuance (Shazeer et al.l [2017; |Zhou et al.,
2022; Wu et al, 2022 is introduced to balance gating routing. For example, |Shazeer et al.| (2017)
minimize the coefficient of variation of the gate values for each token, encouraging all experts to
have equal importance:

Lpatance = & CV

2
ZG(tOkO‘..il)] s (2)

where « is a hyper-parameter and CV(-) is the coefficient of variation, which is the ratio of the
standard deviation to the mean.

LoRA-MOoE and Instance-based Gate Routing. Different from token-based gate in LLM, we
design a simple but effective routing strategy for MLLMs, assigning downstream tasks to indepen-
dent experts for specific knowledge based on individual instances, called instance-based gate. It
is motivated that the input questions z9" applied in multimodal instructions will substantially affect
the responses generated by MLLMs, we take the questions as input to predict routing scores for
each expert. Then, we select sparsely-activated experts based on routing scores for each individual
instance to generate the entire sentence. In this work, the LoRA module is treated as an expert
in MLLMs, combining instance-based gate with it to alleviate interference arise from multimodal
learning, named LoRA-MOoE. By replacing LoRA in each projection layer of language model f*M
with a group of independent LoRA experts { EY°RA} , we can predict the i-th token value as follow:

N
tok; = f*M(toko..i1) + ) Gz )k B (toko...im1)- 3)
k

Additionally, we find that Ly,jance 1S incompatible and infeasible with LoRA-MokE in an instance-
based gate scenario. For example, it is more reasonable to assign detection samples to a LoRA
expert proficient in localizing than the other experts for the purpose of balancing. Therefore, we
can observe some imbalance phenomenon in experiments (see Section 3] for details), unless the
amount of data for each task in the whole dataset is balanced.

Compared with previous MoE models, LoORA-MoE allows for efficient fine-tuning on small datasets
and faster convergence with instance-based gate routing. During the inference phase, if the down-
stream tasks and input questions are specified, LoORA-MoE can also merge parameter weights with
language model like vanilla LoRA to reduce storage requirements and inference costs.

Instruction Tuning with LoRA-MOoE. Given the target modal features 2img or 2Pl we construct
image-text conversation pairs in an instruction-following format based on previous works (Zhang
et al., |2023; |Yin et al.| [2023; [Peng et al., 2023)), as shown in Figure [Z_f} The language model with
LoRA-MOoE is then trained to predict corresponding responses based on the system prompts, target
modal features and questions.

3.2 MODALITY ENCODER
3.2.1 IMAGE ENCODER

Benefit from the pioneer vision-language model (Radford et al., 2021])) that bridges the gap between
the image and language modality, |Li et al.[(2023al)); Liu et al.|(2023);|Chen et al.| (2023));Zhang et al.
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Figure 5: Structure of Object-As-Scene. To acquire scene-level features, we follow a three-step
process. Firstly, we obtain Rols from a given point cloud using a pre-trained detector. Next, we
pre-train a Point-Bert model following a ULIP-like pipeline and employ it to extract instance-level
3D features. Finally, by aggregating features from visual embedding, we derive the final scene-level
feature.

(2023); Yin et al.[(2023)) achieve impressive results. We follow their pipeline to extract features for
image modality. Specifically, for an image input I € R¥*W>3 e use the pre-trained CLIP visual
encoder ViT-L/14 fCLIP (Radford et al., [2021) to extract the language-aligned visual feature himeg
following by a trainable linear layer fP™ to match the dimension of h'™¢ with the word embedding
space in language model:

himg _ fCLIP(I); zimg _ fproj(himg)’ (4)

where 2™ is the output features of image modality for further instruction tuning.

