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ABSTRACT

The units in artificial neural networks (ANNs) can be thought of as abstractions
of biological neurons, and ANNSs are increasingly used in neuroscience research.
However, there are many important differences between ANN units and real neu-
rons. One of the most notable is the absence of Dale’s principle, which ensures that
biological neurons are either exclusively excitatory or inhibitory. Dale’s principle
is typically left out of ANNSs because its inclusion impairs learning. This is prob-
lematic, because one of the great advantages of ANNs for neuroscience research
is their ability to learn complicated, realistic tasks. Here, by taking inspiration
from feedforward inhibitory interneurons in the brain we show that we can develop
ANN’s with separate populations of excitatory and inhibitory units that learn just
as well as standard ANNs. We call these networks Dale’s ANNs (DANNSs). We
present two insights that enable DANNS to learn well: (1) DANNSs are related to
normalization schemes, and can be initialized such that the inhibition centres and
standardizes the excitatory activity, (2) updates to inhibitory neuron parameters
should be scaled using corrections based on the Fisher Information matrix. These
results demonstrate how ANNSs that respect Dale’s principle can be built without
sacrificing learning performance, which is important for future work using ANNs
as models of the brain. The results may also have interesting implications for how
inhibitory plasticity in the real brain operates.

1 INTRODUCTION

In recent years, artificial neural networks (ANNSs) have been increasingly used in neuroscience
research for modelling the brain at the algorithmic and computational level (Richards et al., 2019;
Kietzmann et al., 2018; Yamins & DiCarlo, 2016). They have been used for exploring the structure
of representations in the brain, the learning algorithms of the brain, and the behavioral patterns of
humans and non-human animals (Bartunov et al., 2018; Donhauser & Baillet, 2020; Michaels et al.,
2019; Schrimpf et al., 2018; Yamins et al., 2014; Kell et al., 2018). Evidence shows that the ability
of ANNs to match real neural data depends critically on two factors. First, there is a consistent
correlation between the ability of an ANN to learn well on a task (e.g. image recognition, audio
perception, or motor control) and the extent to which its behavior and learned representations match
real data (Donhauser & Baillet, 2020; Michaels et al., 2019; Schrimpf et al., 2018; Yamins et al.,
2014; Kell et al., 2018). Second, the architecture of an ANN also helps to determine how well it can
match real brain data, and generally, the more realistic the architecture the better the match (Schrimpf
et al., 2018; Kubilius et al., 2019; Nayebi et al., 2018). Given these two factors, it is important for
neuroscientific applications to use ANNs that have as realistic an architecture as possible, but which
also learn well (Richards et al., 2019; Kietzmann et al., 2018; Yamins & DiCarlo, 2016).

Although there are numerous disconnects between ANNSs and the architecture of biological neural
circuits, one of the most notable is the lack of adherence to Dale’s principle, which states that a
neuron releases the same fast neurotransmitter at all of its presynaptic terminals (Eccles, 1976).
Though there are some interesting exceptions (Tritsch et al., 2016), for the vast majority of neurons in
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adult vertebrate brains, Dale’s principle means that presynaptic neurons can only have an exclusively
excitatory or inhibitory impact on their postsynaptic partners. For ANNs, this would mean that
units cannot have a mixture of positive and negative output weights, and furthermore, that weights
cannot change their sign after initialisation. In other words, a unit can only be excitatory or inhibitory.
However, most ANNs do not incorporate Dale’s principle.

Why is Dale’s principle rarely incorporated into ANNs? The reason is that this architectural constraint
impairs the ability to learn—a fact that is known to many researchers who have tried to train such
ANN:gs, but one that is rarely discussed in the literature. However, when we seek to compare ANNs
to real brains, or use them to explore biologically inspired learning rules (Bartunov et al., 2018;
Whittington & Bogacz, 2019; Lillicrap et al., 2020), ideally we would use a biologically plausible
architecture with distinct populations of excitatory and inhibitory neurons, and at the same time, we
would still be able to match the learning performance of standard ANNs without such constraints.

Some previous computational neuroscience studies have used ANNs with separate excitatory and
inhibitory units (Song et al., 2016; Ingrosso & Abbott, 2019; Miconi, 2017; Minni et al., 2019;
Behnke, 2003), but these studies addressed questions other than matching the learning performance of
standard ANNS, e.g. they focused on typical neuroscience tasks (Song et al., 2016), dynamic balance
(Ingrosso & Abbott, 2019), biologically plausible learning algorithms (Miconi, 2017), or the learned
structure of networks (Minni et al., 2019). Importantly, what these papers did not do is develop
means by which networks that obey Dale’s principle can match the performance of standard ANNs
on machine learning benchmarks, which has become an important feature of many computational
neuroscience studies using ANNs (Bartunov et al., 2018; Donhauser & Baillet, 2020; Michaels et al.,
2019; Schrimpf et al., 2018; Yamins et al., 2014; Kell et al., 2018).

Here, we develop ANN models with separate excitatory and inhibitory units that are able to learn as
well as standard ANNs. Specifically, we develop a novel form of ANN, which we call a “Dale’s ANN”
(DANN), based on feed-forward inhibition in the brain (Pouille et al., 2009). Our novel approach is
different from the standard solution, which is to create ANNs with separate excitatory and inhibitory
units by constraining whole columns of the weight matrix to be all positive or negative (Song et al.,
2016). Throughout this manuscript, we refer to this standard approach as “ColumnEi” models. We
have departed from the ColumnEI approach in our work because it has three undesirable attributes.
First, constrained weight matrix columns impair learning because they limit the potential solution
space (Amit et al., 1989; Parisien et al., 2008). Second, modelling excitatory and inhibitory units
with the same connectivity patterns is biologically misleading, because inhibitory neurons in the
brain tend to have very distinct connectivity patterns from excitatory neurons (Tremblay et al., 2016).
Third, real inhibition can act in both a subtractive and a divisive manner (Atallah et al., 2012; Wilson
et al., 2012; Seybold et al., 2015; Pouille et al., 2013), which may provide important functionality.

Given these considerations, in DANNSs, we utilize a separate pool of inhibitory neurons with a distinct,
more biologically realistic connectivity pattern, and a mixture of subtractive and divisive inhibition
(Fig. 1). This loosely mimics the fast feedforward subtractive and divisive inhibition provided by
fast-spiking interneurons in the cortical regions of the brain (Atallah et al., 2012; Hu et al., 2014,
Lourenco et al., 2020). In order to get DANNSs to learn as well as standard ANNs we also employ
two key insights:

1. Itis possible to view this architecture as being akin to normalisation schemes applied to the
excitatory input of a layer (Ba et al., 2016; Ioffe & Szegedy, 2015; Wu & He, 2018), and we
use this perspective to motivate DANN parameter initialisation.

2. It is important to scale the inhibitory parameter updates based on the Fisher information
matrix, in order to balance the impact of excitatory and inhibitory parameter updates, similar
in spirit to natural gradient approaches (Martens, 2014).

