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Abstract
Accommodating human preferences is essential
for creating aligned LLM agents that deliver
personalized and effective interactions. Recent
work has shown the potential for LLMs acting
as writing agents to infer a description of user
preferences. Agent alignment then comes from
conditioning on the inferred preference descrip-
tion. However, existing methods often produce
generic preference descriptions that fail to cap-
ture the unique and individualized nature of hu-
man preferences. This paper introduces PROSE,
a method designed to enhance the precision of
preference descriptions inferred from user writ-
ing samples. PROSE incorporates two key ele-
ments: (1) iterative refinement of inferred prefer-
ences, and (2) verification of inferred preferences
across multiple user writing samples. We evalu-
ate PROSE with several LLMs (i.e., Qwen2.5
7B and 72B Instruct, GPT-mini, and GPT-4o)
on a summarization and an email writing task.
We find that PROSE more accurately infers nu-
anced human preferences, improving the qual-
ity of the writing agent’s generations over CI-
PHER (a state-of-the-art method for inferring
preferences) by 33%. Lastly, we demonstrate
that ICL and PROSE are complementary meth-
ods, and combining them provides up to a 9%
improvement over ICL alone. Code: https:
//github.com/apple/ml-predict.

1. Introduction
People increasingly rely on LLM-powered AI Assistants
to complete tasks on their behalf, such as creating written
materials: “write a professional email about the following
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great idea” or “summarize this new article for me to share
share with my friends”. As the writing style learned by an
LLM during pretraining is generic, it may not match the
user’s preferred writing style and voice (Chakrabarty et al.,
2024; Santurkar et al., 2023), leading to outputs that feel
impersonal, misaligned, or requiring extensive editing.

Existing approaches to learn preferences rely on preference
rankings (RLHF) (Ziegler et al., 2019; Rafailov et al., 2024),
demonstrations (Ouyang et al., 2022; Shaikh et al., 2024),
prompting (Zhou et al., 2022), and user edits (Gao et al.,
2024). However, methods such as RLHF and SFT (on user
demonstrations) require a large number of samples, and do
not learn the preferences in a form users can interpret or in-
teract with. In-context learning (ICL) from user demonstra-
tions does learn from a small number of user demonstrations,
but lacks interpretability and offers limited control to the
user, and prompting approaches require the challenging task
of identifying a high-quality prompt (Zamfirescu-Pereira
et al., 2023). Furthermore, methods that learn from user
edits ignore data about user preferences and style that are
available from observing how the user completes writing
tasks on their own.

Gao et al. (2024) introduces CIPHER to establish the ben-
efits of aligning a LLM through prompting by learning a
description of user preferences compared to ICL conditioned
on user demonstrations (i.e., needing fewer tokens, inter-
pretable representation, and a modifiable representation).
The preference description is learned from user edits on the
assistant’s generations. However, CIPHER does not enable
the LLM to reflect on and refine its inferred preference de-
scription, which limits the assistant’s ability to adapt to a
user nuanced writing style.

In this paper, we build on CIPHER and introduce PROSE
(Preference Reasoning by Observing and Synthesizing
Examples), a novel approach that leverages two key innova-
tions to enhance the precision and efficacy of the preference
description inferred from user demonstrations: (1) itera-
tively refining the inferred description until the assistant’s
generations closely align with the user, and (2) verifying the
inferred preferences across multiple user demonstrations.
The inferred description is used to condition the LLM to
generate writing more aligned with the user.

We evaluate PROSE on PRELUDE (Gao et al., 2024), the
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assistive writing benchmark accompanying CIPHER, and
identify several limitations. First, the ground truth prefer-
ence sets often overlap, lack diversity, and match the default
LLM behavior. Second, edits are performed only if the
assistant generation is inadequate, meaning it is not possi-
ble to distinguish between good and excellent generations.
Lastly, PRELUDE relies on user edits as the learning signal,
meaning the assistant’s initial draft can limit the quality
of the final writing sample. To address these limitations,
we introduce a novel assistive writing benchmark, PLUME
(Preference Learning from User Emails and Memos).

We systematically evaluate the benefits of PROSE on
PLUME using four LLMs ranging in size and ability, and
find that PROSE outperforms CIPHER by 33% (Gao et al.,
2024). Additionally, we demonstrate PROSE can be com-
bined with ICL to further improve over CIPHER by 47%
and up to 9% over ICL. In all, our contributions are:

• PROSE: A new method to infer user preferences.
• PLUME: An improved benchmark for preference in-

ference from user writing demonstrations.
• An in-depth ablation study on PROSE’s iterative refine-

ment and consistency verification steps
• An analysis comparing learning explicit preference

descriptions and conditioning directly on in-context
examples

2. Related Work
Personalizing LLMs In natural language generation,
prompting (Radford et al., 2019) and in-context learning
(Brown et al., 2020) have proven effective methods for con-
trolling the generation of text, especially in a preference-
driven context (Sun et al., 2023; 2024).

Some prior approaches for adapting models to user pref-
erences involve RLHF (Stiennon et al., 2020) and fine-
tuning (Tan et al., 2024; Zhuang et al., 2024), which can
be compute-intensive and inaccessible to some practition-
ers without the budget or scale of needed data. To reduce
data requirements, Shaikh et al. (2024) propose treating
user demonstrations as implicitly preferred over all model
outputs, allowing for more efficient preference modeling.
Another line of work aims to minimize compute demands
by identifying and selectively adjusting internal activations
to steer model behavior (Li et al., 2023; Turner et al., 2024;
Lindsey et al., 2025). While effective for promoting broad,
predefined objectives—such as improving truthfulness or
reducing toxicity—it remains unclear how such techniques
can generalize to individual users without explicit guidance.
With the rise of LLMs with strong instruction-following ca-
pabilities, methods like prompting to adapt to a user’s profile
have become more popular (Shen et al., 2024; Salemi et al.,
2024); however, these methods too often rely on explicit user
feedback to optimize prompts (Lin et al., 2024). PROSE

circumvents these issues by learning from implicit user sig-
nals, breaking down preferences into sub-components to
generate tailored user-preferences, all without the need for
fine-tuning.

Preference-Conditioned Agents Combined preference in-
ference and conditioning has recently gained traction, with
the following three works most aligned with PROSE.

Peng et al. (2024) explores preference learning in
quadrupedal mobile manipulation using an object detec-
tion module to map image observations to text. An LLM
then infers preferences by comparing pairs of trajectories.
These preferences are in turn used to improve task align-
ment with user preferences. Shashidhar et al. (2024) train
a preference inferring model that outputs a set of rules to
use during generation, and demonstrate improved personal-
ization on a set of writing tasks. Lastly, Gao et al. (2024)
propose the PRELUDE environment, where an LLM learns
writing style preferences in a collaborative authoring task.
We discuss this work in detail in Section 4.

These methods all rely on a single inference step, whereas
our approach uses iterative refinement to learn more precise
preferences, and preference verification across several user
examples for robustness.

3. PROSE
PROSE aligns an AI writing assistant with a user’s pref-
erences p̄u by learning a preference description p̂desc that
allows the assistant (an LLM) to mimic the user’s demon-
strations wu, which are determined by p̄u . For example,
learning that articles should be summarized in the style of
an old timey radio broadcast.

Each time the user gives the assistant a new task or provides
a new task-description and demonstration pair (xtask, wu),
following (Gao et al., 2024) PROSE retrieves up to three
previously observed demonstrations relevant to the given
task along with the preferences inferred from those demon-
strations from its interaction memory. The retrieved prefer-
ences are then aggregated to form the preference descrip-
tion p̂desc using the prompt in Figure 8 (Appendix F.1),
which is used to condition the assistant during generation:
wa = generate(llm, xtask, p̂desc). If no demonstrations
have been seen, the AI assistant is not conditioned on any
preferences, wa = generate(llm, xtask).

If the AI assistant’s generation, wa does not match the user’s
demonstration, wu, the inferred preference description p̂0desc
is updated via iterative refinement (Section 3.1) steps and
a preference consistency verification (Section 3.2) step –
PROSE’s contributions. Iterative refinement alternates be-
tween updating the inferred preference description p̂s+1

desc by
comparing the agent’s generation, wa, to the user’s demon-
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Validate the following preference:   
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Interaction Memory 
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Figure 1: Overview of PROSE. (top) The user provides a task description and demonstration to PROSE, which executes
iterative refinement and then a consistency verification step. Iterative refinement updates the inferred preference description
by generating a writing sample conditioned on the current preference description, comparing the sample to the user’s
demonstration, and updating the preference description to better describe the user’s demonstration until the LLM’s
generations match the demonstration or a maximum number of iterations S is reached. The description is then broken into
a set of component parts, and each component’s consistency with prior demonstrations is verified with LLM-as-a-Judge.
(bottom) Example PROSE prompts (for full prompts see Appendix F.1).

stration, wu, and rerunning generation conditioned on the
updated p̂s+1

desc until either the maximum number of itera-
tive refinement steps (S) is reached or no updates to the
inferred preference description are made. Consistency ver-
ification breaks the final p̂desc into preference components
and prunes components that are not supported by previously
seen demonstrations.

A visualization of PROSE (top) and the prompt summaries
(bottom) for each of its preference inference steps are pro-
vided in Figure 1. The algorithm is provided in Appendix A,
and the complete prompts are in Figure 8 (Appendix F.1)1.

