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ABSTRACT

Deep Reinforcement Learning (DRL) policies are highly susceptible to adversarial
noise in observations, which poses significant risks in safety-critical scenarios. For
instance, a self-driving car could experience catastrophic consequences if its sen-
sory inputs about traffic signs are manipulated by an adversary. The core challenge
in such situations is that the true state of the environment becomes only partially
observable due to these adversarial manipulations. Two key strategies have been
employed in the literature to address this issue. The first set of methods focuses on
increasing the likelihood that nearby states—-those close to the true state—-share
the same robust actions. While this can reduce the impact of adversarial perturba-
tions, it is often impractical to guarantee that all neighboring states have identical
actions. As a result, when attacks succeed (i.e., two close states have different ac-
tions), these methods experience significant performance degradation. The second
set of approaches maximize the value for the worst possible true state within the
range of adversarially perturbed observations. Although these approaches provide
strong robustness against attacks, they tend to be overly conservative, leading to
suboptimal outcomes in non-adversarial or less severe scenarios. We hypothesize
that the shortcomings of these approaches stem from their failure to explicitly
account for partial observability. By making decisions that directly consider this
partial knowledge of the true state, we believe it is possible to achieve a better bal-
ance between robustness and performance, particularly in adversarial settings. To
achieve this, we introduce a novel objective called Adversarial Counterfactual Error
(ACoE), which is defined on the beliefs about the underlying true state and natu-
rally balances value optimization with robustness against adversarial attacks. To
make ACoE scalable in model-free settings, we propose the theoretically-grounded
surrogate objective Cumulative-ACoE (C-ACoE). Our empirical evaluations across
widely used benchmarks (MuJoCo, Atari, and Highway) demonstrate that our
method significantly outperforms current state-of-the-art approaches for addressing
adversarial RL challenges, offering a promising direction for improving robustness
in DRL under adversarial conditions.

1 INTRODUCTION

The susceptibility of Deep Neural Networks (DNNs) to adversarial attacks on their inputs is a
well-documented phenomenon in machine learning (Goodfellow et al., 2014; Madry et al., 2017).
Consequently, Deep Reinforcement Learning (DRL) models are also vulnerable to input perturbations,
even when the environment remains unchanged (Gleave et al., 2019; Sun et al., 2020; Pattanaik
et al., 2017). As DRL becomes increasingly relevant to real-world applications such as self-driving
cars, developing robust policies is of paramount importance (Spielberg et al., 2019; Kiran et al.,
2021). An example highlighted by Chen et al. (2018) successfully alters a stop sign both digitally
and physically to deceive an object recognition model, demonstrating the ease and potential dangers
of such adversarial attacks.

Adversarial retraining, which entails inserting adversarial perturbations to the replay buffer during
training, effectively enhances the robustness of deep reinforcement learning (DRL) against known
adversaries (Gleave et al., 2019; Goodfellow et al., 2014; Pattanaik et al., 2017; Sun et al., 2023).
However, this approach often fails to generalize well to out-of-sample adversaries (Gleave et al.,
2019; Guo et al., 2023). More importantly, it is well-known that stronger adversaries can always be
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found (Madry et al., 2017) and that the high-dimensional observation spaces of real problems offer
an overwhelming number of adversarial directions (Korkmaz, 2023; Liu et al., 2023). Furthermore,
due to issues such as catastrophic forgetting, naive adversarial retraining in reinforcement learning
can result in unstable training processes and diminished agent performance (Zhang et al., 2020).
This highlights the need for algorithms that are not tailored to niche adversarial perturbations but are
generally robust. Rather than develop a policy that is value-optimal for a set of known adversarial
examples, our goal is to identify and mitigate behaviors and states that introduce unnecessary risk. A
widely-recognized method to achieve general robustness is the maximin optimization, which seeks
to maximize the minimum reward of a policy (Everett et al., 2020; Liang et al., 2022). While this
approach does enhance safety, it often sacrifices the quality of the unperturbed solution to improve
the worst-case scenario.

Another prevalent robustness mechanism strengthens ”non-adversarial value” optimizing policies
(i.e. vanilla policies) by incorporating adversarial loss regularization terms, ensuring robust policies
are close to the ”non-adversarial value” optimal policies. This aims to ensure that actions remain
consistent across similar observations, thereby reducing the likelihood of successful adversarial
attacks (Oikarinen et al., 2021; Zhang et al., 2020; Liang et al., 2022). However, prior empirical
findings indicate that these methods still leave policies vulnerable when attacks do succeed (Belaire
et al., 2024), as the observation space is high-dimensional; it is not feasible to ensure all similar
observations have similar actions.

Adversarial perturbations make the ground truth partially observable and this aspect–though
acknowledged–has not been explicitly reasoned within existing work, except recently in Liu et al.
(2024); McMahan et al. (2024), the best-performing of which is called Protected (Liu et al., 2024).
However, the Protected framework requires multiple adaptation runs at test time to achieve better
performance than existing work. The requirement for multiple execution runs in the presence of an
adversary at test time is not viable in self-driving cars and other real-world scenarios. To that end,
we introduce a novel objective called Adversarial Counterfactual Error (ACoE), which calculates
the error due to adversarial perturbations by explicitly considering the belief distribution over the
underlying true state.

Contributions:

• In a significant departure from previous research, we address the partial-observability present
in adversarial RL problems (due to adversarial perturbations) by introducing the concept
of Adversarial Counterfactual Error (ACoE), which is defined based on beliefs about the
underlying true state rather than the observable state only.

• We introduce a scalable surrogate for ACoE called Cumulative ACoE (C-ACoE) and estab-
lish its fundamental theoretical properties, which aid in developing strong solution methods.

• We develop mechanisms to minimize C-ACoE while maximizing expected value by leverag-
ing established techniques from Deep Reinforcement Learning (e.g., DQN, PPO).

• Finally, we present comprehensive experimental results on benchmark problems (MuJoCo,
Atari, Highway) employed in adversarial RL area to demonstrate the effectiveness of our
approaches compared to leading methods (e.g., Protected, RADIAL, RAD, WOCAR) for
adversarial reinforcement learning. We test against potent myopic attacks (such as MAD,
PGD) and more advanced macro-strategic adversaries such as PA-AD (Sun et al., 2023).

2 RELATED WORK

Adversarial attacks in RL: Deep RL is vulnerable to attacks on the input, ranging from methods
targeting the underlying DNNs such as an FGSM attack (Huang et al., 2017; Goodfellow et al., 2014),
tailored attacks against the value function (Kos and Song, 2017; Sun et al., 2020), or adversarial
behavior learned by an opposing policy (Gleave et al., 2019; Everett et al., 2020; Oikarinen et al.,
2021; Zhang et al., 2020). We compile attacks on RL loosely into two groups of learned adversarial
policies: observation poisonings (Gleave et al., 2019; Sun et al., 2020; Lin et al., 2017; Guo et al.,
2023) and direct ego-state disruptions (Pinto et al., 2017; Rajeswaran et al., 2017). Each category has
white-box counterparts that leverage the victim’s network gradients to generate attacks (Goodfellow
et al., 2014; Oikarinen et al., 2021; Huang et al., 2017; Everett et al., 2020). In this work (similar
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to existing works highlighted in this section), we focus on defending against the former group,
observation poisonings, with both white-box and black-box scenarios.

Adversarial Retraining and Adversary Agnostic Approaches: In adversarial retraining, adversarial
examples are found or generated and integrated into the set of training inputs (Shafahi et al., 2019;
Ganin et al., 2016; Wong et al., 2020; Madry et al., 2017; Andriushchenko and Flammarion, 2020;
Shafahi et al., 2020). For a comprehensive review, we refer readers to Bai et al. (2021). In RL,
research efforts have demonstrated the viability of training RL agents against adversarial examples
(Gleave et al., 2019; Bai et al., 2019; Pinto et al., 2017; Tan et al., 2020; Kamalaruban et al., 2020;
Sun et al., 2023). Training RL agents against known adversaries is a sufficient defense against known
attacks; there are effective adversarial retraining methods grounded in many disciplines such as
curriculum learning (Wu and Vorobeychik, 2022), policy-adversary training (Sun et al., 2023) and
behavior cloning (Nie et al., 2024). However, novel or more general adversaries remain effective
against this class of defense (Gleave et al., 2019; Kang et al., 2019). Furthermore, they often take
longer to train (needing to train both victim and adversary policies). The adversarial retraining
technique PA-ATLA-PPO (Sun et al., 2023) reports needing 2 million training frames for MuJoCo-
Halfcheetah. For comparison, both RAD (Belaire et al., 2024) and WocaR-PPO (Liang et al., 2022)
are adversary-agnostic methods, and require less than 40% of the training frames. In this paper, we
focus on adversary-agnostic defenses that do not train against specific adversaries in the environment.