Altogether, our principle contribution is a novel architecture that obey’s Dale’s principle, and that
we show can learn as well as standard ANNs on machine learning benchmark tasks. This provides
the research community with a new modelling tool that will allow for more direct comparisons with
real neural data than traditional ANNs allow, but which does not suffer from learning impairments.
Moreover, our results have interesting implications for inhibitory plasticity, and provide a means for
future research into how excitatory and inhibitory neurons in the brain interact at the algorithmic
level.
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2 BIOLOGICALLY INSPIRED NETWORKS THAT OBEY DALE’S PRINCIPLE

2.1 MODEL DEFINITION

Our design for DANNS takes inspiration from the physiology of feedforward inhibitory microcircuits
in the neocortex and hippocampus. Based on these circuits, and an interpretation of layers in ANNs
as corresponding to brain regions, we construct DANNs with the following architectural constraints:

1. Each layer of the network contains two distinct populations of units, an excitatory and an
inhibitory population.
2. There are far fewer inhibitory units than excitatory units in each layer, just as there are far

more excitatory neurons than inhibitory neurons (~ 5-10 times) in cortical regions of the
brain (Tremblay et al., 2016; Hu et al., 2014).

3. As in real neural circuits where only the excitatory populations project between regions,
here only excitatory neurons project between layers, and both the excitatory and inhibitory
populations of a layer receive excitatory projections from the layer below.

4. All of the synaptic weights are strictly non-negative, and inhibition is enforced via the
activation rules for the units (eq. 1).

5. The inhibitory population inhibits the excitatory population through a mixture of subtractive
and divisive inhibition.

This constrained architecture is illustrated in Figure 1.
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Figure 1: Illustration of DANN architecture. Lines with arrow ends indicate excitatory projections.
Lines with bar ends indicate inhibitory projections, which can be both subtractive and divisive.

Formally, we define the network as follows. Input to the network is received as a vector of positive
scalar values x € R%, which we consider to be the first excitatory population. Each hidden layer,
¢, is comprised of a vector of excitatory units h, € R’} and inhibitory units h} € R, in-line with
constraint (1) above. (We will drop the layer index when it is unnecessary for clarity.) Note, for the
first layer (¢ = 1), we have hy = x and n, = d. Next, based on constraint (2) we set n, >> n;,
and use 10% inhibitory units as default. Following constraint (3), both the excitatory and inhibitory
units receive inputs from the excitatory units in the layer below (hy_1), but the inhibitory units do not
project between layers. Instead, excitatory units receive inputs from the inhibitory units of the same
layer. In-line with constraint (4), we have three sets of strictly non-negative synaptic weights, one for
the excitatory connections between layers, WFE € R} "< one for the excitatory projection to the
inhibitory units W}* € R’ *"*, and one for the inhibitory projections within layer W} € R7}=*™.
Finally, per constraint (5), we define the impact of the inhibitory units on the excitatory units as
comprising both a subtractive and a divisive component:

hy = f(z) 7= % ® (28 — W) + 8, 1)

where zb = WFPh, h} = f(z]) = f{(WIFh,_,)

v = Wit (e* © hy)
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where for each layer ¢, 3, € R"« is a bias, gy € RZ’: controls the gain, -y, is the divisive inhibitory
term, and oy € R™ is a parameter that controls the strength of this divisive inhibition. Here ®
denotes elementwise multiplication (Hadamard product) and the exponential function and division
are applied elementwise. In the rest of this manuscript we set f to be the rectified linear function
(ReLU). Though a ReLU function is not a perfect match to the input-output properties of real neurons,
it captures the essential rectification operation performed by neurons in physiologically realistic
low activity regimes (Salinas & Sejnowski, 2000). In this paper, we model the inhibitory units as
linear (i.e. fI(z!) = z!) since they receive only positive inputs and have no bias, and therefore their
activation would always be in the linear part of the ReLU function. Although we make make this
modelling choice mainly for mathematical simplicity, there is some biological justification, as the
resting membrane potential of the class of fast-spiking interneurons most related to our model is
relatively depolarised and their spike outputs can follow single inputs one-to-one (Hu et al., 2014;
Galarreta & Hestrin, 2001). In future work, for example in which inhibitory connections are included
between inhibitory units, we expect that the use of nonlinear functions for inhibitory units will be
important.

3 PARAMETER INITIALISATION FOR DALE’S ANNS

In biology, excitation and inhibition are balanced (Isaacson & Scanziani, 2011), and we use this
biological property to derive appropriate weight initialisation for DANNS. First we initialise excitatory
parameters from an exponential distribution with rate parameter \®, WEE 4 Exp(AE), and then
inhibitory parameters are initialised such that excitation and subtractive inhibition are balanced, i.e.
E[zf] = E[(W¥!z!),], Vk. This can be achieved in a number of ways (see appendix C.2). In line
with biology, we choose to treat excitatory weights onto inhibitory and excitatory units the same,
and sample W'F 24 Exp(\F) and set WF! < 1 /n;. We note that for a DANN layer with a single
inhibitory neuron, e.g. at an output layer with 10 excitatory neurons, the noise inherent in sampling a
single weight vector may result in a poor match between the excitatory and inhibitory inputs, so in
this case we initialise W'F as n% Z?;l W;EE explicitly (where W;EE is the j*" row of WFFE),

Next, we consider the relationship between this initialisation approach and normalisation schemes (Ba
et al., 2016; loffe & Szegedy, 2015). Normalisation acts to both center and scale the unit activities in
a network such that they have mean zero and variance one. The weight initialisation given above will
produce centered activities at the start of training. We can also draw a connection between the divisive
inhibition and standardisation if we assume that the elements of x are sampled from a rectified normal
distribution, x % max(0,N'(0,7_,)). Under this assumption, the mean and standard deviation of
the excitatory input are proportional (see Appendix D). For example, if we consider the relationship
c-E[2f] = Var(zf?)!/? for each unit k, we get the scalar proportionality constant ¢ = /27 — 1//d,
as:

E[zF] = d - E[w"F]E[z] Var(zF) = d - Var(w®F)(E[z?] + Var(z)) o
=d- ]E[WEE}% =d- Var(wEE)oqug; :

with expectation over the data and the parameters, and where w™, x refer to any element of WFF_ x.

Therefore, since E[WEE]2 = Var(WEE) for weights drawn from an exponential distribution, we
have

E\L1
. Var(z;')2 _ V2r—1
E[z¢] v

This proportionality means that you can perform centering and standardisation operations using the
same neurons. For DANNSs, e® will dictate the expected standard deviation of the layer’s activation
z, as it controls the proportionality between subtractive and divisive inhibition for each inhibitory
unit. If e® is set to ¢, then the divisive inhibition approximates dividing z" by its standard deviation,
as E[zf] - ¢ = Elw}l(e* ® 2;)] = E[y;]. We note that due to the proportionality between the
mean and standard deviation of z¥, other values of e® will also control the layer’s variance with
depth. However, given these considerations, we initialise e® « /2w — 1/+/d, thereby achieving
standardisation at initialisation. We find that these initialisation schemes enable DANNs to learn well.
We next turn to the question of how to perform parameter updates in DANNSs in order to learn well.

