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Abstract

Resting-state functional magnetic resonance imaging (fMRI) provides a noninva-1

sive window into brain dynamics and has emerged as a powerful tool for studying2

neurodegenerative disorders. We develop an autoregressive deep learning frame-3

work that employs convolutional long short-term memory (ConvLSTM) units to4

forecast future brain states in resting-state fMRI sequences from patients with5

Alzheimer’s disease (AD). Unlike traditional linear autoregressive models or hy-6

brid CNN-LSTM approaches, which often ignore spatial structure or flatten brain7

images, our method integrates convolution directly into the LSTM gates. This de-8

sign reduces the number of parameters and maintains spatial coherence, preserving9

the intrinsic 2D structure of brain images while capturing temporal dependencies.10

To enhance prediction quality, we introduce a custom loss function that jointly11

optimizes mean squared error and structural similarity index. Experiments on12

the ADNI fMRI dataset demonstrate that our model generates high-fidelity brain13

state predictions and achieves substantial performance gains over pure LSTM,14

and CNN-LSTM baselines. Cross-validation further confirms the robustness of15

our approach across subjects, which highlights its potential for early biomarker16

discovery and disease progression monitoring in AD.17

1 Introduction18

Alzheimer’s disease (AD), a leading cause of dementia, is a progressive brain disorder characterized19

by memory loss, cognitive decline, and widespread neural damage[10, 15]. Pathological hallmarks20

such as amyloid-beta plaques and tau tangles disrupt large-scale brain networks, including the21

hippocampus and the default mode network (DMN) [3, 14]. Detecting these disruptions at an early22

stage is crucial for timely intervention and disease management [31]. Functional magnetic resonance23

imaging (fMRI) provides a non-invasive window into brain activity through blood-oxygen-level-24

dependent (BOLD) signals [9, 18]. Traditional analyses rely on static functional connectivity, which25

assumes stationarity of neural activity, and therefore misses temporal fluctuations in connectivity26

[13]. Dynamic functional connectivity (dFC) methods attempt to capture such variability but remain27

limited by window-size constraints and their sensitivity to noise [20]. Deep learning has emerged as28

a powerful alternative for modeling complex fMRI patterns. Convolutional neural networks (CNNs)29

effectively learn spatial features, while recurrent architectures such as long-short-term memory30

(LSTM) networks capture temporal dependencies[6, 23]. However, CNNs ignore temporal dynamics,31

and LSTMs discard spatial organization by flattening high-dimensional brain images, leading to32

information loss and inflated parameter counts [12, 16, 17, 26]. Hybrid CNN-LSTM models partly33

address this issue, but spatial coherence is still compromised when CNN features are vectorized34

for sequence modeling[5, 28, 30]. Moreover, the integration of CNNs and LSTMs is non-trivial, as35

naïve combinations often introduce architectural inefficiencies or fail to fully exploit spatiotemporal36

dependencies. To address these limitations, we propose an autoregressive (AR) framework based on37
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ConvLSTM2D [24, 27]. This approach combines convolutional and recurrent operations effectively to38

maintain spatial structure while modeling temporal dynamics in fMRI sequences. We benchmark this39

model against LSTM, and CNN-LSTM baselines and assess performance through cross-validation40

on the Alzheimer’s disease neuroimaging initiative (ADNI) dataset. The main contributions of this41

work are:42

• ConvLSTM-based autoregressive framework: A ConvLSTM2D model that effectively43

captures both spatial and temporal dependencies in resting-state fMRI, addressing the44

limitations of CNN, LSTM, and CNN-LSTM baselines.45

• Custom multi-objective loss: A loss function that balances voxel-level accuracy with46

structural coherence by combining mean squared error (MSE), structural similarity index47

(SSIM), mean absolute error (MAE), and peak signal-to-noise ratio (PSNR).48

• Comprehensive benchmarking: Benchmarking against CNN, LSTM, and CNN-LSTM49

baselines shows significant and consistent improvements across all performance metrics.50

• Robust validation: Five-fold cross-validation on the ADNI dataset confirms robustness and51

generalizability, with implications for biomarker discovery and modeling AD progression.52

2 Related Work53

Early fMRI Analysis of AD. Initial fMRI studies relied on static functional connectivity methods54

such as seed-based correlations and independent component analysis (ICA) [19] to identify disrupted55

networks such as the DMN [3]. While these methods revealed connectivity reductions in AD patients,56

they assumed the stationarity of brain activity. Dynamic functional connectivity (dFC) approaches,57

including sliding-window correlations, introduced temporal variability analysis [1, 20], but remained58

limited by noise sensitivity and arbitrary window sizes.59

Deep Learning in AD fMRI. Deep learning has substantially advanced AD fMRI analysis. CNNs60

have been widely used to extract spatial features from fMRI volumes. For instance, [22] applied61

