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Abstract
Reinforcement learning (RL) in real-world tasks
such as robotic navigation often encounters envi-
ronments with asymmetric traversal costs, where
actions like climbing uphill versus moving down-
hill incur distinctly different penalties, or tran-
sitions may become irreversible. While recent
quasimetric RL methods relax symmetry assump-
tions, they typically do not explicitly account for
path-dependent costs or provide rigorous safety
guarantees. We introduce Quasi-Potential Rein-
forcement Learning (QPRL), a novel framework
that explicitly decomposes asymmetric traversal
costs into a path-independent potential function
(Φ) and a path-dependent residual (Ψ). This de-
composition allows efficient learning and stable
policy optimization via a Lyapunov-based safety
mechanism. Theoretically, we prove that QPRL
achieves convergence with improved sample com-
plexity of Õ(

√
T ), surpassing prior quasimetric

RL bounds of Õ(T ). Empirically, our experi-
ments demonstrate that QPRL attains state-of-the-
art performance across various navigation and
control tasks, significantly reducing irreversible
constraint violations by approximately 4× com-
pared to baselines.

Project Page: https://pralgomathic.github.io/qprl

1. Introduction
Reinforcement Learning (RL) has shown great success in
solving sequential decision-making tasks, from robotic con-
trol to autonomous navigation (Sutton & Barto, 2018; Silver
et al., 2016). In many real-world scenarios – for example, a
robot traversing terrain where uphill moves consume more
energy than downhill, or a path that becomes inaccessible
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Figure 1. Asymmetric traversal costs between states s1 and s2.
The uphill traversal from s1 to s2 incurs a higher cost of 5, repre-
sented by the solid orange arrow, whereas the downhill traversal
from s2 to s1 incurs a lower cost of 1, shown by the dashed teal
arrow. This visualization highlights the direction-dependent asym-
metry, emphasizing QPRL’s ability to learn traversal paths under
asymmetric costs.

after one traversal – actions have irreversible or direction-
dependent costs (Fig. 1). In such environments, the cost
of moving from one state to another may differ based on
direction or path-dependence, a challenge that remains un-
derexplored in the RL literature (Eysenbach et al., 2019b).
Traditional RL algorithms, in practice, often overlook asym-
metric or irreversible dynamics, treating costs as if they
were symmetric. This can lead to suboptimal policies in
environments with one-way transitions.

Existing work has introduced the concept of quasimetrics
to relax the symmetry requirement in modeling traversal
costs (Hartley et al., 2022; Wang et al., 2023). Quasimet-
rics allow for more accurate representations of environments
where directionality matters, such as uphill and downhill
navigation or irreversible state transitions (Valieva & Baner-
jee, 2024). While recent advances in quasimetric learning
have shown promise in goal-reaching tasks (Hartley et al.,
2022; Eysenbach et al., 2019b), these approaches largely fo-
cus on estimating value functions without fully considering
the cumulative, path-dependent traversal costs that arise in
long-term planning scenarios (Valieva & Banerjee, 2024).
QuasiNav (Hossain et al., 2025b) applied quasimetric RL
to navigation, showing that modeling uphill vs. downhill
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costs leads to safer paths. However, QuasiNav did not in-
corporate a formal safety guarantee and primarily addressed
cost asymmetry in a planning context.

In this paper, we propose Quasi-Potential Reinforcement
Learning (QPRL), extending quasimetric approaches by
explicitly decomposing asymmetric traversal costs into a
path-independent potential (Φ) and a path-dependent resid-
ual (Ψ). This decomposition is intuitive; the potential (Φ)
represents reusable energy or cost, analogous to gravita-
tional potential in navigation tasks, while the residual (Ψ)
captures additional irreversible or dissipative costs, such
as friction or single-use resources. Unlike conventional
value functions, which often overlook path-dependency, our
quasi-potential explicitly modeling the path-dependent and
directional nature of real-world environments (Wang et al.,
2023).

Our framework is grounded in rigorous theoretical founda-
tions. We derive convergence guarantees for quasi-potential
functions using a modified Bellman operator and establish
PAC-MDP bounds for sample efficiency, similar to existing
theoretical analyses in goal-reaching RL (Yang et al., 2019;
Zhang et al., 2020). Additionally, we provide a Lyapunov-
based stability analysis that ensures constraint satisfaction
during exploration, drawing inspiration from stability anal-
yses in safe RL (Achiam et al., 2017; Chow et al., 2018).
This theoretical foundation allows QPRL to optimize ex-
ploration while maintaining safety constraints, a critical re-
quirement in dynamic, asymmetric environments (Thomas
et al., 2023).

Our main contributions: We propose Quasi-Potential Re-
inforcement Learning (QPRL), with the following advances:

• Quasi-potential decomposition: A novel quasimet-
ric decomposition d(s, g) = Φ(g) − Φ(s) + Ψ(s →
g), separating path-independent potential Φ and path-
dependent residual Ψ. This generalizes prior quasimet-
ric RL (Wang et al., 2023) and enables interpretable
modeling of irreversible transitions.

• Theoretical and empirical advances: We prove a
faster convergence rate for QPRL (improving sample
complexity from linear to Õ(

√
T )) and demonstrate

state-of-the-art performance on tasks with irreversible
dynamics, with significantly fewer constraint viola-
tions (4× reduction) than baselines.

• Lyapunov Safety Mechanism and Algorithmic De-
sign: We incorporate a Lyapunov-based safety layer
(Perkins & Barto, 2002) that monitors and restricts the
policy to avoid irreversible unsafe transitions. Specifi-
cally, our policy optimization algorithm (Algorithm 1)
incorporates safety-by-design principles by enforcing
Φ-Ψ constraints through Lagrange multipliers, ensur-

ing quasimetric properties and robustly avoiding irre-
versible states.

• Extensive Empirical Validation: We conduct compre-
hensive empirical evaluations across a range of chal-
lenging environments with asymmetric traversal costs,
showing that QPRL significantly outperforms state-of-
the-art methods in terms of sample efficiency, asym-
metric cost handling, and overall performance.

2. Related Work
Reinforcement Learning (RL) has traditionally focused on
optimizing policies under symmetric traversal assumptions,
limiting its applicability in environments with inherently
asymmetric dynamics. Recent advancements have intro-
duced frameworks like quasimetric learning to model traver-
sal asymmetry effectively (Wang et al., 2023). Quasimetrics
(Wang & Isola, 2022) extend traditional metrics by allowing
for non-symmetric distance calculations, which are particu-
larly crucial in scenarios where traversal costs vary based on
directionality or path-dependent factors (Silver et al., 2016).
Existing research has made significant progress in apply-
ing quasimetric models for goal-reaching tasks. Notably,
(Eysenbach et al., 2019a) introduced diversity-driven skill
learning, emphasizing the decomposition of skill learning,
exploration, and planning, which set a strong foundation
for handling asymmetric and complex dynamics. Similarly,
(Eysenbach et al., 2022) leveraged contrastive learning prin-
ciples to improve generalization in goal-conditioned RL.
However, these approaches largely focus on estimating value
functions without fully considering the cumulative, path-
dependent traversal costs required in long-term planning
scenarios.

Recent advances in safe reinforcement learning have
also highlighted the importance of stability during explo-
ration, especially in dynamic, asymmetric environments.
Lyapunov-based safety analysis (Lobo et al., 2024; Chow
et al., 2018) has been proposed as an effective means to
ensure that policies derived from quasi-potential functions
maintain safety constraints during exploration (Chow et al.,
2018). These methods ensure robust learning, especially in
environments characterized by high variability and traversal
asymmetries. Inspired by these approaches, QPRL incor-
porates a Lyapunov-based recovery mechanism to provide
stability guarantees during exploration, contributing to both
safety and performance in complex environments.