Robust Regularization: Regularization approaches (Zhang et al., 2020; Oikarinen et al., 2021;
Everett et al., 2020) take vanilla value-optimized policies and robustify them to minimize the loss
due to adversarial perturbations. These approaches utilize certifiable robustness bounds computed for
neural networks when evaluating adversarial loss and ensure the probability an attacker successfully
changes the agent’s actions is reduced using these lower bounds. Despite lowering the likelihood of a
successful attack, a successful attack (i.e., two close states have different actions creates vulnerability)
is still just as effective. Previous works suggests the need to learn safe trajectories via robustness-
specific objectives, rather than a robust decision classifier only (Belaire et al., 2024; Liang et al.,
2022; Li et al., 2024), such that successful attacks (if any) are less effective as well.

Robust Control: Measuring and optimizing a regret value to improve robustness has been studied
previously in uncertain Markov Decision Processes (MDPs)(Ahmed et al., 2013; Rigter et al., 2021;
Adulyasak et al., 2015). In RL, Jin et al. (2018) establish Advantage-Like Regret Minimization
(ARM) as a policy gradient solution for agents robust to partially observable environments. In
continuous time control, Yang et al. (2023) study the composition of robust control algorithms with a
robust predictor of perturbed system dynamics. In contrast to policy regret, we form beliefs about true
states and minimize the cumulative adversarial counterfactual error (a novel notion of action-regret) to
ensure a robust policy is computed, also recognizing the partial observability present in the problem.

Game Theoretic Approaches: A thread of approaches (McMahan et al., 2024; Liang et al., 2024)
have employed partially observable stochastic games to represent problems of interest. A key
advantage of game theoretic approaches is their ability to reason about adversaries. However, they
assume that an adversary is always present–this can result in conservative solutions–and typically
are computationally heavy. We do not use equilibrium concepts to ensure there is a good balance
between robustness and “non-adversarial value” maximization. Instead, our risk-reward balance is
computed based on the empirical belief about the adversary obtained from observations.

Partially Observable Adversaries: Several prior works (Jin et al., 2018; Zhang et al., 2020; Liu
et al., 2024) have acknowledged and consider that adversarial observation perturbations make the
underlying state partially observable. This has resulted in improved results. However, there are a few
fundamental differences on how partial observability is considered in the most recent work (Liu et al.,
2024) and our contributions:

• Partial observability is captured using a history of observations that does not consider that
this partial observability is being driven by an adversary (i.e., with intention). The partial
observability present in adversarial RL is not the same as in Partial Observable MDPs, where
partial observability is a facet of the agent sensor (that is only stochastic, not adversarial).
In our work, our belief state computation (to account for partial observability) explicitly
considers that an adversary is driving the observation.

• In training, they compute a set of non-dominated policies to execute at test time. Then,
they do test time adaptation, performing regret minimization over multiple (800) complete
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runs of the policy against the adversary. This is effective, though unfortunately impractical
in domains such as autonomous vehicle control, where adapting to an adversary after a
catastrophe is not acceptable. Thus, such test time adaptation has not been utilized in any of
the existing works, ours included.

• They do not adapt at every time step (which is feasible in RL settings based on observations),
rather waiting until the end of each episode to adapt their policy meta-weights. Because
time step-wise interaction and adaptation fits within RL settings, we consider the adversarial
susceptibility of actions at every time step based on estimated belief and act accordingly.

3 ADVERSARIAL COUNTERFACTUAL ERROR (ACOE)

In this section, we define the ACoE objective for the Adversarial Reinforcement Learning (RL)
problem. Intuitively, ACoE refers to the difference in the expected value obtained by a defender in the
absence of adversarial perturbations versus in the presence of an adversary. It should be noted that in
the case of adversarial perturbations, the defender only receives the altered state, and no information
that is verified to be uncorrupted. By minimizing the ACoE objective in conjunction with maximizing
expected value, we aim to derive a policy that provides a good trade-off between robustness (against
adversary perturbations) and effectiveness (accumulating reward).

Expected value without adversarial perturbations, V (s):

In the case without adversarial perturbations, the defender’s problem is one of an infinite horizon
MDP. Formally, we define the MDP ⟨S,A, T,R, γ⟩ where S is the state space, A is the action space,
T (s′ | s, a) is transition probability, R(s, a) is the immediate reward, and γ is the discount factor.
Without loss of generality, we assume R(s, a) ∈ [0, 1]. For ease of presentation, we assume discrete
state and actions in the mathematical sections. The aim in the MDP is to choose actions at every
time step (specified as a policy π) that maximize the value function V . In infinite horizon MDPs, the
optimal policy is memoryless and stationary, i.e. a function of only the current state. However, to
be more general and keep consistent notation with the case where there is an adversarial partially
observable case below, we use I as the current information state, i.e., I is the sequence of observed
states and actions up to the present, and the policy computes the action as a function of I , π(I). Note
that this is without loss of generality, as the optimal policy in an MDP will simply ignore the history
preceding the current state. Then, the value for a policy π is given by

V (s) = R(s, π(I)) + γEs′∼T (·|s,π(I))[V (s′)]

Expected value with adversarial perturbations, U(b):

In the case of an adversarial perturbation, the defender only receives an altered observation, providing
only partial information about the underlying true state (i.e., the true state is near the perturbed state).
Formally, we define the adversary’s policy as a function, ν : S → ∆(S), where ∆(S) denotes all
possible distributions over S; we also abuse notation slightly to indicate the perturbed random state as
ν(s). We follow the standard assumption in adversarial learning that the perturbed state is close to the
true underlying state, i.e., ||ν(s)− s||∞ ≤ ϵ. This is an example of a one-sided Partially Observable
Stochastic game (POSG) (Horák et al., 2023) in which the adversary has full observability while
the defender does not observe the underlying state and only observes the perturbed state. It is well
known (Horák et al., 2023) that with a fixed adversarial perturbation policy (possibly randomized),
the defender’s problem reduces to a Partially Observable Markov Decision Process (POMDP).

A POMDP is an MDP where the state is only partially observed. This partial observability is captured
using an observation space O and observation probability Po(o | s′, a) that specifies the probability
of observing o given true state s′ obtained on taking action a. Further, a POMDP is known to be
equivalent to a belief state MDP (Kaelbling et al., 1998) where states are beliefs over the underlying
states in the POMDP. A belief state, b is a probability distribution over underlying states, s, where∑
s b(s) = 1. On taking actions, this belief state changes and is computed by using a standard

Bayesian update:

b′(s′) =
Po(o | s′, a)

∑
s T (s

′ | s, a)b(s)
Po(o | b, a)

where Po(o | b, a) =
∑
s′

Po(o | s′, a)
∑
s

T (s′ | s, a)b(s)

We will employ a short form to represent the above update, b′ = SE(b, o, a). As the belief update
requires knowledge of the model (transition function), our initial mathematical analysis is in a
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model-based framework. An optimal policy in a POMDP can be a function of the belief. However, it
is known that for POMDPs belief b is a sufficient statistic for information state I , so we can consider
the more general policy that depends on I , without any loss of generality. We denote by U the value
function of this POMDP for policy π:

U(b) = R(b, π(I)) + γ
∑
o

Po(o | b, π(I))U(SE(b, o, π(I)))

The partial observability exhibited in adversarial RL has a particular structure in which the observation
space O is the same as the state space S, and the observation probability function Po(o | s, a) is
governed by the adversary’s perturbation policy. More specifically, in our problem, the observation
probability depends only on the true state and not the defender action, thus, we write P νo (o | s),
but note that b′ = SE(b, o, a) still depends on a due to the use of transition T . Note that the non-
adversarial case can be considered a special case where the adversary policy is the identity function
id, and then P id

o (o | s) = I(o = s) for indicator function I. As the observation space O = S , we will
often use the notation so to refer to an observation as so ∈ S where the subscript o is used to denote
that this is an observation. In particular, any distribution over the observation space is a distribution
over the state space.

Adversarial Counterfactual Error, ACoE: We analyze the difference in return V − U obtained in
the non-adversary case (denoted by V ) and adversary case (denoted by U ) using a common policy π
in each case. We term V − U as Adversarial Counterfactual Error (ACoE). As the optimal policy
depends on different information structures in these two cases, to compare these cases with the same
policy we have already chosen to generalize the policy as a function of the information state I . We
write the value functions starting with the currently observed belief, where the non-adversarial case is
the true state itself. For notational ease in the later sections, we will write so to represent the current
observation, which particularly emphasizes that in our problem, the observations are themselves part
of the state space. Further, in our particular domain, o ∈ S , thus, Po(· | b, π(I)) specifies a probability
distribution over states. Thus, by renaming variables and dropping the dependence of observations on
actions, we rewrite

∑
o Po(o | b, π(I))U(SE(b, o, π(I))) as Es′o∼Po(· | b,π(I))[U(SE(b, s′o, π(I))].

Then, for both the non-adversary and adversary scenarios, following standard MDP and POMDP
facts, we have a recursive form as below:

V (so) = R(so, π(I)) + γEs′o∼T (·|so,π(I))[V (s′o)]

U(b) = R(b, π(I)) + γEs′o∼Po(·|b,,π(I))[U(SE(b, s′o, π(I))]

ACoE is defined as V (so)− U(b).