CNNs to resting-state fMRI and achieved a classification accuracy of 96.86%, while [21] combined62

fMRI and structural MRI to achieve an area under the ROC curve (AUC) of 85.12. Despite their63

success in classification, CNNs process each time frame independently, thereby neglecting temporal64

dynamics essential for disease progression modeling [2].65

LSTM and Hybrid CNN-LSTM Models. Recurrent networks such as LSTMs can capture temporal66

dependencies in fMRI data, but they require flattening 3D brain volumes into vectors, which discards67

spatial organization. Hybrid CNN–LSTM architectures attempt to mitigate this by combining spatial68

and temporal learning. For example, [25] proposed a multimodal CNN-LSTM for AD classification69

with ≈86% accuracy, while [7] employed 3D-CNNs with bidirectional LSTMs for fMRI, reaching70

an accuracy of 94.82%. Although effective for classification, these hybrid models disrupt spatial-71

temporal coherence during feature flattening, which limits their ability to predict fMRI sequences.72

ConvLSTM for fMRI Sequence Prediction. Convolutional LSTM (ConvLSTM) networks, origi-73

nally proposed for video forecasting [24], embed convolution directly into recurrent gates, thereby74

preserving spatial structure while modeling temporal dynamics. While ConvLSTMs have been75

applied to fMRI classification [4], their potential for AR sequence prediction in AD has remained76

largely unexplored. Our work addresses this gap by developing a ConvLSTM2D AR framework77

tailored for resting-state fMRI forecasting and AD progression modeling.78

3 Methodology79

The proposed pipeline, summarized in Fig. 1, consists of four stages: data and preprocessing, model80

architectures, training protocol, and evaluation. The figure illustrates the architectures of the proposed81

ConvLSTM2D framework and the main CNN-LSTM baseline. For brevity, the pure LSTM baselines82

are not shown, as they are simple single-component models, but they are described in Sect. 3.2.83

3.1 Preprocessing and Training Setup84

We used resting-state fMRI data from ADNI, comprising time series of 3D volumes from five patients85

diagnosed with AD. Each volume was reformatted into a 2D grid of axial slices (704×704). Pixel86
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Figure 1: Overview of the proposed methodology.

intensities were normalized to the [0, 1] range. Training sequences were constructed using a sliding87

window of length 10, where the model predicts the subsequent frame from 10 consecutive inputs (see88

Appendix B). Dataset statistics are reported in Appendix A. Sequences were split chronologically into89

training (80%) and validation (20%) sets, with one additional sequence held out for final evaluation.90

Models were trained for a maximum of 100 epochs with early stopping based on validation loss (see91

Appendix C).92

3.2 Models93

We evaluate three architectures for next-frame fMRI prediction: (i) ConvLSTM2D, our primary94

model, which embeds convolutional operations within recurrent gates to preserve the 2D spatial95

structure while modeling temporal dynamics; (ii) CNN-LSTM, the main baseline, which first extracts96

spatial features via convolutional layers and then applies an LSTM on vectorized outputs to capture97

temporal dependencies; (iii) a pure LSTM baseline, which models temporal sequences without98

spatial convolutions; and Comparative results are presented in Sect. 4.1. Detailed model architectures99

are described in Appendix D. We measure performance using MSE [11], MAE, SSIM [29], and100

PSNR [8]. Formal definitions of these metrics are provided in Appendix E.101

4 Experiments102

4.1 Model Comparison with Optimized Hyperparameters103

Hyperparameters for both ConvLSTM2D and CNN-LSTM models were tuned via grid search prior104

to evaluation. The optimal ConvLSTM2D configuration used two stacked layers with 128–256105

units, while the CNN-LSTM performed best with four convolutional layers, as shown in Fig. 1.106

The full hyperparameter search space and the corresponding optimal configurations are provided107

in Appendix G. Using these tuned models, we compared the performance of ConvLSTM2D, CNN-108

LSTM, LSTM, in predicting next-step fMRI frames. On the reserved prediction sequence, the109

ConvLSTM2D model achieved high predictive accuracy and structural fidelity, with an MSE of110

0.00028, MAE of 0.0082, SSIM of 0.9621, and PSNR of 35.8921 dB. In contrast, the baseline111

CNN-LSTM yielded an MSE of 0.0032, MAE of 0.0286, SSIM of 0.7400, and PSNR of 24.9910 dB.112

The pure LSTM, yielded an MSE of 0.0294, MAE of 0.0843, SSIM of 0.4686, and PSNR of113

15.3236 dB. Qualitatively, the predictions of the pure LSTM (Fig. 2d) failed to capture the fine-114
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(a) Actual fMRI image (b) ConvLSTM prediction (c) CNN-LSTM prediction (d) LSTM prediction

Figure 2: Comparison of actual and predicted fMRI images.

