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Abstract

Large language models (LLMs) are increasingly trained with reinforcement learn-
ing from verifiable rewards (RLVR), yet real-world deployment demands models
that can self-improve without labels or external judges. Existing self-improvement
approaches primarily rely on self-confirmation signals (e.g., confidence, entropy,
or consistency) to generate rewards. This reliance drives models toward over-
confident, majority-favored solutions, causing an entropy collapse that degrades
pass@n and reasoning complexity. To address this, we propose EVOL-RL, a label-
free framework that mirrors the evolutionary principle of balancing selection with
variation. Concretely, EVOL-RL retains the majority-voted answer as an anchor
for stability, but adds a novelty-aware reward that scores each sampled solution by
how different its reasoning is from other concurrently generated responses. This
majority-for-stability + novelty-for-exploration rule mirrors the variation—selection
principle: selection prevents drift, while novelty prevents collapse. Evaluation
results show that EVOL-RL consistently outperforms the majority-only baseline;
e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME2S5 pass@1 from
baseline’s 4.6% to 16.4%, and pass@ 16 from 18.5% to 37.9%. EvOL-RL also
improves out-of-domain generalization (from math reasoning to broader tasks, e.g.,
GPQA, MMLU-Pro, and BBEH).

1 Introduction

The reasoning capabilities of Large Language Models (LLMs) have advanced dramatically, particu-
larly through paradigms like Reinforcement Learning with Verifiable Rewards (RLVR) [10, 7, 28].
The next frontier of intelligence lies in enabling LLMs to autonomously evolve, continuously learning
from the vast, unlabeled data streams they encounter in real-world environments. This label-free
evolving paradigm allows a model to iteratively improve itself while solving tasks, without relying on
ground-truth labels or external judges, making it both practical and necessary.

The fundamental flaw in relying on internal signals is not merely that they are initially noisy or biased,
but that the learning process itself actively degrades the quality of the reward signal over time [16, 31].
By rewarding conformity to its self-confirmation, the model systematically eliminates the solution
diversity [12]. This creates a degenerative feedback loop: a progressively narrower and more biased
policy generates an increasingly impoverished reward signal, which in turn accelerates the policy’s
collapse into a low-entropy state [0, 16]. Recent studies also show that training on self-generated data
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Figure 1: TTRL’s entropy collapse vs. EVOL-RL’s diversity preservation on Qwen3-4B-Base (trained
label-free on MATH-500). Majority-only TTRL drives pass@n > 1 down, shortens reasoning, and
collapses entropy, whereas EVOL-RL improves accuracy, sustains reasoning diversity.

can harm diversity over time [22] and eventually lead to collapse. Figure 1 illustrates this phenomenon
in reasoning: under traditional Test-Time Reinforcement Learning (TTRL) [40], pass@1 may rise
but pass@n drops, while response length and complexity steadily decline, indicating that the model
fails to evolve.

To address this, we propose E Volution-Oriented and Label-free Reinforcement Learning (EVOL-
RL), a simple objective that combines a stabilizing selection signal with an explicit variation
incentive. Concretely, EVOL-RL retains the majority-voted answer as the anchor for stability, but
adds a novelty-aware reward that scores each sampled solution by how different its reasoning is from
other concurrently generated responses (semantic similarity of their reasoning traces). This majority-
for-stability + novelty-for-exploration rule mirrors the variation—selection principle: selection prevents
drift; novelty prevents collapse. As demonstrated in Figure 1, EVOL-RL successfully averts all
symptoms of diversity collapse, fostering a healthy equilibrium between refining known solutions
and discovering new ones. This balanced approach translates into substantial performance gains,
especially in out-of-domain generalization. For instance, after training on AIME24, EVOL-RL
elevates the Qwen3-4B-base model’s pass@1 accuracy on the AIME25 benchmark from 4.6%
(TTRL) to 16.4%, while more than doubling the pass@ 16 accuracy from 18.5% to 37.9%.

Contributions. (1) We diagnose why majority-only objectives shrink exploration during label-free
training and formalize their link to entropy collapse on reasoning tasks. (2) We provide a new
perspective on label-free learning by framing it as an evolutionary system, which allows us to connect
this diversity collapse to the classic problem of premature convergence. (3) Guided by this principle,
we design EVOL-RL, a practical novelty-aware reward that complements majority selection to enable
stable, label-free improvement, reversing the pass@n decline and improving out-of-domain accuracy.
(4) We deliver state-of-the-art results in unsupervised RL, demonstrating that EVOL-RL achieves
significant generalization gains where prior methods fail, such as more than tripling pass@1 accuracy
and doubling pass@ 16 accuracy on the challenging AIME25 benchmark.