We also use an additional shorthand notation of To(·, · | b, a) to denote the joint probability distribution
of s′o and b′ specified by the sampling process: s′o ∼ Po(· | b, a), b′ = SE(b, s′o, a). We define the
following important quantity:
Definition 3.1 (Cumulative Adversarial Counterfactual Error (C-ACoE)). Define C-ACoE as

δ(so, b) = R(so, π(I))−R(b, π(I)) + γEs′o,b′∼To(·,· | b,π(I))[δ(s
′
o, b

′)] (1)

Theorem 3.2. LetK = maxs∈S V (s) and assume TV (T (·|so, a), Po(· | b, a)) ≤ Ξ for any observed
state so, belief b, and action a in the same time step, then∣∣V (so)− U(b)− δ(so, b)

∣∣ ≤ γKΞ

1− γ

The above result shows that there are two parts to ACoE, the uncontrollable part with the TV distance
captures structural differences in the transition without attack and transition induced by the attack,
while the controllable part, C-ACoE term δ(so, b) captures long term return difference due to the
adversarially induced transition. In the appendix, we delve more into the structural difference in
transitions by utilizing Wasserstein distance instead of Total Variation, TV distance. The above results
also suggest that apart from the inherent structural differences, minimizing C-ACoE δ(so, b) can be
effective in ensuring that returns in the adversarial scenario are close to the non-adversarial scenario,
which we explore in the next section.

Since the structural differences in transition are not controllable by the defender agent, we focus
on minimizing the C-ACoE for the defender. Furthermore, to ensure that the effectiveness of the
policy in accumulating rewards is high, we minimize C-ACoE while simultaneously maximizing the
non-adversarial expected reward.
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Algorithm 1: δ-PPO
1 Initialize policy network weights θ1, value network weights ϕ1, and δ-network weights ψ1

2 Set robustness-hyperparameter λ
3 for iteration k ∈ {1, . . . ,M} do
4 Collect set of trajectories Dk by running policy πθk multiple times for T steps
5 Estimate rewards-to-go R̂t and C-ACoE-to-go δ̂t at all time steps t for all trajectory in Dk
6 Compute advantage estimates Â using Generalized Advantage Estimator (Schulman et al.,

2016), based on R̂t’s and Vϕk

7 Compute C-ACoE Advantage Ac,t = Ât − λδ̂t
8 Update policy parameters to θk+1 by maximizing the PPO-clipped (Schulman et al., 2017)

form of Ac,t
9 Update ϕk+1 = argminϕ

1
|Dk|T

∑
τ∈Dk

∑T
t=0(Vϕ(st)− R̂t)

2

10 Update ψk+1 = argminψ
1

|Dk|T
∑
τ∈Dk

∑T
t=0(δψ(st)− δ̂t)

2

4 OPTIMIZING C-ACOE ALONG WITH NON-ADVERSARIAL EXPECTED
REWARD IN ADVERSARIAL RL

In RL settings, we do not have the model and hence the transition dynamics T are not available.
Thus, computing δ(so, b) exactly is not possible, as the belief depends on knowledge of transition
probabilities. However, our problem presents a structured scenario where the observation depends
only on the current true state and uncertainty is entirely due to adversarial perturbation. It has been
stated in literature and is also intuitive that adversarial perturbations are effective in causing harm
when they induce a large enough change in the defender’s action distribution (Oikarinen et al., 2021;
Zhang et al., 2020). Thus, we propose to derive a surrogate belief based on the observed state so in
conjunction with reasoning about how the adversary might have forced this observation to arise. We
present a couple of such belief constructions here.

Using the full history of observations and actions (represented as the information state, I) as an input
to the policy is computationally expensive to implement. Prior approaches have used a variety of
approximations (Azizzadenesheli et al., 2018); we adopt a simple measure (Müller and Montufar,
2021; Kober et al., 2013) where we restrict solutions to the set of policies that depend just on the
current observation. Next, note that if b depends on so only, then δ(s0, b) is a function of so only.
Hence, we redefine the C-ACoE as

δ(so) = R(so, π(so))−R(b(so), π(so)) + γEs′o∼ν(s′),s′∼T (· | s,π(so))[δ(s
′
o)] (2)

We note that the underlying true state s′ is not observed, but estimating the second term on the
RHS above requires only samples of observation s′o which are available from the simulator. In this
form, C-ACoE also satisfies the Bellman optimality structure (as stated formally in the following
proposition) and hence allows for incorporating the minimization of δ(so) in standard RL techniques.
Proposition 4.1. Let δ∗(so) be the minimum C-ACoE value from observation so. Then,

δ∗(so) = min
a

{R(so, π(so))−R(b(so), a) + γEs′o∼ν(s′),s′∼T (· | s,a)[δ
∗(s′o)]}

Algorithm 1 shows our adaptation of PPO for optimizing δ along with maximizing V . The steps for
maximizing V follow standard steps in PPO leading to the standard advantage Ât in line 7. We also
compute the C-ACoE-to-go from the sampled trajectories (line 5) and use it to augment the standard
advantage Ât in line 7 (we need to minimize C-ACoE, hence the negative sign before δ̂t). Line 9
is a standard PPO step to update the V network and we do so similarly for the δ network in line 10.
We found that computing an advantage-like term for δ did not improve performance, thus we used
only C-ACoE-to-go. A similar adaptation is also done for DQN, presented in the appendix. Next, we
describe two possible belief constructions given the observed state so.

Adversary-Aware Belief Estimation (A2B): We aim to assign a belief to states in neighborhood
N(so) of observation, so where N(so) = {s | ||s − so|| ≤ ϵ}. N(so) is restricted to an ϵ bound
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given established adversarial perturbation practices. We know that an adversarial perturbation from
state s to state so is an effective attack when the action distribution π(s) and π(so) are quite different.
Based on this fact, we form a belief:

b(s) =
eDKL(π(s)||π(so))∑

s′∈N(so)
eDKL(π(s′)||π(so))

Adversary-Attack-Aware Belief Estimation (A3B): Different from A2B, we assign scores to states
in N(so) based on assumptions about adversarial preference. These scores depend on a surrogate
attack ν, for which we use a 50-step PGD attack; quick empirical checks show this to find the worst-
case bound of the L∞-norm ball in nearly every state. We assign a score z(s) to a state s ∈ N(so)
that is a ratio of: (the KL divergence of the action distributions at possibly perturbed observation so
and the state s) to (the KL divergence of actions distribution at ν(s) and s). Then, a belief is assigned
to state s′ depending on the score z by a softmax operation:

b(s) =
ez(s)∑

s′∈N(so)
ez(s′)

where z(s) =
DKL(π(so)||π(s))
DKL(π(ν(s))||π(s))

The intuition for the above formulation of score z is that if the true state was s, the adversary should
prefer to provide ν(s) with a high KL divergence between action distributions at ν(s) and s, but
since we observed so, the ratio of KL divergences in score z(s) measures how effective the change
s to so is, compared to the change s to ν(s). Any candidate true state s has low score if so is not
an effective attack from state s. Thus, A3B reduces the scores (weights) of states that are unlikely
adversarial choices based on the policy π. Then, optimizing C-ACoE using A3B beliefs coupled with
non-adversarial value maximization allows balancing unperturbed performance with robustness, as
highlighted earlier in the introduction.

Figure 1: A3B belief construction. Let the
dotted line sisj have magnitude representing
the damage when perturbing si → sj . In this
example, our method should discount the pos-
sibility that ν(s2) = s0, and lessen the score
z(s2).

For a visual explanation of the logic of A3B, con-
sider Figure 1. This figure shows two neighbor-
hood states s1 and s2 which could potentially be
the underlying true state, given the observed state
so. Subsequently, N(s1) contains a worst-PGD per-
turbation s′1 = ν(s1) and N(s2) similarly contains
s′2 = ν(s1). Even though s′2 may be close in Eu-
clidean distance to so, it is possible that
DKL(π(s

′
2)||π(s2)) >> DKL(π(so)||π(s2))

leading to a small score zs2 (closer to 0) for s2.
This is intuitive, as an adversary will likely not
perturb s2 to so, due to the existence of the more
disruptive attack s′2. Similarly, the score zs1 for
s1 can be close to 1 due to DKL(π(s

′
1)||π(s1)) ≈

DKL(π(so)||π(s1)), which is intuitive as so results
in same amount of change in action distribution as
s′1.

Continuous State Sampling: One issue to consider above is when the state space is continuous.
In such a scenario, we still form a finite set N(so) by uniformly sampling a given number n
(hyperparameter) of samples from the continuous set C = {s | ||s− so|| ≤ ϵ}. From the definition of
δ (Eq. 2), we use b to estimate R(b, a). Our true value of this is R = R(b, a) =

∫
s∈C R(s, a)p(s)ds

where the probability density p(s) = ez(s)/
∫
s∈C e

z(s)ds. In contrast, we sample n states from a
uniform distribution U with probability density given by u(s) = 1/vol(C) where vol is the volume

of set C and estimate R̂ =
∑

s′∈N(so) R(s′,a)ez(s
′)∑

s′∈N(so) e
z(s′) . We show a result in the appendix that justifies the

estimate R̂ by showing that the expected value of this estimate is close to the true required value R.