Table 1: Average performance metrics from 5-fold cross-validation. Best per column in bold.
Method MSE MAE SSIM PSNR (dB)

LSTM 0.0181 0.0652 0.5064 17.6526
CNN-LSTM 0.0179 0.0655 0.4210 17.9718
ConvLSTM2D 0.0003 0.0086 0.9609 35.5123

grained spatial structure of the fMRI frames, appearing blurred and highly pixelated compared to the115

actual data. This observation is consistent with the quantitative results, which confirm the model’s116

limited ability to represent spatial information when temporal dependencies are modeled without117

convolutional operations. By contrast, higher SSIM and PSNR values for ConvLSTM2D indicate118

superior preservation of structural details and image quality, as visually confirmed in Fig. 2b. Overall,119

these results demonstrate the superior ability of ConvLSTM2D to capture spatio-temporal patterns,120

which is critical for AR prediction in AD research.121

4.2 Model performance under cross-validation122

To evaluate the robustness and generalizability of the proposed AR ConvLSTM2D model, a 5-fold123

cross-validation was conducted. Performance was assessed using MSE, MAE, SSIM, and PSNR,124

with metrics averaged across all folds (Table 1). These results indicate that the ConvLSTM2D125

outperforms in achieving lower error values and higher structural similarity and image quality126

while also generalizing reliably across different data splits, underscoring its potential for robust127

spatio-temporal modeling.128

5 Conclusion and Future Work129

This work introduces a novel AR framework using a ConvLSTM2D model to predict future brain130

states in AD patients from resting-state fMRI data. By combining convolutional operations for131

spatial features with recurrent dynamics for temporal dependencies, the model learns spatio-temporal132

patterns that are important for AD progression. The proposed ConvLSTM2D model outperformed133

pure LSTM and CNN-LSTM baselines in predicting future brain states, showing it can model long-134

term changes of the brain activity. This reveals the potential of combining spatial and temporal135

learning for forecasting in neurodegenerative research.136

Limitations: The main limitations include the scarcity of high-quality, well-annotated fMRI datasets137

for AD, particularly those with longitudinal labels suitable for progression modeling, which may limit138

generalization. The model was designed only for fMRI sequence prediction and did not incorporate139

multimodal inputs, such as MRI, positron emission tomography (PET), or clinical measures. In140

addition, residual noise from fMRI preprocessing may still influence dynamic connectivity signals.141

Future work: Future directions include developing stability-aware training strategies to reduce error142

accumulation in long AR rollouts and designing loss functions that enforce temporal consistency or143

highlight clinically important regions. Moreover, extending the framework to incorporate multimodal144

inputs and integrating explainable AI techniques can enhance the clinical applicability of predictive145

modeling for AD progression.146
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A Dataset Description233

We used resting-state fMRI data from the ADNI database (http://adni.loni.usc.edu, accessed234

31 October 2024). The dataset includes a total of 2,026 3D fMRI volumes from five AD patients235

(denoted P1–P5). Table 2 summarizes the number of volumes per patient.236

Table 2: Summary of ADNI fMRI dataset used in this study.
Patient ID Number of Volumes
P1 482
P2 482
P3 482
P4 369
P5 211
Total 2026

Each 3D volume was reformatted into a 2D image by arranging axial slices into a 704×704 grid.237

This produced sequences of the form238

X ∈ RT×704×704, T = 2026,

where T is the total number of time points across patients.239

B Preprocessing and Sequence Generation240

Pixel intensities were normalized to the [0, 1] range by dividing each image by its maximum intensity.241

Training sequences were constructed using a sliding window of length 10. Specifically, for time index242

j ∈ {1, . . . , T − 10}, the input was243

[Ij , Ij+1, . . . , Ij+9],

and the target was Ij+10. This yielded M = T − 10 training samples.244

C Training Protocol245

From the generated sequences, one ten-frame sequence was reserved as a held-out test set. The246

remaining sequences were divided into training and validation sets using an 80/20 chronological split247