3)
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4 PARAMETER UPDATES FOR DALE’S ANNS

Unlike a layer in a column constrained network, whose affine function is restricted by sign constrained
columns, a layer in a DANN is not restricted in its potential function space. This is because excitatory
inputs to a layer can still have an inhibitory impact via feedforward inhibition. However, the inhibitory
interneuron architecture of DANN layers introduces disparities in the degree to which updates to
different parameters affect the layer’s output distribution. This can be seen intuitively, for example if
a single element of W'¥ is updated, this has an effect on each element of z. Similarly, an update
to w%—l will change z; depending on the alignment of - and all of the j** inhibitory unit’s weights.
Therefore, instead of using the euclidean metric to measure distance between parameter settings, we
employ an alternative approach. Similar to natural gradient methods, we use an approximation of
the Kullback-Leibler divergence (KL divergence) of the layer’s output distribution for our metric. In
order to help ensure that both excitatory and inhibitory parameter updates have similar impacts on the
KL divergence, we scale the updates using correction terms derived below. We provide an extended
derivation of these scaling factors in the Appendix E.

Given a probability distribution parameterized by some vector 6, a second order approximation to the
KL divergence for a change to the parameters 6 is

1
Diw[P(y[x; 0) || P(y[x; 0 +8)] ~ 56" F(6)8 “)
_ dlog P(ylx; 0) dlog P(y|x;0)"
F(G) o x~P(x),yHiP(y|x;9) 00 00 ®)

Where F(0) is the Fisher Information matrix (or just the Fisher). In order to calculate the Fisher for
the parameters of a neural network, we must interpret the network’s outputs in a probabilistic manner.
One approach is to view a layer’s activation as parameterising a conditional distribution from the
natural exponential family P(y|x; 6) = P(y|z), independent in each coordinate of y|z (similar to a
GLM, and as done in Ba et al. (2016)). The log likelihood of such a distribution can be written as!

_y-z—1(z)

log P(y|x;0) = B — +c(y, ¢) (6)

Ely|x;0] = f(z) =n'(z)  Cov(yl|x;0) = diag(¢/(z)) @)

where f(z) is the activation function of the layer, and ¢, 7, ¢ define the particular distribution in the
exponential family. Note that here we are taking '(z) and f’(z) to denote % and %, respectively.

In our networks, we have used softmax activation functions at the output and ReLLU activation
functions in the hidden layers. In this setting, the log likelihood of the output softmax probability
layer would only be defined for a one-hot vector y and would correspond to ¢ = 1, ¢(y,¢) =
0, and n(z) = log(}_, e*). For the ReLU activation functions, the probabilistic model corre-
sponds to a tobit regression model, in which y is a censored observation of a latent variable
y ~ N(z,diag(¢f’(z))). In this case, one could consider either the censored or pre-censored
latent random variable, depending on modelling preference. As it fits well with the above framework
we analyze the pre-censored random variable ¥, i.e. f(z) = z in equation 6. Returning to the
general case, where we consider layer’s activation as parameterising a conditional distribution from
the natural exponential family, the fisher of a layer is:

B 0z (y —n'(2) (y —n'(2) " 02"
@) = X~P(X)7yﬂiP(yIX;9) [39 @ o 00 ®)
-~ 0z diag(f'(z)) 92"

"Note the general form of the exponential family is log P(y|z) = w + ¢(y, ¢), but here we only
consider distributions from the natural exponential family, where T'(y) = y, as this includes distributions of
interest for us, such as Normal and Categorical, and also common distributions including Exponential, Poisson,
Gamma, etc.
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To estimate the approximate KL divergence resulting from the simple case of perturbing an individual
parameter 6 € 0 of a single-layer DANN, we only need to consider the diagonal entries of the Fisher:

Dkw[Po || Poss,| ~ > i [ f( )(8Zk) ] (10)
2¢) wa a0

where d; represents a 1-hot vector corresponding to 0 multiplied by a scalar . We now consider the
approximate KL divergence after updates to a single element of WEE | W!E WEI and a:

82 gi
Dit [Foll Poraee] ~ 5o |1/ Ey?) a
52 &
D [Fo | Posag] = 5 D £ G (o (12)
* < 9i
Dis [P Forage] = 55 DB | £, s (13)
52 &
+ 55 2B |7 ol o )]
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R 9k EI, IE
Dy, [Pg || P9+5a7;] = % ZZE [f’(zk)(%xj)zwkl Wi (a;“ - 1) :l (14)
ko
52 Ne d g
k
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Where ay; = e (2 — (WELZD)) + 1, and expectations are over the data, Ex p(x)-
Tk

Therefore, as a result of the feedforward inhibitory architecture of DANNS, for a parameter update
d, the effect on the model’s distribution will be different depending on the updated parameter-type.
While the exact effect depends on the degree of co-variance between terms, the most prevalent
differences between and within the excitatory and inhibitory parameter-types are the sums over layer
input and output dimensions. For example, an inhibitory weight update of & to w;} is expected to
change the model distribution approximately n. times more than an excitatory weight update of §
to wEE In order to balance the impact of updating different parameter-types, we update DANN

parameters after correcting for these terms: updates to W'F were scaled by /n, ', W= by d—*
and « by (d\/TTe)_l. As a result, inhibitory unit parameters updates are scaled down relative to
excitatory parameter updates. This leads to an interesting connection to biology, because while
inhibitory neuron plasticity is well established, the rules and mechanisms governing synaptic updates
are different from excitatory cells (Kullmann & Lamsa, 2007; Kullmann et al., 2012), and historically
interneuron synapses were thought to be resistant to long-term weight changes (McBain et al., 1999).

Next, we empirically verified that our heuristic correction factors captured the key differences between
parameter-types in their impact on the KL divergence. To do this we compared parameter gradients
before and after correction, to parameter gradients multiplied by an approximation of the diagonal of
the Fisher inverse for each layer (which we refer to as Fisher corrected gradients), see Appendix F.3.
The model was trained for 50 epochs on MNIST, and updated using the Fisher corrected gradients.
Throughout training, we observed that the heuristic corrected gradients were more aligned to the
Fisher corrected gradients than the uncorrected gradients were (Fig. 2). Thus, our derived correction
factors help to balance the impact of excitatory and inhibitory updates on the network’s behaviour.
Below, we demonstrate that these corrections are key to getting DANNS to learn well.
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Figure 2: Empirical verification of update correction terms: Cosine of the angle between gradients
multiplied by an approximation of the diagonal of the Fisher inverse for each layer, and either
uncorrected gradients (black) or corrected gradients (orange) over 50 epochs. Plot displays a moving
average over 500 updates

5 EXPERIMENTAL RESULTS

Having derived appropriate parameter initialisation and updates for DANNs, we now explore how
they compare to traditional ANNs and ColumnEi models on simple benchmark datasets. In brief, we
find that column constrained models perform poorly, failing even to achieve zero training-set error,
whereas DANNs perform equivalently to traditional ANNSs.

