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Figure 1: (a) Performance comparison with previous SOTA methods. Our method achieved a 40.73dB PSNR on the shadow
region of the ISTD+ dataset, surpassing the previous SOTA method by 0.90dB; (b) Efficiency comparison with previous SOTA
methods. Our method is fast and lightweight with SOTA performance on the SRD dataset; (c) Illustration of self-attentions in
shadow removal. Self-attention (used in [12, 20]) has global information exchangeability but with high computational costs. To
reduce the complexity, (shifted-)window attention (in [11, 35]) only exchanges the information within a pre-defined cell, but
may miss useful clues. Our regional attention refines each token with its neighborhoods, reaching a good balance between
effectiveness and efficiency.

ABSTRACT
Shadow, as a natural consequence of light interacting with objects,
plays a crucial role in shaping the aesthetics of an image, which
however also impairs the content visibility and overall visual qual-
ity. Recent shadow removal approaches employ the mechanism
of attention, due to its effectiveness, as a key component. How-
ever, they often suffer from two issues including large model size
and high computational complexity for practical use. To address
these shortcomings, this work devises a lightweight yet accurate
shadow removal framework. First, we analyze the characteristics
of the shadow removal task to seek the key information required
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for reconstructing shadow regions and designing a novel regional
attention mechanism to effectively capture such information. Then,
we customize a Regional Attention Shadow Removal Model (RASM,
in short), which leverages non-shadow areas to assist in restoring
shadow ones. Unlike existing attention-based models, our regional
attention strategy allows each shadow region to interact more ra-
tionally with its surrounding non-shadow areas, for seeking the
regional contextual correlation between shadow and non-shadow
areas. Extensive experiments are conducted to demonstrate that
our proposed method delivers superior performance over other
state-of-the-art models in terms of accuracy and efficiency, mak-
ing it appealing for practical applications. Our code will be made
publicly available.

CCS CONCEPTS
• Computing methodologies → Image processing; Computa-
tional photography.

KEYWORDS
Shadow removal, Regional attention
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1 INTRODUCTION
When light interacts with objects, shadows are cast. In some cases,
shadows can enhance the photography aesthetics. While in oth-
ers, they act as an interference factor to image quality [38], which
may degrade the performance of various vision and multimedia
algorithms [30, 39], such as object detection and recognition, and
image segmentation. Although this problem has been drawing
much attention from the community with significant progress over
last years, it still remains challenging for practical use. Because
the shadow removal often serves as a preprocessing step for down-
stream tasks and, more and more systems prefer to deal with images
on portable devices anytime and anywhere, besides the high ac-
curacy, its computational cost and model size are expected to be
marginal, especially when the computation and memory resources
are limited. In other words, a satisfactory shadow removal model
shall take into consideration all the removal quality, the processing
cost and the model size simultaneously.

In the literature, a variety of shadow removal methods [6–8, 11,
13, 19] have been proposed over last years, aiming to mitigate the
negative impact of shadows on image quality and enhance the per-
formance of vision algorithms. Traditional approaches heavily rely
on hand-crafted priors, e.g., intrinsic image properties, which are
often violated in complex real-world scenarios, and thus produce un-
satisfactory results. Deep learning techniques [1, 3, 9, 12, 17, 18, 20]
have emerged as powerful alternatives, enabling more robust and
data-driven approaches to shadow removal. However, most existing
advanced shadow removal models barely consider severe model
stacking, necessitating substantial computational resources. This
issue significantly limits their applicability to potential downstream
tasks in real-world scenarios.