Recurrent State History: A3B is primarily proposed as an adversary-aware method of deriving
belief about true states based on the current observation. However, this approach can be adapted to
consider a history of observations, albeit with higher computational burden. We provide an extended
A3B definition with multistep observations and additional evaluations of this extended A3B using an
LSTM network in the Appendix.
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Table 1: Experimental results versus myopic adversaries. Each row shows the mean scores of each
RL method against different attacks. The most robust scores are in bold. Our approaches are A2B
and A3B, which are highlighted .

Method Unperturbed MAD PGD Unperturbed MAD PGD
highway-fast-v0 merge-v0

PPO 24.8±5.42 13.63±19.85 15.21±16.1 14.94±0.01 10.2±0.02 10.42±0.95
CARRL 24.4±1.10 4.86±15.4 12.43±3.4 12.6±0.01 12.6±0.01 12.02±0.01
RADIAL 28.55±0.01 2.42±1.3 14.97±3.1 14.86±0.01 11.29±0.01 11.04±0.91
WocaR 21.49±0.01 6.15±0.3 6.19±0.4 14.91±0.04 12.01±0.28 11.71±0.21
RAD 21.01±0.01 20.59±4.1 20.02±0.01 13.91±0.01 13.90±0.01 11.72±0.01
A2B 24.8±0.01 23.11±0.01 20.8±12.6 14.91±0.01 14.23±0.8 12.92±0.13
A3B 23.8±0.01 23.21±0.01 22.61±14.1 14.91±0.17 14.88±0.17 14.89±0.17

5 EXPERIMENTS

We provide empirical evidence to show the effectiveness of our proposed method. In particular, we
want to investigate whether A2B and A3B improve over leading adversarial robustness methods on
established baselines, and what aspects of C-ACoE contribute to a viable defense against strategic
adversaries.

5.1 EXPERIMENT SETUP

We evaluate C-ACoE methods on the standard Atari (Bellemare et al., 2013) and MuJoCo (Todorov
et al., 2012) domains, and additionally the Highway simulators (Leurent, 2018), to demonstrate real
problems of interest. In the Mujoco and Highway tasks, the agent earns score by traversing distance
without incurring critical collisions. Atari tasks are game-dependent. We use a standard training setup
seen in (Oikarinen et al., 2021; Liang et al., 2022; Belaire et al., 2024), and detailed in Appendix C.

We compare C-ACoE optimization methods (A2B, A3B) to the following baselines: PPO (Schulman
et al., 2017); CARRL, a simple but robust minimax method (Everett et al., 2020); RADIAL, a leading
regularization approach (Oikarinen et al., 2021); WocaR, worst-case aware value maximization (Liang
et al., 2022); RAD, a method minimizing a notion of regret (Belaire et al., 2024); and Protected (Liu
et al., 2024). We test all methods against two greedy attack approaches of reward-minimizing policy
adversaries and gradient attacks. We evaluate each method’s PPO implementation in the Highway
and Mujoco domains, and DQN implementations in Atari tasks. Additional comparisons including to
a few more baselines, namely BCL (Wu and Vorobeychik, 2022) and CAR-DQN (Li et al., 2024), are
in the Appendix.

Protected Baseline: We wish to specifically address the comparison with Protected (Liu et al.,
2024). Protect does regret minimization (EXP3) over multiple rounds (each round is full policy
episode) and the weights are updated at test time based on empirical return in each round. As stated
earlier, this has a major advantage against all other approaches in the literature, which do not do any
test time adaptation, and unfortunately makes Protected impractical for safe RL applications. To
indicate this, the results of the original Protected are presented but grayed out (and not compared to
when highlighting best result) in Table 3. The test time adaptation also results in Protected having a
significantly higher unperturbed score in some of the domains (e.g., HalfCheetah, Walker2d, Ant)
even when compared to PPO. Therefore, for a fair comparison to all the adversarial RL approaches,
we also provide a comparison against a variant of Protected, referred to as Protected†, where there
is no test time adaptation. Further details of Protected and additional comparison is presented in
Appendix.

Myopic Adversaries: We test the adversarial robustness of each method against adversaries that we
term as “greedy” or myopic, meaning that they compute worst-case attacks for a given time step.
Following the set up employed in existing works, we measure a 10-step PGD attack (Madry et al.,
2017) with ϵ = 0.1, and a MAD attack (Zhang et al., 2020) with ϵ = 0.15.We evaluate both MAD
and PGD attacks as they represent two distinct attack directions (MAD is reward-based, while PGD
is a gradient-based).
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Table 2: Experimental results versus myopic adversaries in Atari domains, formatted the same as
Table 1. Methods are evaluated as their corresponding DQN implementations.

Method Unperturbed MAD PGD Unperturbed MAD PGD
Pong Freeway

PPO 21.0±0 -20.0±0.07 -19.0±1.0 29 ± 3.0 4 ± 2.31 2±2.0
CARRL 13.0 ±1.2 11.0±0.010 6.0±1.2 18.5±0.0 19.1 ±1.20 15.4±0.22
RADIAL 21.0±0 11.0±2.9 21.0± 0.01 33.2±0.19 29.0±1.1 24.0±0.10
WocaR 21.0±0 18.7 ±0.10 20.0 ± 0.21 31.2±0.41 19.8±3.81 28.1±3.24
RAD 21.0±0 14.0 ± 0.04 14.0 ± 2.40 33.2±0.18 30.0±0.23 27.7±1.51
A2B 21.0±0 20.1±0.04 21.0±0.01 33.2±0.18 30.1±0.43 30.8±1.51
A3B 21.0±0 20.8±0.7 21.0±0.01 33.2±0.18 31.0±0.87 31.1±1

Table 3: Experimental results versus myopic adversaries in Mujoco domains, formatted the same as
Table 1. Methods are evaluated as their corresponding PPO implementations. Note: the Protected
method requires test time adaptation rounds to achieve full results. The Protected method without
test time adaptation is labelled as Protected†.

Method Unperturbed MAD PGD Unperturbed MAD PGD
Hopper Walker2d

PPO 4128 ± 56 1110±32 128±105 5002 ± 20 680±1570 730±262
RADIAL 3737±75 2401±13 3070±31 5251±10 3895±128 3480±3.1
WocaR 3136±463 1510 ± 519 2647 ±310 4594±974 3928±1305 3944±508
Protected 3652±108 2512±392 2221± 775 6319±31 5148±1416 4720± 1508
Protected† 3573±81 2398±665 2215±98 5019 ± 87 3887 ± 492 3613 ± 487
RAD 3473±23 2783±325 3110±30 4743±78 3922±426 4136±639
A2B 3710±11 3240±41 3299±28 4760±61 4636±87 4708±184
A3B 3766±23 3370±275 3465±17 5341±60 5025±94 5292±231

HalfCheetah Ant

PPO 5794 ± 12 1491±20 -27±1288 5620±29 1288±491 1844±330
RADIAL 4724±76 4008±450 3911±129 5841±34 3210±380 3821±121
WocaR 5220±112 3530±458 3475±610 5421±92 3520±155 4004±98
Protected 7095±88 4792±1480 4680±1203 5769±290 4440±1053 4228± 484
Protected† 4777±360 4551±843 3997±285 4620±32 4264±166 4368±473
RAD 4426±54 4240±4 4022±851 4780±10 3647±32 3921±74
A2B 5192 ±56 4855± 120 4722±33 5511±13 3824±218 4102±315
A3B 5538±20 4986±41 5110±22 5580±41 4071±242 4418±290

Long-Horizon Adversaries: We also assess adversarial robustness of each method versus more
strategic, long-horizon adversaries that compute worst-case trajectories to deceive an RL agent. We
evaluate agents against PA-AD (Sun et al., 2023), the state-of-the-art adversarially-directed policy
attack, as well as the Critical Point Attack (Liang et al., 2022) and Strategically Timed Attack (Lin
et al., 2017). We evaluate the adversarial robustness of the target policies as the depth of strategy
increases for the long-horizon adversaries. In the context of the Critical Point attack, a higher depth
of strategy increases the length and number of trajectories sampled to find the worst-case future
outcome, and a stronger Strategically Timed attacker has a larger perturbation budget.

5.2 RESULTS

In Tables 1, 2, and 3, we report the mean result over 5 policies initialized with random seeds, with
50 test episodes each. The variance reported (±σ) is the standard deviation from the mean for each
method. The most robust score is shown in boldface.

