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Abstract

Zero-shot node classification is a vital task in the field of graph data processing,
aiming to identify nodes of classes unseen during the training process. Prediction
bias is one of the primary challenges in zero-shot node classification, referring to the
model’s propensity to misclassify nodes of unseen classes as seen classes. However,
most methods introduce external knowledge to mitigate the bias, inadequately
leveraging the inherent cluster information within the unlabeled nodes. To address
this issue, we employ spectral analysis coupled with learnable class prototypes
to discover the implicit cluster structures within the graph, providing a more
comprehensive understanding of classes. In this paper, we propose a Spectral
Approach for zero-shot node classification (SpeAr). Specifically, we establish an
approximate relationship between minimizing the spectral contrastive loss and
performing spectral decomposition on the graph, thereby enabling effective node
characterization through loss minimization. Subsequently, the class prototypes are
iteratively refined based on the learned node representations, initialized with the
semantic vectors. Finally, extensive experiments verify the effectiveness of the
SpeAr, which can further alleviate the bias problem.

1 Introduction

Graph data is widely used to reveal interactions between various entities, such as citation networks
[1], social networks [2], recommendation systems [3], etc. In graph data structures, various entities
are abstractly represented through the form of nodes, while their complex relationships are precisely
depicted through the connections of edges. Node classification [4, 5], an essential task in graph data
analysis, focuses on predicting labels for unlabeled nodes by harnessing the relational structure of the
graph and a select subset of labeled nodes. The advent of graph neural network (GNN) technology,
as delineated in [6, 7, 8], represents a monumental stride in the domain of node classification. This
development has accelerated advancements in the analysis of graph-structured data.

Nevertheless, the ongoing dynamics of real-world networks, characterized by the continual emergence
of new nodes and edges, facilitate the discovery of new classes, thereby introducing a series of
innovative challenges for node classification tasks [9]. Traditional GNN-based node classification
models struggle to handle the identification of new classes in dynamic and open environments. For
instance, as citation networks continue to grow, the emergence of new research papers promotes
the rise of new academic fields. A key challenge is the effective integration of newly emerging
nodes into the pre-existing foundational classes or nascent ones currently in development. Therefore,
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constructing a model that can recognize nodes of unseen classes offers significant practical utility for
the analysis of graph data.

Zero-shot node classification (ZNC) [10] presents a potent strategy for tackling the recognition of
unseen classes that are absent from the labeled nodes. It endeavors to harness external categorical
knowledge (e.g. semantic vectors) and comprehensive graph data (e.g. node attributes and structural
information), to classify nodes belonging to unseen classes. In ZNC, prediction bias is a significant
issue, where models incorrectly predict unseen class nodes as seen classes. Several studies concentrate
on constructing optimized node representations and ensuring their alignment with semantic vectors
in the latent space. This alignment is achieved by minimizing the distance between nodes and their
corresponding class semantic vectors. DGPN [10] captures the local and global embedding of graph
nodes, devising a distance loss function that bridges the gap between graph representations at varying
scales and semantic vectors. MVE [11] underscores the insufficiency of modeling node features from
a single view in describing the comprehensive essence of a node, thus advocating for a multi-view
approach to augment node features. In addition, the utilization of inter-class relationships is also
crucial in ZNC. DBiGCN [12] incorporates class relationships into the node embedding process
to facilitate the model’s transfer to unseen classes. GraphCEN [13] enhances model adaptation to
unseen classes through a dual contrastive loss mechanism that captures node-class dependencies.

Existing research predominantly leverages external knowledge, such as semantic vectors and the
category relationships stemming from them, to mitigate prediction bias. However, most methods
insufficiently exploit the cluster information inherent within unlabeled nodes. Strategically leveraging
this latent information can reveal hidden class cluster structures, thereby facilitating a comprehensive
understanding of the categories present within the graph. In this paper, we present a novel method,
termed Spectral Approach for ZNC (SpeAr), that incorporates spectral analysis and learnable class
prototypes to discover the intrinsic cluster structure embedded within the graph. Specifically, we
introduce a spectral contrastive loss for optimizing node embedding and posit that minimizing this
loss is approximate to conducting a spectral decomposition of the graph. The spectral contrastive loss
can elucidate the intrinsic structure of graph data, ensuring a high degree of discriminability among
classes in the latent space. In addition, we initiate the class prototypes by class semantic vectors and
iteratively refine these prototypes based on the node embeddings.

In summary, our contribution is three-fold: (1) We propose a spectral contrastive loss to update nodes
and establish an approximate relationship between the node embeddings obtained from this loss and
the feature vectors derived from spectral decomposition. (2) Taking class semantic vectors as the
initial class prototypes, we iterative refine these prototypes building upon the node embeddings. (3)
Experiments demonstrate that our proposed method, SpeAr, can alleviate the bias issue that occurs in
existing ZNC tasks, thereby enhancing the model’s ability to recognize unseen classes.