Let us take a closer look at the target problem. Given an image,
shadows typically occupy a part of the image. The goal is to convert
involved shadow regions into their non-shadow versions, which
should be visually consistent with the non-shadow surroundings in
the given image. A natural question arises: is all the information in
the entire image equally important for the reconstruction of regions
affected by the shadow? Intuitively, aside from the darker color of
shadowed areas, the most direct way to discern shadows is by the
contrast between the shadowed regions and their neighbor non-
shadow areas. From this perspective, we can reasonably assume
that the critical information for repairing a certain shadow region
should be largely from non-shadow areas around the aim region.
Based on this assumption, we propose a novel attention mechanism
called regional attention, and customize a lightweight shadow re-
moval network, i.e., RASM. Our design is capable of balancing the
efficiency and the accuracy of shadow removal in an end-to-end
way. As schematically illustrated in Fig. 2, the proposed RASM
distincts from previous global and local attention methods, which
can reduce computational burden and enhance the rationality of
information aggregation between restricted non-shadow and target
shadow areas. Experimental comparisons on widely-used shadow

removal datasets (ISTD+ [24] and SRD [32]) and ablation studies
reveal the efficacy and superior performance of RASM over other
SOTA methods in terms of the effectiveness and the efficiency.

The primary contributions of this paper are summarized as:
• We rethink the key to shadow removal and propose that

the information from the regions surrounding the shadows
is essential for effective shadow removal. Inspired by this
insight, we introduce a regional attention mechanism that
allows each shadowed area to aggregate information from
its adjacent non-shadowed regions.

• We develop a shadow removal network, RASM, based on
a novel regional attention mechanism that optimizes the
interaction between shadowed and non-shadowed areas, ef-
fectively balancing accuracy and computational efficiency.

• The comprehensive experimental evaluations conducted
on the widely recognized ISTD+ [24] and SRD [32] datasets
demonstrate that our proposed method achieved a new
state-of-the-art performance with a lightweight network
architecture.

2 RELATEDWORK
Traditional methods for shadow removal rely on image properties
such as chromaticity invariance [7, 8], gradient consistency [6, 13]
or human interactions [10]. The early work in this category can
be traced back to [7, 8], where illumination-invariant images are
extracted using a pre-calibrated camera. However, the calibration
process is laborious, which limits its practical application. To ad-
dress this issue, work [6] proposes extracting illumination-invariant
images through an optimization procedure that does not require any
provenance information of the image. Work [13] aims to develop
more sophisticated models for the lit and shadowed areas; however,
their methods sometimes fail due to the complexity of shadow gen-
eralization and imaging procedures. Some works [13, 22] attempt to
address this issue by dividing the shadow removal task into two sub-
tasks: shadow detection and mask-based shadow removal. However,
since these shadow detectors rely solely on hand-crafted priors, the
removal modules may be affected by inaccurate detection results,
which can negatively impact overall performance. Furthermore,
traditional methods for removing shadows still encounter difficul-
ties when dealing with complex distortions in real-world scenarios,
particularly in the penumbra area.

Deep learning has enabled significant advancements in data-
driven methods, with works [4, 19] investigating unpaired shadow
removal training using generative models. However, these models
are typically heavy as they model the distribution of shadow-ed im-
ages in a generative manner. In parallel, using a large-scale dataset,
Qu et al. [32] were among the first to train an end-to-end deep
network for recovering shadow regions. Wang et al. [33] proposed
the ISTD shadow removal dataset, featuring manually-annotated
shadow masks. However, the non-shadow area of shadow images
exhibits substantial inconsistency with the corresponding shadow-
free images, as noted in [24], which proposed mitigating this by
transforming the non-shadow area of ground-truths using linear
regression. Subsequent studies [1, 3, 9, 17, 18, 29] have explored
shadow removal with given shadow masks. Recently, some works
have sought to improve the computational efficiency of shadow
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Figure 2: An illustration of our proposed framework. (a) Overview of the RASM structure. (b) Channel Attention Module. (c)
Regional Attention Module. RASM employs the Channel Attention Module for global information interaction, followed by a
Regional Attention Module for spatial information interaction.

