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ABSTRACT

In high-stakes areas like healthcare, retrospective counterfactual analysis—such
as evaluating what might have happened if treatments were administered earlier,
later, or differently—is vital for refining treatment strategies. This paper proposes
a counterfactual treatment optimization framework using temporal point processes
to model outcome event sequences. By sampling potential outcome events under
new treatment decision rules, our approach seeks to optimize treatment strategies
in a counterfactual setting. To achieve accurate counterfactual evaluation of new
decision rules, we explicitly introduce latent states into the modeling of tempo-
ral point processes. Our method first infers the latent states and associated noise,
followed by counterfactual sampling of outcome events. This approach rigorously
addresses the complexities introduced by latent states, effectively removing biases
in the evaluation of treatment strategies. By proving the identifiability of model
parameters in the presence of these states, we provide theoretical guarantees that
enhance the reliability and robustness of the counterfactual analysis. By incorpo-
rating latent states and proving identifiability, our framework not only improves
the accuracy and robustness of treatment decision rules but also offers actionable
insights for optimizing healthcare interventions. This method holds significant
potential for improving treatment strategies, particularly in healthcare scenarios
where patient symptoms are complex and high-dimensional.

1 INTRODUCTION

While online reinforcement learning policies have shown promise in designing treatment strategies
for sepsis patients in ICU ( Komorowski et al. (2018)), the direct deployment and testing of new
treatment strategies on patients raise practical and ethical concerns. Counterfactual evaluation offers
a solution by retrospectively assessing the performance of different treatment policies using existing
data, without intervening in ongoing patient care. Retrospective analysis is a safer method and has
wide applications, as it allows for evaluating new treatments without posing risks to patients (Bal
(2009)).

In this paper, we focus on answering the following what-if question:

Given the observational treatment and outcome trajectories, can we modify specific treatment
actions to optimize the outcome in a counterfactual manner?

These modifications must adhere to predefined medical rules. For instance, if some patients respond
well to a particular drug, we might explore increasing the dose for better outcomes. Conversely, for
patients who do not respond, we could consider switching to alternative medications. These pertur-
bations must follow medical guidelines to ensure safety and efficacy. Similarly, when developing a
healthy exercise habit, any changes to the recommended actions must comply with behavior theory
principles, such as gradual progression and sustainability. For example, it is inappropriate to recom-
mend excessive exercise or drastic reductions in food intake, as these do not align with established
theories of behavior change and can lead to adverse health effects.

Recently, a counterfactual off-policy evaluation method was developed for the partially observable
Markov Decision Process (POMDP) Oberst & Sontag (2019). (Noorbakhsh & Rodriguez, 2022)
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extended this method to sample counterfactual multivariate temporal point processes setting. In this
context, given a realization of a temporal point process with a known intensity function, a counter-
factual sampling algorithm was developed to simulate counterfactual realizations of temporal point
processes under a specified alternative intensity function. This developed counterfactual temporal
point can be deployed in counterfactual treatment evaluation settings. For instance, it can be uti-
lized to assess the counterfactual treatment effect by sampling outcome events in what-if scenarios,
where the occurrence of outcome events is modeled by the temporal point processes whose intensity
function depends on treatment events.

We aim to extend existing counterfactual off-policy evaluation methods to a treatment decision rule
optimization setting, where outcome events are modeled using marked temporal point processes.
By integrating counterfactual reasoning with this modeling approach, our method enables the as-
sessment and optimization of treatment strategies in complex, high-dimensional healthcare environ-
ments. The framework is composed of two key components: an outer loop for optimizing treatment
decision rules and an inner loop for evaluating counterfactual treatment effects.

The outer loop systematically explores the treatment space to identify potential improvements in de-
cision rules. Concurrently, the inner loop evaluates these rules by retrospectively sampling symptom
events under counterfactual scenarios. To address the challenges posed by latent states, we intro-
duce a two-stage procedure. Initially, we infer latent states and associated noise to mitigate biases
in the marked temporal point processes data, ensuring that our analysis is both accurate and reli-
able. Importantly, we theoretically prove the identifiability of model parameters in the presence of
latent states, providing strong guarantees that enhance the robustness of our counterfactual evalua-
tion. Following this, we conduct counterfactual sampling to rigorously assess the effects of different
treatment strategies. This comprehensive approach not only refines existing treatment strategies but
also generates new insights for optimizing patient outcomes in healthcare applications.

2 RELATED WORK

Latent states and latent confounders. The causal inference literature often make the assumption
that there are no unobserved confounders (Aglietti et al. (2021); Bica et al. (2021); Vanderschueren
et al. (2023)). However, in many practical settings, the NUC assumption could hardly hold. Also,
the confounders actually play a crucial role in the counterfactual reasoning process, since we might
get a biased result if we ignore the impact of potential confounders on our target variables (Pearl
(2009)). In a longitudinal setting, there are several ways to consider the unobserved confounders.
One might replace the potential unobserved confounders by some proxies (Louizos et al. (2017);
Madras et al. (2019); Kuzmanovic et al. (2021)), or learn substitutes for hidden confounders using
some factor models (Bica et al. (2020); Hatt & Feuerriegel (2024)). In our work, we construct
a categorical variable for representing latent states, which can be seen as a partial representation
of the unobserved confounders and thus helps mitigate the potential influence (Bartolucci et al.
(2022)). Some related works also incorporate a categorical variable to represent latent states in
Hawkes processes setting.Xu & Zha (2017) consider a mixture model of Hawkes processes at the
sequence level, while Yang & Zha (2013) consider a setting for which the intensity has a mixed
kernel. Our setting provides a different view by considering the switching systems represented by
the categorical variable.

Counterfactual reasoning. Counterfactual reasoning has recently piqued interest in many ex-
plainable machine learning works. A discrete-time setup, such as POMDP, is considered in many
existing works (Oberst & Sontag (2019); Tsirtsis et al. (2021);Aalen et al. (2020);Abid et al.
(2022);Tsirtsis & Rodriguez (2024)). The Gumbel-max SCM, a class of SCMs that meets the coun-
terfactual stability criteria for producing counterfactual trajectories in finite POMDPs, is presented
by Oberst & Sontag (2019). Noorbakhsh & Rodriguez (2022) apply this special SCM on the thin-
ning process of temporal point process, allowing simulated counterfactual realizations in continuous
time under a given alternative intensity function. This method regards the Lewis’ thinning algo-
rithm (Lewis & Shedler (1979)) as the generative method. Therefore, it necessitates the knowledge
of an upper bound for both the observed and counterfactual intensity, which is challenging to get
when the intensity is history-dependent. To overcome this limitation, Hızlı et al. (2023) extend the
counterfactual sampling algorithm to history-dependent point processes by regarding the Ogata’s
thinning algorithm (Ogata (1981)) as the generative process. However, all these works assume there
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is no unmeasured confounding and focus on the univariate case, while we extend the counterfac-
tual sampling process to the multivariate case, and take the latent states into consideration. Many
existing works focus on finding the optimal actions in counterfactual settings. Under static setting,
works like (Karimi et al. (2021); Karimi et al. (2020)) focus on finding the actions that one could
achieve a better outcome, which belongs to the framework called algorithmic recourse. As for time-
varying settings, (Tsirtsis et al. (2021); Tsirtsis & Rodriguez (2024)) provide several methods based
on POMDPs which are suitable for different state types in order to find optimal action sequences,
but their setting focuses on discrete-time setting. We focus on optimizing the specific meta-rules
in a continuoustime setting instead of the specific optimal action sequence for an individual, which
would be more informative and suitable for flexible situations.

Figure 1: Our causal framework consider a sequential treatment-outcome setup in continuous time.
The latent state Zt and the history Ht−1 containing all past treatments and outcomes would have
causal effects on the treatment or outcome event occur at time t.

3 PROBLEM STATEMENT

3.1 OUTCOME AND TREATMENT EVENTS USING HAWKES PROCESS

We utilize a marked temporal point process (MTPP) to model treatment and outcome events, as it
provides a natural framework for representing discrete events occurring in continuous time. Specifi-
cally, we leverage a multivariate temporal point process, a subclass of MTPPs where event types are
represented as distinct dimensions. Within this framework, the Hawkes process (Hawkes (1971))
model the likelihood of future events for each component based on the entire historical sequence
across all components. This feature enables the Hawkes process to flexibly capture temporal de-
pendencies and interactions, offering an interpretable structure that is valuable in healthcare settings
(Alaa et al. (2017), Nie & Zhao (2022), Bao et al. (2017)).