Myopic attacks: As seen in Table 1-3, C-ACoE methods A2B and A3B achieve state of the art robust
performance against standard greedy attacker strategies, as well as nominal performance similar to the
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Table 4: Robust performance against the PA-AD attacker (Sun et al., 2023). We train the attacker
with the PA-AD framework against the completed victim policies for 500 episodes, the same for
each victim and environment. As the Protected method has several PA-AD attackers (for each
non-dominated policy), we instead use the sampling schema outlined in their work.

PA-AD Perturbed Scores
Method HalfCheetah Walker2d Hopper Ant

PPO -388 ± 820 427 ± 32 167 ± 93 -121 ± 1255
Radial 3441 ± 42 3703 ± 202 2288 ± 74 2567 ± 41
Wocar 4148 ± 68 3895 ± 126 2387 ± 114 2779 ± 170
Protected 4411±718 5803±857 2896±723 4312 ±281
Protected† 2331 ± 277 4480 ± 492 2210 ±385 3103±96
RAD 4233 ± 13 3864 ± 67 2403 ± 129 2756 ± 81
A2B 4393 ± 79 3997 ± 214 2441 ± 31 2821 ± 312
A3B 4478 ± 67 4931 ± 166 2580 ± 92 3205 ± 275

best observed value-maximizing methods such as PPO. We attribute this success to the two parts of
ACoE: framing the adversarial robustness problem as a POMDP and the simultaneous maximization
of value and minimization of ACoE error brings increased performance over maximin methods and
higher robustness overall. Our approaches perform better than Protected with test time adaptation
and also and Protected† in all the cases, except Ant.

Long-horizon attacks: We also test our methods against attackers with a longer planning horizon
(and not only the myopic attackers from above). In Figure 4 and Table 4, we test the performance
of our approaches in the presence of the SOTA attack, referred to as the PA-AD policy attack (Sun
et al., 2023). We also include experiments evaluating robust methods against the Strategically Timed
attack (Lin et al., 2017) and the Critical Point attack(Sun et al., 2020) in the appendix. We find that
across domains, C-ACoE agents maintain robustness even against long-horizon attacks. This is one
of the main advantages of our proposed methods following the C-ACoE-minimizing philosophy, as
the error-robust policies seek stable trajectories rather than robust single-step action distributions.

Robust Behavior: In Appendix Figure 5, we observe qualitative differences between PPO, A3B, and
WocaR. The WocaR agent adopts more stable motion, minimizing the worst-case, and PPO optimizes
for speed, only using the back leg. A3B balances the two approaches, using both legs to keep stability
while still retaining a wide range of motion. Full videos of the behaviors described in Figure 5 can
be viewed from DropBox at tinyurl.com/a3b-gif, where the extent of robust behavior can be better
observed.

6 DISCUSSION AND LIMITATIONS

We introduce the novel concept of ACoE based on beliefs about true state. We propose a scalable
approximation of ACoE, C-ACoE, and demonstrate its usefulness in proactive adversarial defense,
achieving state of the art robustness against strong observation attacks from both greedy and strategic
adversaries on a variety of benchmarks. More importantly, we find that recognizing the partially
observable nature of the defender agent in adversarial RL problems and optimizing ACoE can be
used to increase the robustness of RL to adversarial observations, even against stronger or previously
unseen attackers. In this paper, we focused on the estimation of belief states from single step perturbed
observations; It may be beneficial to further estimate belief based on observations over multiple
time steps. Some preliminary results on this are in the appendix, and addressing the computational
complexity of multistep observation based belief construction makes for promising future work. We
also note that the efficacy of the belief construct that we use is reliant on the accuracy of using KL
Divergence as a notion of attack strength. We find our measures to be empirically the strongest,
compared to notions such as Euclidean state distance, other F-divergences, or minimum reward,
however, and leave other more complex measures to future work.
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ETHICS STATEMENT

By trying to understand how to produce robust and safe RL policies, we unavoidably create knowledge
on the destruction of prior policies. While this pursuit yields a net positive result by far, it is still
important to acknowledge the risks associated with this field of research. In this paper specifically, we
acknowledge the information asymmetry between the attacker and defender in the problem, as well
as the insight that an adversary is, in general, considering attacks that change the victim’s behavior
to the greatest extent. These insights are formal definitions of existing dynamics, and while their
acknowledgement may yield some tools to bad actors, we also provide formal and explicit tools to
mitigate those harms.

REPRODUCIBILITY

We have uploaded code as part of our submission, showcasing the implementation of our ACoE-
optimizing PPO methods, as well as the computation of A3B and A2B. Additionally, Algorithm 1
and 2 provide pseudocode-level instructions on the implementation of our methods. We have listed
hyperparameter values and additional details in the appendix. All proofs in our paper are also present
in the appendix.
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A PROOFS AND ADDITIONAL THEORY RESULTS

Proof of Theorem 3.2. Subtracting U from V , and adding and subtracting γEs′o∼Po(· | b,π(I))[V (s′o)]
we get

V (so)− U(b) =

R(so, π(I))−R(b, π(I)) + γEs′o∼Po(· | b,π(I))[V (s′o)− U(b′)]+

γEs′o∼T (·|so,π(I))[V (s′o)]− γEs′o∼Po(· | b,π(I))[V (s′o)]

Note that by definition of To, we have that Es′o∼Po(· | b,π(I))[V (s′o) − U(b′)] =
Es′o,b′∼To(·,· | b,π(I))[V (s′o)− U(b′)]

Next, from Holder’s inequality, we get that∣∣Es′o∼T (·|so,π(I))[V (s′o)]− Es′o∼Po(· | b,π)[V (s′o)]
∣∣ ≤ max

s
{V (s)}TV (T (·|so, π(I), Po(· | b, π(I)))

(3)

Thus, for one side of the inequality above (i.e., using a ≤ b from the shown |a| ≤ b, the other side is
−b ≤ a)

V (so)− U(b) ≤
R(so, π(I))−R(b, π(I)) + γEs′o,b′∼To(·,· | b,π(I))[V (s′o)− U(b′] + γKΞ

For notation simplicity, letR(s, π(I))−R(b, π(I)) = δR(s, b). We use I ′ as the updated information
state obtained by concatenating I with π(I), s′o. Applying the above recursively, we get

V (so)− U(b)

≤ δR(so, b) + +γEs′o,b′∼To(·,·|b,π(I))[V (s′o)− U(b′)] + γKΞ

≤ δR(so, b) + γEs′o,b′∼To(·,·|b,π(I))
[
δR(s

′
o, b

′) + γEs′′o ,b′′∼To(·,·|b′,π(I′))[V (s′′o)− U(b′′)] + γKΞ
]
+ γKΞ

≤ ...

≤ E(so,b,s′o,b
′,...)∼π,T,Po

[δR(so, b) + γδR(s
′
o, b

′) + γ2δR(s
′′
o , b

′′) + ...] +
γKΞ

1− γ

We note that E(so,b,s′o,b
′,...)∼π,T,Po

[δR(s0, b) + γδR(s
′
o, b

′) + γ2δR(s
′′
o , b

′′) + ...] = δ(so, b), where

δ(so, b) = R(so, π(I))−R(b, π(I)) + γEs′o,b′∼To(·,· | b,π(I))[δ(s
′
o, b

′)]

Thus,

V (so)− U(b) ≤ δ(so, b) +
γKΞ

1− γ

By symmetric argument using other side of Eq. 3, we get

δ(so, b)−
γKΞ

1− γ
≤ V (so)− U(b)

These last two equations led to the statement in the theorem.

The result above uses total variation distance (other work in literature also do (Zhang et al., 2020)),
but, total variation is not as informative a distance measure as Wasserstein distance. For example, it
is easy to see that TV (P,Q) = 1 whenever the support of P and Q do not overlap, but it does not
distinguish whether the non-overlapping supports are near or far apart. As shown in prior work on
WGAN (Arjovsky et al., 2017), Wasserstein distance provides more fine-grained distinctions. Also,
the assumed bound Ξ above hides the effect of the nature of the underlying transition T on the bound.
Hence, we prove the next result using Wasserstein distance, which reveals these facets of the problem.
Theorem A.1. Assume that (1) V is L-Lipschitz and (2) for any ||s− s′||∞ ≤ ϵ and any action a we
have W1(T (·|s, a), T (·|s′, a))) ≤ ξ. Then,∣∣V (so)− U(b)− δ(so, b)

∣∣ ≤ γL(ξ + ϵ)

1− γ
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Proof of Theorem A.1. The overall proof follows the same structure as Theorem 3.2. The only
difference is in the bound for∣∣Es′o∼T (·|so,π(I))[V (s′o)]− Es′o∼Po(· | b,π(I))[V (s′o)]

∣∣ (4)

For a simpler presentation, we use a, a′ to denote action taken in current and next time step. As V/L
is 1-Lipschitz, by duality of W1 Wasserstein distance, we have∣∣Es′o∼T (·|so,a)[V (s′o)/L]− Es′o∼Po(· | b,π(I))[V (s′o)/L]

∣∣ ≤W1(T (·|so, a), Po(· | b, a))

or multiplying by L∣∣Es′o∼T (·|so,a)[V (s′o)]− Es′o∼Po(· | b,π(I))[V (s′o)]
∣∣ ≤ LW1(T (·|so, a), Po(· | b, a))