5.1 IMPLEMENTATION DETAILS

All models were composed of 4 layers: in general 3 hidden layers of dimension 500 with a ReLU
activation function followed by a softmax output with 10 units, and all experiments were run for 50
epochs with batch size 32. Unless stated, for DANNs and ColumnFEi models, 50 inhibitory units were
included per hidden layer. For DANN models, the softmax output layer was constructed with one
inhibitory unit. For ColumnEi models, each hidden layer’s activation is z = Wx where 500 columns
of W were constrained to be positive and 50 negative (therefore for ColumnEi models h, was of
dimension 550). ColumnEi layer weights were initialised so that variance did not scale with depth
and that activations were centered (see Appendix C.1 for further details). All benchmark datasets
(MNIST, Kuzushiji MNIST and Fashion MNIST) were pre-processed so that pixel values were in
[0, 1]. Learning rates were selected according to validation error averaged over 3 random seeds, after
a random search (Orion; Bouthillier et al. (2019), log uniform [10, 1e-5], 100 trials, 10k validation
split). Selected models were then trained on test data with 6 random seeds. Plots show mean training
error per epoch, and mean test set error every 200 updates over random seeds. Tables show final error
mean =+ standard deviation. For further implementation details and a link to the accompanying code
see Appendix F.

Note that because our goal in this paper is not to achieve state-of-the-art performance, we did not
apply regularisation techniques, such as dropout and weight decay, or common modifications to
stochastic gradient descent (SGD). Instead the goal of the experiments presented here was simply to
determine whether, in the simplest test case scenario, DANNSs can learn better than ColumnEi models
and as well as traditional ANNs.

5.2 COMPARISON OF DANNS TO COLUMN-EI MODELS AND MLPS
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Figure 3: Model comparison on MNIST dataset. nc - no update corrections, /i - one inhibitory unit
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We first compared model performance on the MNIST dataset (Fig 3). We observed that ColumnEi
models generalised poorly, and failed to achieve 0 % training error within the 50 epochs. This confirms
the fact that such models cannot learn as well as traditional ANNSs. In contrast, we observed that
DANNSs performed equivalently to multi-layer perceptrons (MLPs), and even generalised marginally
better. This was also the case for ColumnEi and DANN models constructed with more inhibitory
units (Supp. Fig. 6, 100 inhibitory units per layer). In addition, performance was only slightly
worse for DANNs with one inhibitory unit per layer. These results show that DANN performance
generalizes to different ratios of excitatory-to-inhibitory units. We also found that not correcting
parameter updates using the corrections derived from the Fisher significantly impaired optimization,
further verifying the correction factors (Fig 3).

Next, we compared DANN performance to MLPs trained with batch and layer normalization on more
challenging benchmark datasets (Fig 4). Again we found that DANNs performed equivalently to
these standard architectures, whereas ColumnEi models struggled to achieve acceptable performance.
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Figure 4: Model comparison on Fashion MNIST and Kuzushiji MNIST datasets.

We also explored methods for improving DANN performance (Appendix F.4). First, in order to
maintain the positive DANN weight constraint, if after a parameter update a weight was negative, we
reset it to zero, i.e. @ < max(0, ), and as a result the actual update is no longer that suggested by
SGD. We therefore experimented with temporarily reducing the learning rate whenever this parameter
clipping would reduce the cosine of the angle made between the gradient and actual updates below a
certain constraint (see Appendix F.4). Second, we note that the divisive inhibition term, =, appears
in the denominator of the weight gradients (Appendix E.2) and, therefore, if v becomes small, the
gradients will become large, potentially resulting in inappropriate parameter updates. We therefore
wondered if constraining the gradient norm would be particularly effective for DANNs. We tested
both of these modifications to DANNSs trained on Fashion MNIST (Supp. Fig. 5). However, we found
that they provided no observable improvement, indicating that the loss landscape and gradients were
well behaved over optimization.

Finally, we provide an analysis and preliminary experiments detailing how the DANN architecture
described above may be extended to recurrent and convolutional neural networks in future work
(Appendix B). In brief, we unroll recurrent networks over time and place inhibition between both
network layers and timesteps, corresponding to fast feedforward and local recurrent inhibition,
respectively. For convolutional architectures, we can directly apply the DANN formulation to
activation maps if inhibitory and excitatory filters are of the same size and stride. Supporting this, we
found that a DANN version of VGG16 (Simonyan & Zisserman, 2014) converged equivalently to a
standard VGG16 architecture (Supp.Fig.7).

Altogether, our results demonstrate that: (1) the obvious approach to creating ANN s that obey Dale’s
principle (ColumnFEi models) do not learn as well as traditional ANNs, (2) DANNS learn better than
ColumnEi models and as well as traditional ANNSs, (3) DANN learning is significantly improved by
taking appropriate steps to scale updates in excitatory and inhibitory units appropriately.
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6 DISCUSSION

Here we presented DANNs, a novel ANN architecture with separate inhibitory and excitatory units.
We derived appropriate parameter initialisation and update rules and showed experimentally that,
unlike ANNs where some columns are simply constrained to be positive or negative, DANNs perform
equivalently to traditional ANNs on benchmark datasets. These results are important as they are, as
far as we know, the first example of an ANN architecture that fully adheres to Dale’s law without
sacrificing learning performance. However, our results also raise an interesting question: why does
nature employ Dale’s principle? After all, we did not see any improvement over normal ANNSs in our
experiments. There are two possible hypotheses. First, it is possible that Dale’s principle represents
an evolutionary local minima, whereby early phylogenetic choices led to constraints on the system
that were difficult to escape via natural selection. Alternatively, Dale’s principle may provide some
computational benefit that we were unable to uncover given the specific tasks and architectures we
used here. For example, it has been hypothesized that inhibition may help to prevent catastrophic
forgetting (Barron et al., 2017). We consider exploring these questions an important avenue for future
research.

There are a number of additional avenues for future work building upon DANNS, the most obvious
of which are to further extend and generalize DANNSs to recurrent and convolution neural networks
(see Appendix B). It would also be interesting to explore the relative roles of subtractive and divisive
inhibition. While subtractive inhibition is required for the unconstrained functional space of DANN
layers, divisive inhibition may confer some of the same optimisation benefits as normalisation
schemes. A related issue would be to explore the continued balance of excitation and inhibition
during optimization, because while DANNS are initialised such that these are balanced, and inhibition
approximates normalisation schemes, the inhibitory parameters are updated during training, and the
model is free to diverge from this initialisation. As a result, the distribution of layer activations may be
unstable over successive parameter updates, potentially harming optimization. In the brain, a variety
of homeostatic plasticity mechanisms stabilize neuronal activity. For example, reducing excitatory
input naturally results in a reduction in inhibition in real neural circuits (Tien & Kerschensteiner, 2018).
It would therefore be interesting to test the inclusion of a homeostatic loss to encourage inhibition
to track excitation throughout training. Finally, we note that while fast feedforward inhibition in
the mammalian cortex was the main source of inspiration for this work, future investigations may
benefit from drawing on a broader range of neurobiology, for example by incorporating principles of
invertebrate neural circuits, such as the mushroom bodies of insects (Serrano et al., 2013).