removal. Zhu et al. [41] proposed a deep unfolding framework for
removing shadows efficiently. With the great help of normalizing
flow, which reuses the encoder as a decoder, work [40] significantly
reduced parameter size. However, representation power was also
limited since only half the features were used per layer to ensure
invertibility. To address the issue of unsatisfactory boundary arti-
facts persisting after restoration, Guo et al. [12] proposed the first
diffusion-based shadow removal model, which can gradually opti-
mize the shadow mask while restoring the image. Work [21] lever-
ages features extracted from Vision Transformers pre-trained mod-
els, which unveil a removal method based on adaptive attention and
ViT similarity loss. However, such diffusion-based methods incur
significant time and space complexity, leading to significant com-
putational overhead. ShadowFormer [11] proposed re-weighting
the attention map in the transformer using the shadow mask to
exploit global correlations between shadow and non-shadow areas.
However, unlike ShadowFormer, our emphasis lies on the informa-
tion from non-shadow regions closely surrounding the shadows.
We enable each shadow region to integrate information from its
immediate non-shadow surroundings. This strategy offers greater
flexibility than the window attention used by ShadowFormer and is
more aligned with the intrinsic characteristics of shadow removal
tasks. Our method achieves superior results without increasing the
complexity inherent in ShadowFormer.

3 METHODOLOGY
3.1 Problem Analysis
In everyday situations, determining the location of shadowed re-
gions often relies on the contrast between the shadowed and ad-
jacent non-shadowed areas. Shadows affect specific areas within
an image, resulting in significant differences in brightness, color,
and texture compared to non-shadowed surroundings. These differ-
ences contain the crucial information required for shadow removal.
Sharp transitions in lighting at the periphery of shadowed regions

Figure 3: The first column of images presents scenes with
shadows. The highlighted regions in the second column of
images represent the non-shadowed areas immediately ad-
jacent to the shadows. We posit that the information from
these areas is crucial for the task of shadow removal.

usually create distinct gradation zones. Therefore, it is crucial to
comprehend and utilize the information from the non-shadowed
regions surrounding the shadows to achieve accurate shadow re-
moval, shown in Fig. 3. The importance of the information from
non-shadowed regions increases with proximity to shadowed areas.
Analyzing the characteristics of these areas not only allows for the
accurate identification of shadow boundaries but also provides the
necessary reference data for subsequent shadow restoration. Re-
gional attention mechanisms enable models to focus on the critical
areas surrounding the shadows, distinguishing which features are
important for the task at hand, thereby facilitating more effective
information integration.

3
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3.2 Regional Attention for Shadow Removal
Contrary to prior studies such as those by [26] and Wang et al. [35],
which predominantly address image restoration tasks characterized
by global corruption, shadow removal presents a distinct challenge
due to its nature of partial corruption. In this context, the non-
shadow regions are of critical importance, as they play an essential
role in the restoration of shadow-affected areas.

Shadow removal tasks necessitate a large receptive field to assim-
ilate surrounding contextual information effectively. This require-
ment is rooted in the primary method of distinguishing shadow
regions by contrasting them with adjacent non-shadowed areas.
Therefore, the primary goal during restoration is to ensure that
the reconstructed shadow regions closely resemble their surround-
ing non-shadow areas, rather than relying excessively on long-
range global spatial information. This is where regional attention
becomes pivotal, focusing on the information from neighboring
regions to enhance the restoration process. The window attention
mechanism [26], which projects queries, keys, and values from the
information within a specific window to perform self-attention, is
less effective for shadow removal. This limitation arises because the
non-shadow information required to address shadow discrepancies
varies significantly across different locations. Unlike the Window
Attentionmechanism utilized in prior works [11, 26], which general-
izes the attention within a window, our proposed regional attention
mechanism is specifically designed to tailor the attention to the
specific needs of each shadowed area. By doing so, it ensures that
each shadow region can access and integrate distinct and locally
relevant non-shadow information, thus facilitating more precise
and context-aware restoration.

To fulfill the outlined objectives, we have devised a Transformer-
based network leveraging regional attention, termed RASM, specif-
ically for shadow removal. Predicated on our hypothesis that non-
shadow information nearer to shadows is of heightened importance,
we allocate a minimal proportion of parameters and computational
resources to rapidly process global feature interactions, thus al-
lowing greater computational resources and parameters to be con-
centrated on regional attention processes. RASM operates as a
multi-scale encoder-decoder model. Initially, we utilize Channel
Attention Module(CA Module) [16] to effectively capture global
information. Subsequently, we introduce a module equipped with
regional attention, which harnesses spatial and channel-wise con-
textual information from non-shadow areas to facilitate the restora-
tion of shadow regions during the bottleneck phase.

