© ® N O o A~ W N =

Autoregressive ConvLSTM Framework for fMRI Time
Series Forecasting in Alzheimer’s Disease

Anonymous Author(s)
Affiliation
Address

email

Abstract

Resting-state functional magnetic resonance imaging (fMRI) provides a noninva-
sive window into brain dynamics and has emerged as a powerful tool for studying
neurodegenerative disorders. We develop an autoregressive deep learning frame-
work that employs convolutional long short-term memory (ConvLSTM) units to
forecast future brain states in resting-state fMRI sequences from patients with
Alzheimer’s disease (AD). Unlike traditional linear autoregressive models or hy-
brid CNN-LSTM approaches, which often ignore spatial structure or flatten brain
images, our method integrates convolution directly into the LSTM gates. This de-
sign reduces the number of parameters and maintains spatial coherence, preserving
the intrinsic 2D structure of brain images while capturing temporal dependencies.
To enhance prediction quality, we introduce a custom loss function that jointly
optimizes mean squared error and structural similarity index. Experiments on
the ADNI fMRI dataset demonstrate that our model generates high-fidelity brain
state predictions and achieves substantial performance gains over pure LSTM,
and CNN-LSTM baselines. Cross-validation further confirms the robustness of
our approach across subjects, which highlights its potential for early biomarker
discovery and disease progression monitoring in AD.

1 Introduction

Alzheimer’s disease (AD), a leading cause of dementia, is a progressive brain disorder characterized
by memory loss, cognitive decline, and widespread neural damage(10, [15]]. Pathological hallmarks
such as amyloid-beta plaques and tau tangles disrupt large-scale brain networks, including the
hippocampus and the default mode network (DMN) [3| [14]]. Detecting these disruptions at an early
stage is crucial for timely intervention and disease management [31]]. Functional magnetic resonance
imaging (fMRI) provides a non-invasive window into brain activity through blood-oxygen-level-
dependent (BOLD) signals [9, [18]]. Traditional analyses rely on static functional connectivity, which
assumes stationarity of neural activity, and therefore misses temporal fluctuations in connectivity
[13]. Dynamic functional connectivity (dFC) methods attempt to capture such variability but remain
limited by window-size constraints and their sensitivity to noise [20]. Deep learning has emerged as
a powerful alternative for modeling complex fMRI patterns. Convolutional neural networks (CNNs)
effectively learn spatial features, while recurrent architectures such as long-short-term memory
(LSTM) networks capture temporal dependencies[6, [23]. However, CNNs ignore temporal dynamics,
and LSTMs discard spatial organization by flattening high-dimensional brain images, leading to
information loss and inflated parameter counts [12} 16} |17, [26]. Hybrid CNN-LSTM models partly
address this issue, but spatial coherence is still compromised when CNN features are vectorized
for sequence modeling[5} 28}, 130]. Moreover, the integration of CNNs and LSTMs is non-trivial, as
naive combinations often introduce architectural inefficiencies or fail to fully exploit spatiotemporal
dependencies. To address these limitations, we propose an autoregressive (AR) framework based on
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ConvLSTM?2D [24,127]. This approach combines convolutional and recurrent operations effectively to
maintain spatial structure while modeling temporal dynamics in fMRI sequences. We benchmark this
model against LSTM, and CNN-LSTM baselines and assess performance through cross-validation
on the Alzheimer’s disease neuroimaging initiative (ADNI) dataset. The main contributions of this
work are:

* ConvLSTM-based autoregressive framework: A ConvLSTM2D model that effectively
captures both spatial and temporal dependencies in resting-state fMRI, addressing the
limitations of CNN, LSTM, and CNN-LSTM baselines.

* Custom multi-objective loss: A loss function that balances voxel-level accuracy with
structural coherence by combining mean squared error (MSE), structural similarity index
(SSIM), mean absolute error (MAE), and peak signal-to-noise ratio (PSNR).

* Comprehensive benchmarking: Benchmarking against CNN, LSTM, and CNN-LSTM
baselines shows significant and consistent improvements across all performance metrics.

* Robust validation: Five-fold cross-validation on the ADNI dataset confirms robustness and
generalizability, with implications for biomarker discovery and modeling AD progression.

2 Related Work

Early fMRI Analysis of AD. Initial fMRI studies relied on static functional connectivity methods
such as seed-based correlations and independent component analysis (ICA) [19] to identify disrupted
networks such as the DMN [3]]. While these methods revealed connectivity reductions in AD patients,
they assumed the stationarity of brain activity. Dynamic functional connectivity (dFC) approaches,
including sliding-window correlations, introduced temporal variability analysis [1} 20], but remained
limited by noise sensitivity and arbitrary window sizes.