3.1. Iterative Refinement

To improve p̂desc, the LLM is prompted to compare and
contrast wa and wu and then modify p̂desc such that the
modification reduces the difference between wa and wu:
p̂s+1

desc = generate(llm, xupdate, p̂
s
desc, wu, wa), where

xupdate =“Preference Update Prompt” in Figure 1. The
updated preference description is accumulated in p̂desc =
[p̂0desc, ..., p̂

s
desc], where s is the iterative refinement step.

PROSE then conditions the LLM on the updated preference
description p̂s+1

desc to generate a new writing sample ws+1
a .

1code coming soon!

The process of generating AI assistant writing samples, com-
paring to the user demonstrations, and updating the inferred
preferences continues until either the candidate solutions
exactly match the user’s demonstrations, the preference de-
scription is unchanged between subsequent update steps, or
a maximum number of iteration steps is reached (S). Qual-
itative examples of the consistency verification procedure
are in Appendix F.5.

3.2. Consistency Verification

After the preference description is improved through itera-
tive refinement, each component of each preference descrip-
tion in p̂desc is verified against relevant, previously observed
user demonstrations. The verification step removes prefer-
ence components that were incorrectly inferred or are overly
specific to a single demonstration.

Consistency verification operates on the component level
(e.g. “use emojis”, “use alliterations”). Therefore, the natu-
ral language preference descriptions (e.g. “write a tweet with
emojis and alliterations”) produced by iterative refinement
are first broken into components by prompting the LLM
to convert the preference description into an ordered set of
preference components. The preference components are ag-
gregated over all preference descriptions to help avoid over
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fitting: p̂c =
⋃|p̂desc|

s=0 (generate(llm, xbreakdown, p̂
s
desc)),

where xbreakdown =“Breakdown Prompt” in Figure 1.

PROSE verifies each preference component in p̂c against
each of the relevant user demonstrations by prompting
an LLM to assign a score viscore ∈ [−2, 2] indicating how
strongly the demonstration confirms the preference: vscore =

1
|wu|

∑|wu|
i=0 (generate(llm, xverification,w

i
u, p̂

s
desc)),

where xverification is “Consistency Verification Prompt”
in Figure 1. If vscore is below the specified threshold
(v), the preference component is removed. The task
description, user demonstration, and final preference
components (xtask, wu, p̂c) are then stored in PROSE’s
interactive memory. Qualitative examples of the consistency
verification procedure are in Appendix F.4.

4. Assistive Writing Benchmark
4.1. PRELUDE

Gao et al. (2024) propose PRELUDE (PREference
Learning from User’s Direct Edits) to evaluate algorithms
that infer preferences for assistive writing tasks. Success is
defined as: (1) maximizing the quality of the inferred user’s
preferences and (2) minimizing the amount of work required
by a user to edit the generated text into an acceptable form.

PRELUDE consists of two tasks: summarizing articles and
writing emails from notes. Each task has a set of users, and
each user has distinct preferences per summary and email
topic (e.g., summarize an encyclopedia article versus news
article). The summarization and email writing tasks have
five and four users respectively. See Table 9 ( Appendix D)
for the mapping between users, topics, and preferences.

To solve a given task, the agent must write a summary or
email using the provided article or notes along with any
preferences the agent has inferred. The user is then asked
if the agent’s generation is satisfactory based on the user’s
true preference. If the agent’s generation is satisfactory, the
agent accrues no penalty. If the agent’s generation is not
satisfactory, the user edits the agent’s generation, and the
agent is penalized based on the extent of the edits. The agent
observes the user’s edits to improve its inferred preferences.

We analyze PRELUDE and find that the (1) chosen metrics,
(2) the editing process, and (3) the ground truth preferences
are key limitations of the benchmark, that lead to a weak
correlation between the quality of the inferred preferences
and the quality of the generated writing.

Metric Correlation As the goal is to infer user preferences,
the measure of the agent’s generation quality (i.e., the user-
edit-based penalty) must be highly correlated the quality of
inferred preference. We measure the correlation between
PRELUDE’s preference quality metric — preference ac-

PRELUDE PLUME
Metric Acc. P. Sim. Acc. P. Sim.

Levenshtein dist -0.43 -0.39 0.01 -0.11
PPCM 0.42 0.42 0.39 0.73

Table 1: Subset of Pearson correlation (ρP,G) between pref-
erence quality metrics and generation quality metrics across
both the summarization and email tasks. Best correlation in
each framework is bold. P. Sim. (Preference similarity) and
PPCM (Per Preference-Component Match) are described in
Section 4.2. Full results in Appendix C.1.

curacy2 — and generation quality metric — Levenshtein
distance (Levenshtein, 1966) between the LLM generation
and user edited generation. For a each summary and email
topic, we generate the powerset of PRELUDE’s ground truth
preferences and create a population of agents. Each agent is
conditioned on a subset from the powerset and completes
its assigned task for five seeds. The quality of the inferred
preferences and of the resulting generations is measured
according to PRELUDE’s performance metrics. We calcu-
late the Pearson correlation between each of PRELUDE’s
preference quality and generation quality metrics:

ρP,G =
Cov(P,G)

σPσG

where P denotes the measured preference quality and G
denotes the measured generation quality. We report a subset
of the results in Table 1 (Full results in Appendix C.1).

The results, reported in Table 1, show a weak correlation
(< 0.5) between PRELUDE’s preference accuracy and Lev-
enshtein distance metrics. The accuracy metric relies on the
“highest” BERTScore, and therefore cannot differentiate par-
tially correct preferences from perfectly correct preferences.
Moreover, the Levenshtein distance varies substantially be-
tween generations even when conditioned on the exact same
preferences (an illustrative example is in Appendix E.1).
Gao et al. (2024) allude to this as a motivation for their two-
stage editing process, and when we compare the results to a
version of PRELUDE where the user always generates sum-
maries or emails directly from the article or notes instead
of editing the agent’s summary or email (PRELUDENoEdit),
we see a further drop in correlation. However, we propose
addressing this issue using improved metrics.

The Editing Procedure Relying on a binary label to indi-
cate whether a generation matches the user’s preferences
is inherently ambiguous. It is not possible to distinguish
between generations that align with 65% versus 100% of
preferences. Even if this ambiguity is resolved, genera-

2a preference is correct if its BERTScore (Zhang* et al., 2020)
with true preference set is greater than the BERTScore with any
other preference set.
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tions not selected for editing incur no cost and provide no
incentive to further improve the quality of the inferred pref-
erences. Lastly, the editing process unduly influences the
user’s writing, as demonstrated in Appendix E.2.

Preference Sets We observe the following limitations with
PRELUDE’s preference sets: (1) certain preference com-
ponents have minimal impact on the generated text, due
to unclear definitions (e.g., “skillful foreshadowing”) or
similarity to default LLM behavior (e.g., “clear”); (2) pref-
erences are repeated across several task topics (e.g., “short”,
“brief”, “concise” appear in four of five summarization pref-
erence sets); and (3) there is a large variance in preference
set complexities across users (e.g., “targeted to young chil-
dren, storytelling, short sentences, playful language, interac-
tive, positive” vs.“question answering style”). PRELUDE’s
preferences are in Appendix D (Table 9)

Knowledge of Topics Instead of treating each task topic as a
distinct user, PRELUDE introduces the additional challenge
of context awareness; each user has different preferences
based on the task’s topic. Therefore, prior to writing a
summary or an email the agent must first identify the correct
context, an orthogonal challenge to inferring preferences.

4.2. PLUME

To address PRELUDE’s limitations, we develop a new envi-
ronment PLUME (Preference Learning from User Memos
and Emails) based on same underlying tasks and topics as
PRELUDE. As in (Gao et al., 2024), PLUME uses GPT-4o
as a proxy human user. In the following sections, we pro-
vide a detailed description of how PLUME addresses each
of PRELUDE’s limitation.

Metric Correlation We investigate and compare new pref-
erence and generation-quality metrics. For the preference
quality metric, we evaluate an LLM-as-a-Judge (Zheng et al.,
2023) metric that prompts an LLM to identify how simi-
lar the inferred preference description is to the true prefer-
ence description on a 5-point Likert scale, which we call
Preference-Similarity. For the generation quality metric,
we evaluate length-normalized Levenshtein distance (ln-L-
dist), BERTScore, and an LLM-as-a-Judge (Zheng et al.,
2023) metric inspired from the editing procedure in PRE-
LUDE. The LLM-as-a-Judge evaluation is a per preference-
component match (PPCM) that asks an LLM how much a
component of a the ground truth preference is exhibited in
a piece of writing on a five point Likert scale from “clearly
contradicts” (score of -2) to “clearly exhibits” (score of +2).
This is repeated for each component of the true preference
set, and we compute the mean score across components. The
full prompts used for both of the LLM-as-a-Judge metrics
are shown in Appendix B (Figure 4 and Figure 5).

The results in Table 3 (Appendix C.1) show that Preference-

Similarity has a stronger correlation with each writing gener-
ation metric than PRELUDE’s accuracy metric. Looking at
the generation quality metrics, Levenshtein distance consis-
tently has the weakest correlation and PPCM the strongest.
Notably, the pairing of Preference-Similarity (preference
quality) and PPCM (generation quality) provides the highest
correlation in every situation and are the primary metrics
we report in PLUME.