The idea of leveraging potential functions (Jeon et al., 2023)
to modify the reward structure and accelerate learning is
well established in RL literature. For instance, potential-
based reward shaping, as presented by Ng et al. (Ng et al.,
1999), has shown how modifying rewards through poten-
tial functions preserves the optimal policy while improv-

2



Quasi-Potential Reinforcement Learning (QPRL)

ing learning speed. Wiewiora et al. (Wiewiora et al.,
2003) further developed principled methods for advising re-
inforcement learning agents using potential functions. More
recently, Okudo and Yamada (Okudo & Yamada, 2023)
demonstrated the effectiveness of learning subgoals using
potential-based reward shaping in long-horizon tasks.

This paper extends the quasimetric learning paradigm by
introducing QPRL, which explicitly models path-dependent
traversal costs with quasi-potential functions. Unlike tra-
ditional value-based RL methods (Haarnoja et al., 2018;
Lillicrap, 2015), which often struggle in environments with
directional cost disparities, our approach is designed to opti-
mize long-term cost efficiency under asymmetric dynamics.
The experimental results demonstrate QPRL’s superior per-
formance across multiple benchmarks compared to both
standard baselines like DDPG + HER (Andrychowicz et al.,
2017) and recent state-of-the-art approach Quasimetric Re-
inforcement Learning (QRL) (Wang et al., 2023).

3. Background
3.1. Quasimetric Spaces for Asymmetric RL

Consider a Markov Decision Process (MDP) with asym-
metric costs, defined by the tuple (S,A, P, C, γ), where
C : S × A × S → R is a cost function satisfying
C(s, a, s′) ̸= C(s′, a′, s) for some transitions. The ob-
jective is to learn a policy π : S → ∆(A) minimizing:

J(π) = Eπ

[ ∞∑
t=0

γtC(st, at, st+1)

]
.

Traditional RL methods (Sutton & Barto, 2018) struggle
in such settings due to their implicit assumption of sym-
metric dynamics. A quasimetric space (S, d) provides the
mathematical foundation for modeling direction-dependent
traversal costs. Formally, a quasimetric is a function
d : S × S → R≥0 satisfying:

1. Non-negativity: d(s, s′) ≥ 0 ∀s, s′ ∈ S,

2. Identity: d(s, s) = 0 ∀s ∈ S,

3. Triangle Inequality: d(s, s′′) ≤ d(s, s′) +
d(s′, s′′) ∀s, s′, s′′ ∈ S.

Unlike metrics, quasimetrics do not require symmetry
(d(s, s′) ̸= d(s′, s)), making them ideal for asymmetric
RL.

QPRL’s Quasimetric Structure Prior quasimetric RL
methods (Wang et al., 2023) learn a monolithic d(s, g)
but fail to distinguish path-dependent and path-independent

costs. QPRL addresses this via decomposition:

d(s, g) = Φ(g)− Φ(s)︸ ︷︷ ︸
Path-Independent

+ Ψ(s→ g)︸ ︷︷ ︸
Path-Dependent

, (1)

where:

• Φ : S → R is a state potential (e.g., elevation in
navigation),

• Ψ : S × S → R≥0 models irreversible costs (e.g.,
energy for uphill traversal).

3.2. Theoretical Challenges in Quasimetric MDPs

Extending reinforcement learning to quasimetric MDPs in-
troduces two fundamental challenges absent in symmetric
settings:

• Asymmetric Bellman Contraction: The standard
Bellman operator T , defined as:

(TV )(s) = min
a∈A

Es′∼P (·|s,a) [C(s, a, s
′) + γV (s′)] ,

loses its contraction property under quasimetrics.
Specifically, T is contractive only if:

sup
s̸=s′

d(s, s′) + d(s′, s)

d(s, s′)
<∞

where d(s, s′) is the quasimetric. This condition fails
in real-world tasks with irreversible transitions (e.g.,
robotic hardware degradation).

• Non-Markovian Reward Attribution: Path-
dependent costs Ψ(s → s′) violate the Markov
property, rendering traditional dynamic programming
inapplicable. Specifically, the optimality condition:

V ∗(s; g) = min
a

Es′ [C(s, a, s′) + γV ∗(s′; g)]

no longer holds when C(s, a, s′) depends on historical
state transitions.

Our framework addresses these challenges via:

• Stable Policy Updates: By decomposing d(s, g) =
Φ(g)−Φ(s) +Ψ(s→ g), QPRL ensures the Bellman
operator contracts to a unique fixed point even under
unbounded asymmetry (Theorem 4.1).

• Decoupled Cost Modeling: Path-dependent costs
Ψ(s → s′) are learned separately from path-
independent potentials Φ(s), enabling dynamic pro-
gramming through the modified Bellman equation:

Ψ(s→ g) = min
a

Es′ [C(s, a, s′) + Ψ(s′ → g)] .

This isolates non-Markovian dynamics, preserving con-
vergence guarantees (Lemma 4.2).
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3.3. Potential Functions and Safety

Potential functions Φ : S → R have been used in RL
for reward shaping (Ng et al., 1999), but existing methods
assume symmetry. QPRL reinterprets Φ as a Lyapunov
function V(s), enforcing:

Es′∼π(·|s)[V(s′)] ≤ V(s) + ϵ,

where ϵ > 0 bounds allowable risk. This ensures recover-
ability from unsafe states, a novel extension of potential-
based methods to asymmetric settings.

3.4. Relationship to Value Functions

For goal g, the optimal value function V ∗(s; g) relates to
the quasimetric as V ∗(s; g) = −d(s, g). QPRL extends this
via:

V ∗(s; g) = −(Φ(g)− Φ(s) + Ψ(s→ g)),

enabling a Bellman equation that accounts for path depen-
dence:

Ψ(s→ g) = min
a

Es′ [C(s, a, s′) + Ψ(s′ → g)] .

This decouples reversible (Φ) and irreversible (Ψ) costs,
differing significantly from prior quasimetric RL. We rep-
resent the asymmetric cost of a transition as c(s, a, s′) =
Φ(s) − Φ(s′) + Ψ(s, a, s′), where Φ is a learnable poten-
tial function and Ψ is the residual that accounts for non-
conservative (path-dependent) cost.

Figure 2. QPRL vs. QRL: QRL uses a monolithic quasimetric
d(s1, s2). QPRL decomposes costs into Φ (state potentials) and
Ψ (path residuals), enabling Lyapunov-stable exploration (green
region).

4. Methodology
4.1. Quasi-Potential Decomposition

Traditional quasimetric RL methods model asymmetric
costs with a monolithic function d(s, g), conflating path-
dependent and path-independent dynamics. To address this,

QPRL introduces a structured decomposition:

d(s, g) = Φ(g)− Φ(s)︸ ︷︷ ︸
Path-Independent

+ Ψ(s→ g)︸ ︷︷ ︸
Path-Dependent

, (2)

where:

• Φ : S → R is a state potential capturing reversible
costs (e.g., gravitational potential in navigation).

• Ψ : S × S → R≥0 models irreversible residual costs
(e.g., energy expenditure for uphill traversal).

This decomposition enables interpretable cost attribution:
Φ encodes global state values, while Ψ captures action-
specific penalties. For instance, in a terrain traversal task,
Φ(s) could correspond to an estimated elevation potential
of state s, while Ψ(s, a, s′) captures additional cost due to
the specific move (like slippage or one-time obstacles).

4.2. Learning Framework

State Representation Learning A state encoder fϕ :
S → Z maps high-dimensional states to a latent space
Z , reducing dimensionality while preserving critical fea-
tures. A transition model Tψ : Z × A → Z predicts the
next latent state z′:

ẑ′ = Tψ(z, a), where z = fϕ(s).

The encoder and transition model are trained jointly via:

LT = E(s,a,s′)∼D
[
∥Tψ(fϕ(s), a)− fϕ(s

′)∥2
]
,

ensuring accurate latent dynamics for downstream planning.