Deep Learning in AD fMRI. Deep learning has substantially advanced AD fMRI analysis. CNNs
have been widely used to extract spatial features from fMRI volumes. For instance, [22] applied
CNN s to resting-state fMRI and achieved a classification accuracy of 96.86%, while [21] combined
fMRI and structural MRI to achieve an area under the ROC curve (AUC) of 85.12. Despite their
success in classification, CNNs process each time frame independently, thereby neglecting temporal
dynamics essential for disease progression modeling [2].

LSTM and Hybrid CNN-LSTM Models. Recurrent networks such as LSTMs can capture temporal
dependencies in fMRI data, but they require flattening 3D brain volumes into vectors, which discards
spatial organization. Hybrid CNN-LSTM architectures attempt to mitigate this by combining spatial
and temporal learning. For example, [25] proposed a multimodal CNN-LSTM for AD classification
with ~86% accuracy, while [[7] employed 3D-CNNs with bidirectional LSTMs for fMRI, reaching
an accuracy of 94.82%. Although effective for classification, these hybrid models disrupt spatial-
temporal coherence during feature flattening, which limits their ability to predict fMRI sequences.

ConvLSTM for fMRI Sequence Prediction. Convolutional LSTM (ConvLSTM) networks, origi-
nally proposed for video forecasting [24]], embed convolution directly into recurrent gates, thereby
preserving spatial structure while modeling temporal dynamics. While ConvLSTMs have been
applied to fMRI classification [4]], their potential for AR sequence prediction in AD has remained
largely unexplored. Our work addresses this gap by developing a ConvLSTM2D AR framework
tailored for resting-state fMRI forecasting and AD progression modeling.

3 Methodology

The proposed pipeline, summarized in Fig. |1} consists of four stages: data and preprocessing, model
architectures, training protocol, and evaluation. The figure illustrates the architectures of the proposed
ConvLSTM2D framework and the main CNN-LSTM baseline. For brevity, the pure LSTM baselines
are not shown, as they are simple single-component models, but they are described in Sect.[3.2]

3.1 Preprocessing and Training Setup

We used resting-state fMRI data from ADNI, comprising time series of 3D volumes from five patients
diagnosed with AD. Each volume was reformatted into a 2D grid of axial slices (704 x704). Pixel
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Figure 1: Overview of the proposed methodology.

intensities were normalized to the [0, 1] range. Training sequences were constructed using a sliding
window of length 10, where the model predicts the subsequent frame from 10 consecutive inputs (see
Appendix [B]). Dataset statistics are reported in Appendix[A] Sequences were split chronologically into
training (80%) and validation (20%) sets, with one additional sequence held out for final evaluation.
Models were trained for a maximum of 100 epochs with early stopping based on validation loss (see

Appendix [C).
3.2 Models

We evaluate three architectures for next-frame fMRI prediction: (i) ConvLSTM2D, our primary
model, which embeds convolutional operations within recurrent gates to preserve the 2D spatial
structure while modeling temporal dynamics; (ii)) CNN-LSTM, the main baseline, which first extracts
spatial features via convolutional layers and then applies an LSTM on vectorized outputs to capture
temporal dependencies; (iii) a pure LSTM baseline, which models temporal sequences without
spatial convolutions; and Comparative results are presented in Sect. .1} Detailed model architectures
are described in Appendix [D We measure performance using MSE [11]], MAE, SSIM [29]], and
PSNR [8]. Formal definitions of these metrics are provided in Appendix [E]

4 Experiments

4.1 Model Comparison with Optimized Hyperparameters

Hyperparameters for both ConvLSTM2D and CNN-LSTM models were tuned via grid search prior
to evaluation. The optimal ConvLSTM2D configuration used two stacked layers with 128-256
units, while the CNN-LSTM performed best with four convolutional layers, as shown in Fig. [T}
The full hyperparameter search space and the corresponding optimal configurations are provided
in Appendix [G] Using these tuned models, we compared the performance of ConvLSTM2D, CNN-
LSTM, LSTM, in predicting next-step fMRI frames. On the reserved prediction sequence, the
ConvLSTM2D model achieved high predictive accuracy and structural fidelity, with an MSE of
0.00028, MAE of 0.0082, SSIM of 0.9621, and PSNR of 35.8921 dB. In contrast, the baseline
CNN-LSTM yielded an MSE of 0.0032, MAE of 0.0286, SSIM of 0.7400, and PSNR of 24.9910 dB.
The pure LSTM, yielded an MSE of 0.0294, MAE of 0.0843, SSIM of 0.4686, and PSNR of
15.3236 dB. Qualitatively, the predictions of the pure LSTM (Fig. [2d) failed to capture the fine-
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(a) Actual fMRI image (b) ConvLSTM prediction (c) CNN-LSTM prediction (d) LSTM prediction

Figure 2: Comparison of actual and predicted fMRI images.