Outcome Events: Let {to,j}No

j=1 denote the times at which outcome events occur, with No being

the total number of outcome events. Let {mo,j}No

j=1 represent the marks (or types) of these outcome
events, where mo,j ∈M andM is the set of outcome event markers. Therefore, the outcome event
sequence can be represented as {(to,j ,mo,j)}No

j=1.
Outcome Event History: Denote the history of outcome events up to time t as Ho(t), which in-
cludes all outcome events that have occurred up to time t, i.e.,

Ho(t) = {(to,j ,mo,j) | to,j ≤ t} (1)

Treatment Events and History: Similarly, we can represent the treatment events as
{(ta,j ,ma,j)}Na

j=1 where ma,j ∈ A and A is the set of treatment event markers. Denote the his-
tory of treatment events up to time t asHa(t), i.e.,

Ha(t) = {(ta,j ,ma,j) | ta,j ≤ t} (2)

Latent States: In healthcare settings, for example, the latent states might be the doctors’ experience
levels and patients’ health stages, which are crucial in influencing treatment and outcome events.
This paper considers discrete and contemporaneous latent states, representing K latent factors. We
introduce a time-dependent latent variable z(t) = [zk]k=1,...,K , ∀t ≥ 0, a one-hot vector indicating
which latent factor is active at time t. The distribution of z(t) is denoted as π ∈ ∆K−1, which is
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a probability simplex. By incorporating the latent states, we model the intensity functions of the
outcome and treatment events, respectively, asλo(t | z(t),Ho(t),Ha(t)) = z(t)⊤

(
µo +

∫ t

0
ϕo←o(t− s)dNo(s) +

∫ t

0
ϕo←a(t− s)dNa(s)

)
λa(t | z(t),Ho(t),Ha(t)) = z(t)⊤

(
µa +

∫ t

0
ϕa←o(t− s)dNo(s) +

∫ t

0
ϕa←a(t− s)dNa(s)

)
(3)

where λo(t) and λa(t) are vectors, with each element corresponding to the intensity of a spe-
cific type of outcome or treatment event; z(t) selects which component of the intensity func-
tion to activate based on the active latent factor; µo and µa are vectors representing the baseline
intensities for outcome and treatment events; No(s) and Na(s) are counting processes, repre-
senting the cumulative number of events up to time s; the integrals

∫ t

0
ϕo←o(t − s)dNo(s) and∫ t

0
ϕo←a(t − s)dNa(s) represent the contributions of past outcome and treatment events to the

current intensity, and ϕo←o(t − s) and ϕo←a(t − s) are matrices that describe how past events in-
fluence the current intensity; similarly, one can interpret the integrals

∫ t

0
ϕa←o(t − s)dNo(s) and∫ t

0
ϕa←a(t− s)dNa(s). We represent our causal framework in Fig.(1).

In this paper, among the above integrals, we consider a parametric triggering function ϕm←n(·) :
R+ → R of the following form,

ϕm←n(t) = βm←nκm←n(t) (4)

in which the connectivity coefficient βm←n ≥ 0 indicates the Granger causal effect from dimension
n to m, and κm←n(t) : R+ → R is a triggering kernel captures the decay of the dependence on past
events. A commonly used example is the exponential transition kernel, κm←n(t) = exp(−(t)).
To simplify the notation, from now on, let’s denote the conditional intensity function as

λ∗m(t | z(t)) := λm(t | z(t),Ho(t),Ha(t)), ∀m ∈M∪A (5)

Denote |M ∪A| = U and when we use exponential kernel, Eq. 3 could also be written as

λ∗m(t | z(t)) = z(t)⊤µm +

U∑
n=1

(z(t)⊤βm←n)

∫ t−

0

exp(−(t− s))dNn(s) (6)

where µm, and βm←n are all K × 1 vectors, thus z(t)⊤(·) means choosing one set of parameters
according to the current latent state.
We could then conclude our model parameters as θ := (π,µ,β), and we will provide sufficient
conditions to ensure identifiability in Section 5.

3.2 SCM IN OGATA’S THINNING PROCESS

We assume our treatment and outcome trajectories are generated from Ogata’s thinning process
(Ogata (1981)). Within a self-defined interval, this process would first sample a potential event
with a constant intensity λub,i. The event is then accepted or rejected based on a probability pro-
portional to the ratio of the sum of the target intensities across all dimensions,

∑
m λ∗m, to λub,i.

This procedure results in two sequences: the observed sequence Hobs, containing accepted events,
and the rejected sequence Hrej, containing those that were not accepted. Following ideas in Noor-
bakhsh & Rodriguez (2022) and Hızlı et al. (2023), we first augment the Ogata’s thinning algorithm
for MTPP (Algorithm 1) using a structural causal model (SCM) C. We introduce a set of random
variables E ∪ V = {E1, ..., EN , V1, ...VN}, and we assume at time ti, Ei is a binary variable to
represent whether ti is accepted or not, Vi is a categorical variable to represent the mark once ti is
accepted. Therefore, the acceptance and rejection outcomes and the corresponding mark results for
the observed sequenceHobs and the rejected event sequenceHrej, as generated by Ogata’s thinning
algorithm, can then be encoded through the augmented samples {(ei, vi)}Ni=1, in which we denote
N = |Hobs ∪Hrej|.
Specifically, the SCM C is defined by the following assignments. Given the latent state z(ti) at time
ti, for Ei,

Ei = fE(λub,i,Λi, Ui), Ui ∼ Unif(0, λub) (7)
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where f(λub,Λi, Ui) = I[Ui ≤
∑

m Λi,m], and Λi,m = λ∗m(ti | z(ti)). We could notice that
Ei = 1 represents the event ti is accepted, else it is rejected.

Since our setting considers multivariate Hawkes process, we also need to a random variable Vi for
the corresponding mark mi at time ti once ti is accepted, i.e., ei = 1,

Vi = fV (Ei,Λi, gi), gi,j ∼ Gumbel(0, 1) (8)

where fV (Ei,Λi, gi) = I{Ei=1} argmaxj (logP (Y = j) + gi,j), P (Y = j) =
Λi,j∑
m Λi,m

and we
input Λi,m as same as for Ei. From this assignment, we notice only when ti is accepted we would
have a mark Vi = mi from the following argmax part, otherwise we would get Vi = 0, here we set
0 as a default value.

Our SCM consists of two types of variables, binary variables Ei’s and categorical variables Vi’s. We
discussed the counterfactual identifiability for this SCM in Appendix C.2.2. Combining these two
parts, we would be able to answer the counterfactual questions: what would happened if, at time
ti, the intensity had been some different intensity denoted as λ∗cf(ti|z(ti)) instead of λ∗obs(ti|z(ti)).
Our objective defined in the following section 3.3 actually is in accord with this format.

3.3 OBJECTIVE: OPTIMIZING TREATMENT IN A COUNTERFACTUAL MANNER

Our goal is to answer “what-if” questions: Given the observed sequences of treatment and outcome
events, how can we optimize the treatment strategy to improve the final outcome denoted as Y in
a counterfactual manner? The final outcome Y , such as survival time, is either a direct function
of the outcome events or can be directly observed from the outcome events. We assume that Y is
measurable given the outcome events.

Objective: Instead of optimizing individual treatment actions, we aim to optimize decision rules
that are pre-specified by doctors. These rules determine the appropriate treatment action based on
the patient’s condition, reflected in the latent states z(t), and the history of treatment and outcome
events. We assume that doctors have prespecified decision rules with fixed conditions but with
certain parameters that need to be learned. We can refer to these as Meta-Rules:

• Example Meta-Rule:
– Condition (Fixed): If the patient has low blood pressure.
– Action (Fixed): Administer Drug A (A is fixed).
– Learnable Parameters:

* Dosage: The specific dosage of Drug A, denoted as x, is learnable.
* Timing: The best time to administer the drug, τ , is learnable.
* Latent States Influence: The influence of a latent state z, which affects the timing

and dosage decision, is learnable.

Given the prespecified meta rule set, denoted as {fd}d∈[D], each meta-rule fd (x, τ | zk) represents
the meta-rule d which specifies the treatment action under a given latent state zk. The goal is
to optimize x and τ for each meta-rule corresponding to different latent state zk to maximize the
expected counterfactual outcome Y . We formulate the problem as

max
{xd,k,τd,k}d∈[D],k∈[K]

E [Y | do (Ha(T ) = H′a (T ) | {f1, . . . , fD}, {z1, . . . , zK}) ,Hobs(T )]

subject to xd,k ∈ [xmin, xmax] , τd,k ∈ [τmin, τmax] , ∀d ∈ [D], k ∈ [K] (9)

We will optimize these decision rules under various patient conditions and histories by adjusting
parameters like dosage or timing while keeping the general structure of the rules intact. Here we use
do (Ha(T ) = H′a (T ) | ·) to represent that we revise the treatment trajectories based on the defined
meta-rules and the corresponding latent states. Note that this revision would actually result into a
revised intensity λ∗cf(·) for outcome events, which means we aim to answer those counterfactual
questions as we mentioned in previous part, i.e., perform an intervention do(Λi = λcf(ti|z(ti))) on
both the two SCM Ei and Vi, given the observed information. To ensure the target outcome is iden-
tifiable, we provided causal assumptions we need combined with the counterfactual identifiability
of our SCM in Appendix C.

5
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4 MODEL LEARNING AND INFERENCE

To simplify the notation, let’s first focus on only one patient’s outcome and event data, modeled
as a multivariate temporal point process with latent variables, and write down the complete data
likelihood. Given the observational treatment and outcome event data H(T ) := Ha(T ) ∪ Ho(T ),
we aim to jointly learn the model parameters (π,µ,β) and infer the posterior distribution of z(t)
at each time t ∈ {tj}, where {tj} := {to,j | to,j < T} ∪ {ta,j | ta,j < T}, which contains all the
outcome event time and treatment event time for each this patient.