Quasi-Potential Function Learning The quasi-potential
function d(s, g) is trained to reconstruct observed costs
c(s→ g):

LU = E(s,g)∼D

[
(Φ(g)− Φ(s) + Ψ(s→ g)− c(s→ g))

2
]
.

To enforce quasimetric axioms, we impose constraints:

• Non-Negativity: Ψ(s → s′) ≥
max (0, c(s→ s′)− (Φ(s′)− Φ(s))),

• Triangle Inequality: Ψ(s → s′′) ≤ Ψ(s → s′) +
Ψ(s′ → s′′).

These are implemented via a penalty term:

Lconstraint = E(s,s′)∼D

[
ReLU

(
Ψ(s→ s′) (3)

−
(
c(s→ s′)− (Φ(s′)− Φ(s))

))2]
. (4)
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4.3. Safe Exploration via Lyapunov Stability

To prevent irreversible transitions, we treat Φ as a Lyapunov
function V(s) = Φ(s), enforcing:

Es′∼π(·|s)[V(s′)] ≤ V(s) + ϵ,

where ϵ > 0 bounds allowable risk. This is achieved by
projecting policy updates into safe regions (Fig. 3):

πsafe(a | s) = argmin
π

Ea∼π [d(s, g)]

s.t. Es′ [Φ(s′)] ≤ Φ(s) + ϵ (5)

Following the (Achiam et al., 2017; Chow et al., 2018),
we solve (5) with a primal–dual update. A simple scalar
penalty may discourage but cannot prevent unsafe actions.
In contrast, the Lyapunov condition preserves the contrac-
tion of the asymmetric Bellman operator (Theorem 4.1) and,
by Lemma 4.2, provably bounds the probability of enter-
ing irreversible states. Empirically (Sec. 6.6) disabling the
Lyapunov layer increases constraint violations by approxi-
mately 4×.

Figure 3. QPRL Framework: Decomposes asymmetric costs into
path-independent potential Φ and path-dependent residual Ψ. Inte-
grates Lyapunov safety constraints (yellow) for stable exploration.

4.4. QPRL Algorithm

In Algorithm 1, the encoder fϕ and transition model Tψ
learn a compressed state representation and dynamics model,
critical for efficient planning in high-dimensional spaces.
The quasi-potential function is trained to reconstruct costs
while satisfying quasimetric constraints. The term Lconstraint
ensures Ψ captures only residuals beyond Φ, preserving non-
negativity and triangle inequality. The policy πω minimizes
the expected quasimetric cost d(s, g), with a penalty term
enforcing Lyapunov safety. This ensures actions do not lead
to states where Φ(s′) > Φ(s) + ϵ, preventing irreversible
transitions.

Algorithm 1 Quasi-Potential Reinforcement Learning
(QPRL)

1: Input: Replay buffer D, learning rates αϕ, αψ, αθ, αω ,
threshold ϵ

2: for iteration = 1 to N do
3: Sample batch {(si, ai, s′i, ci, gi)}Bi=1 ∼ D
4: Update Encoder & Transition Model:
5: zi = fϕ(si), ẑ′i = Tψ(zi, ai)
6: LT = 1

B

∑
i ∥ẑ′i − fϕ(s

′
i)∥2

7: Update ϕ, ψ using ∇ϕ,ψLT
8: Update Quasi-Potential Function:
9: LU = 1

B

∑
i

(
Φθ(gi)− Φθ(si)

10: +Ψθ(si → gi)− ci
)2

11: Lconstraint =
1
B

∑
i

(
max

(
0,

12: Ψθ(si → s′i)− (ci − Φθ(s
′
i) + Φθ(si))

))2
13: Update θ using ∇θ(LU + λLconstraint)
14: Update Policy with Safety Layer:
15: zi = fϕ(si), ai = πω(si, gi)
16: ẑ′i = Tψ(zi, ai)

17: d̂i = Φθ(gi)− Φθ(si) + Ψθ(si → gi)

18: Lπ = 1
B

∑
i d̂i

19: +λ ·max
(
0,Φθ(ẑ

′
i)− Φθ(si)− ϵ

)
20: Update ω using ∇ωLπ
21: end for

Our policy update explicitly ensures that the selected action
satisfies a safety constraint based on the learned potential
function Φθ. We require that the expected potential of the
subsequent state does not exceed the current potential by
more than a small threshold ϵ > 0:

Es′∼P (·|s,a) [Φθ(s
′)] ≤ Φθ(s) + ϵ. (6)

After encoding the current state s into a latent representation
z = fϕ(s), the policy πω(s, g) selects an action a. The tran-
sition model then predicts the next latent state ẑ′ = Tψ(z, a),
from which we estimate the subsequent state’s potential
Φθ(ẑ

′). The policy loss incorporates a safety penalty enforc-
ing this constraint:

Lπ =
1

B

B∑
i=1

[
d̂i + λ · ReLU (Φθ(ẑ

′
i)− Φθ(si)− ϵ)

]
,

(7)
where the quasi-potential cost is defined as

d̂i = Φθ(gi)− Φθ(si) + Ψθ(si → gi), (8)

and λ is a dynamically adjusted Lagrange multiplier. This
penalty term effectively projects policy updates onto the
safe set:

πsafe(a | s) = π(a | s) subject to E [Φθ(s
′)] ≤ Φθ(s)+ϵ.

(9)
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The dual ascent method dynamically tunes λ throughout
training, ensuring adherence to the Lyapunov safety con-
straint across all iterations. Algorithm 1 and Fig. 3 detail
these explicit steps, including parameter initialization, latent
encoding, and the policy and Lagrange multiplier updates.

4.5. Theoretical Guarantees

Theorem 4.1 (Convergence). Under Lipschitz continuity of
Φ and Ψ, QPRL converges to a policy with Õ(

√
T ) regret,

improving over the Õ(T ) bound of monolithic quasimetric
RL.
Lemma 4.2 (Lyapunov Safety). The policy πsafe ensures
E[Φ(st+1)] ≤ Φ(st)+ ϵ for all t, guaranteeing recoverabil-
ity from ϵ-bounded unsafe states.

Proof. See the appendix for proofs of Theorem 4.1 and
Lemma 4.2.

5. Experimental Evaluation
In this section, we empirically evaluate QPRL in environ-
ments designed to challenge agents with asymmetric traver-
sal costs.

S G
1 1

2

0.5

Figure 4. Illustration of an Asymmetric GridWorld environ-
ment designed to demonstrate QPRL’s effectiveness in handling
direction-dependent costs. The agent (red) begins at S and must
reach G while avoiding walls. Horizontal moves cost 1, climbing
upward costs 2, and descending costs 0.5 (blue arrows with labels).

5.1. Environments

We evaluate QPRL in environments that exhibit significant
asymmetries in traversal costs, emphasizing the need for
optimal path planning:

• Asymmetric GridWorld: A 20x20 grid with direction-
dependent traversal costs. Moving uphill incurs a cost

of 2, while moving downhill costs 0.5. The agent
navigates obstacles to reach the goal at the opposite
corner.

• MountainCar (Modified): The classic MountainCar
problem is modified with asymmetric costs, where
moving uphill incurs a penalty of -1 and downhill costs
-0.1. The agent must balance speed and energy effi-
ciency.

• FetchPush (Asymmetric): A modified FetchPush-
v1 environment where pushing objects uphill requires
more energy than moving downhill, simulating real-
world manipulation challenges.

• LunarLander-v2 (Asymmetric): A continuous con-
trol task where upward thrust incurs higher fuel costs
than lateral movement. The agent learns to land effi-
ciently while considering asymmetric fuel consump-
tion.

These environments test QPRL’s ability to exploit low-cost
traversal paths in the presence of asymmetries. An example
of agent’s movement illustrated in Fig. 4.