Table 1: Average performance metrics from 5-fold cross-validation. Best per column in bold.
Method MSE  MAE SSIM PSNR (dB)
LSTM 0.0181 0.0652 0.5064 17.6526

CNN-LSTM 0.0179  0.0655 0.4210 17.9718
ConvLSTM2D  0.0003 0.0086 0.9609 35.5123

grained spatial structure of the fMRI frames, appearing blurred and highly pixelated compared to the
actual data. This observation is consistent with the quantitative results, which confirm the model’s
limited ability to represent spatial information when temporal dependencies are modeled without
convolutional operations. By contrast, higher SSIM and PSNR values for ConvLSTM2D indicate
superior preservation of structural details and image quality, as visually confirmed in Fig. Overall,
these results demonstrate the superior ability of ConvLSTM2D to capture spatio-temporal patterns,
which is critical for AR prediction in AD research.

4.2 Model performance under cross-validation

To evaluate the robustness and generalizability of the proposed AR ConvLSTM2D model, a 5-fold
cross-validation was conducted. Performance was assessed using MSE, MAE, SSIM, and PSNR,
with metrics averaged across all folds (Table [I). These results indicate that the ConvLSTM2D
outperforms in achieving lower error values and higher structural similarity and image quality
while also generalizing reliably across different data splits, underscoring its potential for robust
spatio-temporal modeling.

5 Conclusion and Future Work

This work introduces a novel AR framework using a ConvLSTM2D model to predict future brain
states in AD patients from resting-state fMRI data. By combining convolutional operations for
spatial features with recurrent dynamics for temporal dependencies, the model learns spatio-temporal
patterns that are important for AD progression. The proposed ConvLSTM2D model outperformed
pure LSTM and CNN-LSTM baselines in predicting future brain states, showing it can model long-
term changes of the brain activity. This reveals the potential of combining spatial and temporal
learning for forecasting in neurodegenerative research.

Limitations: The main limitations include the scarcity of high-quality, well-annotated fMRI datasets
for AD, particularly those with longitudinal labels suitable for progression modeling, which may limit
generalization. The model was designed only for fMRI sequence prediction and did not incorporate
multimodal inputs, such as MRI, positron emission tomography (PET), or clinical measures. In
addition, residual noise from fMRI preprocessing may still influence dynamic connectivity signals.

Future work: Future directions include developing stability-aware training strategies to reduce error
accumulation in long AR rollouts and designing loss functions that enforce temporal consistency or
highlight clinically important regions. Moreover, extending the framework to incorporate multimodal
inputs and integrating explainable Al techniques can enhance the clinical applicability of predictive
modeling for AD progression.
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A Dataset Description

We used resting-state fMRI data from the ADNI database (http://adni.loni.usc.edu, accessed
31 October 2024). The dataset includes a total of 2,026 3D fMRI volumes from five AD patients
(denoted P1-P5). Table 2] summarizes the number of volumes per patient.

Table 2: Summary of ADNI fMRI dataset used in this study.
Patient ID Number of Volumes

P1 482
P2 482
P3 482
P4 369
P5 211
Total 2026

Each 3D volume was reformatted into a 2D image by arranging axial slices into a 704 x704 grid.
This produced sequences of the form

X c RTX704X7O4, T — 2026,

where T is the total number of time points across patients.

B Preprocessing and Sequence Generation

Pixel intensities were normalized to the [0, 1] range by dividing each image by its maximum intensity.
Training sequences were constructed using a sliding window of length 10. Specifically, for time index
j€A{l,...,T — 10}, the input was

(L, Lj1s - Lol

and the target was I 1. This yielded M = T — 10 training samples.

C Training Protocol

From the generated sequences, one ten-frame sequence was reserved as a held-out test set. The
remaining sequences were divided into training and validation sets using an 80/20 chronological split
(no shuffling to preserve temporal dependencies).