The Editing Procedure In place of the editing, PLUME
has the agent and user independently solve each task to (1)
enable the agent to learn from every user example, unless the
agent’s generation exactly matches the user’s; (2) remove
ambiguity about whether a generation should be edited and
incur a cost; (3) provides a smoother curve along which to
evaluate different methods; and (4) prevents agents from
influencing users.

Preference Sets PLUME reworks the preferences according
to the following criteria: (1) each preference set contains an
equal number of components; (2) within each task, prefer-
ence sets have a shared structure; (3) as much as possible,
preferences components are orthogonal to each other, avoid-
ing overlapping preferences (e.g., “write in the style of old-
timey radio” and “use archaic language”) or contradictory
preferences (e.g., “use emojis” and “use a formal tone”);
and (4) preferences components do not follow the LLMs
default behavior — i.e., generating an output conditioned
on no preference should lead to a lower score than when
generating on the preference component. PLUME’s prefer-
ences are in Appendix D (Table 9). We encourage future
researchers to use PLUME with different preference sets to
adjust difficulty or examine specific concepts.

Knowledge of Topics As this work focuses on how to infer
preferences, the version of PLUME used in all experiments
assumes a distinct known user per topic. We note that
PLUME is easily adaptable to use hidden topics if desired.

5. Experimental Set Up
All experiments consist of three phases. First, the user pro-
vides a demonstration using their true preferences. Second,
the agent completes the user’s task using its currently in-
ferred preferences (if any). Finally, the agent compares its
generation with the user’s example to infer new preferences
to use going forward.

All AI assistants are evaluated on their ability to complete
email writing and article summarization tasks on behalf of
the user. Each task has different types (e.g., email to your
boss versus email to a family member), and each user’s
preferences differ based on the task type. The assistants
are evaluated along two dimensions: preference quality to
measure the similarity between true and inferred preferences
(see Appendix B.1), and generation quality to evaluate how
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Summarization Emails Tasks Mean
Method Pref. Sim. PPCM Pref. Sim. PPCM Pref. Sim. PPCM

No Learning Baselines
NPC 0.00±0.00 −1.09±0.03 0.00±0.00 −0.91±0.03 0.00±0.00 −1.00±0.02

Oracle 3.86±0.07 1.71±0.04 3.89±0.06 1.95±0.01 3.87±0.05 1.83±0.02

Learning Baselines
ICL 0.00±0.00 1.35±0.08 0.00±0.00 1.39±0.07 0.00±0.00 1.37±0.05

CIPHER-1 1.21±0.04 −0.05±0.06 1.67±0.07 0.33±0.05 1.44±0.04 0.14±0.04

CIPHER-5 1.24±0.07 −0.08±0.09 1.69±0.07 0.25±0.07 1.46±0.05 0.09±0.06

PROSE Ablations
PROSECE 1.23±0.06 0.51±0.08 1.46±0.07 0.97±0.08 1.34±0.05 0.74±0.06

PROSEu 1.30±0.11 0.47±0.10 1.34±0.10 0.84±0.11 1.32±0.07 0.65±0.07

PROSEu,a 1.35±0.10 0.49±0.11 1.58±0.09 1.04±0.06 1.47±0.07 0.76±0.06

PROSEu,a,S>1 1.37±0.11 0.75±0.09 1.50±0.08 1.21±0.08 1.43±0.07 0.98±0.06

PROSENV 1.47±0.06 0.87±0.10 1.38±0.10 1.18±0.08 1.43±0.06 1.02±0.06

PROSEFull 1.51±0.09 0.90±0.07 1.47±0.08 1.24±0.07 1.49±0.06 1.07±0.05

PROSEFull+ICL 1.34±0.09 1.34±0.07 1.39±0.09 1.65±0.05 1.37±0.06 1.49±0.04

Table 2: PROSE’s performance on the two tasks measured by the quality of inferred preferences (Pref. Sim.) and preference
compliance (PPCM) compared against no preference conditioning (NPC), true preference generation (Oracle), in-context
learning (ICL), CIPHER (Gao et al., 2024), and ablations over PROSE’s components. Results are the mean and pooled
standard error across the four LLMs and five seeds. Best results are bolded, second best are underlined.

well an agent’s writing aligns with the user’s true prefer-
ences (see Appendix B.2). Both performance measures use
LLM-as-a-Judge to assess the similarity between the true
and inferred preferences, and between the true preferences
and the agent’s generations.

The agent aligns itself with four (email) or five (sum-
marization) users with five demonstrations per user.
Performance is evaluated per task as the mean across all
demonstrations, users, and task type. Each task is run over
five seeds (standard error is reported over the seeds). The
ground truth user preferences by task and task type are
in Appendix D (Table 9). The performance of four LLMs
is reported and compared: Qwen2.5-7B-Instruct,
Qwen2.5-72B-Instruct, GPT-4o-mini, and
GPT-4o(Yang et al., 2024; OpenAI, 2023). For
all LLMs, S and v are determined via a hyper-
parameter sweep over v ∈ 0, 0.25, 0.5, 0.75, 1 and
S ∈ 2, 3, 4, 5. In our experiments S = 5 for all
LLMs, and v = 0.25 for Qwen2.5-7B-Instruct,
v = 0.5 for both GPT-4omodels, and v = 0.75 for
Qwen2.5-72B-Instruct. For all experiments GPT-4o
is used as a synthetic human. The synthetic human prompts
can be found in Appendix F.2.

5.1. Research Questions

RQ1: Does iterative refinement improve performance?

We consider three variants of PROSE: (1) PROSEu infers

p̂desc given only the user’s demonstration wu; (2) PROSEu,a

infers p̂desc given the user’s demonstration wu and the
initial assistant generation ws=0

a ; and (3) PROSEu,a,S>1

refines p̂desc over ≤ S inference steps given the user’s
demonstration wu and the initial assistant generation ws=0

a .
PROSEFull refines p̂desc over ≤ S inference steps given the
user’s demonstration wu and the iteratively refined assistant
generations ws∈[0,S]

a . Comparing PROSEu and PROSEu,a

measures the effect of comparing assistant generations to the
user demonstration when inferring preferences. The differ-
ences between the PROSEu,a and PROSEu,a,S>1 quantifies
the role of increasing the number of refinement steps. Lastly,
comparing PROSEu,a,S>1 and the the complete PROSE al-
gorithm PROSEFull clarifies the effects of comparing the
user demonstration to the assistant’s generation conditioned
on the latest inferred preference description.

RQ2: Does filtering preferences that are not relevant to
multiple user demonstrations improve performance?

To answer this question, we evaluate a variant, PROSENV,
that does not use the preference consistency verification
step Section 3.2.

RQ3: Is conditioning on preferences better than condi-
tioning on demonstrations?

To answer this question, we compare PROSE, CIPHER (Gao
et al., 2024), and ICL on all tasks, task types, and user
profiles. We additionally combine the PROSE and ICL to
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measure the extent to which they are complementary.

5.2. Baselines

In addition to the PROSE baselines outlined Section 5.1, we
implement the following models.

We implement CIPHER-1 and CIPHER-5 (Gao et al., 2024),
and an in-context learning (ICL) agent using previously
observed user demonstrations. The CIPHER baselines are
adapted to learn from PLUME’s user demonstrations instead
of user edits.

We then implement three additional baselines. An agent
that solves the task with no preference conditioning (NPC),
providing a lower-bound of performance. An oracle agent
(Oracle) that receives access to the user’s true preference,
providing an upper bound of performance, and a varia-
tion of PROSE that is conceptually equivalent to CIPHER,
PROSECE, but uses PROSE’s improved prompt templates.
PROSECE uses a single LLM generation, a single inference
step, and uses no preference consistency verification.

6. Results and Discussion
We present our main PLUME results in Table 2. Results
on PRELUDE can be found in Appendix C.3. To compare
tasks on generation quality with metrics on different scales,
we use a percentile score, where 0% corresponds to the
no preference conditioning baseline (NPC) and 100% to
the Oracle baseline. Percent improvements are reported as
the difference in scores on this scale. Overall, PROSEFull
outperforms PROSECE by 12%, and CIPHER by 33%.

RQ1. In our first question, we set out to verify whether
generating iterative candidate trajectories is beneficial to
inferring preferences. Comparing PROSE to its ablated
versions on the action/generation quality metric (PPCM),
shows that each component of the iterative refinement pro-
cess improves performance. Comparing PROSE with no
comparison generation — PROSEu — to PROSE with a
single LLM-generated comparison generation — PROSEu,a

— we observe that providing the comparison generations is
beneficial when inferring preferences (3.8% mean improve-
ment). This result supports the algorithmic decisions in
(Gao et al., 2024; Peng et al., 2024). Allowing for multiple
refinement steps provides a further increase in performance
(Table 2: PROSEu,a vs. PROSEu,a,S>1, 7.8% mean im-
provement). This can be explained by the LLM having
more chances to infer correct preferences. Lastly, when
comparing PROSEu,a,S>1 to PROSEFull we see another
3.2% improvement. This highlights the benefits of updat-
ing candidates after each inference step using the newly
inferred preferences. In all, iterative refinement provides a
mean improvement of 14.8%.