3.2.2 POINT CLOUD ENCODER

Conventional 3D methods typically apply 3D CNNs (Yan et al.l 2018} [Shi et al., 2020} Q1 et al.
2017) or Transformers (Zhao et al., 2021} [Fan et al.l 2022) as feature extractors to process sparse
point cloud data. However, they still retain numerous background points with low-density informa-
tion, which may confuse the subsequent language models in MLLMs, ignoring the pivotal elements
in the scene. Besides, the unavailability of encoders capable of aligning scene-level 3D features with
language may pose significant challenges for LLMs in comprehending the semantic information of
the entire scene. To address these issues, we propose Object-As-Scene as our point cloud encoder
dedicated to language-aligned scene-level 3D representation generation, as illustrated in Figure 5]

Step 1: Locating Regional Rols as Candidates. An intuitive way to avoid excessive background
points is to identify specific regions in the scene that may contain instances or relevant semantic
information and encode entire scene with these regions. Specifically, given a 3D point cloud scene,
we employ a pre-trained object detector, i.e., FCAF3D (Rukhovich et al.}[2022), to locate candidate
Rols (Region-of-Interest) {r}n,,. Note that Nro denotes the number of Rols. Besides, for tasks
such as captioning or classification that primarily focus on instances mentioned in the conversations,
we directly use regional features associated with these instances as input.

Step 2: Extracting Rol Features Aligned with Language and Image. Inspired by a recent
work (Xue et al., 2023), we pre-train a Point-Bert (Yu et al., [2022) encoder fp"i“t'Berl aligned with
both language and image modalities following a ULIP-like pre-training pipeline, allowing us to ex-
tract instance-level 3D visual features from points P € RY*6 in candidate Rols {r},, during
instruction tuning:

{hpC]}NRnI = fPoint—Bert(P’ {T}NRnI)' ®)
More details about improved ULIP-like pre-training pipeline can be found in the Appendix.
Step 3: Aggregating Rol Features as Scene. Next, we adopt a fusion module with two stacked

transformer layers to fuse scene-level features with Rol features. Specifically, we utilize multi-head
cross-attention mechanism (Vaswani et al., 2017) (denoted as MHCA) to attend a group of trainable
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Table 1: Comparisons on image modality. We investigate the zero-shot performance of our method
on multimodal (2D) scenarios. We use the following abbreviations in this table and subsequent ex-
periments for ease: “Det.” for detection tasks, “Cap.” for captioning task, and “Cls.” for classifica-
tion tasks.

Det. IoU=0.5) VQA Cap. Cls. Facial Attr
Models MoE  FT. Dataset - - Avg.
Recall Prec Acc@] CIDEr Acc@] Hair Acc@1 Smile Acc@1
761 595 4031 021 7350 58.04 50.15 _
LAMM v LAMMYZ 5004 3521 4695 566 6540 60.93 59.82 20.89% 1
_ — 5235 3075 289 12.50 50.23 Z
LLaVA-LoRA — , LLaVA - 5558 2308 4100 3.93 52.17 18.36% 1

queries e, with Rol features {hP!} y, :
hi¥ = MHCA(q = eg, kv = {RP + for (1)} ). (6)

fre is used to transform 3D bbox coordinates into positional embedding to enrich spatial informa-
tion. And g, k and v denote query, key, and value in attention. As in image encoder (Section [3.2.1)),
a trainable linear layer is also applied for final 3D features zP°':

22 = o (Rl )

3D Instruction Data. We construct a 3D instruction tuning dataset called Scan2Inst using Scan-
Net (Dai et al.|, |2017) as our 3D instruction tuning dataset due to its diverse tasks and annotated
categories. Following [Wang et al.| (2022b)), we use GPT-API to generate a total of 80k data pairs
comprising instructions and responses based on original dataset.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

To explore the effectiveness of our framework in multimodal learning, we fine-tune Octavius in
three modality setups: i.) image modality, ii.) point cloud modality and iii.) both image and point
cloud modalities. We then evaluate the zero-shot performance using these three fine-tuned models
on various downstream tasks. More details about architecture and training scheme are provided in
Appendix.

Instruction Datasets. For image modality, we follow |Yin et al.| (2023) to construct “LAMM
v2”, an instruction dataset consisting of MS-COCO (Lin et al) 2014) and Bamboo (Zhang et al.,
2022b), which includes object detection, classification, captioning, and other common 2D tasks.
For point cloud modality, we utilize ScanNet (Dai et al., [2017) to generate an instruction dataset
called “Scan2Inst” which contains VQA, captioning, and classification tasks. In the multimodal
learning (2D&3D) setup, we merge the image and point cloud instruction dataset to fine-tune the
entire framework simultaneously.