3.2.1 Overall Architecture. For a shadow input 𝐼𝑠 ∈ R3×𝐻×𝑊 ac-
companied by a shadow mask 𝐼𝑚 ∈ R𝐻×𝑊 , a linear projection
LinearProj(·) is initially applied to generate the low-level feature
embedding 𝑋0 ∈ R𝐶×𝐻×𝑊 , with 𝐶 representing the embedding
dimension. Subsequently, 𝑋0 is processed through an encoder-
decoder framework, each composed of CA modules designed to
integrate multi-scale global features. Within each CA module are
two CA blocks and a scaling layer—specifically, a down-sampling
layer in the encoder and an up-sampling layer in the decoder, as
depicted in Fig. 2. The CA block functions by compressing spatial
information through CA and subsequently capturing long-range

correlations using a feed-forward MLP [5], structured as follows:

�̃� = CA(LN(𝑋 )) + 𝑋, (1)

𝑋 = GELU(MLP(LN(�̃� ))) + �̃� , (2)
where LN(·) denotes the layer normalization, GELU(·) denotes the
GELU activation layer, and MLP(·) denotes multi-layer perceptron.
After passing through 𝐿 modules within the encoder, we receive the
hierarchical features {𝑋1, 𝑋2, . . . , 𝑋𝐿}, where 𝑋𝐿 ∈ R2

𝐿𝐶× 𝐻

2𝐿
×𝑊

2𝐿 .
We calculate the regional contextual correlation via the Regional
Attention Module (RAM) according to the pooled feature 𝑋𝐿 in the
bottleneck stage. Next, the features input to each CA module of the
decoder is the concatenation of the up-sampled features and the
corresponding features from the encoder through skip-connection.

3.2.2 Regional Attention Module. Given that shadow removal is a
task of partial corruption, existing local attention mechanisms [26,
35] face considerable constraints during the shadow removal pro-
cess, as the areas within a window may be entirely corrupted.
While [11] mitigates this to a certain extent, it is still limited by
the constraints of window-based attention, lacking the flexibility
to provide each shadow region with unique, spatially relevant non-
shadow information. To address this, we propose a novel Regional
Attention Module (RAM), which enables each shadowed location
to more effectively utilize regional attention information across
spatial and channel dimensions.

In the development of our Regional Attention Module, we draw
inspiration from the Neighborhood Attention Transformer [15],
adapting its core concepts to better suit the specific challenges of
shadow removal. Given a feature map 𝑌 ∈ R𝐶×𝐻 ′×𝑊 ′

normalized
by a LayerNorm (LN) layer and reshape it as 𝑋 ∈ R𝑛×𝑑 , where
𝑛 = 𝐻 ′ ×𝑊 ′, 𝑑 = 𝐶 . 𝑋 is transformed into𝑄,𝐾 , and𝑉 , and relative
positional biases 𝐵(𝑖, 𝑗) through linear projections. We define the
attention weight for the 𝑖-th input within a region of size 𝑘 as the
dot product between the query projection 𝑄 of the 𝑖-th input and
the key projections 𝐾 of the 𝑘 elements in the surrounding region:

𝐴𝑘𝑖 =



𝑄𝑖𝐾
𝑇
𝜌1 (𝑖 ) + 𝐵 (𝑖,𝜌1 (𝑖 ) )

𝑄𝑖𝐾
𝑇
𝜌2 (𝑖 ) + 𝐵 (𝑖,𝜌2 (𝑖 ) )

.

.

.