RQ2. We investigate the benefit of verifying preferences
by comparing PROSE to PROSENV. Here, we see a modest
but consistent of 1.5% and 1.7% for Pref. Sim. and PPCM
respectively when using preference consistency verification.

RQ3. While on average across LLMs PROSE outper-
forms CIPHER and all PROSE ablations, ICL outperforms
PROSE. However, Figure 2 shows that PROSE’s perfor-
mance scales better with the quality of the underlying LLM
(e.g., Qwen2.5-72B-Instruct vs. GPT-4o) than all
baselines except Oracle. Notably, when using GPT-4o,
PROSE outperforms ICL (1.35 vs 1.32 task mean Ap-
pendix C.2). We further investigate the benefits and limita-
tions of PROSE and the learning baselines by comparing
the performance across preference sets (Figure 3), and find
that ICL excels on sets with the strongest structural pref-
erences (e.g., Chat Forum Posts which includes “write in
the style of a tweet”). In contrast, PROSE excels on the
preference sets requiring a more nuanced understanding of
tone (e.g., Paper Review, which includes “be sharply criti-
cal”). From examining logs, we notice that the LLMs are
less adept at inferring encompassing structural preferences
and often try to capture these preferences using multiple
relevant, but imperfect preferences (e.g., “use emojis for
emphasis”, “use 1-2 specific hashtags”) As PROSE and ICL
seem to have complementary strengths, we combine the
two (PROSEFull+ICL) for a gain of 7.8%, 8.9%, and 51.1%
over PROSE, ICL, and CIPHER when using GPT-4o as
the agent’s LLM.

Human Evaluation To further validate the effectiveness
of PROSE, we ran human evaluation with 16 participants
(3 are ML researchers; 9 women and 7 men; age in [19,
58]). Participants completed a within subjects AB test com-
paring PLUME+ICL generations to ICL generations and
PLUME+ICL generations to CIPHER generations. Partic-
ipants evaluated the final LLM generations (i.e. the gen-
eration after seeing all previous demonstrations) across all
five seeds for two different preference sets for the email
task and two different preference sets for the summarization
task. This leads to a total of 20 survey items per method
comparison. We used the responses to compute a win rate
for PLUME+ICL compared to each of ICL and CIPHER.
For PLUME+ICL versus ICL, we see an average win rate
of 69.4%. For PLUME+ICL versus CIPHER, we see an
average win rate of 91.8%. The human evaluation results
are in line with our synthetic evaluation results and support
the effectiveness of the synthetic evaluation.

Discussion. Our results demonstrate that using iterative
refinement and consistency verification improves over CI-
PHER in terms of preference description quality, genera-
tion quality, and performance stability (i.e., performance
increases with the number of demonstrations, see Figure 6).
Additionally the performance difference between CIPHER
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Figure 2: Preference compliance performance (PPCM) for CIPHER-1, in-context learning (ICL), PROSE, Oracle,
and no preferences (NPC) for different preference-inferring LLMs. The LLMs are sorted by MMLU performance:
Qwen2.5-7B-Instruct = 74.2, GPT-4o-mini = 82, Qwen2.5-72B-Instruct = 86.1, and GPT-4o = 88.7.
GPT-4o is the proxy human with mean and standard error reported over 5 seeds.

and PROSECE highlights the impact of our prompt-tuning
efforts. In this regard, PLUME’s prompts (Appendix F) can
serve as a valuable starting point for extensions to other
tasks, however, task-specific adaptations should be made.

Our results suggest that consistency verification provides
only a modest improvement to PROSE. Therefore, to bet-
ter understand its impact, we examine the learning logs
and find that consistency verification effectively prunes ir-
relevant preferences—e.g.,“be concise and direct”— and
preferences that overfit to specific passages— e.g., “ include
personal details about characters”. However, the pruned
preferences typically have minimal impact on the perfor-
mance metrics as they rarely contradict the true preferences.
Moreover, the pruned preferences do not drastically alter
the generations as the orthogonal preferences often match
the LLM’s default behavior while the overfit preferences
become irrelevant and ignored. As such, the current metrics
have difficulty measuring the presence of these irrelevant
preferences. Nevertheless, we believe it is valuable to prune
the irrelevant preferences, as they reduce the number of
tokens required.

We find PROSE is competitive with and complementary to
ICL while providing several advantages: (1) preferences are
easier to interact with than a dataset of in-context examples
as a user can view and modify the inferred preferences, (2)
at inference time, PROSE requires approximately 1

10 of the
prompt tokens, and (3) the inferred preference description
can benefit a wider range of tasks (e.g. human-agent col-
laboration (Liu et al., 2024), sample efficient imitation/rein-
forcement learning, and generating personalized preference
pairs for RLAIF (Sun et al., 2024)).

Lastly, while developing PROSE, we learned the importance
of phrasing the preference description in the LLM’s “own
words”. We initially sorted the preference components by
length before aggregation, however, this led to an average
performance drop of 11% across tasks relative to keeping the
LLM’s order for the preference components. This finding
is inline with other work that shows that LLMs are sensi-
tive to the order of list items (Pezeshkpour & Hruschka,
2024; Aroca-Ouellette et al., 2021). We believe future work
investigating the impact of the ordering may yield useful
insights.

6.1. Limitations and Future Work

While PROSE and PLUME provide a number improve-
ments, their limitations and challenges provide interesting
avenues for future work. First, in this paper we focus on
learning with the fewest user demonstrations possible. How-
ever another aspect of efficiency is the total number of to-
kens, and adding more refinement and preference consis-
tency verification steps increases the number of tokens used.
In our experiments, PROSEFull used 5.87x (prompt) and
6.07x (generated) more tokens on average than PROSECE.
Given the monetary and environmental cost of LLMs, re-
ducing the number of tokens while retaining performance
is an important area for improvement. Lastly, a full-scale
human trial would provide a greater understanding of the
benefits and limitations of the proposed method. We look
forward to investigating this more closely in future work.
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Figure 3: Generation quality (PPCM) for PROSE, CIPHER-1, in-context learning (ICL), and PROSE+ICL by Email (top)
and Summary (bottom). GPT-4o is the agent’s LLM with mean and standard error reported over 5 seeds.

7. Conclusion
In this paper, we present a novel algorithm, PROSE, and
a new benchmark, PLUME. PROSE’s two novel contribu-
tions guide an LLM to better infer preferences from user
demonstrations by: (1) iteratively refining preferences by
conditioning an LLM on each refinement step’s updated
preference description to see its impact, and (2) decompose
preferences into components and verify the components
against relevant user demonstrations. We demonstrate that
the proposed method improves an LLM’s ability to align to
a user by as much as 33%.

Impact Statement
The proposed method allows for greater personalization of
assistive agents. However inferring a user’s preferences
could be seen as an invasion of privacy. These methods
should be applied only with explicit consent from human
users.
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A. Algorithm

Algorithm 1 Assistant Task Completion

Require: xtask {Task instance}
1: Initialize empty preference set: P̂c ← ∅
2: Retrieve relevant examples:
3: E ← get relevant examples(interaction memory)
4: for each e ∈ E do
5: P̂c ← P̂c ∪ e.p̂c
6: end for
7: Aggregate condense preferences:
8: p̂desc ← generate(llm, xaggregate, P̂c)
9: Sample agent generation:

10: w0
a ← generate(llm, xtask, p̂desc)

11: Return Completed generation w0
a, preference description p̂desc, and relevant examples E
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Algorithm 2 PROSE: Preference Reasoning by Observing and Synthesizing Examples

Require: xtask {Task instance}
Require: wu {User demonstration}
Require: w0

a {Agent generation}
Require: p̂desc {Preference description}
Require: E {relevant Examples}

1: Initialize P̂c ← generate(llm, xbreakdown, p̂
0
desc)

2: for each s ∈ [0, S] do
3: if ws

a = wu then
4: Stop refinement
5: else
6: Refine preferences:
7: p̂s+1

desc = generate(llm, xupdate, p̂
s
desc, wu, w

s
a)

8: Decompose preference:
9: P̂c ← P̂c ∪ generate(llm, xbreakdown, p̂

s
desc)

10: Generate new candidate generation:
11: ws

a ← generate(llm, xtask, p̂desc)
12: end if
13: end for
14: Initialize empty verification score list:
15: vscores ← ∅
16: for each p̂c in P̂c do
17: for each e ∈ E do
18: Verify preference against demonstration:
19: vscores ← vscores ∪ generate(llm, xverification, e.w

i
u, p̂

s
desc)

20: end for
21: if mean(vscores) < v then
22: Discard p̂c from P̂c

23: end if
24: end for
25: Add (xtask, w

i
u, P̂c) to interaction memory
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B. Metric Definitions
B.1. Preference Inference Quality

Preference Description Length As conditioning on unnecessary tokens when generating responses aligned with user
preferences is undesirable, we measure the number of tokens in the preference description. The preference length (Pref
Len) is the number of characters used to describe a user’s preferences, which is highly correlated with the number of tokens
required.

Preference Similarity To assess the similarity between the inferred preferences and the ground truth preferences, the
human proxy (GPT-4o in this paper) is prompted to evaluate how similar each inferred preference is to each ground truth
preference following:

Preference Similarity = llm judge(true, inferred), (1)

where true is the true preferences (see Appendix D Table 9), inferred is the inferred preference description, and llm judge
is a function that prompts the human proxy LLM to evaluate how well a given inferred preference aligns with the true
preference on a scale of 0 to +4 (see Appendix Figure 4).