Quantitative Zero-shot Evaluation. We perform zero-shot evaluation on various downstream tasks
for both image and point cloud modalities. For image modality, we perform Visual Question An-
swering (VQA) on ScienceQA (Lu et al., [2022), classification on CIFAR-10 (Krizhevsky et al.
2009)), captioning on Flickr30K (Young et al.,|2014) and facial attribute recognition on CelebA (Liu
et al., 2018)). Note that we evaluate performance in VQA tasks through multiple-choice selection.
For point cloud modality, we perform classification on ShapeNet (Chang et al., 2015)) (55 classes)
and captioning on NR3D (Achlioptas et al.l [2020). We also evaluate the performance of classi-
fication, captioning, and QA on the test split of ScanNet to verify the proposed Object-As-Scene
encoder.

4.2 QUANTITATIVE RESULTS.

All results are provided in Table[I] 2] [3]for different modality setups. Severe interference can be
found in the experimental results, especially between the localizing tasks and semantic understand-
ing tasks like VQA and captioning. After equipping with LoORA-MoE, we can observe a remarkable
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Table 2: Comparisons on point cloud modality. We report both Fine-Tuning (FT.) Results and
Zero-shot (ZS.) Results on the 3D tasks. We also compare our model with 3D-LLM (Hong et al.|
2023). Here, ' indicates the results of Scan2Cap are evaluated on a custom test set regenerated by
3D-LLM, which is different from ours.

FT. Results ZS. Results
Models Cap. (Scan2Cap) VQA (ScanQA)  ClIs. (ScanNet) Cls. (ShapeNet) Cap. (Nr3d) 78. Ave.
BLEU-1 CIDEr BLEU-1 CIDEr Acc@1 Acc@1 BLEU-1 CIDEr
3D-LLM (Flamingo)  36.10f 30.30 59.20 - - - - -
Ours 33.58 35.11 43.21 168.21 47.40 19.75 20.02 16.19 -
Ours w/ MoE 35.94 39.38 44.24 167.31 48.80 24.85 21.16 17.22  17.06% 1

Table 3: Comparison on image & point cloud modalities. While there are some performance
gaps compared to the model fine-tuned on a single modality, our model with the inclusion of MoE
exhibits a superior performance (~20%) compared to its counterpart.

2D Results (ZS.) 3D Results (FT.) 3D Results (ZS.)
FT. Dataset MoE Det. VQA  Cap. Cls. Facial Cap. VQA Cls. Cls. Cap. Avg.
Rec@0.5 Acc CIDEr Acc Hair  Smile CIDEr CIDEr Acc Acc CIDEr

7.61 4031 1328 7350 58.04 50.15 - - - - -
v 39.04 46.95 2671 6540 60.93 59.82 - - - - -

- - - - - 39.56 162.14 47.60 19.75 16.19
v - - - - - - 39.38  167.31 4340 24.85 17.22

2.64 39.71  0.04 71.66 4247 50.66 19.76 182.00 38.80 14.85 8.26 -
v 34.30 3580 10.06 56.86 51.52 54.22 3329 18144 4720 21.10 17.22  21.40% 71

LAMM v2

Scan2Inst

LAMM v2+Scan2Inst

improvement of approximately 20% in all setups, demonstrating the effectiveness of our design in
resolving the tug-of-war issue. Additionally, we compare our proposed point cloud encoder Object-
As-Scene with a recent work, 3D-LLM (Hong et al., 2023) in Table [2l We achieve a comparable
performance on Scan2Cap, and outperform 3D-LLM on ScanQA by a significant margin, suggesting
a better scene-level understanding capability of Object-As-Scene. Besides, as shown in Table 3] as
the complexity of interference among tasks increases, especially when tasks of different modalities
are introduced, we can observe a huge performance drop when training the model with different
modalities like image and point cloud simultaneously compared to separate training. Our proposed
MoE-based decoder partially alleviates the degradation and even achieves comparable performance
with separate training in some tasks.

4.3 ABLATION AND ANALYSIS

LoRA-MOokE. The results are shown in Table[d We first ablate on MoE architecture by individually
employing dedicated LoRAs for each tasks (denoted as “Individual” in the table). While the indi-
vidual gate exhibits performance merits in specific tasks, its primary challenge is the difficulty in
assigning suitable experts for tasks that are not encountered in the instruction dataset, thereby com-
promising the model’s generalizability. Another observation is the superior efficacy of the sparse
gate relative to the dense gate (denoted as “Weighted Sum” in the table), which is intuitive when
considering that the dense gate can essentially be regarded as a singluar LoRA with additional pa-
rameters. Furthermore, we compare the performance of the sparse gate against the baseline model
(single LoRA) under conditions of parameter-consistency during inference (i.e., sparse top-2 gate
only uses half of rank in LoRA compared with baseline model). The enhanced performance of
sparse gate demonstrate that MoE transcends a mere aggregation of parameters.