2 Related Work

Zero-shot learning. Zero-shot learning [14] has gained attention for its potential for a wide range of
applications in fields such as image processing [15], speech recognition [16], and natural language
processing [17]. In zero-shot learning models, commonly used external semantic knowledge includes
attribute vectors and semantic vectors, among others. In particular, text vectors play an important
role in representing textual content, and they translate words, sentences, and even whole paragraphs
into vector representations through techniques such as Word2Vec [18], GloVe [19], and BERT
[20]. Existing methods focus on establishing mapping relationships between samples and external
knowledge for effective knowledge transfer to unseen classes. These include direct mapping methods
[21, 22], which work by constructing a mapping function between samples and external knowledge
and optimizing it; generation-based methods [15, 23], which train semantic-visual generators to
generate samples for the unseen classes; and local embedding-based methods [24, 25], which use
the attributes to guide the learning and migration of discriminative local embeddings. While the
aforementioned methods have exhibited noteworthy progress in managing regular data types like
images, they encounter obstacles in handling ZNC. The distinct structural attributes of graph data
often hinder traditional zero-shot learning techniques from capturing and addressing these crucial
properties, thereby rendering them ineffective in resolving the ZNC issue.

Node classification. Node classification represents a pivotal task within the domain of graph data
analysis. The introduction of GNNs has catalyzed a transformative evolution in the advancement of
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node classification techniques [7]. GNNs possess the capability to concurrently process the adjacency
structures and feature information of nodes. A multitude of methods predicated on GNNs [26, 27]
have been introduced, progressively emerging as the predominant technologies for addressing node
classification challenges. These conventional approaches are largely predicated on the assumption
that the class labels present in the training data encompass all possible classes. However, the reality
is that new categories continually emerge. Regrettably, existing GNN frameworks exhibit notable
deficiencies when it comes to effectively handling unlabeled nodes from unseen classes.

3 A Spectral Approach for Zero-shot Node Classification

3.1 Problem Formalization

Let G = {V, E} denote a graph. V is the set of nodes with |V| = N , E is the set of edges. In the
graph, the feature matrix is X ∈ RN×d, d is the dimension of features. A ∈ {0, 1}N×N denotes the
adjacency matrix, where aij = 1 if (vi, vj) ∈ E , otherwise aij = 0.

For zero-shot node classification, C = {c1, ..., c|C|} is the class set, Cs = {c1, ..., c|Cs|} is the seen
class set, Cu = {c1, ..., c|Cu|} is the unseen class set, Cs ∪ Cu = C and Cs ∩ Cu = φ. Given an
x ∈ X , we use P to denote the marginal distributions of all data that x ∼ P , and let Pci denote the
distribution of labeled samples with class label ci ∈ C and Pu denote those of unlabeled data. In
addition, every class has a distinct class semantic vector si ∈ Rd1 , |C| class semantic vectors (CSVs)
(Further details are provided in Section 4.1) can be formed into a matrix S ∈ R|C|×d1 . In graph G,
there are Ns labeled nodes from seen classes, forming the label matrix Ys ∈ RNs×|Cs|. For ZNC,
we predict labels for Nu unlabeled nodes from unseen classes, with predictions in Ȳu ∈ RNu×|Cu|.
Generalized zero-shot node classification (GZNC) predicts labels for Nsu unlabeled nodes, including
both seen and unseen classes, with predictions in Ȳsu ∈ RNsu×|C|.

For node embedding, we employ the GNN [7] model for node representations. Specifically, given
the adjacency matrix A and the feature matrix X , aggregating information from neighboring nodes,
the node embedding is:

g(X) = σ(D−1/2AD−1/2XW1), (1)

where Dii =
∑
Ai is the diagonal matrix of node degrees. W1 denotes the parameters of a

single-layer neural network, and σ(·) is activation function. In addition to aggregating information
about neighboring nodes, this study also emphasizes the importance of information about the nodes
themselves in category mining. Therefore, we input each node into the neural network to obtain its
representation, the embedding of nodes in the latent space is formulated as follows:

f(X) = σ(D−1/2AD−1/2XW1) + σ(XW2), (2)

where W2 denotes the parameters of a single-layer neural network.

3.2 Preliminaries of Spectral Decomposition

Given a graph structure, we primarily employ spectral decomposition as a key technique to derive
principled embeddings. Spectral decomposition, a robust mathematical instrument, has long exhibited
its unparalleled value in clustering algorithms. Specifically, the spectral clustering methodology
[28, 29, 30] utilizes spectral decomposition [31, 32] to learn the embeddings of samples in a designated
space, subsequently enabling efficient cluster analysis through algorithms like K-means [28].