System Prompt

You are an experienced editor that is evaluating how similar writing preferences are.

User Prompt

You received the following description of a user’s writing preferences:
“““
Inferred preference: <inferred preference i>
”””
”How similar are the inferred preferences to the true writing preferences below?
True preference: <true preference i>?
Analyze how the preferences would impact a user’s writing. After reasoning, select one of the following options:
extremely similar, very similar, moderately similar, slightly similar, not at all similar
Your final selection should be on a new line prefaced with “Verdict:”

Figure 4: LLM-as-a-Judge prompts to assess the similarity between the true and inferred preferences. The system prompt
is prepended to the user prompt following the LLM’s chat template. “<...>” indicates that the text is formatted from a
variable. inferred preference i one of the inferred preferences. true preference i refers to one of the k true
preferences that the user has.

B.2. Generation Quality

To assess the quality of the preference conditioned LLM’s generations, the human proxy (GPT-4o in this paper) is prompted
to evaluate how well the given generation complies with the each of the ground truth user preferences. The generation
quality is then compute as the mean score over ground truth user preference components following:

PPCM =

∑|true|
i llm judge(truei, assistant attempt)

|true|
, (2)

where true is the set of true preferences (see Appendix D Table 9), assistant attempt is the assistant’s summary or email, and
llm judge is a function that prompts the human proxy LLM to evaluate how well a given assistant solution aligns with the
true preference on a scale of -2 to +2 (see Figure 5).

The prompt used by the LLM-as-a-Judge for generation quality evaluation are shown in Appendix Figure 5.
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System Prompt

You are an experienced editor that is evaluating writing samples.

User Prompt

You received the following {summary | email}:
“““
<agent completion>
”””
Does the above {summary | email} exhibit the following preference: <true preference i>?
Identify, analyze, and reason about specific excerpts that show similarities or contradictions of underlying preferences.
After reasoning, select one of the following options:
clearly exhibits, somewhat exhibits, neither exhibits nor contradicts, somewhat contradicts, clearly contradicts
Your final selection should be on a new line prefaced with “Verdict:”

Figure 5: LLM-as-a-Judge prompts for the per preference-component match metric (PPCM) used in the PLUME
environment. The system prompt is prepended to the user prompt following the LLM’s chat template. “<...>” indicates
that the text is formatted from a variable. agent completion refers to the agent’s article summary or email, depending
on the sub-task. true preference i refers to one of the k true preferences that the user has.

15



PROSE: Inferring User Preference Descriptions

C. Extended Results
Additional results tables and figures discussed in the main body of the paper.

C.1. Metric Correlation

The metric correlation results for the assistive writing tasks (Table 3).

PRELUDE PRELUDE NoEdit PLUME
Metric Acc. B.Score P. Len. P. Sim. Acc. B.Score P. Len. P. Sim. Acc. B.Score P. Len. P. Sim.

Summarization
L-dist -0.47 -0.53 -0.43 -0.46 -0.08 -0.14 0.01 -0.18 0.02 -0.13 -0.21 -0.10

ln-L-dist -0.50 -0.57 -0.48 -0.51 -0.22 -0.36 -0.23 -0.42 -0.08 -0.33 -0.40 -0.36
PPCM 0.49 0.63 0.53 0.54 0.51 0.65 0.54 0.58 0.34 0.65 0.71 0.71

Emails
L-dist -0.26 -0.32 -0.27 -0.26 -0.10 -0.31 -0.36 -0.27 -0.11 -0.19 -0.25 -0.19

ln-L-dist -0.23 -0.31 -0.27 -0.26 -0.08 -0.34 -0.42 -0.28 -0.12 -0.34 -0.41 -0.38
PPCM 0.18 0.30 0.43 0.18 0.20 0.32 0.45 0.19 0.48 0.79 0.74 0.79

Across Both Tasks
L-dist -0.43 -0.43 -0.31 -0.39 -0.09 -0.17 -0.03 -0.20 0.01 -0.15 -0.21 -0.11

ln-L-dist -0.45 -0.45 -0.32 -0.42 -0.18 -0.27 -0.08 -0.32 -0.09 -0.32 -0.39 -0.35
PPCM 0.42 0.48 0.37 0.42 0.45 0.52 0.39 0.46 0.39 0.68 0.71 0.73

Table 3: Pearson R correlation between preference similarity metrics and generated writing similarity metrics broken down
by task (summarization vs email). For Levenshtein distance (L-dist) and length-normalized Levenshtein distance (ln-L-dist)
lower is better, so inverse correlation is expected. For PPCM, Acc. (Accuracy), B.SCore (BertScore), P. Len (Preference
Description Length), and P. Sim. (Preference Description Similarity) higher is better. Best correlation in each framework is
bold. Best overall correlation is underlined. See Appendix B for a full description of each metric.
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C.2. Baselines and Ablations per LLM

The baseline and PROSE ablation results for Qwen2.5-7b-Instruct, Qwen2.5-72b-Instruct, GPT-4o-mini,
and GPT-4o. The results in Table 2 are averaged across these four LLMs and results reported in this section.

Summarization Emails
Method Pref Len Pref. Sim. PPCM Pref Len Pref. Sim. PPCM

No Learning Baselines
NPC 0.00±0.00 0.00±0.00 −1.12±0.04 0.00±0.00 0.00±0.00 −0.97±0.04

Oracle 120.80±0.00 3.88±0.05 1.75±0.04 118.50±0.00 3.90±0.06 1.95±0.01

Learning Baselines
ICL 6237.54±1163.61 0.00±0.00 1.42±0.06 6754.73±975.36 0.00±0.00 1.41±0.08

CIPHER-1 50.40±1.68 0.90±0.04 −0.33±0.04 51.55±0.93 1.32±0.10 −0.01±0.04

CIPHER-5 49.78±1.86 1.04±0.05 −0.11±0.07 49.04±2.46 1.66±0.05 −0.01±0.06

PROSE Ablations
PROSECE 306.05±15.72 0.59±0.03 0.07±0.06 390.29±20.64 0.99±0.05 0.62±0.06

PROSEu 274.05±20.33 0.45±0.08 −0.02±0.05 353.77±33.87 0.84±0.05 0.16±0.15

PROSEu,a 291.45±15.41 0.61±0.11 0.03±0.15 301.27±26.19 1.00±0.09 0.45±0.04

PROSEu,a,S>1 574.73±27.75 0.77±0.06 0.40±0.11 611.92±32.87 1.14±0.06 0.83±0.05

PROSENV 745.49±30.03 0.90±0.07 0.48±0.10 753.11±75.90 0.97±0.11 0.72±0.04

PROSEFull 604.69±31.19 0.89±0.10 0.56±0.09 698.34±44.28 0.91±0.09 0.78±0.10

PROSEFull+ICL 6829.38±1159.22 0.76±0.07 1.23±0.08 7435.39±980.26 0.96±0.06 1.52±0.04

Table 4: Qwen2.5-7b-Instruct + PROSE’s performance on the two tasks measured by the quality of inferred
preferences (Pref. Sim.) and preference compliance (PPCM) compared against no preference generation (NPC), true
preference generation (Oracle), in-context learning (ICL), CIPHER (Gao et al., 2024), and ablations over PROSE’s
components. Results are the mean and standard error across five seeds. Best non-Oracle results per task are bolded.

17



PROSE: Inferring User Preference Descriptions

Summarization Emails
Method Pref Len Pref. Sim. PPCM Pref Len Pref. Sim. PPCM

No Learning Baselines
NPC 0.00±0.00 0.00±0.00 −1.11±0.02 0.00±0.00 0.00±0.00 −0.86±0.04

Oracle 120.80±0.00 3.88±0.08 1.68±0.03 118.50±0.00 3.85±0.06 1.95±0.01

Learning Baselines
ICL 6237.54±1163.61 0.00±0.00 1.42±0.10 6754.73±975.36 0.00±0.00 1.37±0.05

CIPHER-1 88.36±1.91 1.26±0.04 0.03±0.06 83.01±2.03 1.82±0.07 0.56±0.07

CIPHER-5 141.23±6.64 1.22±0.05 −0.06±0.06 141.45±8.35 1.60±0.08 0.34±0.05

PROSE Ablations
PROSECE 359.01±23.18 1.25±0.09 0.62±0.10 375.76±6.64 1.56±0.10 1.06±0.05

PROSEu 333.35±13.53 1.35±0.13 0.65±0.09 369.00±21.15 1.29±0.07 0.87±0.09

PROSEu,a 304.55±16.14 1.41±0.07 0.52±0.09 352.71±18.17 1.75±0.09 1.17±0.04

PROSEu,a,S>1 635.88±39.19 1.42±0.04 0.84±0.05 829.24±37.09 1.56±0.10 1.39±0.08

PROSENV 937.37±74.59 1.57±0.05 0.97±0.11 1004.21±30.02 1.36±0.13 1.32±0.11

PROSEFull 628.28±36.94 1.60±0.11 0.99±0.07 880.98±22.95 1.55±0.06 1.38±0.03

PROSEFull+ICL 6912.28±1171.86 1.41±0.10 1.38±0.05 7624.14±973.68 1.45±0.13 1.70±0.07

Table 5: Qwen2.5-72b-Instruct + PROSE’s performance on the two tasks measured by the quality of inferred
preferences (Pref. Sim.) and preference compliance (PPCM) compared against no preference conditioning (NPC), true
preference conditioning (Oracle), in-context learning (ICL), CIPHER (Gao et al., 2024), and ablations over PROSE’s
components. Results are the mean and standard error across five seeds. Best non-Oracle results per task are bolded.