2 Method

Our approach is illustrated in Figure 2. which uses Group Relative Policy Optimization (GRPO)
[21] as its optimization algorithm, but guides it with a novel reward function that explicitly balances
majority with novelty.

2.1 Reward Design: Implementing Selection and Variation

Our reward design directly implements the principles of selection and variation to counteract diversity
collapse. Selection, via the majority vote, provides a stable signal anchored to correctness, preventing
the policy from drifting. Variation, driven by semantic novelty, provides the necessary exploratory
pressure to maintain a diverse set of reasoning strategies. A key design choice is that the novelty
incentive is applied strategically to all solutions. For responses that align with the majority, rewarding
novelty encourages the discovery of multiple valid reasoning paths, which directly improves pass@n
performance. For minority solutions, it incentivizes exploration of the broader reasoning space,
increasing the probability of finding a correct solution and avoiding convergence to common failure
modes. We provide a detailed intuition about how EVOL-RL avoids collapse in Appendix ??.
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Figure 2: An overview of the EVOL-RL framework. For each prompt, the policy generates multiple
responses. These are grouped by their final answer to identify the majority group. A novelty score is
then computed for each response based on its semantic dissimilarity to others. Finally, a reward is
assigned based on both majority (selection) and novelty (variation), guiding the policy update via
GRPO. In the illustration, colors group responses by their final answer, while different marker shapes
indicate semantically distinct reasoning paths.

2.2 How EvoL-RL Avoids Collapse Through an Evolutionary Analogy.

EvoOL-RL avoids this failure mode by mirroring biological evolution, which balances a stabilizing
Selection pressure with a dynamic Variation mechanism. The majority vote acts as our Selection
pressure, providing a crucial anchor to correctness. By itself, however, this would lead to a uniform
population of solutions vulnerable to collapse.

To prevent this, our three-part Variation strategy creates a robust exploratory dynamic. The entropy
regularizer acts as a "mutation rate," constantly supplying diverse solutions. The novelty reward
then gives a "survival bonus" to semantically different solutions. Finally, asymmetric clipping
ensures that when a highly beneficial "mutation"—a rare, novel, and correct solution—appears, its
strong learning signal is fully preserved.

This design makes a collapsed state inherently unstable: any solution deviating from a uniform cluster
is by definition highly novel, receives a higher reward, and forces the learning algorithm to shift
probability towards it, thus ensuring the policy remains robustly diverse.

3 Experiments

The experimental setup is outlined in Appendix C.1. In Appendix D, we provide additional experi-
ments and analyses, including ablation studies, training dynamics, and further experiments showing
that EVOL-RL components enhance supervised GRPO (RLVR). We also report generalization results
on broader reasoning benchmarks such as MMLU-Pro [26], SuperGPQA [23], and BBEH [11].

3.1 Main Results

Our main results are presented in Table 1. We highlight four key findings that demonstrate the
superiority of EVOL-RL over the majority-only TTRL baseline.

EvoL-RL Enhances Both Pass@1 and Pass@16 Performance. Across all experimental settings,
EvOL-RL consistently and substantially improves ‘pass@ 16° performance over TTRL, with gains
frequently exceeding 20 percentage points on the most challenging benchmarks (e.g., +24.2pp on
AIME24 for the 4B model). EVOL-RL also delivers more consistent and substantial improvements
to pass@1 accuracy than TTRL. This demonstrates that our method strengthens not only the model’s
single-shot accuracy but also its ability to explore through multiple attempts.

Consistent Performance Across Scales and Data Sizes. The benefits of EVOL-RL are robust across
both model scales (4B and 8B) and training data sizes, from the large MATH-TRAIN set to smaller,



Table 1: Comparison of models trained with TTRL and EVOL-RL. Each cell shows pass@ 1/pass@ 16
(averaged on 32 rollouts). A uses red (+) for positive and blue for negative values, showing the
difference between w/EVOL-RL and w/TTRL.

