
Medical Imaging with Deep Learning – Under Review 2021 Short Paper – MIDL 2022 submission

Evaluation beyond y and p(y)

Thijs Kooi tkooi@lunit.io

15F, 27, Teheran-ro 2-gil, Gangnam-gu, Seoul, South Korea

Editors: Under Review for MIDL 2022

Abstract

Academic papers and challenges focus mostly on metrics that measure how well a model’s
output p(y) approximates labels y. However, a high performance based on these metrics is
not a sufficient condition for a practically useful model. Looking into the complexity of a
model both in terms of hardware and software can shed more light on the practical merit.
This short paper discusses several measures for medical AI system that do not focus solely
on labels and predictions. We encourage the research community to consider these metrics
more often.

Keywords: Evaluation, AI in practice, hardware, software

1. Introduction

A good evaluation metric for a medical AI system provides the interface between the tech-
nical and the clinical problem. Evaluation methodology for stand-alone medical AI systems
typically focuses on how well the model output p(y) approximates the target labels y. That
is, how well the model can classify, detect, or segment abnormalities, using metrics ROC,
AP and Dice (Reinke et al., 2021). A method with high classification performance is a
necessary, but not a sufficient condition for a clinically meaningful application. If the model
is too computationally complex or difficult to train the merit is questionable. What con-
stitutes a ’good’ model can not only be determined by a one-dimensional metric. In this
short paper, we discuss some metrics focused on practical implementation to encourage
researchers to consider this during development and evaluation.

2. Hardware and deployment

Hardware like GPU’s enabled us to train and deploy big, complex neural networks. How-
ever, contemporary hardware can still be a bottleneck for architectures operating on, for
example, 3D data like CT scans or problems where several large images need to be inte-
grated and reasoned about such as mammograms. Two important metrics to look at are
(1) the memory footprint (the space the model occupies in RAM) and (2) the inference
speed (the time it takes to process a scan). Both can be approximated with the number of
floating point operations (of course leaving out many details). Though sometimes reported,
it is not common practice.

The relevance of these metrics depends on the specific application and reading practice.
For example, in some clinics mammograms are read while the patient waits. In this case,
a model that takes 10 minutes to read a scan may have limited merit. Other examples

© 2021 T. Kooi.



Evaluation beyond y and p(y)

could include models deployed to developing countries where state-of-the art hardware may
not be available (such as systems for the detection of tuberculosis in chest radiographs) or
systems operating in an emergency department where time is vital, e.g. the detection signs
of a stroke in cranial CT scans.

3. Software and development

3.1. Code complexity

To optimize development speed, software engineers aim to reduce complexity of code. Sim-
pler code means faster onboarding of new engineers, faster feature shipping and typically
less bugs, which also speeds up development. A speed-up also means better patient care as
new features and better models become available faster and so do less bugs in the code.

Measuring complexity of software is a contentious issue. Cyclomatic complexity (Ebert
et al., 2016), which measures the number of paths through a piece of code is a popular
metric. Some developers simply use the number of lines of code as a proxy. Although the
proper metrics is debatable, most would agree simple code should be preferred.

3.2. Training complexity

A core design principle in software development is proper modularization. Code should be
easy to extract and replace. In computer visions systems, end-to-end trainability is some-
times used as a selling point (Ren et al., 2015), but in real-world applications this is not
always desirable. A well modularized model can be much easier to work with.

Imagine a system with 16 hyperparameters, all with 2 different settings. The search
space will be 216. If we can use divide-and-conquer and tune in two phases, we could
break this into 28 + 28, for example. A properly modularized model can be broken down
into simple individual components where intermediate performance is easily measurable. A
good performance under that measure should translate into a good or at least equal final
performance.

For example, an end-to-end model like Faster R-CNN (Ren et al., 2015) comprises
a region proposal network (RPN), a region classification network (RPN) and a shared
backbone, all trained in one go, requires (at least) the following parameters to be tuned:

� RPN: anchor size, number of anchors, loss parameters, weight between classification
& regression loss, etc.

� R-CNN: number of parameters, number of layers, transfer functions, weight between
classification & regression less, learning rate, regularization, etc.

� Backbone architecture: number of parameters, initialization, transfer functions, learn-
ing rate, regularization, etc.

Finding an optimal set of hyperparameters for this can be like spinning plates: when the
performance of the RPN increases, the R-CNN can get worse again and vice versa. In
practice, tuning each component individually is easier.

2



Evaluation beyond y and p(y)

3.3. Hyperparameter complexity

The number of hyperparameters, and strongly related to that, the sensitivity to each hy-
perparameter, also determine how easy a system is to use. This can be reduced to the
’effective number of hyperparameters’, the number of parameters that measurable change
the model’s performance. A model that gives us a quick idea of how well it would perform
and only needs a bit of tuning for a final release could be preferred over a model that po-
tentially has high performance, but requires many tries of different hyperparameter settings.

In practice only a subset of hyperparameters have a big influence on the performance,
the smaller this subset the better, the way in which each parameter influences performance
also differs. A simple test would be to train a couple of different models and report the
mean and variance over different hyperparameters, instead of just the max over all runs.
The smaller the variance for each parameter, the better.

4. Conclusion

This short paper discussed several practical measures for the evaluation of medical AI sys-
tems, that do not focus solely on labels and predictions. These include the memory footprint,
inference speed, code complexity, training complexity and hyperparameter sensitivity. We
encourage researchers to consider these metrics during development and evaluation.

Acknowledgments

Thanks to everyone at Lunit for fruitful discussions

References

Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip Laplante. Cy-
clomatic complexity. IEEE software, 33(6):27–29, 2016.

Annika Reinke, Matthias Eisenmann, Minu D Tizabi, Carole H Sudre, Tim Rädsch, Michela
Antonelli, Tal Arbel, Spyridon Bakas, M Jorge Cardoso, Veronika Cheplygina, et al.
Common limitations of image processing metrics: A picture story. arXiv preprint
arXiv:2104.05642, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28, 2015.

3


	Introduction
	Hardware and deployment
	Software and development
	Code complexity
	Training complexity
	Hyperparameter complexity

	Conclusion