Summarization Emails
Method Pref Len Pref. Sim. PPCM Pref Len Pref. Sim. PPCM

No Learning Baselines
NPC 0.00±0.00 0.00±0.00 −1.05±0.02 0.00±0.00 0.00±0.00 −0.91±0.02

Oracle 120.80±0.00 3.84±0.08 1.70±0.04 118.50±0.00 3.95±0.05 1.93±0.01

Learning Baselines
ICL 6237.54±1163.61 0.00±0.00 1.33±0.07 6754.73±975.36 0.00±0.00 1.38±0.08

CIPHER-1 138.91±3.67 1.44±0.03 0.24±0.07 148.69±1.51 1.79±0.03 0.37±0.05

CIPHER-5 74.93±2.42 1.26±0.10 −0.05±0.08 78.09±2.17 1.74±0.08 0.30±0.10

PROSE Ablations
PROSECE 384.12±12.65 1.44±0.07 0.67±0.05 412.09±12.57 1.57±0.03 1.03±0.08

PROSEu 254.81±15.59 1.55±0.12 0.47±0.11 364.86±13.18 1.40±0.10 1.01±0.10

PROSEu,a 321.09±8.23 1.76±0.11 0.70±0.07 375.89±24.73 1.75±0.08 1.24±0.05

PROSEu,a,S>1 551.56±16.27 1.46±0.11 0.82±0.13 745.58±29.95 1.50±0.08 1.30±0.13

PROSENV 699.89±22.87 1.48±0.07 0.94±0.05 798.89±37.11 1.30±0.10 1.16±0.07

PROSEFull 575.88±20.20 1.58±0.08 0.91±0.06 699.25±33.42 1.60±0.07 1.25±0.09

PROSEFull+ICL 6795.69±1167.68 1.42±0.08 1.27±0.09 7542.95±977.22 1.52±0.08 1.70±0.04

Table 6: GPT-4o-mini PROSE’s performance on the two tasks measured by the quality of inferred preferences (Pref.
Sim.) and preference compliance (PPCM) compared against no preference conditioned (NPC), true preference generation
(Oracle), in-context learning (ICL), CIPHER (Gao et al., 2024), and ablations over PROSE’s components. Results are the
mean and standard error across five seeds. Best non-Oracle results per task are bolded.
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Summarization Emails
Method Pref Len Pref. Sim. PPCM Pref Len Pref. Sim. PPCM

No Learning Baselines
NPC 0.00±0.00 0.00±0.00 −1.06±0.04 0.00±0.00 0.00±0.00 −0.88±0.04

Oracle 120.80±0.00 3.84±0.08 1.69±0.04 118.50±0.00 3.85±0.06 1.97±0.01

Learning Baselines
ICL 6237.54±1163.61 0.00±0.00 1.24±0.09 6754.73±975.36 0.00±0.00 1.40±0.04

CIPHER-1 60.80±1.24 1.23±0.04 −0.14±0.07 67.62±1.37 1.75±0.07 0.41±0.06

CIPHER-5 56.03±1.52 1.43±0.07 −0.11±0.13 56.81±2.00 1.76±0.05 0.38±0.06

PROSE Ablations
PROSECE 314.11±19.75 1.63±0.05 0.66±0.11 342.27±12.98 1.71±0.08 1.18±0.10

PROSEu 228.11±11.47 1.84±0.10 0.77±0.14 303.74±7.32 1.84±0.14 1.30±0.06

PROSEu,a 249.26±11.70 1.62±0.12 0.70±0.10 317.54±6.48 1.82±0.09 1.29±0.10

PROSEu,a,S>1 428.30±18.53 1.83±0.17 0.92±0.08 534.29±18.92 1.79±0.06 1.33±0.01

PROSENV 489.66±13.24 1.94±0.06 1.07±0.12 513.60±11.57 1.90±0.05 1.50±0.07

PROSEFull 446.73±10.71 1.98±0.06 1.15±0.07 532.34±7.78 1.83±0.08 1.55±0.03

PROSEFull+ICL 6719.98±1164.23 1.77±0.10 1.46±0.05 7297.62±980.54 1.64±0.05 1.67±0.04

Table 7: GPT-4o + PROSE’s performance on the two writing tasks measured by the correctness of inferred preferences
(Pref. Sim.) and preference compliance (PPCM) compared against no-preference conditioning (NPC), true preference
generation (Oracle), in-context learning (ICL), CIPHER (Gao et al., 2024), and ablations over PROSE’s components. Results
are the mean and standard error across five seeds. Best non-Oracle results per task are bolded.
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C.3. PRELUDE Results

Results on PRELUDE (Gao et al., 2024) for PROSE and baselines: a no-preference conditioning (NPC), an oracle preference
baseline, in-context learning (ICL), CIPHER-1, and CIPHER-5 (Gao et al., 2024) (Table 8). To directly evaluate the ability to
infer preferences, we provide all models with ground-truth knowledge of the source of the documents. On the summarization
task, PROSE outperforms all baselines on action/generation quality. On the email writing task, PROSE outperforms all
baselines on the PPCM metric, but slightly underperforms CIPHER-1 on the poorly correlated Levenshtein distance metric
(see Section 4-Metric Correlation for issues with Levenshtein distance).

Results in this table further support issues with the current preference-quality metrics. In the email writing task, the
no-learning baseline (which always uses an empty preference), has a higher accuracy than any learning method, which may
be due to the significant overlap between preference sets in the task. Further, in both tasks, the highest preference-quality
scores do not lead to the highest action-quality scores. We encourage future work to look into alternative preference-quality
metrics.

We lastly note that PRELUDE has substantially smaller range between the no-preference conditioned (NPC) and oracle
preference baselines relative to PLUME. On PPCM, PRELUDE has a range 2.45 and 0.62 for summarization and email
writing respectively, while PLUME has ranges of 3.17 and 2.91 for the two tasks. This further supports PLUME as the
primary evaluation environment.

Summarization
Method Accuracy BScore Levenshtein PPCM

No Learning Baselines
NPC 0.20±0.00 −0.43±0.00 107.80±6.04 −0.74±0.10

Oracle 1.00±0.00 1.00±0.00 1.08±1.48 1.62±0.09

Learning Baselines
ICL 0.20±0.00 −0.43±0.00 104.24±8.85 −0.71±0.19

CIPHER-1 0.61±0.06 0.13±0.03 48.01±10.76 0.74±0.24

CIPHER-5 0.46±0.02 0.02±0.01 33.86±19.89 0.82±0.50

PROSE 0.68±0.12 0.01±0.03 9.30±8.70 1.18±0.16

Emails
Method Accuracy BScore Levenshtein PPCM

No Learning Baselines
NPC 0.25±0.00 −0.37±0.00 48.12±11.44 0.86±0.08

Oracle 1.00±0.00 1.00±0.00 1.02±2.03 1.57±0.13

Learning Baselines
ICL 0.25±0.00 −0.37±0.00 53.38±13.46 0.87±0.13

CIPHER-1 0.03±0.06 −0.16±0.04 12.06±15.04 1.04±0.12

CIPHER-5 0.25±0.00 −0.08±0.04 13.34±9.57 1.09±0.08

PROSE 0.01±0.03 −0.22±0.02 14.05±6.14 1.10±0.06

Table 8: PRELUDE Results. PROSE’s ability to infer the correct preference set and generation quality across the two
PRELUDE tasks compared against a no-preference conditioning baseline (NPC), a method with access to the true preferences
(Oracle), in-context learning (ICL), and CIPHER (Gao et al., 2024). Results are reported as the mean and standard error
across five seeds. Accuracy and Bscore (BERTScore) (Zhang* et al., 2020) are preference-quality metrics, while Levenshtein
distance and PPCM (per preference-component match) are action-quality metrics.
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C.4. Preference Inference and Conditioning Performance by Number of User Samples

In Figure 6 we show the impact of the number of samples for a given user according to the measures for inferred-preference
and generation quality metrics.
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Figure 6: Performance for PROSE, CIPHER-1, in-context learning (ICL), and PROSE+ICL given different numbers of
user samples to learn from. Mean and standard error over five seeds for preference quality (Pref. Sim.) and preference-
conditioned generation quality (PPCM). GPT-4o is the LLM.
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D. PRELUDE vs. PLUME Preference Sets
The preference sets used for each document source and environment (PRELUDE vs. PLUME) are given in Table 9.