Training Dataset Model MATH AIME24 AIME25 AMC GPQA
Qwen3-4B-Base
- Base Model  67.4/89.6 10.0/32.4 5.5/30.0 39.3/75.2 34.4/85.6

w/TTRL 75.4/86.9 12.1/23.2 6.8/28.6 42.5/75.2 36.5/81.4
MATH-TRAIN  w/EvoL-RL  80.0/93.3 20.7/47.6 17.5/39.9 51.4/80.3 37.2/88.7
A +4.6/+6.4  +8.6/+24.4 +10.7/+11.3  +8.9/+5.1 +0.7/+7.3

w/TTRL 79.3/83.2 10.0/28.0 7.2/29.9 47.6/72.0 36.2/75.9
MATH-500 w/EVOL-RL ~ 79.8/93.8 19.0/43.2 16.1/41.9 50.3/82.2 38.8/89.1

A +0.5/+10.6  +9.0/+15.2  +8.9/+12.0  +2.7/+10.2 +2.6/+13.2

w/TTRL 73.8/84.5 16.7/16.7 4.6/18.5 43.6/65.8 35.1/73.5

AIME24 w/EVOL-RL  79.6/93.6 20.6/40.9 17.1/42.0 49.9/80.9 38.0/87.8
A +5.8/+9.1  +3.9/4242 +12.5/+23.5 +6.3/+15.1 +2.9/+14.3

Qwen3-8B-Base
- Base Model  63.6/91.5 12.0/39.4 8.2/30.8 38.7/77.6 34.9/88.0

w/TTRL 81.1/91.1 16.7/37.6 15.6/35.9 53.6/74.0 38.1/77.1
MATH-TRAIN  w/EVOL-RL  83.6/94.1 26.0/51.7 21.6/43.1 55.5/86.1 43.5/88.1
A +2.5/+3.0  +9.3/+14.1 +6.0/+7.2  +1.9/+12.1 +5.4/+11.0

w/TTRL 85.7/91.9 17.7/40.1 16.5/34.3 51.1/79.1 43.5/84.0
MATH-500 w/EVOL-RL  84.7/95.1 24.1/49.5 20.2/44.4 58.8/86.0  43.9/92.2

A -1.0/+3.2 +6.4/49.4 +3.7/+10.1 +7.7/+6.9 +0.4/+8.2

w/TTRL 76.8/86.2 20.0/20.0 11.4/25.4 49.5/69.1 38.3/74.7

AIME24 w/EVOL-RL  83.1/94.2 25.4/38.1 16.5/34.7 54.4/85.8 45.2/90.0
A +6.3/+8.0  +5.4/+18.1 +5.1/49.3 +4.9/+16.7 +6.9/+15.3

specialized sets like AIME24. This suggests our method is a fundamental improvement that scales
effectively with both model capacity and data volume.

Strong Cross-Task Generalization Within Mathematics. EVOL-RL demonstrates powerful gen-
eralization, learning abstract reasoning skills that transfer effectively across different mathematical
domains. A compelling example is seen with the 4B model: when trained exclusively on the smaller
MATH-500 dataset, its pass@ 16 performance on the difficult AIME24 benchmark (43.2%) is nearly
identical to the performance achieved when training on AIME24 directly (40.9%), confirming that
EvOL-RL learns fundamental skills rather than simply overfitting. This effect is further amplified by
scale; for the 8B model, the model trained on MATH-500 surpasses the performance of its AIME24-
trained counterpart on the AIME24 benchmark by over 11 percentage points in pass@16. This strong
cross-task transfer confirms that EVOL-RL fosters the development of fundamental and transferable
reasoning abilities.

Generalization Beyond Mathematics. The advantages of EVOL-RL extend beyond mathematics.
On the GPQA benchmark, TTRL'’s performance consistently degrades below the base model, whereas
EvOL-RL reliably improves it, achieving gains of +7 to +15 pp in pass@16 over TTRL. This shows
our method fosters a more general reasoning ability that transfers effectively across domains.

3.2 Training Dynamics: How EVOL-RL Escapes Entropy Collapse

To understand the reasons for EVOL-RL’s better performance, we analyze its training dynamics
in comparison to TTRL in a label-free setting, as shown in Figure 3. An analysis of the training
dynamics for the 8B models is presented in Appendix D.2.

Stage 1: Initial Collapse Under Majority Signal. Across all three training settings, a consistent
initial dynamic unfolds: both EVOL-RL and TTRL show a sharp drop in policy entropy and average
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Figure 3: Training dynamics for EVOL-RL and TTRL. Left: models trained on MATH-TRAIN.
Middle: models trained on MATH-500. Right: models trained on AIME24. Each panel plots, over
training steps, (i) Pass@1 on AIME25, (ii) average response length on the training set, and (iii) policy
entropy on the training set.

response length. This initial phase demonstrates the powerful homogenizing effect of the majority-
driven reward, which quickly pushes both models toward short, high-frequency response templates.
For TTRL, this collapsed state proves to be permanent; it remains trapped in this low-entropy,
low-complexity state for the duration of the training run, regardless of the dataset’s scale or difficulty.