𝑄𝑖𝐾
𝑇
𝜌𝑘 (𝑖 ) + 𝐵 (𝑖,𝜌𝑘 (𝑖 ) )


, (3)

where 𝜌 𝑗 (𝑖) denotes 𝑖’s 𝑗-th element in the region. We then define
values, 𝑉𝑘

𝑖
, as a matrix whose rows are 𝑘 value projections from

elements which in the region of 𝑖-th input :

𝑉𝑘
𝑖 =

[
𝑉𝑇
𝜌1 (𝑖 ) 𝑉𝑇

𝜌2 (𝑖 ) · · · 𝑉𝑇
𝜌𝑘 (𝑖 )

]𝑇
. (4)

Regional Attention for the 𝑖-th token with region size 𝑘 is then
defined as:

𝑁𝐴𝑘 (𝑖) = softmax

(
𝐴𝑘
𝑖√
𝑑
𝑉𝑘
𝑖

)
, (5)

where
√
𝑑 is the scaling parameter. This operation is repeated for

every pixel in the feature map. Finally, the output from RAM is
subjected to CA for global information interaction and feature fine-
tuning. RAM can be represented as follows:

�̃� = CA(RAM(LN(𝑋 ))) + 𝑋, (6)
4
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𝑋 = GELU(MLP(LN(�̃� ))) + �̃� , (7)

3.2.3 Regional Attention With Larger Receptive Field. Shadows are
usually not isolated, they are intimately connected with their sur-
roundings. A larger receptive field can enable a model to more
comprehensively understand the relationships between shadowed
and non-shadowed areas in an image, such as the shapes and edges
of shadows and their relation to lighting conditions. If the receptive
field is too small, the model might only see parts of the shadow or
objects obscured by the shadow, potentially leading to incorrect
shadow perception and removal. A larger receptive field allows the
model to observe the entire shadow area and its transitional edges,
thus more accurately performing shadow removal. During shadow
removal, maintaining the naturalness and coherence of the image
is crucial. A larger receptive field helps the model maintain con-
sistency and natural transitions in the surrounding environment
while removing shadows, and avoiding unnatural patches or color
discrepancies in the processed image. Similarly, regional attention
benefits from a larger receptive field, as tokens calculated within
this area can access more information.

Inspired by DiNAT [14], to balance model complexity and perfor-
mance, we propose a regional attention mechanism with a dilation
factor. Specifically, we expand the receptive field to a greater range
by increasing the stride when selecting regions, thereby maintain-
ing the overall attention span. Using the regional attention mecha-
nism with the dilation factor allows us to extend the receptive field
of regional attention without increasing model complexity, further
enhancing performance.

3.3 Loss Function
We employ two loss terms: content loss, and perceptual loss. We
provide a detailed description of these loss terms below.

Content Loss. The content loss ensures consistency between
the output image and the ground truth training data. In the image
domain, we adopt the Charbonnier Loss [23]. The content loss can
be expressed as:

L𝑐𝑜𝑛𝑡 =

√︃
(𝐼 − 𝐼𝑔𝑡 )2 + 𝜖, (8)

where the 𝐼 is the output image and 𝐼𝑔𝑡 is the ground truth shadow-
free image. The 𝜖 is set to 10−6 to ensure numerical stability.

Perceptual Loss. Perceptual loss has been widely used in vari-
ous image restoration and generation tasks to preserve the high-
level features and semantic information of an image while mini-
mizing the differences between the restored image and the ground
truth. We minimize the 𝑙1 difference between the feature of 𝐼𝑙𝑖𝑡
and 𝐼𝑙𝑖𝑡 in the {conv1_2, conv2_2, conv3_2, conv4_2, conv5_2} of
a imagenet-pretrained VGG-19 model. Denoting the 𝑖-th feature
extractor as Ψ𝑖 (·), the perceptual loss we adapt can be expressed as
follows:

L𝐷
𝑝𝑒𝑟 =

∑︁
𝑖

𝑤𝑖 ∥Ψ𝑖 (𝐼𝑙𝑖𝑡 ) − Ψ𝑖 (𝐼𝑙𝑖𝑡 )∥1, (9)

where𝑤𝑖 is the weight among different layers, the value of which
is empirically set as {0.1, 0.1, 1, 1, 1}.
The total loss function turns out to be :

L = 𝛼1L𝑝𝑒𝑟 + 𝛼2L𝑐𝑜𝑛𝑡 , (10)

where 𝛼1, 𝛼2 = {0.001, 1} are empirically set. RASM undergoes end-
to-end supervised training using the loss function L, achieving
state-of-the-art results in shadow removal.