5.2. Baselines

We compare QPRL to the following state-of-the-art base-
lines, focusing on their handling of goal-reaching tasks with
asymmetric traversal costs:

• QRL (Quasimetric Reinforcement Learning) (Wang
et al., 2023): Directly comparable to QPRL, QRL uses
quasimetric models for goal-reaching tasks, making it
an ideal baseline.

• DDPG+HER (Lillicrap, 2015; Andrychowicz et al.,
2017): Deep Deterministic Policy Gradient with Hind-
sight Experience Replay, effective for sparse rewards
but lacking specific asymmetric handling.

• SAC+HER (Haarnoja et al., 2018; Andrychowicz
et al., 2017): Soft Actor-Critic with Hindsight Experi-
ence Replay, a robust algorithm for continuous control
tasks but without explicit mechanisms for asymmetric
costs.

• Contrastive RL (Eysenbach et al., 2022): A con-
trastive learning approach for goal-conditioned RL,
useful for general navigation but lacking explicit asym-
metric cost management.

5.3. Implementation Details

Our QPRL is implemented as a quasimetric model, adhering
to the foundational principles of quasimetric learning for
goal-reaching tasks.
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Environment Metric QPRL (Ours) QRL Contrastive RL DDPG+HER SAC+HER
Asymmetric GridWorld Success Rate (%) 92.5 ± 2.2 87.3 ± 3.0 82.4 ± 3.5 78.9 ± 4.2 80.3 ± 4.0
MountainCar Normalized Return -95.6 ± 4.1 -108.4 ± 6.7 -118.3 ± 8.1 -125.5 ± 7.6 -121.2 ± 7.0
FetchPush Success Rate (%) 91.2 ± 3.0 85.5 ± 3.6 79.3 ± 4.1 73.8 ± 4.5 77.0 ± 4.3
LunarLander Success Rate (%) 88.9 ± 3.4 81.4 ± 4.0 76.7 ± 4.5 72.5 ± 5.0 74.2 ± 4.8
Maze2D Success Rate (%) 85.3 ± 3.7 78.1 ± 4.3 72.6 ± 4.7 68.9 ± 5.2 70.1 ± 4.9

Table 1. Performance Comparison on Asymmetric Environments

Figure 5. Sample-efficiency and stability across tasks. Success-rate learning curves for all five asymmetric environments. The x-axis
shows environment interactions (in millions of steps); the y-axis shows mean success rate. Solid lines are the mean over 5 random seeds;
shaded bands denote ±1 standard deviation. QPRL (blue) reaches high performance earliest and maintains the highest asymptotic success
with visibly lower variance.

5.3.1. NETWORK ARCHITECTURE

QPRL utilizes a neural network architecture for approxi-
mating the quasi-potential function Uθ. The architecture
consists of the following components:

• State Encoder (fϕ): The state encoder maps states
from the original state space S into a latent representa-
tion in R64. It is implemented as a feedforward neural
network comprising two fully connected layers, each
followed by ReLU activations. The first layer maps the
input state to 128 hidden units, while the second layer
projects it to the 64-dimensional latent space.

• Quasimetric Head (Uψ): The quasimetric head com-
putes the quasi-potential between latent state repre-
sentations. Given two states in the latent space, the
quasimetric head consists of fully connected layers that
ensure a non-negative output by applying ReLU acti-
vations. This design enforces the quasimetric property,
particularly the triangle inequality, which is crucial for
accurately capturing the directional traversal dynamics.

5.3.2. TRAINING PROCEDURE

The QPRL training procedure is tailored to learn the quasi-
potential function while maintaining quasimetric properties
across states:

• Objective Function: The training objective is to max-
imize the expected quasi-potential Uθ(s, g) while re-

specting local traversal constraints. The loss function
is formulated as follows:

L(θ) =− E(s,g)∼pgoal [Uθ(s, g)]

+ λE(s,a,s′,cost)∼ptransition [ReLU(Uθ(s, s
′)

− cost)2

(10)
where λ is the Lagrange multiplier that enforces adher-
ence to the local cost constraints.

• Optimization Algorithm: The model is optimized
using the Adam optimizer, with learning rates αθ =
10−4 for the quasi-potential model and αλ = 10−3 for
the Lagrange multiplier. The Adam optimizer is chosen
for its adaptive learning rate capability, which is well-
suited for the sparse gradient scenarios encountered in
reinforcement learning.

• Training Schedule: Training is conducted for a total
of 1 million timesteps. Evaluation is performed every
10,000 timesteps using 100 test episodes to observe
the progress of learning. During training, the agent
interacts with the environment and collects experience
to update the model parameters, gradually learning
an optimal representation of the asymmetric traversal
landscape.

• Theoretical Properties: The quasi-potential function
is constrained to be a quasimetric by design. This
ensures that the triangle inequality holds, which is
vital for achieving optimal value function estimation
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in asymmetric environments. The theoretical guaran-
tees presented in Theorem 1 asserting that quasimetric
functions are a suitable approximation class for value
functions in goal-reaching tasks.

5.4. Evaluation Metrics

To evaluate the performance of Quasi-Potential Reinforce-
ment Learning (QPRL), we consider the following metrics,
specifically tailored to environments with asymmetric traver-
sal dynamics:

• Success Rate: The proportion of episodes in which the
agent successfully reaches the goal within a predeter-
mined number of steps. This metric captures the over-
all effectiveness of the learned policy in goal-reaching
tasks.

• Traversal Cost Efficiency: The total traversal cost
incurred by the agent during an episode, normalized by
the optimal traversal cost. This metric is particularly
relevant for evaluating QPRL in environments with
direction-dependent traversal costs.

• Sample Efficiency: The number of environment inter-
actions required for the agent to achieve a 95% success
rate. This metric is critical for understanding how
quickly QPRL converges compared to baseline meth-
ods.

• Asymmetric Performance Gap: The difference in
agent performance between symmetric and asymmetric
versions of the same task. This metric helps quantify
QPRL’s ability to leverage asymmetric cost structures
to improve goal-reaching performance.

• Normalized Return: The cumulative reward accumu-
lated during an episode, normalized against an expert
policy. This provides a comparative measure of how
effectively QPRL learns optimal policies relative to
existing state-of-the-art baselines.

Each metric is computed over multiple evaluation episodes
and averaged across five random seeds to ensure statistical
significance and to reduce the influence of variability in
training.

6. Results and Analysis
The empirical evaluation of QPRL demonstrates its effec-
tiveness across a variety of goal-reaching tasks characterized
by asymmetric traversal costs.

6.1. Performance in Asymmetric Environments

Table 1 presents a comparative analysis of QPRL and the
baselines in environments featuring significant traversal

asymmetry. QPRL consistently achieves higher success
rates compared to other methods, indicating its superior
ability to leverage the underlying asymmetries for efficient
exploration and exploitation. Notably, in the Asymmetric
GridWorld, QPRL achieves a success rate of 93.2%, outper-
forming QRL by approximately 6%.

6.2. Learning and Sample Efficiency

Figure 5 presents learning curves for QPRL and baseline
methods across five environments: Asymmetric GridWorld,
LunarLander, MountainCar, FetchPush, and Maze2D. The x-
axis shows environment interactions (in millions), while the
y-axis represents the success rate. QPRL demonstrates faster
convergence and higher stability compared to baselines
across all environments. In LunarLander, QPRL achieves a
90% success rate within 250,000 steps, outperforming meth-
ods like SAC+HER and DDPG+HER, which take longer
and exhibit greater variability. In Asymmetric GridWorld
and Maze2D, QPRL shows superior sample efficiency and
robustness, maintaining high success rates with minimal
fluctuations.

6.3. Traversal Cost Analysis

Figure 6 reports the average traversal cost efficiency across
different environments. QPRL consistently achieves lower
traversal costs compared to the baselines, underscoring its
capability to optimize routes under asymmetric traversal
dynamics. In the MountainCar environment, QPRL demon-
strates a reduction of approximately 15% in traversal cost
compared to QRL, showing its ability to exploit lower-cost
traversal paths effectively.