Stage 2: The Evolving Point and Coordinated Recovery. Following the initial collapse, the
training dynamics reveal a crucial divergence centered around a distinct ""evolving point''. Before
this point, EVOL-RL’s trajectory is nearly indistinguishable from TTRL’s; both models exhibit
similar performance values and trends, dominated by the majority signal. However, a clear inflection
point consistently emerges for EVOL-RL, after which its performance rapidly improves. While the
exact timing of this "evolving point" varies across datasets, its appearance is a robust feature of our
method. After this "evolving point", EVOL-RL enters a recovery phase characterized by a sustained
and coordinated rise across all key metrics: policy entropy breaks away from near-zero values,
average response length increases, and out-of-domain accuracy steadily climbs. This coordinated
recovery allows the model to reach a new, significantly higher performance plateau where it eventually
stabilizes, demonstrating its ability to break free from the majority trap.

EvoL-RL’s ability to escape the collapsed state comes from the synergy of its three core components.
The entropy regularizer ensures a continuous supply of diverse rollouts, preventing the initial search
space from becoming completely uniform. The asymmetric clipping preserves the full gradient signal
from the rare but high-value "majority-and-novel" samples that are crucial in the early training phase.
Finally, the novelty reward acts as a selection pressure, consistently re-ranking credit within the
majority group to favor these distinct solutions over their near-duplicate peers.

4 Conclusion

In this work, we diagnose the entropy collapse, a critical failure mode in LLM evolving where
majority-only rewards suppress solution diversity and harm generalization. To solve this, we propose
EvOL-RL, a framework that balances the stability of majority-vote selection with an explicit variation
incentive that rewards semantic novelty. Our experiments demonstrate that EVOL-RL successfully
prevents collapse by maintaining policy entropy and reasoning complexity, which translates into
substantial performance gains on both in-domain and out-of-domain benchmarks. By anchoring
learning to a stable majority signal while simultaneously encouraging exploration, EVOL-RL offers
a robust and practical methodology for enabling LLMs to continuously and autonomously evolve
without external labels.
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A Related Work

Enhancing Reasoning in Large Language Models. Significant progress in LLM reasoning has
been driven by RLVR [10, 7, 28, 29, 27, 5], which fine-tunes models using RL on tasks where an
automated verifier can confirm the correctness of the final answer, such as mathematics and coding
[30, 24, 25, 3, 9, 4, 36, 39, 35]. While highly effective, the reliance of RLVR on external verifiers
restricts its applicability to domains with deterministic, easily checkable solutions [34, 37, 38]. Our
work contributes to the effort of improving reasoning in more general domains where such verifiers
are unavailable.

Label-Free Adaptation and Self-Improvement. To overcome the limitations of verifiers and
adapt to new data distributions, researchers have focused on label-free learning methods that generate
reward signals without ground-truth labels. These approaches primarily fall into two categories. One
line of research derives rewards from the model’s intrinsic confidence, training the model to become
more "certain" by rewarding low-entropy or self-consistent outputs [18, 1, 33, 32, 20, 2, 14, 15]. The
other prominent paradigm, which our work directly addresses, bootstraps supervision from majority.
Test-Time Reinforcement Learning (TTRL) exemplifies this by using the majority-voted answer from
multiple samples as a pseudo-label for RL updates [40]. While empirically powerful, we identify a
critical flaw in the majority-driven approach: it suppresses solution diversity and actively punishes
correct but non-mainstream reasoning, leading to the entropy collapse we describe. While ETTRL
adjusts exploration within the original self-consistency framing [17], we are the first to pin down the
majority trap and redesign the learning target to couple majority with population-level diversity.

B Details of the Method

B.1 Optimization with GRPO

GRPO is a policy-gradient algorithm designed for fine-tuning LLMs without a separate value function.
Its central idea is to evaluate each sampled response relative to a group of its peers generated for the
same prompt. This relative evaluation is then used to update the policy with a PPO-style clipped
objective, regularized by a KL penalty to ensure stable learning.