(no shuffling to preserve temporal dependencies).248

All models were trained for up to 100 epochs with early stopping based on validation loss, restoring249

the best-performing weights. Full training hyperparameters are summarized in Appendix G.250

D Models251

D.1 ConvLSTM2D Architecture252

The ConvLSTM2D model employs an encoder-decoder framework. The encoder applies TimeDis-253

tributed Conv2D layers to extract spatial features from each input sequence frame, followed by254

MaxPooling2D layers to downsample and reduce computational complexity. The core includes one or255

more ConvLSTM2D layers, extending traditional LSTMs with convolutional operations, as defined256

by:257

it = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi),

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf ),

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc),

ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo),

Ht = ot ⊙ tanh(ct).
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where ∗ denotes convolution, Xt is the input at time t, Ht is the hidden state, and ct is the cell state.258

The decoder uses UpSampling2D layers to restore spatial dimensions and a Conv2D layer to predict259

frames with the same dimension as the input. The model iteratively predicts frames by feeding260

outputs as inputs.261

Training uses a custom loss function combining MSE and SSIM, defined as262

L = α ·MSE+ (1− α) ·
(
1− SSIM

)
.

where α ∈ [0, 1] balances the contributions of MSE (pixel-wise accuracy) and SSIM (structural263

fidelity), tuned empirically to optimize performance for AD fMRI sequences, as detailed in Sect. ??.264

D.2 CNN-LSTM Architecture265

The CNN-LSTM model separates spatial and temporal processing into two distinct stages. In the first266

stage, a stack of four 2D convolutional layers (each followed by ReLU activations and MaxPooling2D267

operations) is applied in a TimeDistributed manner to extract spatial features from individual frames268

of the fMRI sequence. This convolutional block encodes each frame into a compact representation269

that preserves salient local patterns while reducing dimensionality.270

In the second stage, these extracted frame-level embeddings are passed to stacked LSTM layers that271

capture temporal dependencies across the sequence. Unlike ConvLSTM2D, where convolutional272

operations are integrated directly within the recurrent cell, CNN-LSTM treats the temporal and spatial273

learning separately: CNN layers encode spatial features, and LSTM layers model their evolution over274

time. Formally, given an input sequence {Xt}Tt=1, the feature representation for frame t is275

Ft = CNN(Xt),

which is then processed sequentially by the LSTM as276

Ht, ct = LSTM(Ft, Ht−1, ct−1),

where Ht and ct denote the hidden and cell states, respectively.277

The final LSTM output is passed through a dense layer with a sigmoid activation to produce predic-278

tions. The model is trained with mean squared error (MSE) loss, focusing on frame-wise reconstruc-279

tion accuracy without explicit structural similarity regularization.280

D.3 Pure LSTM Architecture (no convolutions)281

As a convolution-free baseline, we evaluate a purely recurrent model that separates per-frame282

embedding from temporal modeling and uses a non-convolutional decoder. Input series are resized to283

704×704, normalized to [0, 1] by the per-frame maximum, and AR training pairs are formed from 10284

input frames to predict the (t+1) frame (subject-wise 5-fold CV, one subject held out per fold).285

Encoder (per frame). Each frame is downsampled to 44×44, flattened, layer-normalized, and286

projected to a 128-D embedding via a Dense layer with ReLU:287

Ft = Dense128
(
LayerNorm(Flatten(Resize44×44(Xt)))

)
.

Temporal core. The sequence {Ft}10t=1 is processed by a single LSTM(128) (no return of intermediate288

states), yielding a latent vector h which is further mapped by a Dense layer:289

h = LSTM128(F1:10), z = Dense128(h).

Decoder. The latent z is expanded to a 16×16×64 seed grid with a Dense+Reshape block. The290

grid is upsampled four times with nearest-neighbor UpSampling2D; after each upsample, a per-pixel291

Dense (functionally a 1×1 conv) mixes channels and halves width until a floor of 16 channels. Finally,292

the feature map is resized back to 704×704 and a Dense(1) with sigmoid produces the next-frame293

prediction.294
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E Evaluation Metric Definitions295

For completeness, we define the performance metrics used in our experiments. Let y denote a296

ground –truth image and ŷ its prediction, each with N pixels. The mean squared error (MSE)297

measures pixel –level accuracy:298

MSE =
1

N

N∑
i=1

(
yi − ŷi

)2
.

The mean absolute error (MAE) quantifies the average absolute difference between corresponding299

pixels:300

MAE =
1

N

N∑
i=1

|yi − ŷi|.