Document Source Task Version User Preferences
Summarization

News Articles
PRELUDE interactive, playful language, positive, short sentences, storytelling, style

targeted to young children

PLUME adopt a step-by-step structure, include a simile, use ampersands (&) instead
of “and”s, write in the style of a children’s book

Chat Forum Posts
PRELUDE brief, immersive, invoke personal reflection, second person narrative, show

emotions

PLUME adopt a header and sub-header structure, include rhetorical questions, use
ALLCAPS to emphasize words, write in the style of a tweet

Encylopedia Pages
PRELUDE brief, bullet points, parallel structure

PLUME adopt a rhyming structure, include modern slang, use semicolons (;) when
possible, write in the style of a screenplay

Paper Abstract
PRELUDE inquisitive, simple English, skillful foreshadowing, tweet style, with emojis

PLUME adopt a question-answering style structure, include personifications, use
archaic language, write in the style of a podcast

Movie Review

PRELUDE question answering style

PLUME adopt a stream-of-consciousness structure, include onomatopoeias, use
imagery, write in the style of old timey radio

Email Writing

Personal Problem
PRELUDE conversational, informal, no closing

PLUME be intensely emotional, include alliterations, use a formal tone, write in a
second person narrative

Paper Review
PRELUDE call to action, casual tone, clear, positive

PLUME be sharply critical, include several short and punchy sentences, use paren-
thetical asides, write using assertive expressions

Paper Tweet

PRELUDE engaging, personalized, professional tone, thankful closing

PLUME be blatantly sarcastic, include hyperboles, use an informal tone, write in a
third person perspective

Paper Summary
PRELUDE professional greeting and closing, respectful, straight to the points, struc-

tured

PLUME be highly inquisitive, include several long and flowing sentences, use
emojis, write using conditional expressions

Table 9: The user preferences for each assistive writing task (summarization vs. email writing), task topic, and benchmark
version.
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E. Illustrative Examples of Issues with PRELUDE
E.1. Levenshtein Distance and Multiple Generations

We present here an inherent issue with Levenshtein distance. For all three generations, we prompt gpt-4o to summarize the
encyclopedia article on hotdogs. The first two generations (A. and B.) use identical prompts, in which we ask it to use the
preference: “use a haiku”. In the third generation, we ask it to use the preference “use a single short sentence”. We then
calculate the Levenshtein distance between each pair, reported in Table 10. Notably, the Levenshtein distance and length
normalized Levenshtein distance, in which a lower score represents higher similarity, would both indicate that generation A
and C are more similar to generation A and B, even though generation A and B share the same exact same prompt while
generation C uses a entirely different preference. BERTScore does a better job of identifying the most similar texts, however
the PPCM scores, which compares writing directly to the true preferences, clearly labels both Generation A. and Generation
B. as “strongly exhibiting” the preference “use a haiku”, and Generation C. as “strongly contradicting” the preference.

Generation A.

A sausage in bun,
Toppings vary near and far,
Hot dog, rich in roots.

Generation B.

Grilled or steamed sausage,
In a bun with cheese or spice,
Street food’s warm embrace.

Generation C.

A hot dog is a sausage in a bun with various toppings such as mustard, ketchup, and relish

Pairing Levenshtein Dist. Norm. Levenshtein Dist. BERTScore PPCM per generation
A-B 17 0.85 0.27 (2, 2)
A-C 16 0.76 0.20 (2, -2)
B-C 17 0.81 0.10 (2, -2)

Table 10: Levenshtein distance between each pair of generations.
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E.2. Editing Influences the User

In this next example, we demonstrate how the editing procedure can influence the output of the user. We again ask an LLM
to summarize the encyclopedia article on hot dog. Let’s assume, an inferring agent has incorrectly inferred the preference
”question answering style”. Using this preference, the preference-conditioned agent writes:

What is a hot dog?

A hot dog is a dish made of a sausage (typically a wiener or frankfurter) served in a partially sliced bun. It can
refer to the sausage itself, which is grilled, steamed, or boiled.

How is a hot dog typically prepared?

Hot dog preparation varies, but common condiments include mustard, ketchup, relish, and onions. Some toppings
can also include cheese sauce, sauerkraut, chili, bacon, or jalapeños.

Where did hot dogs originate?

The sausages used in hot dogs were culturally imported from Germany, and the dish became popular in the U.S.
as a working-class street food. Over time, hot dogs became closely associated with American culture, particularly
baseball.

Where are hot dogs most popular?

While they are especially associated with New York City, hot dogs became widespread across the United States
throughout the 20th century, becoming an integral part of American cuisine.

We ask the user if the above is satisfactory for it’s true preference of: “style targeted to young children”. It does not, so we
then ask the user to edit the above for it true preference “style targeted to young children”, and the user writes:

What is a hot dog?

A hot dog is a yummy snack made of a sausage (like a wiener or frankfurter) inside a soft bun. Sometimes people
call the sausage itself a hot dog, and it can be cooked by grilling, steaming, or boiling.

How is a hot dog usually made?

Hot dogs can be made in different ways, but they often have yummy toppings like mustard, ketchup, relish, and
onions. Some people like to add even more fun stuff like cheese, sauerkraut, chili, bacon, or spicy jalapeños.

Where did hot dogs come from?

The sausages in hot dogs came from Germany, and a long time ago, they became super popular in the U.S. as
a quick and tasty street food for busy people. Now, hot dogs are a big part of American culture, especially at
baseball games!

Where are hot dogs the most popular?

Even though hot dogs are popular all over, they are especially loved in New York. Over the years, hot dogs have
become a favorite food all across the United States!

While the above summary does correctly follow the true preference, it is still formatted in a question answering style, which
is not part of the user’s preferences. I.e., the preference-inferring agent’s error has directly impacted the user’s writing. This
is another reason why PLUME removes the editing procedure.

For reference, if the user is directly asked to summmarize the encyclopedia article on hot dogs using it’s true preference of
“style targeted to young children”, it outputs:

A hot dog is a yummy food that’s made with a sausage, like a wiener or frankfurter, inside a soft bun. You can
cook the sausage in different ways, like grilling or boiling. People love to put tasty toppings on their hot dogs,
such as ketchup, mustard, cheese, and even onions!

Hot dogs came from Germany, but they became super popular in the US, especially at baseball games. Now, you
can find hot dogs all over the country, and in some places, like Chicago, people have special ways of making them!
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F. Prompts
F.1. Preference Inference and Preference-Conditioned Agent Prompts

The prompts used by PROSE for writing sample generation and task completion in the PLUME environment are in Appendix
Figure 7. The prompts used by PROSE to infer the user preferences from user examples are provided in Appendix Figure 8
for the PLUME environment.

System Prompt

You are an experienced writer. Adapt your writing to heavily emphasize the provided preferences.

User Prompt

You have the following preferences: <preference description>

Using these preferences, write a short {summary | email} about {this | these} {article | notes}:

[START OF {ARTICLE | NOTES}]
<task content>
[END OF {ARTICLE | NOTES}]

Encapsulate the {summary | email} in triple quotes
“““
<{summary | email}>
”””

Figure 7: LLM prompts for the preference-conditioned agent and for task completion on the PLUME’s summarization
and e-mail writing tasks. The system prompt is prepended to the user prompt following the LLM’s chat template. “{...|...}”
means that of the two options is selected based on the task and “<...>” indicates that the text is formatted from a variable.
inferred preference i refers to one of the inferred user preferences.
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System Prompt

A user is completing writing tasks. The user has an underlying set of preferences that explains why they write the
way they do.

User Prompt

Aggregation Task

We are tasked to curate a prompt to guide a specific style of writing. We currently have the following list of
preferences related to writing styles:
[<preference description ,..., <inferred preference l>]
Unfortunately, these preferences may overlap or contain redundancies. Please review the list and condense it
by combining similar or overlapping preferences, ensuring that the distinct intent behind each one remains
clear so that a writer can easily follow them. Ensure the condensed list is concise, non-redundant, and
preserves the original level of specificity. When applicable, preserve the exact wording. Return the revised
preferences in the same format as the original list.

Inference Task

We received a new task. The task is to {summarize | write an email about} the following:
<article | notes>

We have previously identified the following preferences: <preference description>
Based on these preferences, we wrote this {summary | email}:
<assistant output>

However, this differs from the user’s {summary | email}. The user wrote this {summary | email}:
<user output>

Refine the list of preferences by adding, removing, or updating preferences in order to better imitate the user.

While refining the preference set, you should:
- Identify and reason about differences between our writing and the user’s writing.
- Consider writing traits from distinct quirks to broader stylistic tendencies.
- Provide a concise set of preferences in the imperative form.
- Be precise; make the fewest possible changes to the preference set.
- Do not qualify, dilute, or soften existing preferences.
- Refine only the preferences if a clear difference exists. Otherwise, preserve the current preferences.

Provide a concise set of specific preferences in the imperative form. After reasoning, , output the refined set
of preferences on a single new line and prefaced with ”Preferences:”.

Figure 8: LLM prompts for preference inference on PLUME’s summarization and e-mail writing tasks. The system prompt
is prepended to each user prompt following the LLM’s chat template. “{...|...}” means that of the two options is selected
based on the task and “<...>” indicates that the text is formatted from a variable. user output refers to how the user
completes the task, assistant output how the assistant completes the task, and inferred preference i to one
of the inferred user preferences. Continued on next page.
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User Prompt

Preference Breakdown Task

You inferred the following preference string:
<inferred preference description>
Format this preference into a concise set of preferences. Format the final set of preferences as a JSON list on
a single line and prefaced with ”Preferences:”. Each element in the JSON list should be a string.The final
output should look like:
Preferences: [<preference 1>,..., <preference i>, ...]