The spectral decomposition can be succinctly expressed as Ã = QΛQT , wherein Ã =
D−1/2AD−1/2, Q denotes an orthogonal matrix encapsulating the complete set of eigenvectors of Ã.
Λ signifies a diagonal matrix whose diagonal entries are constituted by the eigenvalues of Ã, corre-
sponding to the eigenvectors in Q. Let λ1, λ2, ..., λk denote the top-k eigenvalues, and q1, q2, ..., qk
represent the corresponding top-k eigenvectors. We define F ∗ = [q1, q2, ..., qk]

T ∈ RN×k as the
matrix of eigenvector moments, which serves as a novel, condensed representation of the sample.
These eigenvectors embody the most significant directions within the data. Let zi be the ith row of
the matrix F ∗, It turns out that zi can serve as desirable node embeddings of xi.
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3.3 Spectral Zero-shot Node Representation Learning

Spectral decomposition, by leveraging the relationships between data points, effectively unearths
the implicit class cluster structures within a graph, thereby obtaining node representations with
class discriminability. One of the fundamental challenges of ZNC is identifying unlabeled nodes of
unseen categories. These unlabeled nodes contain cluster information, and utilizing the information
is important for enhancing the model’s recognition and understanding of unseen categories. By
revealing the latent class cluster structures in the graph through spectral decomposition, we offer a
novel perspective for the ZNC.

It is imperative to consider not only the relationships between nodes within the unlabeled set but also
the labeled information in the seen classes. On this basis, we reconfigure the adjacency matrix A by
integrating the labeled information, so that A = αAl + βA, where Al represents the label relation
matrix. We use Axx′ to denote the entries of the reshaped A, where Axx′ = 0 represents that x and
x′ neither belong to the same category nor have an adjacency relationship. Otherwise, Axx′ 6= 0
indicates that at least one of the two conditions is met.

Axx′ = α
∑
ci∈C

Ex∼Pci
,x′∼Pci

Al
xx′ + βEx∼Pu,x′∼Pu

Axx′ , (3)

and thus, we have Ax =
∑

x′∈X Axx′ . In this section, based on the reshaped adjacency matrix A and
its normalization Ã, we refer to the Eckart-Young-Mirsky theorem [33], where the loss of solving F ∗
can be formalized as:

min
F∈RN×k

Lsd(F, Ã) = ||Ã− FF>||F . (4)

Now, we view f>x of F as a scaled version of learned feature embedding f : X 7→ Rk. Lsd can be
formulated as a variant of the contrastive learning objective, enabling us to theoretically establish the
approximation between the learned node representations and the top-k singular vectors of Ã. We
formalize the approximation in Theorem 3.1.

Theorem 3.1. We define fx =
√
Axf(x) for some function f , α, β are hyper-parameters. Then

minimizing the loss function Lsd(F, Ã) is equivalent to minimizing the following loss function for f ,
which we term spectral contrastive loss,

Lscl(f) , −2αL1(f)− 2βL2(f) + α2L3(f) + 2αβL4(f) + β2L5(f), (5)

where

L1(f) =
∑
ci∈C

Ex∼Pci
,x+∈{x′|Axx′ 6=0,x′∼Pci

}f(x)>f(x+),

L2(f) = Ex∼Pu,x+∈{x′|Axx′ 6=0,x′∼Pu}f(x)>f(x+),

L3(f) =
∑
ci∈C

∑
cj∈C

Ex∼Pci
,x−∈{x′|Axx′=0,x′∼Pcj

}[
(
f(x)>f

(
x−
))2

],

L4(f) =
∑
ci∈C

Ex∼Pci
,x−∈{x′|Axx′=0,x′∼Pu}[

(
f(x)>f

(
x−
))2

],

L5(f) = Ex∼Pu,x−∈{x′|Axx′=0,x′∼Pu}[
(
f(x)>f

(
x−
))2

].

Proof. (sketch) We can expand Lsd(F,A) and obtain

Lsd(F,A) =
∑

x,x′∈X

(
Axx′√
AxAx′

− f>x fx−

)2

= const +
∑

x,x′∈X

(
−2Axx′f(x)>f (x′) +AxAx′

(
f(x)>f (x′)

)2)
. (6)

The first term is a constant. The form of Lscl(f) is derived from plugging Axx′ and Ax.
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Analysis of Theorem 3.1. The L1 loss is tailored to reduce the distances between embeddings of
label nodes sharing identical class labels, thereby enhancing intra-class compactness. The L2 loss
targets the unlabeled node pair with the highest adjacency probability as a positive pair, amplifying
the discriminative capacity of the embedding space. Conversely, the L3, L4, and L5 losses are
dedicated to the strategic dispersion of embeddings associated with negative pairs. The L3 loss
function is calibrated to induce a distinct separation between embeddings of labeled nodes with
different class labels. The L4 loss treats labeled nodes and unlabeled nodes counterparts as negative
pairs. Finally, the L5 loss further refines the embedding space by considering all remaining unlabeled
node pairs, apart from those identified as positive in the L2 loss, as negative pairs. Above all, these
intricately designed loss Lscl(f) facilitates the aggregation of similar nodes and the segregation of
dissimilar ones within the embedding space significantly enhancing the representational efficacy of
the embeddings.

The Theorem 3.1 of this section is primarily adapted from Theorem 4.1 in [29] and Theorem 3.1 in
[34]. The main differences from the original theorems are reflected in the following two aspects: First,
the types of data objects processed are different; the proposed method focuses on graph data objects
that inherently possess structural characteristics. Second, during the construction of the loss function,
we define an unlabeled node pair exhibiting the highest adjacency probability as a positive pair. These
adjustments make the Theorem 3.1 more aligned with the specific context and requirements of the
research presented in this paper.