For a given prompt q, a policy LLM g, generates a group of G complete responses {01, ...,0q}.
Each response o; receives a scalar reward ;. Rewards within the group are normalized with a z-score
to obtain a response-level advantage:

. r; —mean(ry,...,rq)

P =

std(r1,...,7q)

The policy is optimized with a clipped surrogate objective:
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B.2 Detailed Reward Design

Our reward design directly implements the principles of selection and variation to counteract diversity
collapse. Selection, based on correctness via majority vote, provides a stable signal to prevent the
policy from drifting. Variation, driven by semantic novelty, provides the exploratory pressure needed
to maintain a diverse set of reasoning strategies.

A key design choice is that the novelty incentive is applied strategically to all solutions—both those
that agree with the majority and those that do not. For majority-aligned solutions, rewarding novelty
encourages the model to discover multiple valid reasoning paths to the correct answer, directly
fighting the decline in pass@n performance. For minority solutions, rewarding novelty is crucial for
escaping local optima. It discourages policy collapse into a few high-frequency failure modes and
instead incentivizes exploration of the broader reasoning space, which is essential for increasing the
probability of discovering a previously inaccessible, correct solution path. This integration transforms
the learning process: it not only mitigates diversity collapse in the current task but also aligns with



the goals of continual learning. By preserving multiple reasoning modes while anchoring to a correct
solution, EVOL-RL avoids forgetting potentially useful strategies and retains knowledge diversity
for future tasks. Thus, training under EVOL-RL becomes not only an optimization for present
performance but also a proactive investment in future adaptability.

Reward Formulation. For each prompt, the policy samples G responses {o;}$,. Each response
is scored on three criteria:

1. Validity: The response must provide a numeric final answer in a \boxed{ - } format. Responses
that fail this check are deemed invalid.

2. Majority (Selection): A binary label y; € {+1, —1} is assigned based on whether a response’s
answer matches the majority-voted answer from the valid responses. This serves as our selection
signal.

3. Novelty (Variation): We compute embeddings for the reasoning part of each response to form a
cosine similarity matrix. For each response o;, we calculate its mean similarity S; to other responses
in the same group (i.e., either majority or minority) and its maximum similarity m; to any other
response in the entire batch. The mean similarity is calculated on an intra-group basis because the
majority and minority solutions are often semantically distant; a global mean would be dominated by
this gap, obscuring the finer-grained variations among peer solutions within the majority group. The
novelty score is:
up = 1— (as+(1—a)my), a € (default 0.5).

This score is designed to penalize two distinct forms of redundancy: a high 5; indicates conformity to
the group’s semantic average, while a high m; flags near-duplication of another specific response.
The score promotes both local and global diversity. Finally, we min-max normalize the scores {u; }
separately within the majority and minority groups to get ;. This intra-group normalization is crucial,
as it ensures that novelty is measured relative to one’s direct peers, allowing for a fair comparison of
diversity within each group.

Final Reward Mapping. We map the majority label and normalized novelty score into non-
overlapping reward bands. This ensures that the selection signal from the majority vote is always
prioritized, while novelty refines the reward within each group:
-1, if invalid,;
r; = 0.5+0.54a; €[0.5,1], if y; = +1 (Majority: higher novelty earns higher reward);
—1+0.5a; € [-1,-0.5], ify; = —1 (Minority: higher novelty mitigates penalty).
Critically, this structure guarantees that any majority solution, regardless of its novelty, receives a

higher reward than any minority solution. This maintains a strong pressure towards correctness. More
details about the reward implementation are presented in Appendix C.5

Supporting Mechanisms. To further reinforce this reward design, we employ two complementary
mechanisms. First, within the GRPO objective (Eq. 1), we use an asymmetric clipping range
(€nigh > €1ow) [29]. This allows promising and novel solutions with high advantages to receive larger
gradient updates, preventing them from being prematurely clipped. Second, we add a token-level
entropy regularizer to maintain diversity during the initial generation process:

lol
['ent(e) - _)\ent EONTFQ ﬁz H(WQ(' ‘ 0<t7x)) 5 H(p) = - Zp(v) logp(v) (2)

The total objective, Ly = Lorro + Lent, thus directs learning toward semantically distinct, high-
quality responses while maintaining a diverse population of solutions.

C Implementation Details

This section provides additional details on the implementation of our reward formulation and support-
ing mechanisms.
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C.1 Experimental Setup

Benchmarks. To test our method at scale, we use the large, standard MATH training set (MATH-
TRAIN) [8]. We also follow the TTRL [40] by training on two much smaller test sets: the general-
purpose MATH-500 and the competition-level AIME24 [13]. This comprehensive setup allows
us to validate EVOL-RL’s versatility across both large-scale and specialized training conditions.
Critically, during all training runs, we use only the problem statements, without any ground-truth
labels or solutions. For evaluation, we assess the performance of our trained models on a diverse set
of five benchmarks to measure both in-domain and out-of-domain generalization. The evaluation
suite includes AIME24, AIME25, MATH500, AMC [13], and GPQA-Diamond (GPQA) [19].
Detailed training configuration can be found in Appendix C.