4 EXPERIMENTS
4.1 Implementation Details
The proposed model is implemented using PyTorch. We train our
model usingAdamWoptimizer [31]with themomentum as (0.9, 0.999)
and the weight decay as 0.02. The initial learning rate is set to
4 × 10−4, then gradually reduces to 10−6 with the cosine anneal-
ing [28]. We set the region size of the regional attention to 11 and
the dilation factor to 2 in our experiments. Our RASM adopts an
encoder-decoder structure (𝐿 = 3). We set the first feature embed-
ding dimension as 𝐶 = 32. During the training stage, we employed
data augmentation techniques, including rotation, horizontal flip-
ping, vertical flipping, MixUp [37], and adjustments in the H and S
components of HSV color space.

To validate the performance of our model, we conduct experi-
ments on two datasets. SRD [32] is a paired dataset with 3088 pairs
of shadow and shadow-free images. We use the predicted masks
that are provided by DHAN [2]. For the adjusted ISTD [24] dataset,
we use 1330 paired shadow and shadow-free images for training
and 540 for testing.

Following previous works [3, 13, 18, 34], we conduct the Root
Mean Square Error (RMSE) between output image and ground-truth
shadow image in the color space of CIE LAB as a quantitative metric
(the lower the better). Tomake the comparisonmore comprehensive,
we also follow [11] to report the Peak-Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM) in RGB space (the higher the better).
The FLOPs are reported on 256 × 256 images.

4.2 Performance Evaluation
4.2.1 Quantitative Comparisons. We first compare our proposed
method with the state-of-the-art shadow removal methods on the
ISTD+ [24] dataset. The competitors are DC-ShadowNet [19], BM-
Net [40], DHAN [3], AutoExposure [9], G2R [3], ShadowFormer [11],
ShadowDiffusion [12], Li et al. [25] and Liu et al. [27]. The input
image is all resized to 256 × 256 for benchmarking following most
of the existing methods [11, 13, 18, 41]. The results are depicted in
Tab. 1. Our approach surpasses existing methods across all metrics
in comparisons of Shadow Region, All Image, and also in the PSNR
and RMSE metrics for Non-Shadow Regions, achieving SOTA per-
formance. In Non-Shadow Regions, our SSIM is essentially on par
with the best-reported results.

We also compare our method with the state-of-the-art shadow
removal methods on the SRD [32] dataset. The competitors are
consist of 11 methods, DSC [17], DHAN [3], AutoExposure [9], DC-
ShadowNet [19], Unfolding [41], BMNet [40] ShadowFormer [11],
ShadowDiffusion [12], Li et al. [25], Liu et al. [27] and DeS3 [20].
Since there exists no ground-truth mask to evaluate the perfor-
mance in the shadow region and non-shadow region separately, we
use amask extracted fromDHAN [3] following existingmethod [11]
for comparison. The results are depicted in Tab. 2. As shown in
Tab. 2, our method outperforms existing techniques across all met-
rics for the Shadow Region. Performance in the Non-shadow re-
gion does not quite match that of ShadowDiffusion [12] and Liu
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Method Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)
PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

DHAN [3] 33.08 0.988 9.49 27.28 0.972 7.39 25.78 0.958 7.74
G2R [3] 33.88 0.978 8.71 35.94 0.977 2.81 30.85 0.946 3.78

DC-ShadowNet [19] 32.20 0.977 10.83 34.45 0.973 3.44 29.17 0.939 4.70
AutoExposure [9] 36.02 0.976 6.67 30.95 0.88 3.84 29.28 0.847 4.28

BMNet [40] 38.17 0.991 5.72 37.95 0.986 2.42 34.34 0.974 2.93
ShadowFormer [11] 39.67 0.992 5.21 38.82 0.983 2.30 35.46 0.973 2.80
ShadowDiffusion [12] 39.82 - 4.90 38.90 - 2.30 35.72 - 2.70

Li et al. [25] 38.46 0.989 5.93 37.27 0.977 2.90 34.14 0.960 3.39
Liu et al. [27] 38.04 0.990 5.69 39.15 0.984 2.31 34.96 0.968 2.87

Ours 40.73 0.993 4.41 39.23 0.985 2.17 36.16 0.976 2.53

Table 1: The quantitative results on ISTD+ [24] dataset. The best result is in bold, while the second-best one is underlined. To
make a fair comparison, we use results published by the authors. − indicates that the metric is missed in the original paper.