3.4 Class Prototype Learning

The proposed method employs a meticulously crafted spectral contrastive loss function to ensure the
inter-class separability of the embedding vectors obtained in the latent space. To achieve classification
of unseen class nodes, we utilize valuable pseudo-label information to perform iterative updates on
class prototypes, which serve as the centers for each class. These prototypes are initially instantiated
with semantic vectors S that are rich in categorical information. Utilizing these vectors, we perform
preliminary classification predictions for the nodes, thereby creating pseudo-labels. Based on these
pseudo-labels, the unlabeled nodes with pseudo-label predictions exceeding a preset threshold q are
selscted to update unseen class prototypes. For labeled nodes with pseudo-label predictions matching
the ground-truth label, we use them to refine prototypes for seen classes. Our update rule is defined
as:

pc =

{
(1− µ) · pc + µ · z if ȳ = c and Pr(ȳ) > q, ȳ is the pseudo-label of z

pc otherwise.
(7)

Here, we use Pr(ȳ) > q to denote the selected nodes whose pseudo-label predicted probability
exceeds threshold q. µ is the updated parameter. This strategy not only significantly enhances the
model’s generalization capability for unseen classes but also ensures that the classification accuracy
for seen classes is maintained and enhanced.

3.5 Training and Testing

Considering the significant modal differences between the initial class prototypes (i.e., semantic
vectors) and node embedding, we design a carefully planned two-stage model training approach. This
strategy aims to gradually narrow the inter-modal gap through a careful optimization process, leading
to improved and refined class prototypes. In the first phase, we focus on roughly tuning the prototype
to establish a solid starting point. Subsequently, in the second phase, labeling and adjacency-guided
refinement of the prototypes ensures the quality of prototype learning. Through this staged training,
our model can achieve a more accurate representation of the class prototypes.

In the first phase, the backbone is pre-trained using unsupervised spectral contrastive loss Luscl.
Luscl means that the positive samples are the nodes themselves, and the negative samples are selected
from other nodes in the graph. In the second phase, the model is trained using Lscl.

During the test phase, the embedding zi of xi in the latent space is obtained by the network. Based
on the learned class prototypes, we predict its label by :

c∗ = arg max
c∈Cu/C

(z × pc), (8)

c ∈ Cu/C corresponds to ZNC/GZNC tasks.
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Figure 1: The overall framework for SpeAr. The whole training process consists of two stages.

4 Experiment

4.1 Experimental Setup

Datasets. Following the methods DGPN [10], DBiGCN [12], and GraphCEN [13], we seek to
substantiate the validity of our proposed SpeAr through its application to three public datasets: Cora
[1], Citeseer [1], C-M10M [35]. To ensure equitable comparison, the data partitioning strategy
mirrors that of the aforementioned methods. The dataset details are shown in Table 1. For Class
Split I and II, the evaluation criterion is classification accuracy. In addition to that, we also give the
Class Split III to validate the effectiveness of SpeAr in handling GZNC. The evaluation criterion
is H , defined as H = 2 × (seen × unseen)/(seen+ unseen). The seen and unseen are the
classification accuracies of seen and unseen classes, respectively.

For class semantic vectors (CSVs), DGPN has delineated two primary categories: label-based CSVs,
which are word embeddings derived from class names, and text-based CSVs, which are document
embeddings textual descriptions related to the class. These vectors are extracted utilizing the esteemed
natural language processing model, Bert-Tiny [36]. In our experiments, we mainly use text-based
CSVs because text contains richer information. Furthermore, we examine the different impacts of
employing distinct CSVs on the experimental outcomes.

Baselines Methods. DGPN draws upon a suite of comparative methods rooted in traditional zero-
shot learning. We follow DGPN and list algorithms such as DAP [37], ESZSL [21], ZS-GCN [38],
WDVSc [39], Hyperbolic-ZSL [40], DAP and ZS-GCN, as well as their CNN-enhanced counterparts,
DAP(CNN) and ZS-GCN(CNN). These conventional methods, predominantly tailored for visual
domain data (e.g., image data) prediction are often ill-equipped to handle the graph data, thereby
exhibiting limitations in effectively addressing the ZNC problem. Our study places a particular
emphasis on evaluating the performance of our proposed SpeAr model against these established
methods such as DGPN [10], DBiGCN [12], GraphCEN [13], underscoring the superior effectiveness
of SpeAr in the context of ZNC.