C.2 Training Configuration.

We conduct our experiments on two recent open-source base models: Qwen3-4B-Base and Qwen3-
8B-Base. Our training process is implemented using the GRPO algorithm. We adopt a setup similar
to that of TTRL for generating training signals. For each problem instance, we first perform a rollout
phase where the policy generates 64 candidate responses. A majority label is then determined by
performing a majority vote on the final answers extracted from these 64 samples. Subsequently, a
random subset of 32 of these responses is used to form a batch for a single model update step. To
ensure that the model has sufficient capacity for complex, multi-step reasoning, we set the maximum
response length to 12,288 tokens during generation. To guide the model’s reasoning process, we
utilize the system prompt from SimpleRL-Zoo [30]. Implementation details are discussed in Appendix
C.

C.3 System Prompt

For all experiments, we used the following system prompt to guide the model’s generation format,
ensuring that it produces a step-by-step reasoning process and a clearly marked final answer [30]:

System Prompt

Please reason step by step, and put your final answer within
\boxed{}.

C.4 Answer and Reasoning Extraction

To implement the scoring criteria described in the main text, we apply the following extraction
procedure for each generated response o;:

 Final Answer Extraction (for Validity): We parse the response to find the content within
the final occurrence of the \boxed{ -} command. A response is deemed "valid" only if
this command is present and its content contains at least one numeric digit. This extracted
numeric string is used for the majority vote.

C.5 Novelty Score Calculation Details

The novelty score u; relies on computing semantic similarity between the reasoning parts of the
generated responses.

Embedding Model. We use the Qwen3-4B-Embedding model to generate dense vector represen-
tations for the extracted reasoning parts. Each vector is L2-normalized before similarity computation.

Cosine Similarity Matrix. For a group of G responses with corresponding L2-normalized em-
bedding vectors {vy,...,vg}, the cosine similarity matrix S € R¥*¢ is computed as S = VV T,
where V is the matrix whose rows are the vectors v;. The element .S;; represents the cosine similarity
between the reasoning of response o; and o;.
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Intra-Group Min-Max Normalization. To obtain the normalized novelty score 4; € [0, 1] from
the raw scores {uy } within a specific group (e.g., the majority group), we apply standard min-max
normalization:

. u; — min({ug})

o max({ug}) — min({ug}) + €norm

where €,om is a small constant (e.g., 10~8) to prevent division by zero in cases where all novelty
scores in the group are identical.

C.6 Hyperparameter Settings
For our label-free experiments, we largely follow the settings established by TTRL to ensure a fair

comparison. The general hyperparameters are detailed in Table 2, and the settings specific to our
EvOL-RL method are listed in Table 3.

Table 2: General hyperparameters for label-free training, following TTRL.

Hyperparameter Value
Train Batch Size 8
PPO Mini-Batch Size 1 (effective size of 32)
PPO Micro-Batch Size 2
Rollouts for Majority Vote 64
Rollouts Used for Training 32
Generation Temperature 1.0
Validation Temperature 0.6
Learning Rate Se-7
Use KL Loss True
KL Loss Coefficient 0.001

Table 3: Key hyperparameters specific to the EVOL-RL framework.

Hyperparameter Value

Asymmetric Clipping High (énign) 0.28
Entropy Regularizer Coefficient (A¢y)  0.003
Novelty Score Mixing Coefficient () 0.5

C.7 Computational Resources

All experiments reported in this paper were conducted on a single server equipped with 8x NVIDIA
H20 GPUs.

D Additional Experimental Results

D.1 Ablation Study

Setup. We conduct an ablation study on EVOL-RL-trained models on Qwen3-4B-Base. EVOL-RL
introduces three key modifications compared to the TTRL baseline: (i) the novelty-aware reward
function, (ii) a rollout entropy regularizer to encourage exploration, and (iii) an asymmetric PPO
clipping window (higher "ClipHigh") to better preserve learning signals from high-reward samples.
We systematically remove these components one at a time ("-Novelty Reward", "-Ent", "-ClipHigh")
or in combination. The results are reported in Table 4.