In summary, DANNS sit at the intersection of a number of programs of research. First, they are a new
architecture that obeys Dale’s principle, but which can still learn well, allowing researchers to more
directly compare trained ANNSs to real neural data (Schrimpf et al., 2018; Yamins et al., 2014). Second,
DANNS contribute towards computational neuroscience and machine learning work on inhibitory
interneurons in ANNSs, and in general towards the role of inhibitory circuits and plasticity in neural
computation (Song et al., 2016; Sacramento et al., 2018; Costa et al., 2017; Payeur et al., 2020;
Atallah et al., 2012; Barron et al., 2017). Finally, the inhibition in DANNS also has an interesting
connection to normalisation methods used to improving learning in deep networks (Ioffe & Szegedy,
2015; Wu & He, 2018; Ba et al., 2016). As DANN:S tie these distinct programs of research together
into a single model, we hope they can serve as a basis for future research at the intersection of deep
learning and neuroscience.
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SUPPLEMENTARY MATERIAL

A SUPPLEMENTARY RESULTS
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Figure 5: DANN:S trained on Fashion MNIST with gradient normalisation and learning rate scaling.
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Figure 6: Model comparison on MNIST dataset as in Fig. 3 but including models with 100 inhibitory

units. nc - no update corrections, #i - no. inhibitory units, ColumnEi #e #i.

Table 1: MNIST results

Model #inhib Learning rate  Train error Test error
MLP 0 0.2976 0.0£0.0 1.44 £ 0.034
DANN 1 0.05327 0.0+£0.0 1.56 £ 0.041
DANN 50 0.1107 0.0£0.0 1.325 £+ 0.066
DANN 100 0.3576 0.0£0.0 1.244 £ 0.067
DANNnc 50 0.003981 0.293 £0.039 2.167 £0.113
ColumnEi 50 0.05273 0.662 £ 0.071  3.035 + 0.231
ColumnEi 100 0.06533 0.574 £0.092 2.857 £ 0.08
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Table 2: K-MNIST results

Model #1inhib Learning rate  Train error Test error
MLP 0 0.213 0.0+0.0 6.842 £0.119
LayerNorm 0 0.1166 0.0+0.0 7.171 £0.134
BatchNorm 0 0.7235 0.123 £0.017 6.747 £ 0.129
DANN 50 0.156 0.0+0.0 6.728 £0.23
ColumnEi 50 0.05426 1.886 = 0.191 12.763 + 0.44
Table 3: Fashion MNIST results
Model #inhib Learning rate  Train error Test error
MLP 0 0.08403 1.793 £0.119 10.626 £ 0.466
LayerNorm 0 0.04743 2.136 £ 0.076  10.445 £ 0.455
BatchNorm 0 0.1098 1.104 £ 0.044  9.992 £ 0.218
DANN 50 0.01973 3.832 £ 0.031 10.962 £ 0.365
ColumnEi 50 0.02265 12.365 £ 0.217 14.986 £ 0.674

B EXTENSION OF DANNS TO OTHER ARCHITECTURES

Here we discuss how our results and analysis of fully-connected feedforward Dale’s ANNs may be
applied to convolutional and recurrent neural networks.

B.1 EXTENSION TO CONVOLUTIONAL NEURAL NETWORKS
Consider the response of a standard convolutional layer of n output channels with filters of size k X k
at a single position j over m input channels:

Z; = WXj + b (15)
Here, W is a n x k?m matrix whose rows correspond to the kernel weights of each output channel,
and the vector x; of length k2m contains the values over the n input channels for the spatial location i.
Concatenating each input location x; as the columns of a matrix X, the full output of the convolutional
layer over all input locations can be expressed as Z = WX + b, where b is broadcast over the
columns of Z. We can readily make an equivalent DANN formulation for a convolution layer by
assuming the same kernel size and stride for excitatory and inhibitory filter-sets W and WL

Zj = E ® (WEEXj — WEIWIEXj) + ,6,
0l (16)
,Y — WEI(ea @ WIEXJ)

Here the inhibitory channels are mapped to each excitatory output channel by WP for subtractive
inhibition, and are first scaled by e for divisive inhibition. For parameter initialisation, by following
the approach of He et al. (2015) and considering the response of the layer at a single location, we use
the same initialisations as those derived in section 3, but where the input dimension d is the product
of kernel size and input channels, k>m. Next, the correction factors to parameters updates apply
as in section 4 as the KL divergence is summed over each valid input location j, which results in
approximately the same multiplicative factor for each parameter, but does not change the approximate
relative differences between parameter types:

(52 - ’ azi,j 2
2 (wg:xjf@w [f G 5) D

J

DkL[Ps || Po+s,]

a7)

where we consider the full response Z of the layer over all valid kernel locations.

14



Published as a conference paper at ICLR 2021

In order to confirm our extension to convolutional neural networks we conducted preliminary
experiments with DANN versions of convolutional neural networks as described above. Below,
we show results of training a standard VGG16 architecture, and a DANN version of the VGG16
architecture (Supp. Fig. 7) on CIFAR-10. As can be seen, the DANN network trains approximately
as well as the standard VGG16 model.
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Figure 7: Convolutional network results on CIFAR-10 with control and DANN VGG16 models. Plots
show mean training and test set error over 6 random seeds.

Both control and DANN VGG16 architectures were trained on CIFAR-10 with stochastic gradient
descent with batch size 128, without dataset augmentation, dropout, or batch normalisation layers.
Best model learning rates (control - 0.089 , DANN - 0.03458) were selected after a random search
according to average final validation error over random seeds, and conditional on all seeds beginning
to converge within 5 epochs (convergence defined as validation error < 90%). The random search
was performed with learning rates sampled from a log-uniform [le-4,1] distribution, 3 seeds per trial,
60 trials, 150 epochs, and with a 10k validation split. Final epoch test error over 6 random seeds
was 21.08 £ 0.811 for the control VGG16 model, and 21.178 £ 0.348 for the DANN-VGG16 model
with constrained weights. VGG16 models were adapted from code here?, and for the DANN VGG16
model we used 10 inhibitory filters per 64 excitatory filters, and 10% inhibitory units in the fully
connected layers.

B.2 EXTENSION TO RECURRENT NEURAL NETWORKS

We can readily make a connection between the fully-connected Dales ANNs described in Section
2.1 and recurrent neural networks (RNNs) by considering the similarities between depth and time.
As has been previously noted, a shallow RNN unrolled over time can be expressed as a deep neural
network with weight sharing (Liao & Poggio, 2016).

h, = f(z) mz%GWm4+ﬂ (18)
t

where W = WEE — WEIWPEL -, — WFl(e* © WP, _,)

where in this simple case, recurrent processing steps over time are applied to the input x = hg. In
this view, layer depth corresponds to time, and inhibition between layers corresponds to fast feedback
inhibition.