Given the conditional probability decomposition of

Pµ,β (H(T ) | z) =
∏
j

P ∗µ,β ((tj ,mj) | z(tj);µ,β) (10)

=
∏
j

λ∗mj
(tj | z(tj),µ,β) exp

(
−
∫ tj

tj−1

λ∗sum(s | z(s);µ,β)ds

)
(11)

where λ∗sum =
∑

m∈M∪A λ∗m aggregates the intensities over all possible event types. Given the
above formula, we can write down the complete-data likelihood as follows:

Pµ,β(H(T ), z) =
∏
j

K∏
k=1

[
πk · P ∗µ,β((tj ,mj) | zk(tj) = 1;µ,β)

]1(zk(tj)=1)
. (12)

Note that the above formula is the complete data likelihood since we don’t know the latent variable.
We will adopt EM algorithm to learn the model parameters and infer z(t).

E-step: Update Responsibility. Compute the posterior distribution of latent states at each time tj
given the current parameters:

P
(
z(tj) | H(T ),πold,µold,βold) for each patient at each time tj

The posterior distribution is computed using Bayes’ theorem:

P
(
z(tj) | H(T ),πold,µold,βold) ∝ P

(
(tj ,mj) | z(tj),µold,βold)P (z(tj))

Therefore

P
(
zk(tj) = 1 | H(T ),πold,µold,βold) = πold

k P ∗µold,βold ((tj ,mj) | zk(tj) = 1)∑K
k′=1 π

old
k′ P ∗

µold,βold ((tj ,mj) | zk′(tj) = 1)
(13)

We will denote γkj := P
(
zk(tj) = 1 | H(T ),πold,µold,βold

)
.

M-step: Update Parameters.

πnew
k =

nk

Na +No
, nk =

Na+No∑
j=1

γkj , ∀k ∈ [K] (14)

where nk is the expected number of times the latent variable is in state k. The updates for µ and β
involve maximizing the expected complete-data log-likelihood:

µnew,βnew = argmax
µ,β

∑
j

∑
k

γkj logP
∗
µ,β ((tj ,mj) | zk (tj) = 1) (15)

The above derivation focuses on the event data of a single patient. To generalize this to multiple
patients, let Hi(T i)i∈[I] represent the event data for all patients, where i is the patient index. We
can then extend the EM algorithm to handle these multiple-patient scenarios easily. The complete
derivation can be found in Appendix E.

6
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5 IDENTIFIABILITY OF OUR MODEL

We are interested in understanding the conditions our model must satisfy so that the following im-
plication holds for all (H, z) :

∀ (θ,θ′) : Pθ(H) = Pθ′(H) =⇒ θ = θ′ (16)

That is, if any two different sets of model parameters θ and θ′ result in the same marginal distribution
Pθ(H), then this would imply that these parameters are identical, leading to matching joint distri-
butions Pθ(H, z). This implies that if we learn parameters θ such that Pθ(H) = Pθ∗(H) (the ideal
case where θ∗ represents the true underlying parameters), then the corresponding joint distribution
also matches: Pθ(H, z) = Pθ∗(H, z). If the joint distribution matches, it ensures that we have iden-
tified the correct prior Pθ(z) = Pθ∗(z) and the correct posteriors pθ(z | H) = pθ∗(z | H). This
guarantees that the EM algorithm, by maximizing the likelihood, correctly identifies the underlying
parameters, ensuring the model’s identifiability.

The identifiability of the parameters θ ensures under a specific revision of treatment plans, we would
get a unique corresponding intensity so as to perform counterfactual analysis process. According
to the definition of our mixture intensity in Eq. (3), we note that given a specific latent state k the
parameters µk and βk of Hawkes intensity are identifiable, and also the corresponding distribution
of our categorical variable is uniformly identified, thus the whole mixture model is identifiable. We
provide detailed proof in Appendix F.

Assumption 1. (Bonnet et al. (2023)) We assume that a.s. for every (i, j) ∈ {M ∪ A}2, i ̸= j,
there exist an event time τ from counting process N j , and an event time τ+ > τ from process N i,
such that:

1. limt→τ− λi,{µi,βi}(t) > 0

2. there are only events of process N j in the interval [τ, τ+).

Theorem 1. Assume that the number of latent factors K is identified using some auxiliary argu-
ment. The true categorical distribution F 0 of latent states is uniformly identified, and given state k,
assume each Hawkes system satisfies Assumption 1, the corresponding parameters µk and βk are
identifiable.

6 DECISION RULE OPTIMIZATION ALGORITHM

Given the historical data, we have already applied the EM algorithm to estimate the model parame-
ters and know how to infer the latent states in a closed form. Now given the optimization formulation
as shown in Eq. (9), let’s specify the decision rule optimization algorithm. In our setting, the dosage
can be discretized into different treatment event markers or types.

Output: Optimized treatment decision rules
{
m∗d,k, τ

∗
d,k

}
d∈[D],k∈[K]

.

Step 1: Initialization - Initialize the treatment decision rule parameters {md,k, τd,k}d∈[D],k∈[K],
where md,k represents a discretized dosage level (treatment marker) and τd,k represents the treat-
ment time.

Step 2: 1. Outer Loop - Treatment Decision Rule Optimization Repeat until convergence: For
each decision rule parameter md,k and τd,k, perform a gradient-based or combinatorial optimization:

{md,k, τd,k} ← {md,k, τd,k}+η∇{md,k,τd,k}E [Y | do (Ha(T ) = H′a (T ) | {f1, . . . , fD} , {z1, . . . , zK})]

Note: md,k ∈ Ad,k belongs to a discrete set, which is a subset ofA defined in the meta rule and τd,k
belongs to a continuous set.

Here we provide the policy gradient method we used for learning the optimal policy for both treat-
ment type and time. The detailed gradient estimation method and description could be found in
Appendix D.

7
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• Discrete Treatment Marker md,k: we represent the selection of a discrete treatment marker
md,k using a probability vector pd,k where each element p(i)d,k represents the probability of
selecting the i th marker. Then we can use the softmax function directly:

pd,k = Softmax (sd,k)

where sd,k are the logits (unconstrained parameters).

• Continuous Treatment Time τd,k: here τd,k represents the time lag for performing this
treatment once the condition is satisfied. We parameterize the continuous treatment time
with Gaussian kernel,

π(τd,k) =
1

σ
√
2π

exp

(
− (νd,k − τd,k)

2

2σ2

)
By fixing the variance σ2 as a small value, optimizing the mean νd,k would equivalently
guide to the best choice of treatment time.

2. Inner Loop - Counterfactual Treatment Effect Evaluation: Evaluate the effectiveness of the
current decision rule by sequentially sampling the outcome events under counterfactual scenarios.

1. Latent State Inference (EM Algorithm): Use the same approach as before to infer the pos-
terior probability of latent states z using the EM algorithm.

2. Counterfactual Sampling: The CF algorithm mainly consists of two parts for sampling
counterfactual outcomes, the detailed Algorithm 3 is presented in Appendix C.3.

• Sample from Posterior of Latent States and Noise: Sample latent states z from the
posterior and noise u in acceptance-rejection parts, get the counterfactual outcome
event intensity function.

• Generate Counterfactual Outcomes: Simulating symptom events with the inferred la-
tent states and sampled noise.

3. Evaluate Treatment Effects: Assess Y using the counterfactual outcomes and update the
decision rule parameters accordingly.

Figure 2: Decision-rule optimization framework as described in Section 6.

7 EXPERIMENTS

7.1 SYNTHETIC EXPERIMENT

Experimental setup. To validate our method, we constructed an 8-dimensional Hawkes process
with four dimensions representing treatments (A1, A2, B1, B2) and four as outcomes. Indicators 1
and 2 reflect worsening symptoms, while indicators 3 and 4 reflect improvement. Drug A targets
indicator 1, and drug B targets indicator 2, with A1/B1 representing lower dosages and A2/B2

higher dosages. Treatments also increase the likelihood of positive outcomes (indicators 3 and 4).
We incorporated two latent states to represent patient health stages, with healthier states having lower
probabilities of adverse events. Intensity parameters were designed to reflect these relationships.

8
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To evaluate patient outcomes, we defined a deterministic outcome Y , calculated as the square of the
weighted proportion of positive outcomes, with later events receiving higher weights. Our goal was
to optimize decision rules that maximize Y , focusing on two meta-rules detailed in Appendix G.1.

We first generate 600 sequences from the ground truth model as we described above. Then based on
these sequences, we learn the model parameters by our EM methods and denoted as model 1. We
also applied original MLE method and have model 2 which does not take latent states into consid-
eration. For optimizing our meta-rules, we simulate a synthetic baseline population dataset. This
baseline dataset is constructed by only retaining the outcome intensity parts from model 1 for sim-
ulating the outcomes and adopting some naive policies for choosing potential improper treatments
when some outcomes occurs, e.g., when outcome 1 occurs at state 0 we choose drug A1 instead of
drug A2, thus obviously they are not the best policies. By performing our decision-rule optimization
algorithm, we could then compare our current policies performance with the baseline performance.