Consistency Verification Task

Validate the following preference: “<inferred preference i>” against the following writing:

<user output>

Does the writing confirm or contradict the preference? Select one of the following: strongly confirms the
preference, somewhat confirms the preference, is neutral toward the preference, somewhat contradicts the
preference, strongly contradicts the preference. Your final decision should be output on a separate line
prefaced with “Verdict:”.

Figure 8: LLM prompts for preference inference on the PLUME’s summarization and e-mail writing tasks. The system
prompt is prepended to each user prompt following the LLM’s chat template. “{...|...}” means that of the two options is
selected based on the task and “<...>” indicates that the text is formatted from a variable. user output refers to how
the user completes the task, assistant output how the assistant completes the task, and inferred preference i
to one of the inferred user preferences.
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F.2. Synthetic Human Prompts

The prompts used to have GPT-4o play the role of our synthetic human for PROSE are given in Appendix Figure 9. The
“human” is instructed to complete the task in the same way as the preference-conditioned agent when completing the writing
tasks (see Appendix Figure 7).

System Prompt

You are an experienced writer. Adapt your writing to heavily emphasize the provided preferences.

User Prompt

You have the following preferences: <ground truth preference description>

Using these preferences, write a short {summary | email} about {this | these} {article | notes}:

[START OF {ARTICLE | NOTES}]
<task content>
[END OF {ARTICLE | NOTES}]

Encapsulate the {summary | email} in triple quotes
“““
<{summary | email}>
”””

Figure 9: LLM prompts for the synthetic human on the PLUME’s summarization and e-mail writing tasks. The system
prompt is prepended to the user prompt following the LLM’s chat template. “{...|...}” means that of the two options is
selected based on the task and “<...>” indicates that the text is formatted from a variable. inferred preference i
refers to one of the inferred user preferences.
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F.3. Preference-Conditioned Agent Baseline Prompts

The prompts used in the no-preference baseline are in Appendix Figure 10 and for the in-context learning baseline are in
Appendix Figure 11. For the in-context learning baseline, the number of examples l matches the number of examples used
when coalescing prevoiusly inferred prompts (see Appendix Figure 8).

System Prompt

You are an experienced writer.

User Prompt

Write a short {summary | email} about {this | these} {article | notes}:

[START OF {ARTICLE | NOTES}]
<task content>
[END OF {ARTICLE | NOTES}]

Figure 10: LLM prompts for the no preference baseline in the PLUME environment. The system prompt is prepended
to the user prompt following the LLM’s chat template. “<...>” indicates that the text is formatted from a variable.
task content refers to the content of either the article to be summarized or the notes to include in the email, depending
on the sub-task.
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System Prompt

You are an experienced writer. Adapt your writing to heavily emphasize the provided preferences.

User Prompt

You have previously observed the following examples:

Example 0:
{Article | Notes}:
[START OF {ARTICLE | NOTES}]
<task content>
[END OF {ARTICLE | NOTES}]

{Article | Notes}:
“““
<completion 0>
”””

.

.

.

Example l:
{Article | Notes}:
[START OF {ARTICLE | NOTES}]
<task content>
[END OF {ARTICLE | NOTES}]

{Article | Notes}:
“““
<completion l>
”””

Using the same style as these examples, write a short {summary | email} about {this | these} {article |
notes}:

[START OF {ARTICLE | NOTES}]
<task content>
[END OF {ARTICLE | NOTES}]

Encapsulate the {summary | email} in triple quotes
“““
<{summary | email}>
”””

Figure 11: LLM prompts for the in-context learning baseline in the PLUME environment. The system prompt is
prepended to the user prompt following the LLM’s chat template. “<...>” indicates that the text is formatted from a
variable, and completion l refers to an example completion provided for in-context learning. task content refers to
the content of either the article to be summarized or the notes to include in the email, depending on the sub-task.

30



PROSE: Inferring User Preference Descriptions

F.4. Qualitative Verification Consistency Examples

Preference components after refinement Most relevant true preference OR Notes
Write in a whimsical, playful, and narrative style using vivid
and childlike imagery

Write in the style of a children’s book

Maintain a hopeful, conversational, and informal tone Write in the style of a children’s book

Mention geographical context early in a simple manner Overfit to a specific example
Focus on the sequence of events with explicitly numbered
steps labeled as ’first,’ ’next,’ ’then,’ ’after that,’ and ’finally’

Adopt a step-by-step structure

Use simple and metaphorical language for emotional aspects Include a simile

Include personal details about characters Overfit to a specific example
Use ampersands for conjunctions Use ampersands (&) instead of ‘‘and’’s

Conclude with a practical reminder or lesson emphasizing
support and teamwork

Write in the style of a children’s book

Use rhetorical questions sparingly Discarded because they were used more than sparingly
Capitalize key traits/actions for emphasis Use ALLCAPS to emphasize certain words

Use third-person perspective Adopt a third-person narrative

Use emojis strategically Write in the style of a tweet

Use informal and playful language Write in the style of a tweet

Use hashtags to encapsulate themes Write in the style of a tweet

Minimize emotionally charged phrases Irrelevant
Use direct questions Include rhetorical questions

Be concise and direct Irrelevant
Focus on emotional impact and highlight key themes Incorrect, but related to the content of many chat forum posts
Highlight internal conflict Incorrect, but related to the content of many chat forum posts

use direct address with a casual and contemporary tone Include modern slang

include character interactions with informal dialogue and con-
sistent rhyming couplets

Adopt a rhyming structure

employ a simplified screenplay format focusing on dialogue
and voiceover

write in the style of a screenplay

incorporate slang and playful language Include modern slang

highlight excitement and stakes dynamically Loosely related to screenplay
use thematic transitions between sections Write in the style of a screenplay

include metric prefixes explicitly Overfit to a specific example

Table 11: Qualitative examples of Verification. Strikethrough indicates the preference component was pruned. Verification
successfully removes overfit of irrelevant preferences. On occasion, it discards relevant, but misqualified components.
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F.5. Qualitative Iterative Refinement Examples

Refinement step Inferred preference descriptions
True preferences adopt a third person narrative, include rhetorical questions, use ALLCAPS to emphasize certain words, write in

the style of a tweet
1 Use rhetorical questions, capitalize for emphasis, be concise, include symbols or emojis, focus on emotional

impact.
2 Use rhetorical questions, capitalize for emphasis, be concise, include symbols or emojis, focus on emotional

impact, use hashtags, use symbols for brevity.
3 Use rhetorical questions strategically, capitalize for emphasis, be concise, limit symbols or emojis, focus on

emotional impact, use 1-2 hashtags, use symbols for brevity.
4 Use rhetorical questions strategically, capitalize for emphasis, be concise, limit symbols, focus on emotional

impact, use 1-2 hashtags, use symbols for brevity, incorporate emojis for emphasis.
5 Use rhetorical questions strategically, capitalize for emphasis, be concise, use ”&” for brevity, focus on

emotional impact, use 1-2 hashtags, use fewer emojis for emphasis, highlight key themes.
True preferences adopt a question-answering style structure, include personifications, use archaic language, write in the style of a

podcast
1 Use a poetic and narrative style with vivid imagery and metaphor; employ archaic language and a

conversational tone; structure writing like a narrative or script; directly address the audience to enhance
engagement.

2 Use a podcast or broadcast format with vivid storytelling imagery and metaphor; employ slightly modern
archaic language and a conversational tone; structure writing as a continuous narrative; directly address the
audience to enhance engagement.

3 Use a podcast or broadcast format with named episodes; employ consistently archaic language with varied
vocabulary; use thematic and specific metaphors; enhance audience engagement with direct questions
and conversational elements; structure writing with a clear narrative arc and defined sections.

4 Use a podcast or broadcast format with creatively thematic episode titles; employ consistently archaic and
poetic language with varied vocabulary; use vivid and personified metaphors; enhance audience engagement
with rhetorical style and subtle questions; structure writing with a clear narrative arc and poetic conclusions.

5 Use a podcast or broadcast format with creatively thematic episode titles evoking transformation and mystery;
employ consistently archaic language throughout; use vivid and personified metaphors; enhance audience
engagement with frequent rhetorical questions; structure writing with a clear narrative arc and conclude with
harmony and enlightenment.

True preferences adopt a second person narrative, include onomatopoeias, use imagery, write in the style of old timey radio
1 Use vivid imagery and metaphor, adopt a narrative style, address the reader directly, and create an

immersive experience.
2 Use vivid imagery and metaphor, adopt a narrative style, address the reader directly with a conversational and

auditory tone, create an immersive and nostalgic experience.
3 Use vivid imagery and metaphor, adopt a narrative style, address the reader directly with a conversational and

auditory tone, create an immersive experience with a focus on auditory imagery and live storytelling.
4 Use vivid auditory imagery and metaphor, adopt a narrative style reminiscent of a radio broadcast, address

the reader directly with a conversational and auditory tone, create an immersive experience with a focus on
auditory storytelling.

5 Use vivid auditory imagery and metaphor with a nostalgic and whimsical tone, adopt a narrative style
reminiscent of a classic radio broadcast, address the reader directly with a conversational and auditory tone,
create an immersive experience with a focus on auditory storytelling.

Table 12: Qualitative examples of Iterative Refinement. Bold indicates modifications performed by the refinement step. Note:
the true preferences are for reference only, the initial refinement step is conditioned on an empty preference description.

32