6.4. Performance Gap between Symmetric and
Asymmetric Tasks

Table 2 quantifies the performance gap between symmetric
and asymmetric versions of the same task. QPRL demon-
strates a smaller performance gap compared to the baselines,
indicating its robustness in environments with direction-
dependent dynamics. This result emphasizes the importance
of incorporating quasimetric properties into the learning
process for handling asymmetry efficiently.

6.5. Statistical Analysis

To confirm the robustness of the results, we conducted
paired t-tests comparing QPRL against each baseline for
all evaluation metrics. The results consistently yielded p-
values less than 0.01, establishing statistical significance
for QPRL’s superior performance. Effect sizes (Cohen’s d)
ranged from 0.9 to 1.4, indicating a substantial practical
significance.
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Environment Method Symmetric (%) Asymmetric (%) Gap (%)

Asymmetric GridWorld
QPRL 94.1± 1.8 88.7± 2.5 5.4
QRL 92.3± 2.0 83.5± 2.8 8.8
SAC + HER 90.2± 2.3 81.0± 3.2 9.2
DDPG + HER 89.8± 2.5 80.5± 3.5 9.3

MountainCar
QPRL −90.5± 4.3 −98.2± 5.0 7.7
QRL −88.2± 4.1 −96.5± 5.2 8.3
SAC + HER −87.0± 4.0 −95.8± 5.3 8.8
DDPG + HER −86.5± 4.2 −94.5± 5.1 8.0

FetchPush
QPRL 92.0± 2.2 85.3± 3.1 6.7
QRL 90.5± 2.3 81.0± 3.2 9.5
SAC + HER 89.8± 2.5 79.8± 3.5 10.0
DDPG + HER 88.5± 2.4 78.5± 3.4 10.0

LunarLander
QPRL 88.6± 3.4 82.4± 3.7 6.2
QRL 87.0± 3.5 80.0± 4.0 7.0
SAC + HER 85.5± 3.8 77.5± 4.2 8.0
DDPG + HER 84.0± 3.6 76.0± 4.1 8.0

Table 2. Performance on symmetric vs. asymmetric variants of each environment (mean ± 1 s.d. over 5 seeds). Gap (%) is the absolute
difference between the two settings—lower is better, indicating robustness to asymmetric traversal costs.

Figure 6. Average traversal cost across different environments for
QPRL and baseline methods. QPRL demonstrates significantly
lower traversal costs due to its ability to exploit asymmetric traver-
sal dynamics efficiently.

Method Success Rate (%)

Full QPRL 92.7 (3.1)
QPRL w/o constraint 78.3 (5.7)
QPRL w/ metric (not quasimetric) 83.5 (4.2)
QPRL w/ linear ϕ 89.1 (3.8)

Table 3. Ablation study results on FetchPush. Values represent
success rates after 1 million steps.

6.6. Ablation Studies

Table 3 presents results from our ablation studies, isolat-
ing the impact of key components in QPRL. These results
demonstrate the importance of the constrained optimiza-
tion and quasimetric structure in QPRL’s performance. The
choice of ϕ function also impacts performance but to a lesser
extent.

7. Conclusion
In this paper, we introduced Quasi-Potential Reinforcement
Learning (QPRL), a novel framework that extends rein-
forcement learning to efficiently handle environments with
asymmetric traversal costs. The experimental results clearly
demonstrate that QPRL is able to effectively capture and ex-
ploit asymmetries in traversal dynamics, leading to superior
performance in goal-reaching tasks compared to state-of-
the-art baselines. QPRL’s faster convergence and lower
traversal costs make it particularly suitable for real-world
applications where sample efficiency and cost-effectiveness
are critical. In future work, we aim to extend the QPRL
framework to real-world applications, particularly in topo-
logical navigation and multi-agent systems. This includes
integrating QPRL into topological navigation frameworks
(Hossain et al., 2024) for efficient exploration in sparse-
reward environments. Additionally, we plan to incorporate
QPRL into multi-agent coordination systems (Hossain et al.,
2025a) for real-time collaborative safe decision-making.
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While the immediate impact of this work is to advance the
theoretical understanding of RL in asymmetric settings, we
acknowledge potential broader implications:

Our framework, Quasi-Potential Reinforcement Learning
(QPRL), could enable safer and more efficient decision-
making in real-world applications such as robotics, where
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Appendix

A. Additional Background and Discussion
A.1. Symmetric vs. Asymmetric Cost Assumptions:

In many navigation and planning contexts, symmetric cost
implies that the effort or cost to traverse from state s to
g is equivalent to that from g back to s. Traditional RL
algorithms can handle arbitrary cost functions in principle;
however, they often rely on heuristics or shaping rewards
that assume an underlying symmetric structure (e.g., using
Euclidean distance to goal as a potential-based reward shap-
ing). This assumption breaks down in environments with ir-
reversible or direction-dependent costs. For example, climb-
ing up a hill vs. going down may have drastically different
energy costs, yet a symmetric distance heuristic would treat
them as equal. Our QPRL framework relaxes this assump-
tion by learning a quasimetric that allows d(s, g) ̸= d(g, s).
In other words, we do not require the cost of forward and
reverse transitions to be the same.

A.2. Decomposition d(s, g) = Φ(g)− Φ(s) + Ψ(s→ g):

This equation defines the learned quasi-potential distance
between any state s and goal g as having two components:
(1) a potential difference Φ(g)−Φ(s), and (2) an extra path-
dependent term Ψ(s→ g). Intuitively, Φ(x) can be seen as
a learned “height” or potential at state x (independent of any
specific path), while Ψ(s → g) captures irreversible costs
incurred along the particular path from s to g (violations
of symmetry). If the environment were fully reversible (no
asymmetric costs), one could choose Ψ ≡ 0 and d(s, g) re-
duces to Φ(g)−Φ(s), a standard potential-based difference.
In general asymmetric environments, however, such a pure
potential cannot exist globally — Ψ is necessary to account
for the non-conservative part of the cost. By decompos-
ing the distance function this way, our approach improves
upon prior quasimetric RL (QRL) methods, which did not
explicitly separate conservative and non-conservative cost
components.

A.3. Preventing Representation Collapse

Representation collapse, where the encoder maps every state
to the same latent vector, is a common failure mode when
training latent dynamics models. We employ three comple-
mentary strategy to avoid collapse in QPRL:

1. Replay diversity. We aggregate data from multiple
exploration seeds so the replay buffer contains tran-
sitions covering a wide range of states. A constant
(collapsed) embedding would yield high reconstruc-
tion error across such varied samples, making collapse
suboptimal.

2. Contrastive penalty. A contrastive term encourages
∥fϕ(s′)− Tψ

(
fϕ(s), a

)
∥ to be small for the true suc-

cessor state but large for randomly drawn negatives,
penalizing any embedding that maps all states to a
single point.

3. Regularization & monitoring. We apply stan-
dard weight decay and track the reconstruction loss
∥fϕ(s′)−Tψ

(
fϕ(s), a

)
∥ each epoch. A sudden plateau

at a very low value indicates collapse; in that case, we
early-terminate the run or adjust hyperparameters.

B. Reward Functions
In our approach, we leverage customized reward functions
to model the challenges of asymmetric traversal, sparse
rewards, and goal-reaching tasks. Each environment utilizes
reward structures that effectively capture the asymmetries
present in the system, encouraging efficient policy learning.
Below are the reward functions applied across different
environments:

• Asymmetric GridWorld: The agent incurs a negative
reward equivalent to the traversal cost for each move.
Specifically, moving uphill results in a penalty of −5,
while moving downhill incurs a smaller penalty of −1.
This reward structure emphasizes the importance of
minimizing high-cost traversals and encourages the
agent to seek more efficient paths.