We note that if there are a sequence of inputs coming at each time-step, x4, then this formulation can
still hold, but with a simple modification to incorporate the time-varying inputs. Specifically, we need
to add additional input weights, U:

&QWm4+%Oﬂm+ﬁ (19)
t

hy = f(z) Zt:p), n

“https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
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where W = WFE _ WEIWEL = WFl(e™ o WEh, )
'lj' _ UEE _ UEIUEI, Y = UEI(eax ® UEIXt)

All of the existing DANN approaches developed above can be applied to this case.

C PARAMETER INITIALISATIONS

In this section we provide further details regarding parameter initialisations.

Throughout we assume that the elements of the input, x, to a layer ¢ are iid and also the output of a
layer ¢ — 1 whose pre-activations were distributed (0, o7_, ). Therefore x will follow a rectified
normal distribution:

oo ez /207_, 001
R A v
E[z?] = /OO 22 i gz = 71
0 0571\/% 2 (20)
Var(z) = E[z?] — E[z]* = 03_1%;1

2r—1
2w

Var(z) + E[z]? = 07 _,

where here, and throughout the text, non-indexed non-bold to refers to any element of a vector
or matrix, e.g E[z] refers to the expectation of any element of x, Var(x) refers to the variance of
any element of x, etc. In addition, for all models we draw positively constrained weights 7id from
exponential distributions, and make use of the following properties for w ~ Exp()\)

Elw] = %
Var(w) = % = E[w]? (21)
E[w?] = % = 2Var(w) = 2E[w]?

C.1 COLUMN CONSTRAINED EI MODELS AND WEIGHT INITIALISATION

Here we provide detail on the parameter initialisation of column constrained models. Layer activations
are z = Wx where columns of W are constrained to be positive or negative. Therefore, for
convenience, let us denote W = [WT W], and x = [xF x!], and we assume xZ x! are iid
Vi, j. Note for this model, n. + n; = d, the input dimensionality. As for DANN models, throughout
training we preserve the sign constraints of the weights by resetting weights using rectification around

zero, i.e. W+ < max(0, WT), W~ < min(0, W™).

At initialisation for the column constrained model for each layer we require E[z;] = 0,
Var(zy) = o7 _,.

E[zx] = nE[wtE[z] — n;E[w ™ |E[z]
nE[wt|E[z] = n;E[w™ |E[x] (22)
Ejw™] = Ejw’]~<

%
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Where w™, w™ refer to any element of W+, W™,

Var(zy,) ZVar wix; —i—ZVar Wy x J

= neVar(w x) + mVar(w x) (23)
= n.(E[w']*Var(z) 4+ Var(w™)E[z]? + Var(w™) Var(z))
+ n; (E[w™]*Var(z) + Var(w™ )E[z]* + Var(w ™) Var(z))

As weights are drawn from an exponential distribution, Var(w™) = E[w*]2, we have

Var(z;) = neE[wt]?(2Var(z) 4+ E[z]?) + n;E[w™]*(2Var(z) + E[z]?)
= neE[w *(E[2?] + Var(z)) + niE[w™*(E[2?] + Var(z))
= (E[2”] + Var(2)) (neE[w™]* + niE[w™]?) 24
T — n?
— o} 1 (T B (e + )

Therefore E[w™] = 1/(23=1)(n. + 2—3)

Note that as the input to the network is all positive, the first weight matrix has no negative columns.
We therefore use the bias vector to center the activations of the first layer (in other layers it is
initialised to zeros).

E[z] = nElw" |E[z] + B (25)
Therefore we initialise all elements of 3 to —nE[w™|E[x]

C.2 INITIALISATION OF DANN INHIBITORY WEIGHTS FOR BALANCED EXCITATION AND
SUBTRACTIVE INHIBITION

Here provide details of inhibitory parameter initialisation such that E[zF] = E[(W&!z!),], for
WEE 2 Exp(\E).

Zw,ﬂ x4 *d IE[ ]

E[(W"z") Zwklzw iE[w™dE[w'™]E[z]

(26)

These expectaions are equal when both sets of excitatory weights are drawn from the same distribution,
WIE & Exp(AF) and WF! < 1/n;. Or alternatively, inhibitory weights can both drawn from

the same distribution, WE, WE! % Exp(1/AEn;). Note, that although the above always holds
in expectation, in the case of a multiple inhibitory units we can apply the law of large numbers to
conclude that the subtractive inhibition and excitatory input will be approximately equal.

Note that while this initialisation is general to different settings of ME we initialise

AE < \/d(2m — 1)/+/27 (see section D.1).
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D PROPORTIONAL RELATIONSHIP BETWEEN EXCITATORY INPUT MEAN AND
STANDARD DEVIATION

Here we provide further details regarding the proportionality between z"’s mean and standard

deviation. This proportionality constant depends on which statistic or distribution that is of interest
for activations (e.g. layer-statistics or unit batch-statistics as in layer and batch normalisation).

D.1 UNIT STATISTICS OVER DATA AND PARAMETER DISTRIBUTIONS

As discussed in the main text, if we consider ¢ - E[zf] = Var(z£)1/2 for a unit k, with expectation
over the data and parameters, ¢ = /27 — 1/V/d:

E[:F] = d - E[w®"
E

JE[z]
=d-Ew®)Z

£—1

27)

= d - Var(w*®)E[z?] + d - Var(z)E[w"F)?
= d - Var(w"F)(E[z?] + Var(z))

2r —1

Joi- 27

Where E[wPF]? = Var(w®F) for weights drawn from an exponential distribution. Therefore

E[zf] - ¢ = y/ Var(zf)
Var—1 (28)
Vd

Additionally, we see that for Var(z) = o2 | the variance of the distribution that elements of WEE
are drawn from should be

C =

21

Var(w™) = i er=1)

(29)

and so we can set AP < \/d(2m — 1)/V/2m, for Var(zf) = 07_,.
D.2 UNIT STATISTICS OVER THE DATA DISTRIBUTION

If instead we consider a unit k, with excitatory weights WEE and expectation and variance taken only
over the data we have the approximation:

d
E[:f] = Bla) ) wf?

~ d - B[z|E[w"F]

O¢—1 EE
=d- —E[w
or [w™]

Likewise the variance over the data can be approximated as
d

Var(z}') = Var(z) Z(WEZE)Q
~ d - Var(z) - E[(w®F)?]
m—1

(30)

€29

.9. E[wEE]Q
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Therefore

Ea:wp(x) [ZE] C= \ Varacfvp(ac) [ZE}
(32)
N V2T 2
Vi

D.3 LAYER STATISTICS OVER THE DATA AND PARAMETER DISTRIBUTIONS

Alternatively we can consider the mean and standard deviation of the layer statistics t,=, o, as
calculated if one was to apply layer normalisation to z". Here again, these statistics are proportionally

related, but with the constant /7/ V.