Results. We want to compare the optimization results from our model 1 with latent states and
model 2 without latent states. Model 2 (without latent states) converges faster, as shown in Fig. 3
(a), due to its simpler structure. However, this comes at the cost of reduced accuracy in learning
true preferences. Model 1 (with latent states) achieves higher counterfactual rewards and accurately
learns the ground truth rule-type preferences, while Model 2 struggles to capture these due to its
lack of latent state representation.

To evaluate the impact of learned meta-rules, we applied them to a synthetic data simulator, compar-
ing results against baseline rules and optimized rules without latent states. Each approach generated
500 sequences. As shown in Fig. 3 (b), optimized rules incorporating latent states consistently
achieved higher expected rewards, despite similar ranges of variation. This highlights how latent
state-based models effectively capture hidden dynamics or unobservable patient conditions, offering
more precise and adaptive recommendations compared to non-latent and baseline models.
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(a) Convergence plot
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(b) Reward comparison

Figure 3: Synthetic experiment results. (a) the convergence performance during the optimization
process for models with or without latent states. (b) the box-plot for comparing reward from baseline
rules and the two types of optimized rules.

7.2 EXPERIMENTS ON REAL-WORLD DATA

Sepsis, a life-threatening condition caused by the body’s overactive response to infection, leads to
inflammation, tissue damage, organ failure, and high mortality rates. Despite advances in critical
care, clinical recommendations for sepsis management remain uncertain, highlighting the need for
decision-rule optimization techniques like ours (Evans et al. (2021)). To address this challenge,
we utilized the MIMIC-III database (Johnson et al. (2016)), a widely used resource containing de-
identified health data from over 60,000 ICU patients. While MIMIC-III supports predictive mod-
eling and treatment evaluation, the common no unobserved confounders assumption is difficult to
meet, as unrecorded factors or omitted variables can influence outcomes. Our approach, designed
to account for latent states, leverages this database to mitigate confounding influences and optimize
decision rules for sepsis management.

We extracted 2,000 patient sequences meeting the criteria for sepsis diagnosis (Saria (2018)). These
patients formed the population for our EM algorithm so as to fit our mixture model. We then select
the patients based on our meta-rules, ensuring those sequences containing the potential treatment
action to be revised, and we use this subset for our decision-rule optimization process. Treatments

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

for sepsis typically involve vasopressor therapy and fluid administration, with the aim of stabiliz-
ing patients by maintaining blood pressure and ensuring proper organ perfusion (Komorowski et al.
(2018)). For outcomes, we monitored real-time urine output and survival, key indicators in sep-
sis management. Low urine output is often an early sign of kidney dysfunction and septic shock,
potentially signaling inadequate treatment response or impending multi-organ failure. Ultimately,
improving survival rates is the overarching goal of any sepsis intervention. We detailed these treat-
ments and outcomes in Table 2. The reward design and specific meta-rules we aim to optimize is
described also in Appendix G.2.

Results. We hypothesized the existence of two latent states in the data and used the EM algorithm
to estimate parameters. Latent State 1, associated with stable conditions, showed lower baseline
event rates and inter-event influence, suggesting minimal need for intervention. In contrast, Latent
State 2 reflected acute conditions with higher event rates and stronger inter-event influence, requiring
more proactive care. In both states, predefined triggers like low urine output and low blood pressure
effectively prompted appropriate treatments, validating our rules.

Analyzing optimized meta-rules from the MIMIC-III dataset revealed state-dependent treatment pat-
terns. For fluids, stable conditions led to administration 0.6560 time units after low urine detection,
compared to 0.7994 in acute cases. Vasopressors were administered earlier in acute states (0.6027
vs. 0.8433 time units after low blood pressure). Preferences for crystalloid fluids in stable states
shifted toward colloids in acute ones, while vasopressor usage balanced between norepinephrine
and dopamine in severe cases. Feedback from ChatGPT 4.0 confirmed the clinical validity of these
meta-rules, emphasizing their utility in distinguishing and managing patient conditions effectively.

Latent State Meta-Rule Event Distribution Time

Latent State 1

Rule 1

Colloid Crystalloid Water
0

0.2
0.4
0.6

0.27
0.45

0.29
0.656

Rule 2

Norepinephrine Dopamine
0

0.4

0.8
0.42

0.58

0.799

Latent State 2

Rule 1

Colloid Crystalloid Water
0

0.2
0.4
0.6 0.37 0.39

0.24
0.843

Rule 2

Norepinephrine Dopamine
0

0.4

0.8
0.46 0.54

0.603

Table 1: Probability distribution for different latent states and meta-rules. The y-axis represents the
probability, while the x-axis represents events.

8 CONCLUSIONS

We introduced a counterfactual treatment optimization framework leveraging temporal point pro-
cesses to model treatment-outcome event sequences while addressing challenges posed by latent
states. This framework provides insights into optimizing treatment strategies in complex healthcare
settings, enhancing clinical decision-making and patient outcomes. Future work could improve its
practical applicability by developing methods to automatically determine the optimal number of la-
tent states and extending the framework to model time-dependent latent states, capturing delayed or
evolving influences throughout the treatment course.
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A OGATA THINNING ALGORITHM FOR MULTIVARIATE TPP

Algorithm 1 Modified Ogata’s Thinning Algorithm of MTPP
Input : to, T , λ(t,mi)(i = 1, ...M), interval function l(t)
Initialize: t = 0,H = ∅

1 Function OGATA(t0, T, l, λ):
2 t = t0,
3 while t < T do
4 λmax(t) = max

t′∈(t,t+l(t))
(
∑M

i=1 λ(t
′,mi))

5 u0 ∼ U(0, 1),
6 ∆t = −(lnu0)/λmax.
7 if ∆t < l(t) then
8 if ua <

∑M
i=1 λ(t+∆t,mi)

λmax
, ua ∼ U(0, 1) then

9 Draw event type m ∼ λ(t+∆t,m)∑M
i=1 λ(t+∆t,mi)

10 H = H ∪ (t+∆t,m)
11 end
12 t = t+∆t
13 else
14 t = t+ l(t)
15 end
16 end
17 returnH

B GUMBEL-MAX TRICK FOR SAMPLING COUNTERFACTUAL MARK

B.1 DRAW SAMPLES FROM GIVEN CATEGORY DISTRIBUTION

If the logits for discrete random variables X1, X2, ..., XK are θ1, θ2, ..., θK , we can use the softmax
function to define the sampling probability πi of Xi:

πi =
exp{θk}∑K
k=1 exp{θk}

Meanwhile, we can also use Gumbel trick (Huijben et al. (2022)) to achieve the same result, which
is equivalent to adding the standard gumbel noise gk to the log-likelihood and take argmax of it.
Denote α = exp(θ), the distribution is the same as using softmax function

argmax
k∈1,...,K

(logαk + gk) ∼
αk∑K
k=1 αk

, gk ∼ Gumbel(0, 1)

B.2 POSTERIOR DISTRIBUTION OF GUMBEL NOISE FROM GIVEN SAMPLES

Suppose a variable X has a categorical distribution and we already observe the outcome Xk, we can
also recover the posterior Gumbel noise that produces the result (Maddison & Tarlow (2017)).

Denote Z =
∑K

k=1 αk, the maximum value is distributed as a standard Gumbel

max
k∈1,...,K

(logαk + gk) ∼ Gumbel(logZ)

If we observe the outcome is k, then the posterior probability for gi, i ̸= k is:

p(gi|k, gk) =
flogαi

(gi)[gk ≥ gi]

Flogαi(gk)

where flogαi
and Flogαi

represent the PDF and CDF of a Gumbel with location logαi respectively,
and [A] is the Iverson bracket notation: [A] = 1 if A is True, otherwise [A] = 0. This means the
remaining Gumbels are independent Gumbels with location truncated at gk.
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And for the Gumbel variable gk (where Xk is the chosen variable) is:

p(gk) = flogZ(gk)

which means gk is distributed as a Gumbel with location logZ.

C COUNTERFACTUAL TRAJECTORIES

C.1 POSTERIOR DISTRIBUTION FOR NOISE

Here we provide detailed posterior distribution for two types of SCMs at a time event ti we con-
structed in section 3.2.

Posterior for Ui In the assignment for Ei, we have an independent noise Ui ∼ Unif(0, λub).
Therefore we could easily get the posterior given the latent state z(ti),

p(Ui | ti, λub,i,λ
∗
obs, z(ti)) =

{
Unif(0,

∑
m λ∗obs,m(ti | z(ti))), if ti is observed,

Unif(
∑

m λ∗obs,m(ti | z(ti)), λub,i), if ti is rejected.