Next, we bound W1(T (·|so, a). Note that Po(· | b, a)) =
∑
s′ P

ν
o (· | s′)

∑
s T (s

′ | s, a)b(s). First,
because the restriction on adversarial perturbation, we know that if b(s) > 0 then ||s− so||∞ ≤ ϵ.
Then, based on our assumption

W1(T (·|so, a), T (·|s, a)) ≤ ξ for any s such that b(s) > 0 (5)

First, note that W1 is a convex function of its argument. This can be seen easily; we show it for
the first argument below. Recall that definition of W1(µ, ν) = infγ∈Γ(µ,ν)

∫
d(x, y)γ(dx, dy) for

couplings (joint distribution) set Γ that have marginal as µ, ν. Choose γ∗1 as a minimizer in W1(µ1, ν)
and γ∗2 as a minimizer in W1(µ2, ν). Let γ∗ = αγ∗1 + (1 − α)γ∗2 ; it easy to see that γ∗ ∈ Γ(µ.ν).
Then,

W1(αµ1 + (1− α)µ2, ν) = inf
γ∈Γ(αµ1+(1−α)µ2,ν)

∫
d(x, y)dγ(x, y)

≤
∫
d(x, y)dγ∗(x, y)

= α

∫
d(x, y)dγ∗1(x, y) + (1− α)

∫
d(x, y)dγ∗2 (x, y)

= αW1(µ1, ν) + (1− α)W1(µ2, ν)

Let T (· | b, a) =
∑
s T (· | s, a)b(s). Using the above convexity of W1, we get that

W1(T (·|so, a), T (·|b, a)) ≤
∑
s

b(s)W1(T (·|so, a), T (·|s, a)) ≤ ξ (6)

where the last inequality follows from Eq. 5

Next, we boundW1(Po(· | b, a), T (· | b, a)). First, by definition of T (· | b, a) we get that Po(· | b, a) =∑
s′ P

ν
o (· | s′)T (s′ | b, a). Consider the joint distribution γ∗ over the space S × S given by (s′, s′o)

sampled as so ∼ T (·|b, a), s′o ∼ P νo (·|s′). It is easy to check that γ∗ is a coupling, i.e., γ∗ ∈
Γ(Po(·|b, a), T (·|b, a)). We show this and for this we drop the dependency on b, a for ease of notation.
First, γ∗(A,B) =

∫
A×B dγ

∗(s′, s′o) =
∫
A
P νo (B|s′)dT (s′). Thus, γ∗(A,S) =

∫
A
dT (s′) = T (A)

and γ∗(S, B) =
∫
S P

ν
o (B|s′)dT (s′) = Po(B). Also, note that ||s′ − s′o||∞ ≤ ϵ for d as the infinity

norm because of the bound of adversarial perturbation implicit in P νo . Then,

W1(Po(· | b, a), T (· | b, a)) = inf
γ∈Γ(Po(·|b,a),T (·|b,a))

∫
||s′ − s′o||∞dγ∗(s′, s′o)

≤
∫

||s′ − s′o||∞dγ(s′, s′o)

≤ ϵ (7)

Combining Eq. 5 and Eq. 7 by triangle inequality we get

W1(T (· | so, a), Po(· | b, a)) ≤ ξ + ϵ
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The above results show that some basic structural properties are needed from the underlying system
for bounding ACoE. One is that the value function should not change by a large amount due to small
changes in state and another that the distribution of the next state should not be very different for two
close by states. Clearly, an adversary can exploit systems that lack these properties.

Proof of Proposition 4.1. The proof is observed from the fact that C-ACoE can be viewed as an
infinite horizon MDP with observations so as states, immediate cost as R(so, π(so))−R(b(so), a),
and transition to next state s′o described by s′o ∼ ν(s′), s′ ∼ T (· | s, a).

B ADAPTATION FOR DQN

Algorithm 2: δ-DQN

1 Initialize network δw with random weights w and target network δ̂w− with weights w− = w

2 Initialize network Qθ with random weights θ and target network Q̂θ− with weights θ− = θ
3 Initialize replay buffer B
4 Set robustness temperature λ
5 for episode ∈ {1, . . . ,M} do
6 for t = 0 → H do
7 With prob. 1− ϵ, select at ∈ argmaxaQθ(s

t
o, a)− λδw(s

t
o, a), else select at at

random
8 Sample k states in N(so), compute b(s) for each s ∈ N(so)
9 Compute C-ACoE: δR=R(sto, a

t)−
∑
s∈N(so)

b(s)R(s, at)

10 Execute action at, get observed state st+1
o , store transition B = B ∪ (sto, s

t, st+1
o , δR)

11 Sample mini-batch M ∼ D;
12 for each (sio, a

i, si+1
o , δiR) in mini-batch M do

13 Set target yi =
{
δiR, if episode terminates at step i+ 1

δiR + γmina′ δw−(si+1
o , a′), otherwise

14 Set target qi =
{
R(sto, a

t), if episode terminates at step i+ 1

R(sio, a
i) + γmina′ Qθ−(s

i+1
o , a′), otherwise

15 Perform a gradient descent to update w using loss:
∑|M |
i=1

[
yi − δw

(
sio, a

i
)]2

16 Perform a gradient descent to update θ using loss:
∑|M |
i=1

[
qi −Qθ

(
sio, a

i
)]2

17 Every K steps reset w− = w and θ− = θ;

C ESTIMATION OF BELIEF FOR CONTINUOUS STATE SPACE

Lemma C.1. Assume z(s) < B for some constant B. Consider n uniformly random samples
from C stored in N(so). Let R and R̂ be as defined above. Then, (1/n)

∑
s′∈N(so)

ez(s
′) is

an unbiased estimate of (1/vol(C))
∫
s∈C e

z(s)ds. There exists n large enough so that 1 + ϵ >
(1/vol(C))

∫
s∈C

ez(s)ds

(1/n)
∑

s′∈N(so) e
z(s′) > 1 − ϵ with probability 1 − δ for given small ϵ, δ. And then, R(1 + ϵ) >

E[R̂] > R(1− ϵ) with probability 1− δ.

Proof. Note that Es′∼U [ez(s
′)] = (1/vol(C))

∫
s∈C e

z(s)ds, which gives us the first unbiasedness
result. The second result comes from a straightforward application of Hoeffding’s concentration
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inequality where the bound B is used. Then, we can see that

E[R̂] =

∫
s1∈C

. . .

∫
sn∈C

∑
iR(si, a)e

z(si)∑
i e
z(si)

u(s1) . . . u(sn)ds1 . . . dsn

=

∫
s1∈C

. . .

∫
sn∈C

∑
iR(si, a)e

z(si)∫
s∈C e

z(s)ds

∫
s∈C e

z(s)ds∑
i e
z(si)

u(s1) . . . u(sn)ds1 . . . dsn

≤ (1 + ϵ)vol(C)

n

∫
s1∈C

. . .

∫
sn∈C

∑
iR(si, a)e

z(si)∫
s∈C e

z(s)ds
u(s1) . . . u(sn)ds1 . . . dsn

=
(1 + ϵ)vol(C)

n

∑
i

∫
si∈C

R(si, a)e
z(si)∫

s∈C e
z(s)ds

u(si)dsi

=
(1 + ϵ)vol(C)

n
× n

vol(C)

∫
si∈C

R(si, a)p(si)dsi

= (1 + ϵ)R

A similar argument holds for the lower bound, thereby, leading to the required result,

D DEFINING ACOE BELIEF METHODS WITH STATE HISTORIES

As mentioned in the paper, our methods are amenable to LSTM state histories as well, although
empirically we find it to be not necessary (Table 9). Below, we define A2B and A3B when considering
a state history of length 2.

A2B: Consider a time window of two with the current observation as so,1 and the previous observation
as so,0.

b(s1, s0) =
eDKL(π(s1,s0)||π(so,1,so,0))∑

(s′1,s
′
0)∈N(so,1)×N(so,1)

eDKL(π(s′1,s
′
0)||π(so,1,so,0)

and
b(s1) =

∑
s0∈N(so,0)

b(s1, s0)

For the initial timestep so,0 should be fixed to some constant, i.e. using the single-state A2B formula.
This formulation does scale exponentially with the size of the neighborhoods, however we can scale
down the previous state’s neighborhood by considering a subset s0 ∈ N(so,0) that had the highest
belief.

A3B:

b(s1, s0) =
ez(s1,s0)∑

(s′1,s
′
0)∈N(so,1)×N(so,1)

ez(s
′
1,s

′
0)

and
b(s1) =

∑
s0∈N(so,0)

b(s1, s0) .