The Critical Role of Novelty on Easier Datasets. The importance of the novelty reward is most
evident when the model is trained on the MATH-500 dataset. Removing it causes the largest
performance degradation in pass @ 16, especially on the more difficult, out-of-domain AIME24/25.
This is because on a dataset with lower complexity, a majority-only approach can quickly cause the
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Table 4: Performance of Qwen3-4B-Base with EVOL-RL and its ablations on five benchmarks. Each
cell reports pass@ 1/pass@ 16 accuracy.

Training Dataset Model MATH AIME24 AIME25 AMC GPQA
w/EvoL-RL 79.8/93.8 19.0/43.2 16.1/41.9 50.3/82.2 38.8/89.1
-ClipHigh 75.1/91.8 12.2/31.8 11.4/31.3 42.7/73.9 32.3/81.8
MATH-500 -Ent 79.5/93.4 18.3/38.5 14.7/343 48.3/78.6 38.6/87.0

-ClipHigh-Ent 76.3/92.6 12.8/38.8 12.5/37.4 46.2/77.4 35.6/88.8
-Novelty Reward  79.3/88.7 12.1/27.0 11.1/34.8 47.6/73.3 37.9/81.4

w/EVOL-RL 79.6/93.6  20.6/40.9 17.1/42.0 49.9/80.9 38.0/87.8
-ClipHigh 74.1/89.4 14.1/26.7 8.1/31.1  44.6/73.2 35.3/81.5
AIME24 -Ent 66.7/89.8 10.0/31.4 6.6/27.8 38.7/74.2 34.0/86.2
-ClipHigh-Ent 75.3/89.0 16.6/26.9 9.2/32.2 45.8/71.2 37.1/82.0
-Novelty Reward 79.4/93.0 17.7/35.6 15.9/37.4 48.8/79.6 37.9/87.1
025 Train on MATH-TRAIN - AIME25 Pass@1 Train on MATH-500 - AIME25 Pass@1 Train on AIME24 - AIME25 Pass@1
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Figure 4: Training dynamics for EVOL-RL and TTRL on Qwen3-8B-Base model. Left: models
trained on MATH-TRAIN. Middle: models trained on MATH-500. Right: models trained on AIME24.
Each panel plots, over training steps, (i) Pass@1 on AIME25, (ii) average response length on the
training set, and (iii) policy entropy on the training set.

model to lock into a single, repetitive reasoning template. Our novelty reward prevents this template
lock-in and promotes generalizable skills.

Exploration Mechanisms as Critical Enablers on Harder Tasks. On more challenging datasets
like AIME24, where the inherent problem difficulty naturally induces a higher baseline of exploration,
the other two components become more critical. In this setting, removing the entropy regularizer or
the asymmetric clipping consistently lowers pass @ 16 performance on AIME-style problems. These
mechanisms act as crucial enablers for the novelty reward: the entropy regularizer ensures a rich and
continuous supply of varied reasoning paths for the novelty selector to act upon, while the higher
clipping threshold preserves the full learning signal from rare but high-value solutions.

D.2 Training Dynamics of 8B Models

The training dynamics of the 8B models, presented in Figure 4, largely mirror the patterns observed
with the 4B models, confirming that the core mechanisms of EVOL-RL are robust to scale.
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Figure 5: Training dynamics of the majority-vote accuracy (maj@ 16) for EVOL-RL and TTRL. Each
panel plots the accuracy of the consensus answer derived from 16 rollouts over the course of training.
The training datasets are: (Left) MATH-TRAIN, (Middle) MATH-500, and (Right) AIME24.

Across all three training datasets (MATH-TRAIN, MATH-500, and AIME24), we observe the same
two-stage process. In Stage 1, both TTRL and EVOL-RL experience an initial drop in policy entropy
and response length due to the strong initial pressure of the majority-vote signal. TTRL becomes
permanently trapped in this low-entropy, low-complexity state.

In Stage 2, EVOL-RL consistently diverges at an "evolving point." Its policy entropy begins a
sustained recovery, followed by a coordinated increase in average response length and out-of-domain
accuracy on AIME25. This confirms that even at a larger scale, EVOL-RL successfully prevents
entropy collapse and fosters a positive feedback loop where exploration, reasoning complexity, and
performance reinforce one another, while the consensus-only TTRL approach stagnates.

D.3 Analysis of the Majority Vote Signal

To further investigate the differences between EVOL-RL and TTRL, we analyze the quality of the
training signal itself by tracking the accuracy of the majority vote (maj@16) over the course of
training, as shown in Figure 5. This analysis reveals how the self-generated pseudo-labels evolve
under each method.