Posterior for gi In the assignment for Vi, once we have Ei = 1, the argmax part is equivalent
to a Gumbel-max SCM. Based on B.1 and B.2, considering the mark of an observed event follows
a categorical distribution, we could get the corresponding posterior Gumbel noise. Thus when we
performing counterfactual sampling process with those observed events, we should sample their
mark with following algorithm:

Algorithm 2 Counterfactual Mark Sampling
Input : λobs(t,mi), λcf(t,mi),mobs

Initialize: G ∼ Gumbel(0, 1), αj =
λobs(t,kj)∑
j λobs(t,kj)

, α′j =
λcf (t,kj)∑
j λcf (t,kj)

18 Function CFmark sample(λobs(t,mi), λcf(t,mi),mobs):
19 if mi == mobs then
20 gj = G− log(αj)
21 else
22 gj = TruncatedGumbel(log(αj), G)− log(αj)
23 end
24 m = argmax

m′∈1,...,M
(logαm′ + gm′)

25 return m

In the above algorithm, the truncated Gumbel is defined as

TruncatedGumbel(log(αi), G) = −log(exp(−G− log(αi)) + exp(−G− log(
∑
i

αi))

C.2 IDENTIFIABILITY OF THE COUNTERFACTUAL OBJECTIVE FUNCTION

Our objective function is a counterfactual outcome,

E [Y | do (Ha(T ) = H′a (T ) | {f1, . . . , fD}, {z1, . . . , zK}) ,Hobs(T )]

For simplicity, in this section we will denote treatment and outcome events in a time interval [t, t+
τ ] as A[t,t+τ ] and O[t,t+τ ]. Since we regard the target outcome Y as a deterministic function of
outcome trajectories, i.e., Y = g(O[0,T ]), this computation is related to the following counterfactual
distribution for outcomes:

P (O[0,T ][A[0,T ] = H′a(T )] | Hobs(T ))

To ensure the identifiability of our counterfactual objective function, we first need some standard
causal assumptions to ensure this distribution could be answered by our model, and we also need to
guarantee the counterfatual result of the defined SCM are identifiable.
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C.2.1 CAUSAL ASSUMPTIONS

We make the following assumptions,
Assumption 2. (Consistency) given a sequence of treatment events A[t,t+τ ] = a[t,t+τ ], t ≥ 0
and τ ∈ [0,∆], the potential outcome events O[t,t+τ ][a[t,t+τ ]] coincides with the observed outcome
a[t,t+τ ].
Assumption 3. (Continous-Time Positivity) Given any history H<t, there is a positive probability
of receiving treatment at any point t, all possible treatment mark m and all possible latent states z,
i.e., the conditional treatment intensity satisfies 0 < λ∗m∈A(t | z) < 1.
Assumption 4. (Relaxed continuous-time NUC) Condition on the past history and latent states, the
conditional treatment intensity is independent of the potential outcome trajectories, i.e., λ∗m∈A(t |
zt) = λ∗m∈A(t | zt,F(Os[a

′
(t,s]] : s > t)), where F(Os[a

′
(t,s]] : s > t)) is the filtration generated

by future potential outcomes.

Similar to the G-computation formula in (Robins (1986)), we factorize O[0,T ] in time-order (assume
total N events here without loss of generality),

P (O[0,T ][a[0,T ]] | Hobs(T )) =

N∏
i=1

P (Oti [a[ti−1,ti)] | O[0,ti−1],a[0,ti−1),Hobs(T ))

=

N∏
i=1

P (Oti [a[ti−1,ti)] | Hcf,ti−1
,Hobs(T ))

Focus on the probability at time ti, based on the above assumptions we have,
P (Oti [a[ti−1,ti)] | Hcf,ti−1 ,Hobs(T )) = P (Oti | Hcf,ti−1 ,Hobs(T )) (A.1)

= P (Oti | Hcf,ti−1
,a[ti−1,ti), z[ti−1,ti],Hobs(T )) (A.3)

Our model combined with counterfactual sampling algorithm we introduced in Section C.3 would
entail this distribution.

C.2.2 IDENTIFIABILITY OF COUNTERFACTUALS

For the binary variable Ei, we would state the assignment for it satisfies the monotonicity condition,
which is a sufficient assumption to identify binary counterfatuals.
Definition 1. (Monotonicity, Pearl (2000)) An SCM E of a binary variable Y is monotonic with
respect to a binary variable T if and only if the condition,

E[Y = y|do(T = t′)] ≥ E[Y = y|do(T = t)]

implies that P (Y = y′|Y = y, T = t, do(T = t′)) = 0, where y′ ̸= y.
Proposition 1. Let binary variable T = {λcf(ti|z(ti)),λobs(ti|z(ti))}, our SCM of thinning for
time point ti satisfies monotonicity condition.

Proof: For a given time point ti, we could have the probability of accepting it under an interventional
distribution over E ,

P (Ei = 1 | do(Λi = λ(ti))) = P (Ei = 1 | Λi = λ(ti)) =

∑
m λm(ti)

λub

Then similar as the proof from Hızlı et al. (2023), we mainly consider the two cases of the input
point ti,

• Suppose we observe Ei = 0, i.e., ti is a rejected point in Hrej, then if we perform an
intervention to decrease the summation of intensity over all dimensions as

∑
m λ∗cf,m(ti |

z(ti)) ≤
∑

m λ∗obs,m(ti | z(ti)), we have

E[Ei = 0|do(Λi = λcf(ti | z(ti)))] ≥ E[Ei = 0|do(Λi = λobs(ti | z(ti)))]
=⇒ P (Ei = 1|Ei = 0,Λi = λobs(ti | z(ti)),do(Λi = λcf(ti | z(ti)))) = 0

follows from we have the posterior distribution Urej ∼ Unif(
∑

m λ∗obs,m(ti | z(ti)), λub),
and we have

∑
m λ∗cf,m(ti | z(ti)) ≤

∑
m λ∗obs,m(ti | z(ti)), thus we would get Urej ≥∑

m λ∗cf,m(ti | z(ti)) and reject this point ti again.
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• Suppose we observe Ei = 1, i.e., ti is an accepted point in Hobs, then if we perform an
intervention to increase the summation of intensity over all dimensions as

∑
m λ∗cf,m(ti |

z(ti)) ≤
∑

m λ∗obs,m(ti | z(ti)), we have

E[Ei = 1|do(Λi = λcf(ti | z(ti)))] ≥ E[Ei = 1|do(Λi = λobs(ti | z(ti)))]
=⇒ P (Ei = 0|Ei = 1,Λi = λobs(ti | z(ti)),do(Λi = λcf(ti | z(ti)))) = 0

follows from we have the posterior distribution Uobs ∼ Unif(0,
∑

m λ∗obs,m(ti | z(ti))),
and we have

∑
m λ∗cf,m(ti | z(ti)) ≥

∑
m λ∗obs,m(ti | z(ti)), thus we would get Uobs ≤∑

m λ∗cf,m(ti | z(ti)) and accept this point ti again.

For the categorical variable Vi, we note that it depends on the value of Ei, and the remaining part
would be a Gumbel-max trick,

• Suppose we observe Ei = 1, i.e., ti is an accepted point in Hobs, then Vi = mi as the
observed mark mi. Decided by the counterfactual value of Ei, we would have following
two cases,

– If Ecf,i = 0, then Vcf,i = 0.
– If Ecf,i = 1, in this case, the assignment for Vi could be regarded as a Gumbel-max

SCM. Following result from Oberst & Sontag (2019), this part satisfies the counter-
factual stability condition and thus the counterfactuals of Vi would be identifiable.

• Suppose we observe Ei = 0, i.e., ti is a rejected point in Hrej, then Vi = 0, and we do
not have the posterior information about the Gumbel-max part. Similarly, we would have
following two cases,

– If Ecf,i = 0, then Vcf,i = 0.
– If Ecf,i = 1, in this case, we need to perform the Gumbel-max part directly since we

do not have the prior knowledge from observed data, and this would not violate the
counterfatual identifiability.

Therefore, we conclude that our counterfactual query is identifiable.

C.3 COUNTERFACTUAL SAMPLING ALGORITHM FOR MTPP WITH LATENT STATE

Our counterfactual sampling algorithm for multivariate TPP with latent state is derived from Hızlı
et al. (2023), which based on Ogata thinning algorithm as mentioned in Appendix A.

About the choice of interval function l(τ) in the algorithm, we in practice choose the one would
returns the next observed event after time τ , which means the observation period [0, T ] would be split
into intervals with end points (0, t1, ..., tN , T ). In counterfactual process, for the interval [ti, ti+1],
i.e., the two adjacent observed event times, the prior probability for choosing the the latent state
z would be γobs

ti+1
, which is the posterior we calculated in E-step from observation sequence. The

latent state would also be affected by the previous counterfactual results Hcf
<ti+1

, and suppose the
previous event in counterfactual results before ti+1 is (τ cf ,mcf

τ ) thus we could have the following
posterior probability for interval [τ cf , ti+1],

γk,[τcf ,ti+1] : = P
(
zk(τ

cf) = 1 | Hcf
<ti+1

,γobs
ti+1

)
=

γobs
k,ti+1

P
(
(τ cf ,mcf

τ ) | zk(τ cf) = 1,Hcf
<ti+1

)
∑K

k′=1 γ
obs
k′,ti+1

P
(
(τ cf ,mcf

τ ) | zk′(τ cf) = 1,Hcf
<ti+1

) (17)

The conditional probability is,

P
(
(τ cf ,mcf

τ ) | zk(τ cf) = 1,Hcf
<ti+1

)
= λmcf

τ
(τ cf | θk,Hcf

<ti+1
) exp

(
−
∫ τcf

tcf<τ

λsum(s | θk,Hcf
<ti+1

)ds

)
in which tcf<τ represents the previous event time in current counterfactual results before τ cf . We then
sample the latent state for interval [τ cf , ti+1] based on the above γ[τcf ,ti+1].
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Based on the current z, we could easily calculate the maximum intensity λub in this interval. Then
we first sample the potential rejected point in the interval and decide the counterfactual acceptance
result of this point. If the generated rejected point falls out the interval, we would then discard this
point and consider the endpoint tobs,i instead.