If we were to apply layer normalisation to z®, the layer statistics would be as follows:

n. n n.
g 1 1 & JR
o= B o)t =D F =LY W = Y (P
J J

O,E ne — 1
(33)

We now derive the relationship that the expectation of layer statistics are proportionally related by
Elpgze] - /7/Vd = E(02;)/2. The expectation of E[u,s] is straightforward:

Eluye] = d - E[w"™] - Elz] (34)
Turning to the derivation of E[o2]:
Elogs] = E[nel_ I i(zf — 1z2)’] (35)
= - ; ij E[(w;x — ni ijj Wi %)’ (36)
= nl, 1 i;E[(éi)z] (37)

where we have defined 2; = w'Fx — ;L 377 wPFx. We can obtain E[(2;)?] by deriving E[2;] and
Var(z;). As

n n.
1 &< 1 -
~  _ . EE EE _ EE _  EE
Wij = W;5" — Wy = Z (wi;” —wiy) (38)
Ne Ne )
k k=1 ki

we see that E[w;;] = 0, and therefore E[2;] = 0. For the variance of Var(2;) we start with Var(w;;).

Ne

1
Var(ij) = — Var( > (Wi —wih)) (39)

e k=1,k#i
1 Ne Ne

= ﬁ( Z Var(ng — wE]E) + Z Cov(w?jE — wE]E, lejE - w,??)) (40)
€ k=1,k#i k=1,k'=1

kK #i, k#k'

1

= ﬁ((ne — 1)2Var(w™) + (n, — 1)(n. — 2)Var(w™)) 41)

e — 1
= RT)Var(wEE) (42)
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For ¢ < n. we calculate Var(Z;), keeping in mind that for i < n.,j < d, x; are iid, and equation
(38) shows that 10;; are iid in the j’th coordinate, so we see that

d
Var(;) = Var() _ ibija;) = dVar(ix) (43)
J

Remembering the values of E[w], Var(w), that E[X?] = Var(X) + E[X]?, and for independent
X,Y, Var(XY) = Var(X)Var(Y) + Var(X)E[Y]? + Var(Y)E[X]?, we have

Var(%;) = d(Var(w)Var(z) + Var(w)E[z]? + Var(z)E[@]?) (44)
= d(Var()E[z?] 4 Var(z)E[w])?) = dVar(d)E[2?] (45)
_ e = D) (B R (46)

€

Now putting these terms together we can derive E[O’ﬁE].

R
Elofe] = — > E[(2)’] (47)
= L i\/ar(é-) (48)
Nne — 1 - !
= d - Var(w®F) - E[2?] 49)
1/2

Therefore returning to E[y,e]-¢ = E(o2g)
random variable is it’s mean squared,

(d - Var(w™®)E[2?])!/? _ E[22]

and keeping in mind that the variance of an exponential

CcC =

(50)

We have assumed that = follows a rectified normal distribution. Therefore, E[z] = 222 E[z?] =
‘712 —1
2

. Resulting in:

VT
= — 51
c Nz (51

. . . . . . _ I IE 1 Ne EE
We note that for a DANN layer with a single inhibitory unit, u,= = z' as W'* o 2 Wi

and WP! < 1. Therefore DANN divisive inhibition, -y, can be made equivalent to layer standard
deviation at initialisation in expectation if e* <— c. However, these calculations apply for the case of
multiple interneuron if one makes the approximation pi,6 ~ (WEIW!Ex); for any i.
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E PARAMETER UPDATES AND FISHER INFORMATION MATRIX

E.1 LAYER FISHER INFORMATION MATRIX

We view a layer’s activation as parameterising a conditional distribution from the exponential family
P(y|x; 0) = P(y|z), independent in each coordinate of y|z.

cZ— Z
tog Ply[x:0) = Y221 1y 52
Ely|x;0] = f(z) =7'(z)  Cov(y|x;8) = diag(¢f'(2)) (53)
where f(z) is the activation function of the layer, and ¢, 1), ¢ define the particular distribution in the

exponential family. Note we take 7/(z), f'(z) to denote the %7 %.

F(0) is defined as:

B dlog P(ylx; 8) dlog P(y|x;0)"
F(e) B x~P(x),y~P(y|x;0) [ 00 00 (54)
As
o ) 020 [y-2=nl)
_ l@( _ @)
T 5007 0z
we have
_ 97 (y —1/'(2) (y —1/(2))" 92"
F(B) - wa(x),yIrEvP(y\x;G) [80 ¢ (]5 89 (56)
[ 02 y-1@) y-n@)" | oa"
= E — E 10| — 57
x~P(x) _80y~P(yIX;9) [ 0] 10) ’X 00 (57)
_ g |22CovDyx6]on” (58)
B x~P(x) _80 ¢2 00
_ [ 0z diag(f'(2)) 92"

where we recognise the covariance matrix is diagonal:

Cov [y‘x; 0] = diag(Var(y1|x;0), ..., Var(y,,|x; 0))

To analyse the approximate KL divergence resulting from the simple case of perturbing individual
parameters of a single-layer DANN, we only need to consider the diagonal entries of the Fisher.

1 0z diag(f'(z)) 0z T
Dkw[Po || Poys,| ~ 55(§TXN]E(X) [azlw‘g(i(z))az ] 9 (60)
52 Oz oz”
=— E ——di ! — 61
i) [ae iag(f (Z))ae ] (1)
52 0z 0z "
- E "I o )2 62
52 Ne , azk 2:|
-2 E (=2 63
2¢ 4 x~P() {f (0 (55) ©2
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where d; represents a 1-hot vector corresponding to 0, multiplied by a scalar 4.

E.2 DERIVATIVES

Here we provide derivatives for DANN layer activations with respect to the different parameter
groups. The equations for the layer activation can be written

z = % o (2" - Wz + 8 )
where z® = WEEx 2l = WiEx ~ = WFl(e> 0 2!)
Not = —— =0fork #£i.
oea EE 8w51 ork #£1i
0z 9 9 ® EI I
JwEE — W(,}T(zz — (W¥z):) + 5i) (65)
¥ ?
gi O E
; 66
=Ty, (67)
i
azz 0 9i
wEl W(;(Z?—(WEIZI)JJF&) (68)
17 ?
_ Y i ® EI_I 9i 1
= 2 8wEI (Z - (W z )z) - %Zj (69)
= —&eo‘f z; (zF — (WEIgh),) — &zé (70)
% Vi
i 1,€Y
- _%4( (= (WD) +1) (1)
_ N\ Y% IE eaj E_ (WEIL).
= Z whyay ( o = (W )i) +1) (72)
In contrast aazgl , gﬂ # 0 for k # 1.
[“)zk 0 gk EI_I
Ful® ~ GulP (%( — (W™2h)) + 5i) (73)
9k O EI_I 9k EI
- (W - 74
8wIE (Zk ( Z )k) T Wi Lj (74)
jw( (WPt — Sl (s)
k
gk E1, (€7 E EI_I
= 1o 2z — (WHzh)) +1 (76)
%k](%(k ( k) +1)
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0z