Method Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)
PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

DSC [17] 30.65 0.960 8.62 31.94 0.965 4.41 27.76 0.903 5.71
DHAN [3] 32.71 0.943 6.60 33.88 0.949 3.46 29.72 0.923 4.40

AutoExposure [9] 31.34 0.933 7.90 29.74 0.916 5.21 26.99 0.869 5.95
DC-ShadowNet [19] 32.10 0.927 6.91 33.48 0.936 3.66 29.35 0.902 4.61

BMNet [40] 33.81 0.940 7.44 34.91 0.946 5.99 30.68 0.923 3.92
Unfolding[41] 34.94 0.980 7.44 35.85 0.982 3.74 31.72 0.952 4.79

ShadowFormer [11] 36.91 0.989 5.90 36.22 0.989 3.44 32.90 0.958 4.04
ShadowDiffusion [12] 38.72 0.987 4.18 37.78 0.985 3.44 34.73 0.970 3.63

Li et al. [25] 39.33 0.984 6.09 35.61 0.967 2.97 33.17 0.938 3.83
Liu et al. [27] 36.51 0.983 5.49 37.71 0.986 3.00 33.48 0.967 3.66
DeS3 [20] 38.73 0.987 4.70 38.12 0.988 2.72 34.19 0.968 3.59
Ours 40.26 0.993 3.90 36.80 0.987 3.19 34.46 0.976 3.37

Table 2: The quantitative results on SRD [32] dataset. The best result is in bold, while the second-best one is underlined.

Method Params (M) GFLOPs RMSE
DHAN [3] 16.4 126.0 4.40

AutoExposure [9] 19.7 53.0 5.95
BMNet [40] 0.4 11.6 3.92

Unfolding [41] 10.1 48.2 4.79
ShadowFormer [11] 11.4 63.1 4.04
ShadowDiffusion [12] 55.2 896.7 3.63

Li et al. [25] 23.9 68.3 3.83
Ours 5.2 25.2 3.37

Table 3: Efficiency evaluation. Parameters count and GFLOPs
are metered with fvcore[36] on 256×256 inputs. The best
result is in bold, and the second-best result is underlined.

et al. [27], possibly due to stricter adherence to the shadow mask
guidance. It is anticipated that our method would achieve a more
satisfying result by employing a higher-quality shadow mask or
utilizing user-provided masks. Notably, despite imprecise masks,
our method is still the best among the competitors under RMSE for
All Image.

To validate the efficiency of our method, we also conduct a com-
parison of FLOPs and parameter counts. As depicted in Tab. 3, our
model has a small number of parameters and low FLOPs, utilizing
a negligible amount of computational resources while achieving

superior performance, demonstrating that our model effectively
balances model complexity and model performance.

4.2.2 Qualitative Comparisons. This part exhibits several examples
from SRD and ISTD+ datasets to compare the visual quality shown
in Figs. 4 and 5. Our method achieves state-of-the-art performance
with fewer residual shadow components and no visual artifact.
Moreover, our total parameters are significantly fewer than most of
the previous arts, which demonstrates the efficacy of our practical
designs.

4.3 Model Analysis
Discussion on Regional Attention andWindow Attention. To
validate that our proposed regional attention is more suitable for
the shadow removal task than traditional window attention, we
choose the baseline model and its variants for comparison. Specif-
ically, we replace all the window attention in the baseline model
with regional attention, maintain the same area size of regional
attention and window attention, and represent them as {Window
Att., Regional Att.}. As shown in Tab. 4, the regional attention se-
lected outperforms window-based attention on all three metrics,
proving the superiority of our design.
Discussion on Receptive Field of Regional Attention. The size
of the receptive field and the final effect of the shadow removal task
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Figure 4: Qualitative comparison on ISTD+ dataset. Please zoom in for more details. Due to page limits, we only exhibited 5
cases here, more cases can be found in the supplementary file.