Algorithm 3 Counterfactual Sampling Algorithm For MTPP with latent state
Input : T ,Hobs, γobs, interval function l(·), λobs(t,mi), λcf(t,mi)(i = 1, ...,M)

Output: Counterfactual resultsHcf = {oi = (ti,mi)}Ncf
i=1

26 Function CFSAMPLE(T, l, λobs, λcf ,Hobs):
27 τ = 0,Hcf = ∅

while τ < T do
28 γ[τ,τ+l(τ)] = {

γobs
k,τ+l(τ)P ((τ,mτ )|zk(τ)=1,Hcf )∑K

k′=1
γobs
k′,τ+l(τ)

P ((τ,mτ )|zk′ (τ)=1,Hcf )
}Kk=1

29 z ∼ Categorical(γ[τ,τ+l(τ)]),
30 λub = sup

s∈[τ,τ+l(τ)]

{λ∗(s) : λ∗ ∈ {
∑M

i=1 λobs(s,mi|z),
∑M

i=1 λcf(s,mi|z)}}.

31 trej = OGATA(τ, τ + l(τ), l, λub, λub −
∑M

i=1 λobs(t,mi|z)).
32 if trej < l(τ) and trej + τ ≤ T then
33 urej ∼ U(

∑M
i=1 λobs(τ + trej,mi|Hobs, z), λub).

34 if urej ≤
∑M

i=1 λcf(τ + trej,mi|Hcf , z) then
35 m ∼ λcf (τ+trej,m|Hcf ,z)∑M

i=1 λcf (τ+trej,mi|Hcf ,z)
,

36 Hcf = Hcf ∪ (τ + trej,m),
37 end
38 τ = τ + trej.
39 else
40 if τ + l(τ) ∈ Hobs then
41 tobs = τ + l(τ),
42 mobs = Hobs[tobs][1],
43 if mobs /∈ A then
44 uobs ∼ U(0,

∑M
i=1 λobs(tobs,mi|Hobs, z)).

45 if uobs ≤
∑M

i=1 λcf(tobs,mi|Hcf , z) then
46 m = CFmark sample(λobs(tobs,mi|Hobs, z),

λcf(tobs,mi|Hcf , z),mobs),
47 Hcf = Hcf ∪ (tobs,m),
48 end
49 end
50 end
51 τ = τ + l(τ).
52 end
53 end
54 returnHcf

D DECISION RULE OPTIMIZATION

In each meta-rule at a specific latent state fd(md,k, τd,k|zk), we assume we our decision following
some probabilistic policies. Here we use πθτd,k

and πθmd,k
to represent counterfactual policies for

treatment time and treatment type.

• Discrete Treatment Marker md,k: we represent the selection of a discrete treatment marker
md,k using a probability vector pd,k where each element p(i)d,k represents the probability of
selecting the i th marker. Then we can use the softmax function directly:

pd,k = Softmax (sd,k)
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where sd,k are the logits (unconstrained parameters). Thus the probability for choosing i-th
marker defined in the meta-rule is,

π(md,k = i) = p
(i)
d,k =

exp(s
(i)
d,k)∑J

j=1 exp(s
(j)
d,k)

• Continuous Treatment Time τd,k: here τd,k represents the time lag for performing this
treatment once the condition is satisfied. We parameterize the continuous treatment time
with Gaussian kernel,

π(τd,k) =
1

σ
√
2π

exp

(
− (νd,k − τd,k)

2

2σ2

)
By fixing the variance σ2 as a small value, optimizing the mean νd,k would give us enough
information about the best choice of treatment time,

We estimate the gradient with respect to the parameters sd,k and νd,k by score function estimators
when optimizing the meta-rules. In the following we give the detailed gradient with respect to a
specific patient j’s trajectory.

Derivative with respect to νd,k. For νd,k, we first get the gradient of the log-likelihood of revised
action sequence for a specific patient.

∇νd,k
log(p(H(j)

a
′;ν, s)) = ∇νd,k

(−1

2

∑
i

(νd,k − τd,k,i)
2

σ2
) =

∑
i(τd,k,i − νd,k)

σ2
(18)

in which the summation over i means we need to sum over all the revised treatments triggered by
the meta-rule fd(md,k, τd,k|zk). Then we can get the score function estimator for the gradient with
respect to νd,k:

∇νd,k
E
p(H(j)

a
′;ν,s)

[E[Y |do(H(j)
a = H(j)

a
′)]] = E

p(Y,H(j)
a

′;ν,s)
[∇νd,k

log(p(H(j)
a
′;ν, s))Y ]

Derivative with respect to sd,k. The parts containing sd,k of the log-likelihood of revised action
sequence for a specific patient would be,

log(p(H(j)
a
′;ν, s)) =

∑
i

log(
exp(s

(md,k,i)
d,k )∑J

j=1 exp(s
(j)
d,k)

) =
∑
i

(s
(md,k,i)
d,k − log(

J∑
j=1

exp(s
(j)
d,k)))

here we also use the summation over i to represent all the revised treatments triggered by the meta-
rule fd(md,k, τd,k|zk). For sd,k, we could then get the gradient of this log-likelihood of revised
action sequence for a specific patient,

∇sd,k log(p(H(j)
a
′;ν, s)) = {(−

∑
i exp(s

(j)
d,k)∑J

j′=1 exp(s
(j′))
d,k )

+
∑
i

I{md,k,i = j})}Jj=1 (19)

Then we can get the score function estimator for the gradient with respect to sd,k:

∇sd,kEp(H(j)
a

′;ν,s)
[E[Y |do(Ha(T ) = H(j)

a
′)]] = E

p(Y,H(j)
a

′;ν,s)
[∇sd,k log(p(H(j)

a
′;ν, s))Y )]

E THE DETAILS OF EM ALGORITHM

E.1 EM FOR ONE SEQUENCE

Here we focus on the single patient first. The complete-data log-likelihood is

ℓ(µ,β;H, z) =
N∑
j=1

K∑
k=1

1(zk(tj) = 1)
[
log πk + logP ∗µ,β((tj ,mj) | zk(tj) = 1;µ,β)

]
. (20)
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where

P ∗µ,β((tj ,mj) | zk(tj) = 1;µ,β) = λ∗mj
(tj | zk(tj) = 1;µ,β) exp

(
−
∫ tj

tj−1

λ∗sum(s | zk(s) = 1;µ,β)ds

)
(21)

For our mixed model, at a event (tj ,mj), we have

P (z(tj)) =

K∏
k=1

π
zkj

k , P ((tj ,mj) | z(tj)) =
K∏

k=1

(
λ∗mj

(tj | θk) exp

(
−
∫ tj

tj−1

λ∗sum(s | θk)ds

))zkj

Suppose our time period is [0, T ], {z(tj)}Nj=1 and z(T ) for period [tN , T ] are given, the likelihood
for the complete data is,

LC(π,θ) = [

N∏
j=1

K∏
k=1

π
zkj

k

(
λmj

(tj |θk) exp

(
−

U∑
u′=1

∫ tj

tj−1

λu′(s|θk)ds

))zkj

]

×
K∏

k=1

exp

(
−

U∑
u′=1

∫ T

tN

λu′(s|θk)ds

)zkT

(22)

The corresponding log-likelihood is,

lC(π,θ) =

N∑
j=1

K∑
k=1

zkj

(
log πk + log(λmj

(tj |θk))−
U∑

u′=1

∫ tj

tj−1

λu′(s|θk)ds

)

−
K∑

k=1

zkT

(
U∑

u′=1

∫ T

tN

λu′(s|θk)ds

)
(23)

E-step: Update Responsibility The detailed E-step for a single patient is described in Section 4.

M-step: Update Parameters By maximizing the expectation of the complete log-likelihood of
the complete data we could then estimate the parameters of Hawkes process.