Here,

z(s1, s0) =
DKL(π(so,1, so,0)||π(s1, s0)

DKL(π(ν(s1), ν(s0))||π(s1, s0))

E ADDITIONAL EXPERIMENTAL RESULTS

We provide empirical investigations into a number of specifics that were cut from the main paper for
space. Namely, fine-grained evaluations against long-horizon attack strategies in Figures 2, 3 and 4,
and further empirical comparison to Protected-PPO (Liu et al., 2024). We also provide an extended
version of the results tables in the main paper in Table 5 and 6 which include a few more baselines,
namely CARRL (Everett et al., 2020), BCL (Wu and Vorobeychik, 2022), and CAR-DQN (Li et al.,
2024).
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E.1 LONG-HORIZON ADVERSARIES

In prior works published before c. 2023, robust RL methods had been evaluated against myopic
adversaries (i.e. adversaries give perturbations based on the current observation and victim policy,
independent of future states and actions), and long-horizon adversarial actors were not considered. In
more recent works PA-AD (Sun et al., 2023) is considered, however there are a variety of approaches
each with distinct targeting strategies that can be evaluated. In our additional experiments, we include
assessments of robust RL methods against the Strategically Timed attack (Lin et al., 2017), where
the attacker computes the most effective attack intervals, and the Critical Point attack (Sun et al.,
2020), in which the attacker delivers perturbations after computing the score reduction N steps into
the future.

We omit Protected-PPO from these granular long-horizon adversary experiments because these
adversaries learn to attack a fixed victim policy at test time, and as the Protected-PPO method adapts
over multiple episodes at test time, a fair comparative methodology is unclear. For worst-case PA-AD
results with Protected-PPO, we refer to Table 8 and the PA-AD experiments table in the main paper.

E.2 EMPIRICAL EVALUATIONS WITH PROTECTED-PPO

Online Adaptations: The most up-to-date robust RL method in this space is Protected-PPO (Liu
et al., 2024), which computes a set of non-dominated policies during training. A key part of this
method is the test time adaptation step in which a regret minimization algorithm (EXP3) with the set
of policies is run for multiple rounds (each round is full policy episode) and the weights are updated
at test time based on empirical performance against a fixed adversary, over T = 800 rounds of EXP3
((Liu et al., 2024) reports 800, but we find the actual convergence to be faster in most environments).
Because the evaluation setup for this method is quite different from all existing literature, we provide
an empirical investigation into how the method performs under standard test setups as it is helpful to
understand how it fits into the robust RL landscape.

The applications of interest for safe and robust RL such as autonomous vehicle or industrial control
realistically do not accommodate any margin for error within one episode, let alone adaptation of a
policy over multiple episodes.

To this end, we test the performance of Protected-PPO without any test time adaptation (T = 1,
which denoted with † in the main paper) and with limited test time adaptation (T = 10). In Table 8,
we find the unadapted policy performs poorly compared to the weakly-adapted counterpart, which
is more uniformly robust. We also note that the weakly-adapted threshold of (T = 10) adaptation
rounds doesn’t improve performance uniformly across domains, as Ant and Hopper both become
robust in that short time while Walker does not.

LSTM History Length: In Table 7, we also perform an investigation into the importance of an
LSTM history for the Protected framework. We provide results for a Protected-PPO model using
only linear hidden layers, labeled ProtectedH=1. We find that the state history is quite integral to the
performance of the method, which functions as the belief about the adversary for the method. This
supports the ideas that the partially-observable nature of adversarial RL is the main challenge and
must be addressed.

Figure 2: Robust agents vs. a Critical Point strategic adversary (Sun et al., 2020) with increasing
search sizes.
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Table 5: Experimental results versus myopic adversaries. Most robust scores are in bold. Methods
are evaluated on DQN implementations in Atari and Highway, with adversarial perturbation bounds
permitted as ϵ=0.1 for PGD, and 0.15 for MAD. *CAR-DQN results are reported directly from their
publication, which only uses PGD ϵ=0.02.

Method Unperturbed MAD PGD Unperturbed MAD PGD
highway-fast-v0 merge-v0

PPO 24.8±5.42 13.63±19.85 15.21±16.1 14.94±0.01 10.2±0.02 10.42±0.95
CARRL 24.4±1.10 4.86±15.4 12.43±3.4 12.6±0.01 12.6±0.01 12.02±0.01
RADIAL 28.55±0.01 2.42±1.3 14.97±3.1 14.86±0.01 11.29±0.01 11.04±0.91
WocaR 21.49±0.01 6.15±0.3 6.19±0.4 14.91±0.04 12.01±0.28 11.71±0.21
RAD 21.01±0.01 20.59±4.1 20.02±0.01 13.91±0.01 13.90±0.01 11.72±0.01
A2B 24.8±0.01 23.11±0.01 20.8±12.6 14.91±0.01 14.23±0.8 12.92±0.13
A3B 23.8±0.01 23.21±0.01 22.61±14.1 14.91±0.17 14.88±0.17 14.89±0.17

roundabout-v0 intersection-v0

PPO 10.33±0.40 7.41±0.69 3.92±1.35 9.26±7.6 3.62±11.63 6.75±12.93
CARRL 9.75±0.01 9.75±0.01 5.92±0.12 8.0±0 7.5±0 9.0±0.1
RADIAL 10.29±0.01 5.33±0.01 8.77±2.4 10.0±0 2.4±5.1 9.61±0.1
WocaR 6.75±2.5 6.05±0.14 6.48±2.7 10.0±0.05 9.47±0.3 3.26±0.4
RAD 9.22±0.3 8.98±0.3 9.11±0.3 9.85±1.2 9.71±2.3 9.62±0.1
A2B 10.5±0.0 10.1±0.1 10.0±0.5 10.0±0 10.0±0 9.88±0.12
A3B 10.5±0.01 10.33±0.01 10.18±2.1 10.0±0 9.68±0 9.88±0.1
Method Unperturbed MAD PGD Unperturbed MAD PGD

Pong Freeway

PPO 21.0±0 -20.0±0.07 -19.0±1.0 29 ± 3.0 4 ± 2.31 2±2.0
CARRL 13.0 ±1.2 11.0±0.010 6.0±1.2 18.5±0.0 19.1 ±1.20 15.4±0.22
BCL 21± 0 – 21± 0 34.0 ± 0 – 21.2± 0.5
CAR-DQN* 21± 0 – 21± 0 34.0 ± 0 – 33.7 ± 0.1
RADIAL 21.0±0 11.0±2.9 21.0± 0.01 33.2±0.19 29.0±1.1 24.0±0.10
WocaR 21.0±0 18.7 ±0.10 20.0 ± 0.21 31.2±0.41 19.8±3.81 28.1±3.24
RAD 21.0±0 14.0 ± 0.04 14.0 ± 2.40 33.2±0.18 30.0±0.23 27.7±0.2
A2B 21.0±0 20.1±0.04 21.0±0.01 33.2±0.18 30.1±0.43 30.8±1.51
A3B 21.0±0 20.8±0.7 21.0±0.01 33.2±0.18 31.0±0.87 31.1±1

BankHeist RoadRunner

PPO 1350±0.1 680±419 0±116 42970±210 18309±485 10003±521
CARRL 849±0 830±32 790±110 26510±20 24480±200 22100±370
BCL 1215 ± 8.4 – 894.1± 9.2 42490±1309 – 23291±1121
CAR-DQN* 1349 ± 3 – 1347±3.6 49700±1015 – 43286±801
RADIAL 1349±0 997±3 1130±6 44501±1360 23119±1100 24300±1315
WocaR 1220±0 1207±39 1154±94 44156±2270 25570±390 12750±405
RAD 1340±0 1170±42 1211±56 42900±1020 29090±440 27150±505
A2B 1350±0 1230±42 1240±56 44050±1020 38205±440 40015±505
A3B 1350±0 1230±12 1250±30 44290±1250 41001±610 42645±458
Method Unperturbed MAD PGD Unperturbed MAD PGD
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Table 6: Experimental results versus myopic adversaries. Most robust scores are in bold. Methods
are evaluated on PPO implementations in Mujoco, with adversarial perturbation bounds permitted
as ϵ=0.1 for PGD, and 0.15 for MAD. Protected-PPO is grayed out due to differences in evaluation
methodology as outlined in the main paper. For fine-grained comparisons, see Tables 7 and 8.

Hopper Walker2d

PPO 4128 ± 56 1110±32 128±105 5002 ± 20 680±1570 730±262
RADIAL 3737±75 2401±13 3070±31 5251±10 3895±128 3480±3.1
WocaR 3136±463 1510 ± 519 2647 ±310 4594±974 3928±1305 3944±508
Protected 3652±108 2512±392 2221± 775 6319±31 5148±1416 4720± 1508
RAD 3473±23 2783±325 3110±30 4743±78 3922±426 4136±639
A2B 3710±11 3240±41 3299±28 4760±61 4636±87 4708±184
A3B 3766±23 3370±275 3465±17 5341±60 5025±94 5292±231

HalfCheetah Ant

PPO 5794 ± 12 1491±20 -27±1288 5620±29 1288±491 1844±330
RADIAL 4724±76 4008±450 3911±129 5841±34 3210±380 3821±121
WocaR 5220±112 3530±458 3475±610 5421±92 3520±155 4004±98
Protected 7095±88 4792±1480 4680±1203 5769±290 4440±1053 4228± 484
RAD 4426±54 4240±4 4022±851 4780±10 3647±32 3921±74
A2B 5192 ±56 4855± 120 4722±33 5511±13 3824±218 4102±315
A3B 5538±20 4986±41 5110±22 5580±41 4071±242 4418±290

Table 7: Comparison to the Protected framework Liu et al. (2024) with a history of only one state.
Here, we demonstrate superior robust performance when information is limited.