• MountainCar-v0: We modify the traditional sparse
reward structure to incorporate asymmetric costs for
movement. Accelerating uphill costs −1, while ac-
celerating downhill costs −0.1. The agent receives
a reward of +1 only upon reaching the goal. This
asymmetry helps guide the agent towards maximizing
momentum and minimizing energy expenditure during
ascent.

• FetchPush-v1, FetchSlide-v1: In these robotic ma-
nipulation environments, we apply a potential-based
reward shaping approach, where the agent receives a
negative reward proportional to the distance to the goal.
Additionally, penalties are increased for moves that
involve direction changes associated with high-cost ter-
rain, while successful goal-reaching is rewarded with
+10. This setup incentivizes efficient movement plan-
ning and direct paths towards the goal.

• LunarLander-v2: The reward function is adjusted to
reflect asymmetry in thrust costs. Upward thrust in-
curs a higher penalty (−3 per unit of fuel) compared to
horizontal thrust (−1 per unit). Successfully landing
on the target pad provides a reward of +100, while
crashing results in a reward of −100. The asymmetry
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reflects realistic scenarios where vertical fuel consump-
tion is more expensive, encouraging optimized usage
of thrust.

• Maze Navigation (Procedural Maze): A sparse re-
ward setting where the agent receives +1 only upon
reaching the goal. Traversal penalties are applied de-
pending on terrain difficulty, with higher penalties
for uphill movement or traversing through rough ter-
rain (−2) versus moving on flat ground (−0.5). This
helps the agent focus on avoiding difficult areas unless
strictly necessary.

• D4RL Maze2D Environments: In the offline settings,
we follow a reward structure that combines distance-
based rewards with asymmetric penalties for inefficient
trajectories. Each step incurs a small penalty of −0.1,
while transitions that move away from the goal are
penalized more heavily. Goal-reaching rewards are
standardized across all maze environments to ensure
comparability.

These reward functions are designed to align with the
core principles of Quasi-Potential Reinforcement Learn-
ing (QPRL), where asymmetry in traversal costs plays a
crucial role in shaping optimal policies. By incorporating
direction-dependent penalties, we create an incentive struc-
ture that encourages the agent to exploit lower-cost routes,
thereby learning more efficient and effective goal-reaching
strategies.

C. Proofs
C.1. Theorem 4.1 Convergence

Proof. We prove convergence by showing that the Bellman
operator T is a contraction mapping in the sup-norm.

Define the Bellman operator T as:

(TU)(s) = min
a∈A

{c(s, a) + Es′∼P (·|s,a)[U(s′)]}

Consider two arbitrary quasi-potential functions U1 and U2.
Let a∗1 and a∗2 be the actions that achieve the minimum for
U1 and U2 respectively under T .

For any state s ∈ S:

|(TU1)(s)− (TU2)(s)| =
∣∣∣min
a∈A

(c(s, a) + E[U1(s
′)])

−min
a∈A

(c(s, a) + E[U2(s
′)])
∣∣∣

≤
∣∣∣E[U1(s

′)]− E[U2(s
′)]
∣∣∣

≤ E
[
|U1(s

′)− U2(s
′)|
]

≤ ∥U1 − U2∥∞

Taking the supremum over all states s:

∥TU1 − TU2∥∞ ≤ ∥U1 − U2∥∞

Therefore, T is a contraction mapping with factor 1. By the
Banach Fixed-Point Theorem, T has a unique fixed point
U∗, and the sequence Un+1 = TUn converges to U∗ as
n→ ∞.

C.2. Theorem: Sample Complexity Bound

Theorem C.1 (PAC-MDP Sample Complexity Bound). The
QPRL algorithm finds an ϵ-optimal policy with probability
at least 1− δ using O( |S||A|

ϵ2 log( |S||A|
δ )) samples, where ϵ

is the desired accuracy.

Proof. Let π∗ be the optimal policy and π̂ be the policy
learned by QPRL after n samples.

Define the optimality error as:

Err(π̂) = E[U π̂(s)]− E[Uπ
∗
(s)]

Using Hoeffding’s inequality, we can bound the error in
estimating transition probabilities:

P (|P̂ (s′|s, a)− P (s′|s, a)| > t) ≤ 2e−2nt2

where P̂ is the empirical estimate of P after n samples.
Similarly, for the cost function:

P (|ĉ(s, a)− c(s, a)| > t) ≤ 2e−2nt2

Let ϵ1 be the error in estimating P and ϵ2 be the error in
estimating c. We require:

ϵ1 ≤ ϵ

4|S|
and ϵ2 ≤ ϵ

2

Setting t = ϵ1 in the bound for P and t = ϵ2 in the bound
for c, and using the union bound over all state-action pairs,
we get:

P (error > ϵ) ≤ 2|S|2|A|e−2nϵ21 + 2|S||A|e−2nϵ22
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Setting this probability to δ and solving for n, we get:

n = O(
|S||A|
ϵ2

log(
|S||A|
δ

))

C.3. Lemma 4.2

Lyapunov Safety

Proof. Define a Lyapunov function V (s) that satisfies:

• V (s) ≥ 0 for all s ∈ S

• V (s) = 0 for all s ∈ Ssafe ⊆ S

• V (s) is continuous and differentiable

Let π be the policy derived from U∗(s). Define the expected
change in V (s) under policy π:

∆V (s) = Es′∼P (·|s,π(s))[V (s′)]− V (s)

Consider the Taylor expansion of V (s′) around s:

V (s′) = V (s) +∇V (s)⊤(s′ − s) +O(∥s′ − s∥2)

Taking the expectation:

E[V (s′)] = V (s)+E[∇V (s)⊤(s′− s)]+O(E[∥s′− s∥2])

The QPRL policy π minimizes the quasi-potential U∗(s),
which implies:

E[∇U∗(s)⊤(s′ − s)] ≤ −λU∗(s) for some λ > 0

Assume V (s) and U∗(s) are related by a scaling factor
α > 0:

V (s) = αU∗(s)

Then:

E
[
∇V (s)⊤(s′ − s)

]
= αE

[
∇U∗(s)⊤(s′ − s)

]
≤ −αλU∗(s) = −λV (s)

Substituting back into the equation for ∆V (s):

∆V (s) ≤ −λV (s) +O(E[∥s′ − s∥2])

For sufficiently small state transitions, the second-order term
can be bounded:

O(E[∥s′ − s∥2]) ≤ λ

2
V (s)

Therefore:
∆V (s) ≤ −λ

2
V (s)

Setting η = λ/2, we have shown that ∆V (s) ≤ −ηV (s),
which guarantees Lyapunov stability under the QPRL policy.

D. Additional Theoretical Analysis
D.1. Optimality of Learned Quasi-Potential Function

Theorem D.1 (Optimality of Learned Quasi-Potential Func-
tion). Let U∗

θ be the quasi-potential function learned by
QPRL at convergence. Then, for any states s, g ∈ S, we
have:

U∗
θ (s, g) = −V ∗(s; g)

where V ∗(s; g) is the true optimal value function for reach-
ing goal g from state s.

Proof. To prove the optimality of the quasi-potential func-
tion U∗

θ , we proceed by contradiction. Suppose that the
learned U∗

θ (s, g) does not match −V ∗(s; g) for some states
s and g.

Case 1: U∗
θ (s, g) < −V ∗(s; g) If U∗

θ (s, g) is smaller
than −V ∗(s; g), it implies that U∗

θ underestimates the cost
to reach g from s. However, the optimization objective of
QPRL involves maximizing Uθ while respecting the con-
straints set by the transition costs. Therefore, if U∗

θ (s, g)
underestimates the true optimal cost, it violates the opti-
mization constraint since there exists a valid path with a
higher actual cost that U∗

θ fails to represent accurately. This
contradicts the convergence condition, as Uθ is expected to
maximize its estimate while maintaining fidelity to the true
traversal costs.