Ez(lC(π,θ)) =

N∑
j=1

K∑
k=1

γkj(log πk + log(λmj (tj |θk))−
U∑

u′=1

∫ tj

tj−1

λu′(s|θk)ds)

−
K∑

k=1

γkT

(
U∑

u′=1

∫ T

tN

λu′(s|θk)ds

)

=

N∑
j=1

K∑
k=1

γkj(log πk + log(µk
mj

+
∑
n<j

βk
mj←mn

κ(tj − tn))

−
U∑

u′=1

((tj − tj−1)µ
k
u′ +

j−1∑
l=1

(βk
u′←ml

∫ tj

tj−1

κ(s− tl)ds)))

−
K∑

k=1

γkT

(
U∑

u′=1

((T − tN )µk
u′ +

N∑
l=1

(βk
u′←ml

∫ T

tN

κ(s− tl)ds)))

)
(24)

For exponential kernel, the integral in the last term could be further written as
∫ tj
tj−1

κ(s − tl)ds =

exp(−(tj−1 − tl))− exp(−(tj − tl)).

One can directly perform gradient descent on Eq. 24 for solving θnew, and update for πk by,

πnew
k =

nk

Na +No
, nk =

Na+No∑
j=1

γkj , ∀k ∈ [K]
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E.2 EM FOR MULTIPLE SEQUENCES

Based on the above single patient case, we could easily generalize our EM algorithm to multiple
sequences case. Consider we have a set of sequences denoted as H = {Hi(T )}i∈[I], we assume all
sequences share same π and θ, and all the time of events are in [0, T ]. We then get our complete
likelihood over all sequences as follows,

L(π,θ) =
∏
i∈[I]

P (Hi(T ) | z) =
∏
i∈[I]

Li
C(π,θ) (25)

where Li
C(π,θ) is the complete likelihood for sequenceHi(T ), as we described in Eq. 22.

E-step: Update Responsibility Similarly as single sequence case, given the current parameters,
we compute the posterior distribution of latent states at each time ti,j , here ti,j is the j-th event in
i-th sequence:

P
(
zk(ti,j) = 1 | Hi(T ),πold,θold) = πold

k P ∗µold,θold ((ti,j ,mi,j) | zk(ti,j) = 1)∑K
k′=1 π

old
k′ P ∗

µold,θold ((ti,j ,mi,j) | zk′(ti,j) = 1)
(26)

We will denote γikj := P
(
zk(ti,j) = 1 | Hi(T ),πold,θold

)
.

M-step: Update parameters We could then have our expected complete-data log-likelihood for
all sequences,

Ez(lC(π,θ)) =
∑
i∈[I]

Ez(l
i
C(π,θ)) (27)

=
∑
i∈[I]

(

Ni∑
j=1

K∑
k=1

γikj(log πk + log(µk
mi,j

+
∑
n<j

βk
mi,j←mi,n

κ(ti,j − ti,n))

−
U∑

u′=1

((ti,j − ti,j−1)µ
k
u′ +

j−1∑
l=1

(βk
u′←mi,l

∫ ti,j

ti,j−1

κ(s− ti,l)ds)))

−
K∑

k=1

γikT (

U∑
u′=1

((T − tNi
)µk

u′ +

Ni∑
l=1

(βk
u′←mi,l

∫ T

tNi

κ(s− ti,l)ds))))) (28)

Then we update for θ by maximizing Eq. 28:

θnew = argmax
θ

l(π,θ) (29)

One can also solve this by gradient descent, on similarly could get the closed-form answer for the
surrogate function as in the single sequence case. And for updating π, similarly we have,

πnew
k =

∑
i∈[I] ni,k∑

i∈[I](Ni,a +Ni,o)
, ni,k =

Ni,a+Ni,o∑
j=1

γikj , ∀k ∈ [K] (30)

where ni,k is the expected number of times the latent variable is in state k in the i-th sequence.

F THE PROOF OF IDENTIFIABILITY

Proof for Theorem 1: Uniformly Identifiability Our proof mainly consists of two parts, (1) given
the latent state zk = 1, the parameters θk in the Hawkes intensity are identifiable, (2) we prove that
the distribution of categorical variable z is uniformly identified.

Firstly, suppose the latent state is given, i.e., zk = 1, then the corresponding parameters µk and βk

are identifiable follows the identifiability result of multivariate Hawkes processes under certain con-
ditions, as described in Theorem 3.1 in Bonnet et al. (2023) and we assume the required assumptions
are satisfied.
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Secondly, we prove the distribution of our categorical distribution is uniformly identified.

Let Θ = {θk}Kk=1 be the support of the random coefficients of the intensity, F(Θ) be the set of all
distributions on that support, X be the support of the covariates x, and F 0 be the true distribution.
We then introduce the definition of uniformly identified here,
Definition 2. The distribution F 0 ∈ F(Θ) is uniformly identified over choices of (Θ,X0) if for any
F 1 ∈ F(Θ), F 1 ̸= F 0, there exists X 1

0 ⊂ X0 such that P (x, F 0)− P (x, F 1) ̸= 0 for all x ∈ X 1
0

for any choice of the support of random coefficients Θ and the subset of the support of covariates
X0 ∈ X , where Θ is compact and X0 is a nonempty open set.

proof: For our model, for an event (ti,mi), its corresponding intensity pattern is chosen by a cate-
gorical variable z(ti),

λmi
(ti | H<ti) =

∑
z

p(z)λmi
(ti | H<ti , z) =

K∑
k=1

πkλmi
(ti | H<ti ,θ

k) (31)

Noting the linear relationship between the input and the parameters in the intensity, λmi
(ti |

θk,H<ti) = µk
mi

+
∑U

u′=1

(
βk
mi←u′

∑
n:tu′n<ti

κ(ti − tu′n)
)

, we denote xu′(ti) =∑
n:tu′n<ti

κ(ti − tu′n), and thus x(ti) = (1, x1(ti), ..., xU (ti))
⊤. We then could write the in-

tensity as λmi
(ti | θk,H<ti) = x⊤(ti)θ

k, recall θk = (µk
mi

,βk
mi

)⊤.

Instead of the original categorical distribution, we could use a corresponding Gumbel-Softmax dis-
tribution (Jang et al. (2016)) denoted as F , which is a continuous distribution over the simplex ∆K−1

and produce a k-dimensional sample vectors y = (y1, ..., yk)
⊤ for approximating samples from the

categorical distribution with class probabilities {π1, ..., πK}. Then we could rewrite the mixture of
intensities in Eq. (31) as following,

λmi(ti | H<ti) =

∫
∆K−1

(

K∑
k=1

ykλmi(ti | H<ti ,θ
k))dF (32)

-Due to our model is linear Hawkes process, we have linear relationship between θk and yk,
K∑

k=1

ykλmi(ti | H<ti ,θ
k) =

K∑
k=1

(ykµ
k
mi

+

U∑
u′=1

ykβ
k
mi←u′

∑
n:tu′n<ti

κ(ti − tu′n))

we could denote θ̃ = (
∑K

k=1 ykµ
k
mi

,
∑K

k=1 ykβ
k
mi←1, ...,

∑K
k=1 ykβ

k
mi←U )

⊤, and thus our original
discrete parameter space Θ = {θk}Kk=1 would be transformed into a continuous space Θ̃ ⊆ RU+1.
We could then denote g(x⊤(ti)θ̃) =

∑K
k=1 ykx

⊤(ti)θ
k and the corresponding distribution as F (θ̃),

λmi
(ti | H<ti) =

∫
Θ

g(x⊤(ti)θ̃)dF (θ̃) (33)

Then its clear that under this setting we could invoke following two lemmas in Fox et al. (2012).
Lemma 1. Let intensity λ(·) be bounded and non-constant and satisfy **λ(0) ̸= 0**. Then the
distribution F 0 ∈ F(Θ̃) is uniformly identified over choices of Θ̃ for the choice T = RU+1 as the
space of x(ti).

proof for Lemma 1: The skeleton of the proof follows exactly from (Fox et al. (2012)) and we
demonstrate this proof works in our setting. We assume the softmax temperature τ is fixed, and
denote the Gumbel-Softmax distribution with true probabilities {π0

1 , ..., π
0
K} as F 0. For the purpose

of contradiction, we pick a F 1 ∈ F(Θ̃) such that F 1 ̸= F 0, and we have∫
Θ

g(x⊤(ti)θ̃)d(F
0(θ̃)− F 1(θ̃)) = 0

for all possible x(ti) ∈ RU+1.

Let σ denote the finite signed measure on Θ̃ corresponding to F 0 − F 1. Then fix η ∈ RU+1, and
let ση be the finite signed measure on R induced by the transformation θ̃ 7→ η⊤θ̃ in the following
sense: for all Borel sets of R we have ση(C) = σ{θ̃ ∈ Θ̃ : η⊤θ̃ ∈ C}.
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Then at least for all bounded function f on R,
∫
Θ̃
f(η⊤θ̃)d(F 0(θ̃) − F 1(θ̃)) =

∫
R f(t)dση(t).

Therefore by the assumption that our Hawkes process is stationary, our function g(·) is non-constant
and bounded, we have,

0 =

∫
Θ̃

g(αη⊤θ̃)d(F 0(θ̃)− F 1(θ̃)) =

∫
R
g(αt)dση(t)

for all α ∈ R.

We denote L = L1(R) for the space of integrable functions on R, and M = M(R) for the space
of finite signed measures on R. For f ∈ L, f̂ denotes the Fourier transform, and similar we have µ̂
for µ ∈M .