9 9

WEI ’ 77
Oa; 80@ %( ~ ))+6) 77
gz i EI_I
= \L\% 78
T (2F = (W) (78)
= —%wgle% F — (WP, (79)
s e
= Z gi EI Igmk - (zF — (WEIZh)) (80)
3 %(ZZ.E — (W¥Hzh) (81)
821‘
— =1 82
ab; (82)
(83)
E.3 APPROXIMATE KL DIVERGENCE FOR WEIGHT UPDATES
If we consider an update to an element i;j of W¥ the approximate KL divergence is
Dicw[Po || P ] ~ 2i (1) (k)
) ! (84)
d ’ gi 2:|
= — zi)(=—x;
> E. [f (2)(La)
as a EE =0 for k # 1.
In contrast, for an update to an element ij of W'® we sum over n. terms, as 82’“ ;é 0 for k # 1.
D [p | P ]Nﬁne -f'(z)( 0z, )2
R T g Spin | 0w
= L i: E -f’(zk)( L - )2} (85)
20 4 x~P() | po
5 & [ 9k EI 2]
= — z2k) ()" (wi; agi
2 2 st _f( ;g)(% 7)2 (i ari)
where ay; = 2—](25 — (WELD ) + 1.
k
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For an update dyyer, while
ij

g EI = 0 for k # 1, the derivative contains a z term, so there is instead

a squared sum over d terms.

Ne o
Dk [Ps || P0+5wm] ~ wap(x) l )(('9221)2]

6 / 0z; \2

T 2px~P _f (Zi)(aw?jl) ]
52 / i

- 2px~P Fz) (= %% 11)2}
5?2 )

= 2t f’<zz><z}>2<i>2<az,>ﬂ

52 d d Z
= 2gx-Eio PN @B @) + Y wlbwl apen) (22 (ay)?
n n#m 1

d
=25 2B [f ’<Zi><w§5>2<xn>2(§’j>2<au«>2}

7

52 < i
— E lIEIEnmzzilg
+ 2 ; x~ P (x) |:f (Z )wjnwjmx z (%) (a ])
(86)
Finally, for alpha
Dt [Poll Pora ] % 237 B [ (e (22)?
KL |16 0+4,, 2¢ - x~ P(x) k 60(i
Ne i d
_522 f’( (_ng EI, IE e’(E WEL 1) )2
T 29 S xnP(x) ) ki Wi 32 (W2z),
k i J
Ne I d
= ﬁ Z E fG) (- Z g—kwgwmwj(aki - 1))2
2@5 . x~P(x) I 5 Yk
0% - — d 9k
=57 E (= wEIwIE:v ap; — 1
2¢ ?:WP(X) _f( k)(;(% ki ilar; —1))?
d
+ Z((gkwEZI)QwIExnlexm(am 1)?%)
ntm Yk
- 7 9k EI 1E 1
ZZMM a) (Crwii i e (ax: — 1)
7 - : 9k
/ EI\2 IE 1E 2
r YLk, ) (ot v~ 1]
(87)
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F ALGORITHMS

Here we provide pseudo-code for implementation details. Please see the following link for code:
https://github.com/linclab/ltlwdp

F.1 PARAMETER INITIALIZATION

Algorithm 1 Parameter initialization for DANNs

for layer L do
require n, n;, d
WEE ~ exp(\F)
WIE Ly b
WEL. 1
else:
WIE  exp(\F)
WEI — ]l/’l’Ll
end if
a <+ 1-log(

g0+ 1
end for

27r—1)
Vd

Where number of excitatory output units is n., number of inhibitory units n;, and input dimensionality

dand \F = \/d(27 — 1)/+/2~.

F.2  PARAMETER UPDATES
For DANN parameter updates we used the algorithms detailed below. Note that gradients were
corrected as detailed in Section 4 and see Algorithm 3.

All below algorithms are computed using the loss gradients V@ of parameter 8, in a given model
computed on a minibatch sample.

Algorithm 2 Parameter updates

Require learning rate 7, updates A6
for each layer [ do
WEE — WEE _ nAWEE
WIE — WIE _ UAWIE
WEI — WEI o T}AWEI
a +— a—nAa
g g—nAg

g « mazx(g,0)
end for

F.3 DANN GRADIENT CORRECTION ALGORITHMS

For the majority of experiments we scaled gradients using the heuristic correction terms derived in
Section 4 (and see Appendix E). In this case we applied the following algorithm before Algorithm 2.
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Algorithm 3 DANN gradient correction

for each layer [ do
require n., n;, d
AWFEE « YWEE
AWE \/%VWIE
AWEL ¢ éVWEI
Aa d\/lnjVa
Ag + Vg
AB V3

end for

We also tested that our heuristic correction factors approximated gradient multiplication by the
diagonal of Ft_1 for each layer (see Figure 2).

Algorithm 4 Gradient correction by approximation of diag(F 1)

Require learning rate 7, fisher momentum £k, fisher learning rate A
for each batch (z¢,y;) do

Compute p = softmax(z)

Compute cross entropy loss L(p, y;)

for each layer [ do

Vo' + oL

end for

Sample ¢ ~ Categorical(p)

Compute cross entropy loss L(p, )

for each layer ! do

= )v\b;tch\ Zl‘bamh‘(%)?
F,=kF+(1—-Ek)F,_,
F'=1/F,
Fr=F - 1/||[FW™ || where FW™" is the elements of F corresponding to WEE
NG Frve!
end for
end for

Here we note this update can be considered very rough diagonal approximation to natural gradient
descent. In addition, various efficient approximations to natural gradient descent that have been
utilized such as KFAC Martens & Grosse (2015) could not be applied due to the structure of
DANN:S, as the mathematical assumptions of KFAC, which were made for feedforward networks
with activations as matrix multiplications, do not apply.

F.4 LEARNING RATE SCALING AND GRADIENT NORMALISATION

We also tested whether constraining the gradient norm and scaling the learning rate based on parameter
clipping improved DANN performance. For these experiments we applied the following algorithms.

Algorithm 5 Gradient normalisation

for each layer ¢ do
Require V6!, M

if||Vt9‘\|2 > M:
£
AV = M -
else:
At +— Vot
end if
end for
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Algorithm 6 Learning rate scaling

for each layer ¢ do
Require V0, M, ¢
141
c+0
while ¢ < M:
n &
¢ + CosineSimilarity (max(0, ¢ — nV§*), 8¢ — nVo*))
1141
end for

The learning rate scaling method temporarily reduces the learning rate whenever parameter clipping
would reduce the cosine of the angle, made between the gradient and actual updates, below a certain
constraint. For any optimization problems caused by actual clipped updates not following the gradient,
learning rate scaling is a principled way of following the direction of the gradient.

We also note, this technique can be generally applied to any other model which is constrained so that
it cannot have updates freely follow gradient descent. If the constrained parameter space is an open
subset of euclidean space, and we allow the learning rate to be arbitrarily small (Algorithm 6 with
lim; o & = 0), updates will always follow the direction of the gradient.
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