Variant Shadow Region (S) All Image (ALL)
PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

𝑊𝑖𝑛𝑑𝑜𝑤 𝐴𝑡𝑡 . 40.06 0.992 4.84 35.78 0.975 2.62
𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐴𝑡𝑡 . 40.73 0.993 4.41 36.16 0.976 2.53

Table 4: Experiments for modeling on ISTD+ dataset. The
best result is in bold.

are closely related. Here, we discuss two prominent parameters that
control the receptive field size of our proposed regional attention
mechanism: the size of the region 𝑟𝑠 and the dilation factor 𝑑 . We
tried different region sizes and dilation factors to see how they
affect the results.

As shown in Tab. 5, we found that as the rs increases, the per-
formance of the model improves while the computational load
also increases. When 𝑟𝑠 is greater than or equal to 15, the benefits
obtained by adjusting 𝑟𝑠 approach saturation. When 𝑑 is within
the appropriate range, the model benefits most. However, when
𝑑 is too small, the spatial attention receptive field is limited. Con-
versely, when 𝑑 is too large, the spatial attention will choose a
sparse distribution of region elements, making it difficult to aggre-
gate non-shadow information from the surrounding shadowed area,

Region Size Dilation PSNR SSIM RMSE GFLOPs

7 × 7 1 35.74 0.974 2.67 24.7
11 × 11 1 35.94 0.976 2.56 25.2
15 × 15 1 36.01 0.976 2.60 26.0
21 × 21 1 36.00 0.976 2.60 27.6

11 × 11 1 35.94 0.976 2.56 25.2
11 × 11 2 36.16 0.976 2.53 25.2
11 × 11 3 36.02 0.976 2.59 25.2

Table 5: Experiments for region size and dilation rate on
ISTD+ dataset. Our final choice is marked in bold.

leading to performance degradation. To balance performance and
computational complexity, we choose a regional attention size of
11 × 11 and a dilation rate of 2 for our model.
Visualization of our regional attention. To validate whether
our proposed regional attention mechanism truly enables shadow
areas to interact with their adjacent non-shadow areas, we selected
several points on the image and visualized their attention weight

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, October 10–14, 2022, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Input (b) DC [19] (c) BMNet [40] (d) SD [12] (e) DeS3 [20] (f) Ours (g) GT

Figure 5: Qualitative comparison on SRD dataset. Please zoom in for more details. Due to page limits, we only exhibited 5 cases
here, more cases can be found in the supplementary file.

Figure 6: A visualization of our regional attention. The origi-
nal image is on the left, and the starmarks the selected points.
The heatmaps indicate the regional attention weight of the
marked tokens. Brighter colors indicate a larger attention
score.

allocation. As shown in Fig. 6, we can see that in completely il-
luminated areas or shadow areas, the attention weights of these
points are relatively low and even, while points that notice shadows
have a much larger attention weight when the attention area can
encompass the surrounding non-shadow areas. Moreover, points

with different shadow positions are paying attention to different
non-shadow areas, corresponding to the fact that each shadow area
information interacts with the adjacent non-shadow area informa-
tion, which is consistent with our proposed region-based attention
mechanism.

5 CONCLUDING REMARKS
In this work, we rethought the most significant information source
for shadow removal, namely, the non-shadow areas adjacent to
the shadow region, which plays a crucial role in this task. Based
on this, we proposed a novel regional attention mechanism and
introduced a lightweight regional attention-based shadow removal
model, RASM. The regional attention mechanism introduced by us
enables each shadow region to focus on specific information from
surrounding non-shadow areas, thereby effectively utilizing this in-
formation for shadow removal. We demonstrated that RASM strikes
a good balance between model complexity and model performance.
Our model uses fewer parameters, lower FLOPs computation, and
achieves superior performance on SRD and ISRD datasets.
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