First, because we assume g(0) ̸= 0 and setting α = 0 (this could be satisfied if we assume there is
another small general base term in all dimensions’ intensity), we find that in particular,∫

R
dση(t) = σ̂η(0) = 0 (34)

For η = 0, σ0 is concentrated at t = 0 and σ0{0} = σ̂0 = 0, hence σ0 = 0.

Now consider η ̸= 0, and the integral ∫
R
g(αt)dση(t) = 0 (35)

Note that now ση is absolutely continuous with respect to Lebesgue measure on R by construction
of ση from σ, and thus would have the corresponding Radon-Nikodym derivative h ∈ L. Then
ĥ = σ̂η and from above we have ĥ(0) = 0. Rewriting α = 1/τ with τ ̸= 0 and applying the change
of variables t 7→ τt+ s, we obatain for all nonzero real τ ,∫

R
g(t+

s

τ
)h(τt+ s)dt = 0 (36)

Write Mτh(t) for h(τt). The above equation implies that
∫
R g(t+ c)f(t)dt for some c vanishes for

all f contained in the closed translation invariant subspace I spanned by the family Mτh, τ ̸= 0,
and I is also an ideal in L. Following the notation in Rudin(1967), write Z(f) for the set of all
ω ∈ R where the Fourier transform f̂(ω) for f ∈ L vanishes and define Z(I), the zero set of I , as
the set of ω where the Fourier transforms of all functions in I vanish.

For the purpose of contradiction, suppose that h is nonzero. As M̂τh(ω) = ĥ(ω/τ)/τ and ĥ(0) = 0,
following the same argument in Hornik(1991) we conclude that Z(I) = {0} and also that I is
precisely the set of all integrable functions f with

∫
R f(t)dt = f̂(0) = 0. Because I is an ideal

subspace of L and h is nonzero, the above statements together with 36 imply that the integral∫
R g(t+ c)f(t)dt for some c vanishes for all integrable functions f ∈ L that have zero integral. As

Hornik(1991) argues, this implies that g(·) must be constant, which was ruled out by our assumption
that g(·) is non-constant. Therefore, we conclude h = 0 and thus ĥ = σ̂η is identically zero. By the
uniqueness Theorem 1.3.7(b) in Rudin (1967), we conclude ση = 0 for all η ∈ Rk.

To complete the proof, denote the Fourier transform of σ at η as σ̂(η) =
∫
Θ̃
exp(iη⊤θ̃)dσ(θ̃). It

follows that,

σ̂(η) =

∫
Θ̃

exp(iη⊤θ̃)dσ(θ̃) =

∫
R
exp(it)dση(t) = 0

and thus σ̂ = 0. Invoking the uniqueness Theorem 1.3.7(b) in Rudin (1967), we conclude σ = 0
which implies F 1 = F 0. This completes the proof for lemma 1. ■

Recall our definition of xu′(ti) =
∑

n:tu′n<ti
κ(ti − tu′n) actually implies for any possible ti and

H<ti in sample space, we have x(ti) ∈ X = RU+1
+ , which means X is a nonempty open set belong

to RU+1. Then noting the following Lemma 2,
Lemma 2. Let g(·) be real analytic and let a set of x, T , contain a nonempty open set. The
distribution F 0 ∈ F(Θ̃) is uniformly identified over choices of (Θ̃, T0), with Θ̃ compact, with
nonempty open sets T0 ⊂ T if and only if F 0 ∈ F(Θ̃) is uniformly identified over compact choices
of Θ̃, for at least one fixed T0 ⊆ T .
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Therefore, Lemma 1 states that F 0 is identified with T = RU+1, and Lemma 2 states that F 0 is
identified with any nonempty open set T0 ⊆ T , we then conclude that F 0 in our model is uniformly
identified in our support X .

G EXPERIMENT DETAILS

G.1 SYNTHETIC EXPERIMENT

Meta-rules: We mainly consider optimizing following rules in our synthetic experiment. As we
deliberately designed our Hawkes process parameters, we could easily note the ground truth prefer-
ence of dosage for our rules. To be more specific, for rule 1, at state 0 one should choose A1 instead
of A2, while for state 1 we should choose A2 instead of A1; for rule 2, at state 0 one should choose
B1 instead of B2, while for state 1 we should choose B2 instead of B1.

• Meta-Rule 1:
– Condition (Fixed): If the patient has outcome 1.
– Action (Fixed): Administer Drug A.
– Learnable Parameters:

* Dosage: The specific dosage of Drug A, A1 or A2.
* Timing: The best time to administer the drug, τA.
* Latent State Influence: The influence of a latent state z.

• Meta-Rule 2:
– Condition (Fixed): If the patient has outcome 2.
– Action (Fixed): Administer Drug B.
– Learnable Parameters:

* Dosage: The specific dosage of Drug B, B1 or B2.
* Timing: The best time to administer the drug, τB .
* Latent State Influence: The influence of a latent state z.

G.2 REAL-DATA EXPERIMENT

Sepsis is a life-threatening condition that occurs when the body’s response to infection causes
widespread inflammation, and is a major cause to tissue damage, organ failure, and mortality. Our
decision-rule optimization method might be helpful since there is still a great deal of uncertainty
regarding clinical recommendations in the management of sepsis (Evans et al. (2021)).

Dataset description. MIMIC-III (Johnson et al. (2016)) is a large, publicly available database
containing de-identified health data from over 60,000 patients admitted to the ICUs at the Beth
Israel Deaconess Medical Center. MIMIC-III is widely used in medical research for developing
predictive models, studying disease progression, and analyzing the effects of treatments in critical
care settings. It includes detailed information on patient demographics, vital signs, laboratory test
results, medications, treatment procedures, and clinical outcomes. The no unobserved confounders
assumption is typically hard to be satisfied, since treatments and outcomes might be affected by some
other factors those are not recorded in the database. Therefore, our method would be appropriate for
learning decision-rules in this confounded setting.

Patients: We extracted 2000 sequences with the criteria that those patients are diagnosed with
sepsis (Saria (2018)) and the corresponding data were not missing. We regard this as our population
to apply our EM algorithm for fitting our model. We then select the patients based on our meta-rules
and use this subset for our decision-rule optimization process.

Treatments: Vasopressor therapy and fluid treatment are used in the management of sepsis with
the goal of stabilizing the patient by preserving blood pressure and ensuring proper organ perfusion
(Komorowski et al. (2018)). Vasopressors function to constrict blood arteries and boost cardiac
output, while fluids aid in restoring intravascular volume. These actions are critical in preventing
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organ failure and guaranteeing the body receives enough oxygen and nutrients throughout the sepsis
response. We list the detailed items in Table 2, with 3 types of fluids, 4 types of vasopressors, and 2
rypes of inotroics.

Outcomes: We treated real-time urine and survival condition as our main outcome indicators,
also with several important lab measurements since they also have important impact on urine and
survival condition. Low urine output is a critical indicator of kidney dysfunction and often signal the
septic chock. Persistent low urine may indicate inadequate response to treatment, ongoing shock, or
impending multi-organ failure, making it an essential parameter to monitor in sepsis management.
Given the high death rate associated with sepsis, patient survival is a key outcome, and the goal of
any treatment is to raise that probability.

Reward Y design: We design our final outcome Y as a deterministic function of all observed
outcomes, distinct from the synthetic experiment approach. In this context, since there are no good
outcomes, we utilize a squared weighted sum rather than a proportion. Specifically, Y is defined
as the square of the weighted sum of the counts of bad outcomes, where each outcome is assigned
a dual weighting scheme. The first weight is based on the timing of the event, with later events
receiving higher weights to reflect their greater impact. The second weight is determined by the
type of outcome, prioritizing severity as follows: survival events are weighted at 0.6, low− urine
events at 0.3, and low −BP events at 0.1. Therefore, our target is to find the best decision rules so
that Y could be minimized.
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Figure 4: Convergence plot for MIMIC-III.

Meta-rules:

• Meta-Rule 1: Fluids Administration
– Condition (Fixed): If the patient shows low urine output.
– Action (Fixed): Administer fluids.
– Learnable Parameters:

* Type: Colloid, crystalloid, or water.
* Timing: The best time to administer the fluids, τf .
* Latent State Influence: The influence of a latent state z.

• Meta-Rule 2: Vasopressor Usage
– Condition (Fixed): If the patient shows low blood pressure.
– Action (Fixed): Administer vasopressors.
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Table 2: Treatments and Output Indicators in Real-data Experiment

Category Items

Fluid Crystalloid
Colloid
Water

Vasopressor Epinephrine
Phenylephrine
Norepinephrine
Dopamine

Inotropic Dobutamine
Milrinone

Lab Measurement Low system blood pressure

Outcome Low-urine
Survival

– Learnable Parameters:
* Type: Norepinephrine, or Dopamine.
* Timing: The best time to administer the drug, τv .
* Latent State Influence: The influence of a latent State z.

H COMPUTING INFRASTRUCTURE

All synthetic and real-world data experiments were conducted on an Ubuntu 20.04.3 LTS system
equipped with an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz and 227 GB of memory.
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