All models were trained for up to 100 epochs with early stopping based on validation loss, restoring
the best-performing weights. Full training hyperparameters are summarized in Appendix [G]

D Models

D.1 ConvLSTM2D Architecture

The ConvLSTM2D model employs an encoder-decoder framework. The encoder applies TimeDis-
tributed Conv2D layers to extract spatial features from each input sequence frame, followed by
MaxPooling2D layers to downsample and reduce computational complexity. The core includes one or
more ConvLSTM2D layers, extending traditional LSTMs with convolutional operations, as defined
by:

i = 0(Waix Xy + Wy x Hi_qy + b;),

Jo=0Wap*x Xy + Wiy x He_1 +by),

¢t = [t © ci—1 + i © tanh(Woe Xy + Wie x Hy_1 + be),
0r = 0(Wyo x Xy + Who * Hi_1 + b,),
H; = o, ® tanh(c¢y).
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where * denotes convolution, X is the input at time ¢, H; is the hidden state, and c; is the cell state.
The decoder uses UpSampling2D layers to restore spatial dimensions and a Conv2D layer to predict
frames with the same dimension as the input. The model iteratively predicts frames by feeding
outputs as inputs.

Training uses a custom loss function combining MSE and SSIM, defined as

L=a-MSE+ (1-a)-(1-SSIM).

where a € [0, 1] balances the contributions of MSE (pixel-wise accuracy) and SSIM (structural
fidelity), tuned empirically to optimize performance for AD fMRI sequences, as detailed in Sect. ??.

D.2 CNN-LSTM Architecture

The CNN-LSTM model separates spatial and temporal processing into two distinct stages. In the first
stage, a stack of four 2D convolutional layers (each followed by ReLU activations and MaxPooling2D
operations) is applied in a TimeDistributed manner to extract spatial features from individual frames
of the fMRI sequence. This convolutional block encodes each frame into a compact representation
that preserves salient local patterns while reducing dimensionality.

In the second stage, these extracted frame-level embeddings are passed to stacked LSTM layers that
capture temporal dependencies across the sequence. Unlike ConvLSTM2D, where convolutional
operations are integrated directly within the recurrent cell, CNN-LSTM treats the temporal and spatial
learning separately: CNN layers encode spatial features, and LSTM layers model their evolution over
time. Formally, given an input sequence {X;}7_;, the feature representation for frame ¢ is

Ft = CNN(Xt),
which is then processed sequentially by the LSTM as
Hy,c, = LSTM(Fy, Hy—1,¢-1),

where H; and c; denote the hidden and cell states, respectively.

The final LSTM output is passed through a dense layer with a sigmoid activation to produce predic-
tions. The model is trained with mean squared error (MSE) loss, focusing on frame-wise reconstruc-
tion accuracy without explicit structural similarity regularization.

D.3 Pure LSTM Architecture (no convolutions)

As a convolution-free baseline, we evaluate a purely recurrent model that separates per-frame
embedding from temporal modeling and uses a non-convolutional decoder. Input series are resized to
704 x 704, normalized to [0, 1] by the per-frame maximum, and AR training pairs are formed from 10
input frames to predict the (¢41) frame (subject-wise 5-fold CV, one subject held out per fold).

Encoder (per frame). Each frame is downsampled to 44 x44, flattened, layer-normalized, and
projected to a 128-D embedding via a Dense layer with ReLU:

F, = Dense1gg(LayerNorm(Flatten(Resize44X44(Xt)))).

Temporal core. The sequence { F; }12, is processed by a single LSTM(128) (no return of intermediate
states), yielding a latent vector h which is further mapped by a Dense layer:

h = LSTMlgs(Flzlo), z = D6‘1186128(h).

Decoder. The latent 2 is expanded to a 16x16x64 seed grid with a Dense+Reshape block. The
grid is upsampled four times with nearest-neighbor UpSampling2D; after each upsample, a per-pixel
Dense (functionally a 1x 1 conv) mixes channels and halves width until a floor of 16 channels. Finally,
the feature map is resized back to 704 x704 and a Dense(1) with sigmoid produces the next-frame
prediction.
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E Evaluation Metric Definitions

For completeness, we define the performance metrics used in our experiments. Let y denote a
ground —truth image and y its prediction, each with N pixels. The mean squared error (MSE)
measures pixel —level accuracy:

1 < 2
MSE = N;(yz*ﬁz) .