Parameter Settings. In SpeAr, we employ a two-stage training strategy. During the first phase,
the model is trained by the loss Luscl, which is governed by parameters α and β. In this stage,
samples are utilized for updating category prototypes only if the predicted probability of pseudo-
labels exceeds a predefined threshold q, with q restricted to the range {0.5, 0.6, 0.7, 0.8, 0.9}. To
ensure the stability of the update process, the prototype update parameter µ is cautiously set to 0.1
to prevent the introduction of erroneous information that might arise from higher values. In the
second phase, the loss function Lscl continues with the parameters α and β established in the first
phase. Here, we refine the prototype update process by selecting the top-s nodes with the highest
pseudo-label probabilities, with s uniformly set to 1000 across all datasets. Furthermore, to achieve
fine-tuning of the prototypes, the update parameter µ is further reduced to 0.01 in this phase.
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Table 1: Summary of the datasets.

Dataset Nodes Edges Features Classes
ZNC GZNC

Class Split I Class Split II Class Split III
[Train/Val/Test] [Train/Val/Test] [Train/Val/Test]

Cora 2708 5429 1433 7 [3/0/4] [2/2/3] [3/0/7]
Citeseer 3327 4732 3703 6 [2/0/4] [2/2/3] [2/0/6]
C-M10M 4464 5804 128 6 [3/0/3] [2/2/3] [3/0/6]

4.2 Experimental Results

Table 2 records the ZNC accuracies corresponding to Class Split I and II. A thorough analysis of
Table 2 yields the following insights:

Table 2: Zero-shot node classification accuracy (%).

Cora Citeseer C-M10M
C

la
ss

Sp
lit

I
RandomGuess 25.35 24.86 33.21

DAP 26.56 34.01 38.71
DAP (CNN) 27.80 30.45 32.97

ESZSL 27.35 30.32 37.00
ZS-GCN 25.73 28.62 37.89

ZS-GCN (CNN) 16.01 21.18 36.44
WDVSc 30.62 23.46 38.12

Hyperbolic-ZSL 26.36 34.18 35.80
DGPN 33.78 38.02 41.98

DBiGCN 45.14 40.97 45.45
GraphCEN 48.43 40.77 44.17

SpeAr (Ours) 60.48 59.72 54.22
Improve 24.88% 45.77% 19.30%

C
la

ss
Sp

lit
II

RandomGuess 32.69 50.48 49.73
DAP 30.22 53.30 46.79

DAP (CNN) 29.83 50.07 46.29
ESZSL 38.82 55.32 56.07

ZS-GCN 29.53 52.22 55.28
ZS-GCN (CNN) 33.20 49.27 51.37

WDVSc 34.13 52.70 46.26
Hyperbolic-ZSL 37.02 46.27 55.07

DGPN 46.40 61.90 62.46
DBiGCN 49.20 60.11 71.86

GraphCEN 50.61 60.47 70.83
SpeAr (Ours) 58.20 75.13 79.00

Improve 15.00% 21.37% 9.94%

a) For Class Split I, SpeAr
achieves a notable accuracy en-
hancement on the Cora, Cite-
seer, and C-M10M datasets when
compared to existing methods.
This enhancement underscores
the potency of SpeAr’s spectral
decomposition and prototype up-
dating tactics. By delving deep-
er into the intrinsic class cluster
structures embedded within un-
labeled data, SpeAr significantly
amplifies its comprehension and
identification of unseen classes,
while ensuring good separability
between different classes.

(b) For Class Split II, SpeAr
shows a significant advantage
over the state-of-the-art methods.
In this scenario, model parame-
ters are determined using the val-
idation set. This approach is jus-
tified within the methodology of
our study, as our objective is to
thoroughly explore the informa-
tion across all classes. We be-
lieve that a model optimized us-
ing validation sets can achieve a
comprehensive understanding of
the classes and is applicable to
some extent to the recognition of
unseen classes.

Table 3 records the GZNC accu-
racies corresponding to Class Splits III. A thorough analysis of Table 3 yields the following insights:
We record the performance of the DGPN and DBiGCN in addressing the GZNC problem. Table 3
shows that both DGPN and DBiGCN exhibit suboptimal performance when tackling GZNC. The clas-
sification accuracies for unseen classes are less than satisfactory and there is a significant prediction
bias. In contrast, SpeAr concurrently learns the prototypes for both seen and unseen classes during
its training process. Experimental results indicate that SpeAr achieves a significant enhancement in
classification accuracy of unseen classes compared to DGPN and DBiGCN, and gained a better H
value. This enhancement indicates that SpeAr bolsters the model’s comprehension of unseen classes
through more intensive mining of the clustering information embedded within unlabeled nodes,
thereby enhancing inter-class separability and partially mitigating prediction bias. However, we also
note that despite the progress made by SpeAr, there is still room for improving its performance.
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Table 3: Generalized zero-shot node classification accuracy (%).

Cora Citeseer C-M10M
seen unseen H seen unseen H seen unseen H

DGPN 94.26 0 0 89.76 0 0 96.71 0 0
DBiGCN 66.39 1.27 2.50 35.70 4.83 8.50 30.04 4.30 7.52
SpeAr(Ours) 34.84 26.32 29.98 27.17 25.78 26.45 26.75 18.95 22.19

(a) Model ablation under Class Split I (b) Analysis of threshold value q

Figure 2: Ablation study and parametric analysis of threshold value q.