Method Unperturbed MAD Unperturbed MAD
Hopper Walker2d

PPO 4128 ± 56 1110±32 5002 ± 20 680±1570
WocaR 3136±463 1510 ± 519 4594±974 3928±1305
ProtectedH=1 2451±81 2198±233 3509±32 3410±41
A2B 3710±11 3240±41 4760±61 4636±87
A3B 3766±23 3370±275 5341±60 5025±94

HalfCheetah Ant

PPO 5794 ± 12 1491±20 5620±29 1288±491
WocaR 5220±112 3530±458 5421±92 3520±155
ProtectedH=1 3210±18 2241±392 3997±285 2331±277
A2B 5192 ±56 4855± 120 5511±13 3824±218
A3B 5538±20 4986±41 5580±41 4071±242
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Table 8: Comparison to the Protected framework Liu et al. (2024) with zero test time adaptation
(labelled T = 1), for an apples-to-apples evaluation comparison to existing baselines. Without the
online adaptation part of the Protected framework, we find robust performance (i.e. low drop in score)
but not high nominal scores. T = 10 allows Protected to adapt for limited number of rounds.

Method Unperturbed MAD PA-AD Unperturbed MAD PA-AD
Hopper Walker2d

ProtectedT=1 3573±81 2398±665 2210±385 5019 ± 87 3887 ± 492 4480 ± 492
ProtectedT=10 3691±81 3314±391 3221±222 6001 ± 24 3410 ± 558 5520 ± 31
A2B 3710±11 3240±41 2441 ±31 4760±61 4636±87 3997±214
A3B 3766±23 3370±275 2580±92 5341±60 5025±94 4931±166

HalfCheetah Ant

ProtectedT=1 4777±360 3997±285 2331±277 4620±32 4264±166 3103± 96
ProtectedT=10 5722±58 5296±411 4522±450 4747±59 4688±201 4186±8
A2B 5192 ±56 4855± 120 4393±79 5511±13 3824±218 2821 ± 312
A3B 5538±20 4986±41 4478±67 5580±41 4071±242 3205±275

Table 9: Empirical analysis between single-state ACoE and LSTM-ACoE on discrete-action domains
(top, highway-env) and contiuous-action domains (bottom, Mujoco). Single-state PPO included as a
point of reference.

Method Unperturbed MAD PGD Unperturbed MAD PGD
highway-fast-v0 merge-v0

PPO 28.8±5.42 13.63±19.85 15.21±16.1 14.94±0.01 10.2±0.02 10.42±0.95
A3B 25.8±0.01 24.21±0.01 22.61±14.1 14.91±0.17 14.88±0.17 14.89±0.17
A3B-LSTM 28.8±0.01 25.21±0.01 23.03±14.1 14.96±0.1 14.88±0.1 14.90±0.15

Halfcheetah Hopper

PPO 5794±12 1491±20 5620±29 4128 ± 56 1110±32 5002 ± 20
A3B 5538±20 4986±41 5110±22 3766±23 3370±275 3465±17
A3B-LSTM 5641±34 5002±67 5171±88 3729±45 3411±137 3453± 21

Table 10: Ablation study: relaxing test-time attacker constraint ϵ shows lower score degradation in
ACoE agents than SOTA Protected agents.

Method MAD attack ϵ = 0.15 = 0.175 = 0.2 = 0.3
Halfcheetah

A3B 4986 ± 41 5008 ± 259 4907 ± 200 3896 ± 1477
ProtectedT=10 4551 ± 843 4391± 729 3855 ± 1718 2410 ± 1880

Hopper

A3B 3512±112 3470± 66 3367± 208 3023 ± 348
ProtectedT=10 3484±73 3312±119 3290± 249 2705±396
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Figure 3: Robust agents vs. a Strategically Timed Attack adversary (Lin et al., 2017), as the length of
perturbation increases. We find that as the level of strategy increases from long-horizon attackers,
C-ACoE minimization improves robust performance, relative to other methods.

Figure 4: Robust agents vs. a PA-AD attacker (Sun et al., 2023), as the optimality of the attacker
policy increases. To represent levels of optimality, we save PA-AD model weights at 5 evenly
distributed points across the training epochs. We find that as the level of strategy increases from
long-horizon attackers, C-ACoE minimization achieves more robust performance, relative to other
methods.

E.3 ABLATION STUDIES ON HYPERPARAMETERS

In Tables 10 and 11, we examine sensitivities to different training parameters used in the ACoE
framework. We train several different ACoE models in Mujoco-halfcheetah, varying the denoted
parameters. We determine that while the robustness-sensitivity parameter λ does have some effect on
the robustness/value tradeoff, it is not sensitive to small changes. We find no significant impact of the
neighborhood sample size on performance, due to the use of Softmax which favors extreme values.

In Table 9, we observe the improvements made to ACoE when including a two-state LSTM history
as the Protected framework uses, and find that while the performance does marginally increase the
unperturbed score. However, the trade-off is expensive, as applying ACoE to each state in a history is
combinatorially complex.

Table 11: Ablation study: training parameters. We train several different ACoE models in Mujoco-
halfcheetah, varying the denoted parameters. We determine that the robustness-sensitivity parameter
λ is not sensitive to small changes. We find no significant impact of the neighborhood sample size on
performance.

λ value: 0.1 0.19 0.2 0.21 0.3 0.5

ACoE unperturbed: 5620 ± 40 5578 ± 38 5538 ± 20 5557 ± 19 4994 ± 12 4286 ± 23
ACoE vs. MAD: 4897 ± 62 4971 ± 47 4986 ± 41 5002 ± 48 4731 ± 28 4021 ± 30

# Nbhd samples: 2 10 20

ACoE unperturbed: 5521±23 5528±20 5535±13
ACoE vs. MAD: 4981±35 4986±41 4990±38
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F SUBJECTIVE ANALYSIS

Figure 5: Last 5 frames of PPO, A3B, and WocaR agents (top to bottom), on MuJoCo-HalfCheetah.
PPO deviates the least from the dashed center-mass line, and has the least balanced gait. WocaR has
arguably the most stable posture when noting the faster front leg recovery of A3B, but our empirical
results suggest optimizing maximum stability is not always necessary. Full GIFs: tinyurl.com/a3b-gif

In Figure 5, we show the visual differences frame-by-frame between PPO, A3B, and Wocar-trained
models. A3B and Wocar agents exhibit visually similar behavior, which are distinctly more stable
than the PPO-learned behavior. Subjectively speaking, the robust behavior is more realistic and
accurately depicts how one would expect the agent to move, while the PPO behavior is more of an
exploitation of the MuJoCo physics engine than a realistic behavior. Under adversary this becomes
relevant: the niche value-optimal exploitative movement of the PPO agent is in turn exploited by an
adversary, while the robust models can retain their stability.

G TRAINING DETAILS AND HYPERPARAMETERS

G.1 MODEL ARCHITECTURE

Our DQN and PPO models follow settings common to the current lineage of robust RL work (SA-
MDP, Radial, WocaR, RAD). For C-ACoE estimator functions, we use two 64x hidden layers with
a single linear output layer, congruent to the CCER estimator in RAD and Worst-value estimator
in WocaR. For Atari image domains, we use a convolutional layer with an 8x8 kernel, stride of 4
and 32 channels, a convolutional layer with a 4x4 kernel, stride of 2 and 64 channels, and a final
convolutional layer with a 3x3 kernel, stride of 1 and 64 channels. Each layer is followed by a ReLU
activation, and finally feeds into a fully connected output.

The LSTM models use a 64x64 hidden layer size with linear layers for input and output.

G.2 TRAINING HYPERPARAMETERS

We train our methods for 900 episodes for all MuJoCo environments, using an annealed (Adam)
learning rate of 0.005. The robustness hyperparameter λ is set to 0.2 for all of our models, which
is the same as the robustness hyperparameters found in prior works Oikarinen et al. (2021); Liang
et al. (2022); Belaire et al. (2024); Zhang et al. (2020). The attack neighborhood sample size is
set to 10, and the training attack neighborhood radius is set to ϵ = 0.1, both tuned from sets in the
range ±100%. All other hyperparameters are the same as those used in Liang et al. (2022), which is
open-sourced at https://github.com/umd-huang-lab/WocaR-RL.

G.3 HARDWARE

We train our linear models on an NVIDIA Tesla V100 with 16gb of memory, and LSTM models on
an NVIDIA L40 32gb GPU.
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