A highly consistent pattern emerges across all three training datasets. TTRL initially improves the
maj@ 16 accuracy over the base model, but it quickly converges to a performance plateau. For
the remainder of the training, its maj@ 16 accuracy remains largely unchanged, indicating that the
consensus-only approach rapidly finds a local optimum for the consensus answer and becomes locked
in, unable to discover better solutions.

In contrast, EVOL-RL exhibits a markedly different dynamic. While its initial trajectory often mirrors
that of TTRL, reflecting the early stabilizing influence of the consensus signal, a clear divergence
occurs. Consistent with the inflection point observed in our main training dynamics analysis, EVOL-
RL’s maj@16 accuracy breaks away from the TTRL plateau and begins a second, sustained ascent.
It reliably climbs to and stabilizes at a significantly higher level of accuracy. This demonstrates that
EvOL-RL’s exploration mechanisms not only improve the final policy but also progressively refine
the quality of the pseudo-labels used for training, allowing the model to escape suboptimal consensus
and continuously improve its understanding of the task.

D.4 EvVOL-RL Components Also Strengthen Supervised GRPO (RLVR)

Setup. We apply EvVOL-RL’s three exploration-enhancing ingredients to a standard supervised
GRPO baseline trained on MATH training set [8] with a ground-truth verifier (RLVR) for two epochs.
Figure 6 reports the results.

The primary finding is that the three components are still synergistic, with their full combination
yielding the most significant and consistent performance improvements. This complete configuration,
GRPO+ClipHigh+Ent+Novelty, boosts pass@ 16 accuracy by 7% to 12% on the challenging out-
of-domain AIME24 and AIME25 benchmarks. Crucially, these gains are achieved while also
improving pass@1 accuracy, demonstrating that the mechanisms enhance multi-path reliability
without sacrificing single-shot performance. This robust improvement extends across all evaluation
benchmarks, including the cross-domain GPQA task, demonstrating the great potential of variation
reward in a broader context.
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Figure 6: Performance of EVOL-RL’s exploration-enhancing components when applied to a standard
supervised GRPO baseline. The Qwen3-4B-Base model is trained on the MATH trainig set [8] with a
ground-truth verifier (RLVR).

Table 5: Generalization performance of the Qwen3-8B-Base model on broader reasoning benchmarks
after label-free training on MATH-TRAIN.

Model MMLU-Pro SuperGPQA BBEH
Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4
Qwen3-8B-Base 473 74.5 26.5 54.1 10.4 24.0
w/TTRL 534 73.9 29.7 53.3 12.1 24.1

w/EVOL-RL 55.3 78.5 30.2 57.0 11.5 24.9

D.5 Generalization to Broader Reasoning Benchmarks

To assess whether the reasoning skills enhanced by our method on mathematical data are funda-
mental and transferable, we evaluate our models on a suite of broader, non-mathematical reasoning
benchmarks. After training the Qwen3-8B-Base model on the MATH-TRAIN dataset in a label-free
setting, we measure its performance on MMLU-Pro [26], SuperGPQA [23], and BBEH [11]. The
results, presented in Table 5, demonstrate that EVOL-RL fosters a more generalizable reasoning
ability compared to TTRL.

A contrasting pattern emerges between the two methods. While TTRL shows clear improvements
over the base model on pass@1 accuracy, its effect on pass@4 is less consistent, falling slightly
below the base model’s performance on SuperGPQA and BBEH. This pattern is consistent with our
findings on the mathematical reasoning tasks, where the narrow focus of the consensus-only objective
can hurt multi-path reliability. In contrast, EVOL-RL demonstrates a more robustly positive transfer
of skills, improving upon both the base model and TTRL across pass@1 and pass @4 metrics. For
example, on MMLU-Pro, EVOL-RL achieves a pass@4 score of 78.5%, a clear improvement over
TTRL’s 73.9%. This indicates that our principle of encouraging diverse reasoning helps the model
learn more fundamental skills that generalize effectively beyond mathematics.

E Use of Large Language Models in Preparation

We acknowledge the use of Large Language Models (LLMs) as assistants in the preparation of this
manuscript. Their role included refining phrasing and improving the clarity of the text, as well
as assisting with programming tasks such as code generation and debugging for our experiments.
The authors critically reviewed, edited, and verified all LLM-generated content for accuracy and
appropriateness, and take full responsibility for the final content of this paper.
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