Future work will further explore how to optimize the model to achieve superior GZNC classification
results.

4.3 Ablation Study

In SpeAr, the loss Lscl plays an essential role, as the node embeddings optimized by it approximate
the eigenvectors obtained through spectral decomposition. By optimizing the Lscl, we not only
capture the local connectivity information of the graph but also uncover the implicit class cluster
structures within the unlabeled nodes, thereby achieving a comprehensive of the class information
depicted in the graph. In Figure 2 (a), the Model1 indicates that upon the removal of the Lscl loss from
SpeAr, its performance experiences a significant degradation, especially on the Citeseer dataset. This
result strongly demonstrates that the Lscl, by effectively leveraging the relationships between nodes
in the graph, deeply mines the categorical information on the graph and enhances the discriminability
between classes.

Furthermore, the mechanism of prototype updating is equally crucial. Random initialization of
prototypes can lead to instability in the results. Therefore, this study employs semantic vectors as the
initial values for prototypes and devises a two-stage training strategy. In the first phase, we utilize an
unsupervised spectral contrastive loss for node embedding. In the second phase, we take the updated
prototypes from the first phase as the initial values and further optimize the representations of nodes
and prototypes using a supervised spectral contrastive loss. In Figure 2 (a), Model2 is the model that
omits the first phase and directly uses semantic vectors as the initial prototypes for the second phase.
The results decline across three datasets. This phenomenon further confirms the effectiveness of our
designed two-stage training strategy.

4.4 Parametric Analysis

The threshold value q is instrumental in determining the subset of nodes that contribute to the
prototype update process. When a sample’s pseudo-label probability exceeds the threshold q, it
updates the class prototypes. The choice of q depends on model and dataset: low q risks noisy
pseudo-labels, degrading performance, high q ensures accuracy but limits unlabeled data utilization.
In SpeAr, select q using the validation set. As shown in Figure 2 (b), across three datasets, as q
varies, the accuracy changes in both the test and validation sets are roughly consistent, confirming the
strategy’s effectiveness and reliability.

In SpeAr, Lscl includes two pivotal parameters α and β, deciding the relative significance of labeled
and unlabeled samples, respectively. As illustrated in the Figure 3, the selection range for α and β is
constrained to the set {0.25, 0.5, 0.75, 1}. We record the effects of α and β on Cora, Citeseer, and
C-M10M. The α and β regulate the contribution of labeled and unlabeled samples in overall loss. The
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(a)  Cora (c)  C-M10M(b) Citeseer

Figure 3: The effects of α and β on Cora, Citeseer, and C-M10M.
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Figure 4: An example of the SpeAr’s effectiveness in mitigating prediction bias on Cora dataset.

results reveal a notable trend: when the value of β is larger than α, the model generally exhibits better
performance, with this advantage being particularly prominent when β = 1. The conclusions meet
our expectations. A larger β can reduce overfitting to seen classes and better exploit the clustering
information embedded in unlabeled nodes. Thus, the parameters need to satisfy β > α. This suggests
that the α and β are not sensitive to some extent.

4.5 Further Analysis.

Table 3 demonstrates the significant effectiveness of the SpeAr model in mitigating predictive bias,
with marked improvements in classification accuracy for both seen and unseen classes. In addition,
for Cora, Citeseer, and C-M10M, we find that existing models fail to recognize some of the categories.
Initially, we define recall as the proportion of samples correctly classified into a class relative to
the total number of samples in that class. As shown in Figure 4 , the recall of certain classes is
extremely low or even zero for DGPN and DBiGCN on Cora dataset. For instance, the unseen
classes “Probabilistic Methods” and “Theory” of Cora exhibit a zero recall rate when predicted by
the DGPN model. This reveals the prediction bias issue inherent in current methods when addressing
the ZNC problem, where some classes are not correctly identified, and unseen class nodes are
erroneously concentrated in a few incorrect classes. In contrast, the SpeAr model provides more
accurate classification outcomes for all unseen classes. These results further confirm that the SpeAr
model can improve the recognition of unseen classes and enhance class separability by utilizing and
mining the class cluster information in unlabeled nodes.

SpeAr has demonstrated exceptional performance in addressing the ZNC problem. We argue that
this methodology is equally efficacious when applied to conventional zero-shot learning endeavors,
which are predominantly concerned with the identification of unseen classes within the Euclidean
space. When applying SpeAr to such tasks, the central challenge lies in effectively constructing the
adjacency relationships between samples and integrating them with the loss function proposed in this
paper.