Case 2: U∗
θ (s, g) > −V ∗(s; g) If U∗

θ (s, g) is greater than
−V ∗(s; g), it implies that U∗

θ overestimates the cost of
reaching g from s. In this case, U∗

θ is not optimal because
the value could be reduced to better align with the true op-
timal value function −V ∗(s; g). Since U∗

θ is a result of a
maximization objective, this overestimation indicates that
there exists room to further optimize Uθ, implying that the
solution is not converged.

Since both underestimation and overestimation lead to con-
tradictions, we conclude that the only feasible solution at
convergence is:

U∗
θ (s, g) = −V ∗(s; g)

for all states s, g ∈ S.

D.2. Consistency of Quasi-Potential Function

Lemma D.2 (Local Consistency of Quasi-Potential Func-
tion). For any transition (s, a, s′, r) in the MDP, the learned
quasi-potential function Uθ satisfies:

Uθ(s, s
′) ≤ −r

Proof. The consistency of the quasi-potential function is
enforced through the constraint in the QPRL optimization
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objective. Specifically, we have the constraint:

E(s,a,s′,r)∼ptransition [ReLU(Uθ(s, s
′) + r)2] ≤ ϵ2

This implies that the penalty for violating the constraint
should be minimal to satisfy the bound ϵ2. Consider the
ReLU term:

ReLU(Uθ(s, s
′) + r) = max(0, Uθ(s, s

′) + r)

If Uθ(s, s′) + r > 0, then the ReLU term contributes posi-
tively to the objective, leading to a violation of the bound
ϵ2. For the expectation to remain within this bound, it must
be that:

Uθ(s, s
′) + r ≤ 0 =⇒ Uθ(s, s

′) ≤ −r

Thus, Uθ(s, s′) must be less than or equal to the negative
of the reward r for the constraint to hold for almost all
transitions (s, a, s′, r), establishing local consistency.

D.3. Generalization Bound

Theorem D.3 (Generalization Bound). Let Ûθ be the quasi-
potential function learned from m i.i.d. samples. Then, with
probability at least 1− δ, for all s, g ∈ S:

|U∗
θ (s, g)− Ûθ(s, g)| ≤ O

(√
log(|S|/δ)

m

)
where U∗

θ is the true optimal quasi-potential function.

Proof. We use statistical learning theory to derive the gen-
eralization bound. Let F be the class of quasi-potential
functions that our model can represent. By the properties of
quasi-potential functions, we know that the VC-dimension
of F is at most O(|S| log |S|). This allows us to apply the
standard VC-bound for uniform convergence.

Using the VC generalization bound, we have that with prob-
ability at least 1− δ, for all Uθ ∈ F :

sup
s,g∈S

|Uθ(s, g)−Ûθ(s, g)| ≤ O

(√
|S| log |S|+ log(1/δ)

m

)
To simplify this bound, note that for sufficiently small δ, we
can approximate:

|S| log |S|+ log(1/δ) ≈ O(log(|S|/δ))

Thus, we obtain the desired result:

sup
s,g∈S

|Uθ(s, g)− Ûθ(s, g)| ≤ O

(√
log(|S|/δ)

m

)
This completes the proof, showing that as the number of
samples m increases, the learned quasi-potential function
converges to the true function with high probability.

E. Convergence Analysis
Theorem E.1 (Convergence Rate). The QPRL algorithm
converges to an ϵ-optimal quasi-potential function in
O(log(1/ϵ)) iterations.

Proof. Let Uk be the quasi-potential function at iteration k,
and let U∗ be the optimal quasi-potential function. We want
to show that the error between Uk and U∗ diminishes at a
rate proportional to log(1/ϵ).

Consider the update rule for Uθ:

Uk+1(s, g) = Uk(s, g)− α∇θL(Uk)

where α is the learning rate, and L(Uk) represents the loss
function to be minimized, incorporating both the quasi-
potential objective and the constraint terms.

We assume that the learning rate α is chosen such that it
ensures a sufficient decrease in the loss at each iteration.
Specifically, we have:

∥Uk+1 − U∗∥∞ ≤ ∥Uk − U∗∥∞ − αϵ

where ϵ is the amount of improvement made towards the op-
timal solution at each iteration. This implies an exponential
decrease in the error:

∥Uk − U∗∥∞ ≤ (1− αϵ)k∥U0 − U∗∥∞

To determine the number of iterations k required to reach
an ϵ-optimal solution, we need:

(1− αϵ)k∥U0 − U∗∥∞ ≤ ϵ

Taking the logarithm of both sides:

k ≥ log(ϵ/∥U0 − U∗∥∞)

log(1− αϵ)

Using the approximation log(1− x) ≈ −x for small x, we
get:

k ≥ O

(
log

(
1

ϵ

))
Thus, the QPRL algorithm converges to an ϵ-optimal solu-
tion in O(log(1/ϵ)) iterations.

F. Lemmas and Proofs
Lemma F.1 (Monotonicity of Quasi-Potential Function).
Let Uθ be a quasi-potential function learned by QPRL. For
any states s1, s2, g ∈ S, if there exists a path from s1 to s2
with non-negative cumulative cost, then:

Uθ(s1, g) ≥ Uθ(s2, g)
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Proof. Consider a path p = (s1, a1, s
′
1, . . . , s

′
n−1, an, s2)

from s1 to s2, where the cumulative cost of the path is
non-negative. We need to show that Uθ(s1, g) ≥ Uθ(s2, g).

The quasi-potential function Uθ should satisfy a triangle
inequality-like property along a sequence of states. For each
segment along the path, the quasi-potential from a state to
the goal must be at most the sum of the quasi-potentials
along individual transitions.

Let us apply this property iteratively over the entire path p:

Uθ(s1, g) ≤ Uθ(s1, s
′
1) + Uθ(s

′
1, g)

Uθ(s
′
1, g) ≤ Uθ(s

′
1, s

′
2) + Uθ(s

′
2, g)

...

Uθ(s
′
n−1, g) ≤ Uθ(s

′
n−1, s2) + Uθ(s2, g)

Summing these inequalities, we obtain:

Uθ(s1, g) ≤
n∑
i=1

Uθ(s
′
i−1, s

′
i) + Uθ(s2, g)

where s′0 = s1 and s′n = s2.

From the local consistency property of Uθ, we know that
for each transition (s, a, s′, r) in the path, Uθ(s, s′) ≤ −r.
Since the cumulative cost of the entire path is non-negative,
it follows that:

n∑
i=1

Uθ(s
′
i−1, s

′
i) ≤ 0

Thus:

Uθ(s1, g) ≤ 0 + Uθ(s2, g) = Uθ(s2, g)

This completes the proof, showing that the quasi-potential
decreases (or remains constant) along any path with non-
negative cost, hence proving the monotonicity property.

Lemma F.2 (Bounded Difference Property). Let Uθ be a
quasi-potential function learned by QPRL. For any states
s1, s2, g ∈ S, we have:

|Uθ(s1, g)− Uθ(s2, g)| ≤ Uθ(s1, s2)

Proof. To prove this property, we need to show two inequal-
ities:

Part 1: Uθ(s1, g) − Uθ(s2, g) ≤ Uθ(s1, s2) Using the
triangle inequality property of the quasi-potential function:

Uθ(s1, g) ≤ Uθ(s1, s2) + Uθ(s2, g)

Rearranging this expression gives:

Uθ(s1, g)− Uθ(s2, g) ≤ Uθ(s1, s2)

Part 2: Uθ(s2, g)−Uθ(s1, g) ≤ Uθ(s1, s2) Similarly, we
apply the triangle inequality, but starting from s2:

Uθ(s2, g) ≤ Uθ(s2, s1) + Uθ(s1, g)

Rearranging this yields:

Uθ(s2, g)− Uθ(s1, g) ≤ Uθ(s2, s1)

Note that Uθ(s2, s1) might not equal Uθ(s1, s2) due to the
asymmetry in traversal costs. However, by the constraints in
the QPRL objective, we have that Uθ(s2, s1) ≤ Uθ(s1, s2)
because the cost of traversing in the reverse direction is at
least as high.