The mean absolute error (MAE) quantifies the average absolute difference between corresponding
pixels:
N

1 N

The structural similarity index (SSIM) assesses perceptual similarity between two images x and y
and is defined as

(2papy + C1)(200y + Ca)
(12 + 5+ Ci)(02 + 05+ C2)’

SSIM(z, y) =

where 11, 1, are the mean intensities, o, o, are the standard deviations, o, is the covariance, and
C1, Co are small constants to stabilize the division. SSIM values range from —1 (dissimilar) to 1
(identical).

The peak signal —to —noise ratio (PSNR) evaluates overall image quality in decibels:

MAX?
PSNR =10 - loglo (m) s

where MAX denotes the maximum possible pixel value (1 for normalized images).

F Hardware

The computational efficiency of the AR ConvLSTM2D model, applied to fMRI sequence prediction
for Alzheimer’s disease (AD) research, was assessed by measuring both training and inference times.
All experiments were conducted on a high-performance computing system equipped with 2 x 64-Core
AMD EPYC 9534 CPUs, 2048GB RAM, and 8 x NVIDIA H200 GPUs.

The ConvLSTM2D model was trained with for 100 epochs, using the optimal hyperparameters
identified through grid search (as detailed in Appendix [G). Each epoch averaged 7 minutes, resulting
in a total training time of approximately 11.67 hours. Validation, performed after each epoch, was
significantly faster, averaging 30 seconds per epoch. For inference, the model processed a single
sequence in approximately 15 milliseconds, demonstrating its potential for real-time applications
in fMRI sequence prediction. The AR nature of the model, which predicts future frames iteratively,
introduces additional computational overhead during inference compared to non-autoregressive
models. However, this is offset by the efficient architecture and high-performance hardware, enabling
near real-time predictions. Disabling shuffling during training preserved the temporal dependencies
of the fMRI data, further optimizing computational efficiency. Overall, the model achieved a balance
between predictive accuracy and computational performance, making it suitable for large-scale fMRI
analysis in AD research.

The baseline models exhibited expected computational profiles: the pure LSTM was considerably
slower and memory-intensive because of the need to flatten high-dimensional fMRI volumes; and the
hybrid CNN-LSTM achieved intermediate efficiency but still required flattening of CNN features,
which limited both scalability and accuracy. In contrast, the ConvLSTM2D offered a favorable
balance by jointly modeling spatial and temporal patterns with manageable computational overhead.

These computational characteristics informed the subsequent cross-validation evaluation, as discussed
in Sect.
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Table 3: Optimal hyperparameter configurations for ConvLSTM2D and CNN-LSTM models.

Parameter ConvLSTM2D CNN-LSTM
Convolutional depth 2 4
Number of filters 64 64
LSTM units 512 256
Number of layers 2 2
Learning rate 1x1074 1x1073
Filter size 3,3) (3.,3)
Pool size 2,2) (2,2)
Epochs 100 50
Optimizer Adam Adam
Validation loss 0.1316 (MSE+SSIM)  3.9e-3 (MSE)

Table 4: Architecture-specific hyperparameters for the pure LSTM baseline.

Per-frame downsample 44 x 44 (resize)
Per-frame embedding Dense 128 (after flatten)

Temporal core LSTM(128) (return_sequences=False)

Latent projection Dense 128

Decoder seed grid 16 x 16 x 64

Upsampling stages 4 (nearest neighbor)

Channel mixing Per-pixel Dense (= 1x 1 conv) after each upsample
Output layer Sigmoid to 1 channel

G Optimal Hyperparameter Configurations

G.1 ConvLSTM2D and CNN-LSTM Models

Hyperparameters for ConvLSTM2D and CNN-LSTM were tuned via grid search. The search
space included: convolutional depth {1, 2, 3,4}, number of filters {16, 32, 64}, ConvLSTM2D units
{64,128, 256,512}, and layers {1, 2}. All models used ReLU activations in intermediate layers, a
sigmoid output layer, (3 x 3) filters, and (2 x 2) max pooling. ConvLSTM2D was trained with a
composite MSE+SSIM loss, while CNN-LSTM was optimized with MSE loss.

The grid search indicated that depths beyond 2 gave diminishing returns for ConvLSTM2D, whereas
CNN-LSTM benefited from 4 convolutional layers. The final selected configurations and validation
losses are summarized in Table

G.2 Pure LSTM Model

Table [ summarizes the configuration used for the pure LSTM baseline. Unlike CNN-LSTM and
ConvLSTM2D, we did not perform a hyperparameter search; model-specific hyperparameters were
fixed at default values.
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