5 Conclusion

This paper introduces a spectral method designed to address the challenge of ZSNC, ensuring
the effective unearthing of class cluster structures within graphs and enhancing the separability

9



between classes. Unlike existing approaches that focus on leveraging external knowledge to mitigate
predictive bias, our novel approach SpeAr accentuates the exploration of the inherent, implicit cluster
information encapsulated within the data of unlabeled nodes. SpeAr optimizes node embeddings by
minimizing spectral contrast loss and iteratively updates the class prototypes with semantic vectors as
initialization. Empirical results demonstrate that SpeAr achieves significant accuracy improvements
in tackling ZNC and GZNC problems, effectively alleviating predictive bias. In future research, we
plan to extend the concepts of this study to other tasks with similar training data, thereby further
validating its universality and efficacy.
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6 Appendix material

6.1 Proof of Theorem 3.1

Proof. We can expand Lsd(F,A) and obtain

Lsd(F,A) =
∑

x,x′∈X

(
Axx′√
AxAx′

− f>x fx′

)2

= const +
∑

x,x′∈X

(
−2Axx′f(x)>f (x′) +AxAx′

(
f(x)>f (x′)

)2)
, (9)

where fx =
√
Axf(x) is a re-scaled version of f(x). At a high level, we follow the proof in [30],

while the specific form of loss varies with the different definitions of positive/negative pairs. The
form of Lscl(f) is derived from plugging Axx′ and Ax.

Recall that Axx′ is defined by

Axx′ = α
∑
ci∈C

Ex∼Pci
,x′∼Pci

Al
xx′ + βEx∼Pu,x′∼Pu

Axx′ , (10)

thus we have,

− 2
∑

x,x′∈X
Axx′f(x)>f(x′)

=− 2α
∑
ci∈C

Ex∼Pci
,x′∼Pci

Axx′f(x)>f(x′)− 2βEx∼Pu,x′∼Pu
Axx′f(x)>f(x′)

=− 2α
∑
ci∈C

Ex∼Pci
,x′∼Pci

,Axx′ 6=0f(x)>f(x′)− 2βEx∼Pu,x′∼Pu,Axx′ 6=0f(x)>f(x′)

=− 2α
∑
ci∈C

Ex∼Pci
,x+∈{x′|Axx′ 6=0,x′∼Pci

}f(x)>f(x+)− 2βEx∼Pu,x+∈{x′|Axx′ 6=0,x′∼Pu}f(x)>f(x+)

=− 2αL1(f)− 2βL2(f).

The penultimate equation is derived from the following lemma:

Lsd(F ) = L(f) + const

where L(f) , −2 · Ex,x+

[
f(x)>f(x+)

]
+ Ex,x−

[(
f(x)>f(x−)

)2]
. (11)

Recall that Ax is given by

Ax =
∑
x′∈X

Axx′ (12)

= α
∑
ci∈C

Ex∼Pci
Ax + βEx∼Pu

Ax. (13)
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thus plugging Ax and Ax′ we have,∑
x,x′∈X

AxAx′
(
f(x)>f (x′)

)2
=
∑

x,x′∈X

(
α
∑
ci∈C

Ex∼Pci
Ax + βEx∼Pu

Ax

)
·

α∑
cj∈C

Ex′∼Pcj
Ax′ + βEx′∼Pu

Ax′

(f(x)>f (x′)
)2

=α2
∑

x,x′∈X

∑
ci∈C

Ex∼Pci
Ax

∑
cj∈C

Ex′∼Pcj
Ax′

(
f(x)>f (x′)

)2
+ 2αβ

∑
x,x′∈X

∑
ci∈C

Ex∼Pci
AxEx′∼PuAx′

(
f(x)>f (x′)

)2
+ β2

∑
x,x′∈X

Ex∼Pu
AxEx′∼Pu

Ax′
(
f(x)>f (x′)

)2
=α2

∑
ci∈C

∑
cj∈C

Ex∼Pci
,x−∈{x′|Axx′=0,x′∼Pcj

}[
(
f(x)>f (x′)

)2
]

+ 2αβ
∑
ci∈C

Ex∼Pci
,x−∈{x′|Axx′=0,x′∼Pu}[

(
f(x)>f (x′)

)2
]

+ β2Ex∼Pu,x−∈{x′|Axx′=0,x′∼Pu}[
(
f(x)>f (x′)

)2
]

=α2L3(f) + 2αβL4(f) + β2L5(f).

The proof of Theorem 3.1 is finished.

6.2 Additional Experiments

6.2.1 Zero-shot node classification for large-scale data

For SpeAr, the spectral contrastive loss computes the similarities between samples, with a time
complexity of O(NsN

+
s + NuN

+
u + NsNu + NsN

−
s + NuN

−
u ). Let Ns be the count of labeled

nodes, N+
s be the count of positive nodes of labeled nodes, and N−s the negative nodes. Nu is the

count of unlabeled nodes, with N+
u and N−u representing the count of positive and negative nodes,

respectively. This complexity reveals a substantial demand for computational resources, presenting a
notable challenge for processing large-scale graph data.