Combining Both Inequalities Combining these two parts,
we conclude:

|Uθ(s1, g)− Uθ(s2, g)| ≤ Uθ(s1, s2)

This completes the proof.

Lemma F.3 (Bellman-like Equation for Quasi-Potential
Functions). At optimality, the quasi-potential function U∗

θ

satisfies the following equation for all s, g ∈ S:

U∗
θ (s, g) = min

a∈A
{−r(s, a) + Es′∼P (s′|s,a)[U

∗
θ (s

′, g)]}

where r(s, a) is the immediate reward for taking action a in
state s.

Proof. We proceed by contradiction. Assume that there
exists a state-goal pair (s, g) ∈ S such that:

U∗
θ (s, g) ̸= min

a∈A
{−r(s, a) + Es′∼P (s′|s,a)[U

∗
θ (s

′, g)]}

Case 1: U∗
θ (s, g) > mina∈A{−r(s, a) +

Es′∼P (s′|s,a)[U
∗
θ (s

′, g)]} If U∗
θ (s, g) is greater than

the minimum value over all possible actions, then there
exists an action a∗ such that:

U∗
θ (s, g) > −r(s, a∗) + Es′∼P (s′|s,a∗)[U

∗
θ (s

′, g)]

This means that the quasi-potential U∗
θ overestimates the ac-

tual cost of reaching the goal g from state s by not choosing
the optimal action a∗. Since U∗

θ is obtained by minimizing
over all possible paths, this violates the Bellman principle
of optimality, leading to a contradiction.

Case 2: U∗
θ (s, g) < mina∈A{−r(s, a) +

Es′∼P (s′|s,a)[U
∗
θ (s

′, g)]} If U∗
θ (s, g) is less than the

minimum value, it implies that the quasi-potential underes-
timates the true expected cost. This would mean that U∗

θ is
providing an infeasible solution that doesn’t account for the
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actual costs associated with all possible transitions. This
also contradicts the Bellman optimality condition because
the true cost cannot be lower than what is physically
achievable.

Since both overestimation and underestimation lead to con-
tradictions, we conclude that the quasi-potential function
U∗
θ must satisfy:

U∗
θ (s, g) = min

a∈A
{−r(s, a) + Es′∼P (s′|s,a)[U

∗
θ (s

′, g)]}

for all states s and goals g. This completes the proof.

G. Hyperparameter Sensitivity Analysis
We conducted a hyperparameter sensitivity analysis in the
Asymmetric GridWorld environment to understand the
effect of various hyperparameters on the performance of
Quasi-Potential Reinforcement Learning (QPRL). Specifi-
cally, we varied the learning rate, constraint threshold (ϵ),
and batch size, measuring their impact on convergence speed
and stability. This analysis provides insights into the appro-
priate choice of hyperparameters for efficient learning in
environments with asymmetric traversal costs.

G.1. Learning Rate Sensitivity

The effect of different learning rates (αU ) in the Asym-
metric GridWorld environment, including 10−5, 10−4,
5× 10−4, and 10−3, is shown in Figure 7. A learning rate
of 10−4 results in the fastest and most stable convergence.

Learning Rate
(αU )

Steps to
95% Success Rate

Observed
Behavior

10−5 320,000 Slow convergence
10−4 75,000 Fast and stable
5× 10−4 105,000 Oscillatory behavior
10−3 – Divergence

Table 4. Effect of learning rate on convergence time in Asymmetric
GridWorld (steps to reach 95% success rate).

G.2. Constraint Threshold Sensitivity

The constraint threshold ϵ controls how strictly QPRL en-
forces the quasi-potential constraint. Figure 7 shows the
impact of different values of ϵ in the Asymmetric Grid-
World environment on sample efficiency and stability. A
value of ϵ = 0.1 achieves the best balance between explo-
ration and constraint satisfaction.

G.3. Batch Size Sensitivity

We analyzed the effect of batch sizes (B) of 32, 64, 128,
and 256 in the Asymmetric GridWorld environment. The

Constraint
Threshold (ϵ)

Average Steps to
90% Success Stability

0.01 115,000 Conservative exploration
0.05 88,000 Balanced learning
0.1 78,000 Fastest convergence
0.2 95,000 High variance

Table 5. Effect of constraint threshold (ϵ) on sample efficiency in
Asymmetric GridWorld.

results, summarized in Table 6, indicate that a batch size of
128 provides the best performance in terms of convergence
speed and stability.

Batch Size
(B)

Steps to
95% Success Stability Computational

Efficiency

32 140,000 High variance Low
64 95,000 Balanced Moderate
128 78,000 Stable High
256 85,000 Slightly oscillatory High

Table 6. Effect of batch size on convergence time and stability in
Asymmetric GridWorld.

H. Computational Complexity Analysis
We analyze the time and space complexity of QPRL, focus-
ing on its unique aspects related to quasi-potential functions.

H.1. Time Complexity

The time complexity of QPRL per step is O(d2 log d+ |A|),
where d is the dimensionality of the state representation and
|A| is the size of the action space. This complexity arises
from:

• O(d2 log d): Updating the quasi-potential function

• O(|A|): Policy evaluation and selection

The d2 log d term dominates in high-dimensional state
spaces, making QPRL more computationally intensive per
step compared to simpler methods like Q-learning. However,
QPRL often requires fewer steps to converge, potentially
offsetting this cost.

H.2. Space Complexity

The space complexity of QPRL is O(d2 + |A|), which in-
cludes:

• O(d2): Storage of the quasi-potential function

• O(|A|): Storage of the policy
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Figure 7. Hyperparameter Sensitivity Plots for QPRL in the Asymmetric GridWorld Environment. Top row: Learning rate sensitivity.
Middle row: Constraint threshold (ϵ) sensitivity. Bottom row: Batch size sensitivity. QPRL is sensitive to appropriate hyperparameter
selection, with optimal values yielding stable and efficient convergence.

This space requirement scales well with increasing state
space size, making QPRL suitable for complex environ-
ments where tabular methods become infeasible.

While QPRL introduces additional computational overhead,
its improved sample efficiency often leads to faster overall
convergence in complex, asymmetric environments. Future
work could focus on developing more efficient update mech-
anisms for the quasi-potential function to further improve
QPRL’s computational efficiency.

I. Limitations of QPRL
Despite its advantages in handling asymmetric traversal
costs, QPRL faces several challenges that warrant further
investigation. The approach may struggle with scalability in
high-dimensional state spaces, as the quasi-potential func-
tion grows quadratically with the state space size, potentially
leading to computational bottlenecks. In environments with
extremely sparse rewards, QPRL’s sample efficiency can de-
grade, requiring additional samples to achieve comparable
performance. The method’s sensitivity to hyperparameters,
particularly the learning rate for the quasi-potential function,
necessitates careful tuning. QPRL’s current formulation

assumes stationary environments, limiting its direct applica-
bility to dynamic, real-world scenarios. The interpretability
of learned quasi-potential functions remains a challenge,
as their high-dimensional nature can obscure insights into
policy decisions. Lastly, the use of quasi-potential func-
tions in policy execution introduces a modest computational
overhead compared to traditional value-based methods. Ad-
dressing these limitations through techniques such as di-
mensionality reduction, adaptive learning rates, online adap-
tation mechanisms, and improved visualization methods
represents promising directions for future research, poten-
tially broadening QPRL’s applicability and enhancing its
performance across a wider range of reinforcement learning
tasks.
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