The structural similarity index (SSIM) assesses perceptual similarity between two images x and y301

and is defined as302

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

where µx, µy are the mean intensities, σx, σy are the standard deviations, σxy is the covariance, and303

C1, C2 are small constants to stabilize the division. SSIM values range from −1 (dissimilar) to 1304

(identical).305

The peak signal –to –noise ratio (PSNR) evaluates overall image quality in decibels:306

PSNR = 10 · log10
(
MAX2

MSE

)
,

where MAX denotes the maximum possible pixel value (1 for normalized images).307

F Hardware308

The computational efficiency of the AR ConvLSTM2D model, applied to fMRI sequence prediction309

for Alzheimer’s disease (AD) research, was assessed by measuring both training and inference times.310

All experiments were conducted on a high-performance computing system equipped with 2 × 64-Core311

AMD EPYC 9534 CPUs, 2048GB RAM, and 8 × NVIDIA H200 GPUs.312

The ConvLSTM2D model was trained with for 100 epochs, using the optimal hyperparameters313

identified through grid search (as detailed in Appendix G). Each epoch averaged 7 minutes, resulting314

in a total training time of approximately 11.67 hours. Validation, performed after each epoch, was315

significantly faster, averaging 30 seconds per epoch. For inference, the model processed a single316

sequence in approximately 15 milliseconds, demonstrating its potential for real-time applications317

in fMRI sequence prediction. The AR nature of the model, which predicts future frames iteratively,318

introduces additional computational overhead during inference compared to non-autoregressive319

models. However, this is offset by the efficient architecture and high-performance hardware, enabling320

near real-time predictions. Disabling shuffling during training preserved the temporal dependencies321

of the fMRI data, further optimizing computational efficiency. Overall, the model achieved a balance322

between predictive accuracy and computational performance, making it suitable for large-scale fMRI323

analysis in AD research.324

The baseline models exhibited expected computational profiles: the pure LSTM was considerably325

slower and memory-intensive because of the need to flatten high-dimensional fMRI volumes; and the326

hybrid CNN-LSTM achieved intermediate efficiency but still required flattening of CNN features,327

which limited both scalability and accuracy. In contrast, the ConvLSTM2D offered a favorable328

balance by jointly modeling spatial and temporal patterns with manageable computational overhead.329

These computational characteristics informed the subsequent cross-validation evaluation, as discussed330

in Sect. 4.2.331
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Table 3: Optimal hyperparameter configurations for ConvLSTM2D and CNN-LSTM models.
Parameter ConvLSTM2D CNN-LSTM
Convolutional depth 2 4
Number of filters 64 64
LSTM units 512 256
Number of layers 2 2
Learning rate 1× 10−4 1× 10−3

Filter size (3,3) (3,3)
Pool size (2,2) (2,2)
Epochs 100 50
Optimizer Adam Adam
Validation loss 0.1316 (MSE+SSIM) 3.9e-3 (MSE)

Table 4: Architecture-specific hyperparameters for the pure LSTM baseline.
Per-frame downsample 44× 44 (resize)
Per-frame embedding Dense 128 (after flatten)
Temporal core LSTM(128) (return_sequences=False)
Latent projection Dense 128
Decoder seed grid 16× 16× 64
Upsampling stages 4 (nearest neighbor)
Channel mixing Per-pixel Dense (≈ 1×1 conv) after each upsample
Output layer Sigmoid to 1 channel

G Optimal Hyperparameter Configurations332

G.1 ConvLSTM2D and CNN-LSTM Models333

Hyperparameters for ConvLSTM2D and CNN-LSTM were tuned via grid search. The search334

space included: convolutional depth {1, 2, 3, 4}, number of filters {16, 32, 64}, ConvLSTM2D units335

{64, 128, 256, 512}, and layers {1, 2}. All models used ReLU activations in intermediate layers, a336

sigmoid output layer, (3 × 3) filters, and (2 × 2) max pooling. ConvLSTM2D was trained with a337

composite MSE+SSIM loss, while CNN-LSTM was optimized with MSE loss.338

The grid search indicated that depths beyond 2 gave diminishing returns for ConvLSTM2D, whereas339

CNN-LSTM benefited from 4 convolutional layers. The final selected configurations and validation340

losses are summarized in Table 3.341

G.2 Pure LSTM Model342

Table 4 summarizes the configuration used for the pure LSTM baseline. Unlike CNN-LSTM and343

ConvLSTM2D, we did not perform a hyperparameter search; model-specific hyperparameters were344

fixed at default values.345
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