Following GraphCEN [13], we validate the efficacy of the SpeAr on large-scale dataset, such as
ogbn-arxiv [41]. Ogbn-arxiv has 169343 nodes, and 2484941 edges. The feature dimension is 128
and the total class number is 40. Class split I is [20/0/20], 20 seen classes as training set, 20 unseen
classes as testing set. Class split II is [13/13/14], 13 seen classes as training set, 13 unseen classes as
validation set, and 14 unseen classes as testing set. Confronted with memory limitations, we adopt
a multi-round subgraph extraction strategy. Specifically, in each round, we extract subgraphs that
encompass both seen and unseen class nodes and execute the SpeAr algorithm on these subgraphs.
Through this iterative process of extraction, we aim to progressively accumulate performance gains
that mirror the execution of SpeAr on the entire graph, all while maintaining computational efficiency.
As shown in Table 4, our proposed method SpeAr shows significant improvement in performance
metrics compared to existing methods. The comparative analysis in the table highlights the superiority
of our method in capturing class-discriminative information in graph structures.

Table 4: A comparative performance analysis of DGPN, DBiGCN, and ours SpeAr for zero-shot
node classification on ogbn-arxiv. (%)

DGPN DBiGCN GraphCEN SpeAr(Ours)
Class Split I 22.37 21.40 23.96 30.45
Class Split II 21.95 25.92 28.36 32.20
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Table 5: The Comparison of zero-shot node classification accuracy (%) using the different CSDs.
Cora Citeseer C-M10M

TEXT LABEL Decline rate TEXT LABEL Decline rate TEXT LABEL Decline rate
DAP 26.56 25.34 -4.59 % 34.01 30.01 -11.76% 38.71 32.67 -15.60%
ESZSL 27.35 25.79 -5.70% 30.32 28.52 -5.94% 37.00 35.02 -5.35%
ZS-GCN 25.73 23.73 -7.77% 28.62 26.11 -8.77% 37.89 33.32 -12.06%
WDVSc 30.62 18.73 -38.83% 23.46 19.70 -16.02% 38.12 30.82 -19.15%
Hyperbolic-ZSL 26.36 25.47 -3.38% 34.18 21.04 -38.44% 35.80 34.49 -3.66%
DGPN 33.78 32.55 -3.64% 38.02 31.83 -16.28% 41.98 35.05 -16.51%
DBiGCN 45.14 39.05 -13.49% 40.97 39.10 -3.10% 45.45 43.71 -3.83%
SpeAr(Ours) 60.48 49.52 -18.12% 59.72 48.88 -18.15% 54.22 47.05 -13.22%
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Figure 5: An example of the SpeAr model’s effectiveness in mitigating prediction bias on Citeseer.

6.2.2 Discussion on Different CSVs

The impact of external knowledge from different sources on model outcomes is significantly varied.
In Table 5, we individually examined the effects of LABEL-based CSVs and TEXT-based CSVs as
external knowledge. Given that TEXT data encapsulates a richer set of categorical information, the
SpeAr model utilizing text-based CSVs demonstrates superior performance. Indeed, when employing
LABEL-based CSVs as the input external knowledge, SpeAr also outperforms existing methods,
further corroborating the efficacy of the spectral contrastive loss and prototype updating mechanisms
proposed in this paper for excavating and identifying categories on graphs. This series of results
underscore that our approach significantly enhances the discriminability between different classes,
thereby elevating the model’s overall recognition capability.

6.2.3 Discussion on SpeAr model’s effectiveness in mitigating prediction bias

We verify the benefits of SpeAr in mitigating prediction bias on the dataset Citeseer. As shown in
Figure 5, the recall for certain classes is extremely low or even zero. For instance, the unseen classes
“Human Computer Interaction” and “Artificial Intelligence” exhibit a zero recall rate when predicted
by the DBiGCN. In contrast, the SpeAr model provides more accurate classification outcomes for all
unseen classes.

7 Limitation

Although the SpeAr model shows excellent performance on the ZNC task, its relatively high compu-
tational complexity may become a challenge when dealing with large-scale graph data. Especially
in application scenarios with limited resources or high real-time requirements, the high computa-
tional cost may limit the usefulness of the model. Therefor, we effectively alleviate this problem by
adopting the strategy of multi-round subgraph training. The model can gradually learn and integrate
information from different subgraphs, thus realizing effective processing of large graph data while
maintaining computational efficiency.
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8 Experiments Compute Resources

Computation resources: We execute our code on a computer with NVIDIA GeForce RTX 3090
(GPU) and Intel Xeon Gold 6254 (CPU).

9 Societal Impacts

The introduction of SpeAr has made a significant contribution to the advancement of zero-shot
node classification tasks. It demonstrates tremendous potential in the field of data analysis, aiding
researchers in uncovering new insights and knowledge. There are no negative societal impacts on our
work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the abstract and introduction include the claims made in the paper.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the proposed method in terms of time complexity,
see Appendix 7.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This paper provide the full set of assumptions and a complete (and correct)
proof. This paper proposes Theorem 3.1 in Subsection 3.3 and a complete proof in Appendix
6.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of the algorithm and its implementation in Section 3 and 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the relevant code at github.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper gives all the training and test details in Subsection 4.1.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: This paper reports the zero-shot node classification precision, generalized
zero-shot classification results H in Subsection 4.2, and class recall for the Cora dataset in
Subsection 4.5.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the experiments compute resources of our work in Appendix 8.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Appendix 9.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the code package.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide details of new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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