Gate Routing in MoE and Load Balancing. As shown in Figure[6] there is a huge discrepancy in
expert selection between detection and VQA tasks, which demonstrates the tug-of-war phenomenon,
and explains why using a single LoRA yields poor performance on both tasks simultaneously. Addi-
tionally, it is found that the routing weights of experts assigned by gate network tend to concentrate
on a subset of specific experts. In particular, in a 4-expert model, despite the superior performance
compared to a 3-expert model, the final converged model ends up utilizing only 3 of 4 available
experts. To further explore this imbalance issue, we conduct several experiments with load bal-
ancing loss (Equation [2) in Table [5] As a result, no improvements and better routing results are
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Table 4: Ablation studies on MoE architecture on 2D tasks. “Sparse Top-2” gate picks out top-2
ranked experts based on routing scores. “Weighted Sum” gate uses the weighted sum of all experts
as output. “Individual” gate employs different experts for each 2D tasks individually. “#Trainable
Param.” denotes the proportion of trainable parameters to total parameters.

Det. (VOC, IoU=0.5)  VQA

Gate Type LoRA-Rank #Trainable Param.
Recall Prec. Acc@1

— (Baseline) 32 7.61 5.95 40.31 0.4%
Sparse Top-2 32 39.04 35.21 46.95 1.6%
Weighted Sum 32 9.78 5.33 44.71 1.6%
Individual 32 28.38 25.64 48.54 2.4%
Sparse Top-2 16 32.81 24.46 39.11 0.8%
Sparse Top-2 8 25.44 21.87 37.65 0.4%

Table 5: Ablation studies on load balancing

1 : ! !
1 \ : :
i Det. E i 4w 1 inMoE. “LB” means apply load balance loss.
1 1 .
E VOA i ! i Token means using token-based gate.
1 \ : \
' Cls. oM
1
\ i | i #Experts LB  Token Det. VQA
! Cap. ' : #2 ! Recall Prec. Acc@l1
1
! FA Hair ¥ | 4 3004 3521 4695
[ 1
E FA Smile ol 4 v 3321 26.80 45.26
e B PR 8 2230 11.01 3991
8 v 21.52 1210  37.53
Figure 6: Gate routing on different 2D tasks. We 4 v Fail
use different color to represent i-th LoRA. The pro- 4 v v Fail

portion represents the score of each expert.

observed, which is intuitive because directly employing load balancing strategies is incompatible
and infeasible in an instance-based gate scenario (see Section [3.1.2). We also attempt to replace
the instance-based gate with token-based gate used in conventional MoE methods (Shazeer et al.,
2017; [Lepikhin et al.,|2020). However, since only the LoRA modules are trained in our approach,
the number of trainable parameters differs from conventional MoE models where all parameters of
the entire foundation model are trained, resulting in poor convergence.

Besides, we also provide more ablations and analysis on point cloud encoder, LoORA-MoE, gate
routing and qualitative results in Appendix.

5 CONCLUSION AND LIMITATIONS

In this paper, we propose Octavius, a unified multimodal framework, to effectively address the
critical challenge of task interference in complex learning scenarios. By integrating the Mixture-
of-Experts (MoE) with LoRA, we present LORA-MoE decoder, which delivers specialized learning
paths for different tasks and modalities. After the validation across multiple modalities and tasks,
Octavius alleviates the severe tug-of-war issue and achieves a significant performance boost in both
2D and 3D tasks.

Limitations. Compared to separate training on a single modality, introducing simultaneously mul-
tiple modalities for joint training may result in performance degradation, posing a challenge for
future research. The combination of MLLMs and MoE still has great potential in addressing this
problem, especially for a more complicated real-world system like embodied Al scenarios that re-
quire more modalities as input. Besides, we will further explore the token-based gate with load
balancing strategies, especially when the number of downstream tasks increases.
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