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ABSTRACT

Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method
widely used in large language models (LLMs). It approximates the update of a
pretrained weight matrix W € R™*™ by the product of two low-rank matrices, BA,
where A € R™*" and B € R™*"(r < min{m,n}). Increasing the dimension r
can raise the rank of LoRA weights (i.e., BA), which typically improves fine-tuning
performance but also significantly increases the number of trainable parameters. In
this paper, we propose Block Diversified Low-Rank Adaptation (BoRA), which
improves the rank of LoRA weights with a small number of additional parameters.
Specifically, BoRA treats the product BA as a block matrix multiplication, where
A and B are partitioned into b blocks along the columns and rows, respectively
(i.e, A=[Ay,...,Ay]and B = [By,..., By]"). Consequently, the product BA
becomes the concatenation of the block products B; A; for ¢, j € [b]. To enhance
the diversity of different block products, BoORA introduces a unique diagonal
matrix X; ; € R"*" for each block multiplication, resulting in B;X; jA;. By
leveraging these block-wise diagonal matrices, BoORA increases the rank of LoRA
weights by a factor of b while only requiring b%r additional parameters. Extensive
experiments across multiple datasets and models demonstrate the superiority of
BoRA, and ablation studies further validate its scalability. The code is available at
https://anonymous.4open.science/r/BoRAl

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
tasks (DeepSeek-AllL 2024} |(OpenAlL 2024). However, the state-of-the-art models usually contain a
vast number of parameters, making full fine-tuning (FFT) for downstream tasks extremely expensive
in terms of both training time and memory usage, thereby limiting their practical deployment (Hu
et al., 2022} [Lester et al. [2021). To mitigate this issue, parameter-efficient fine-tuning (PEFT)
methods have been developed to reduce the number of trainable parameters and decrease fine-tuning
costs (Xu et al.} 2023). These methods include techniques such as prompt tuning (Lester et al., 2021),
parallel adapters (He et al.,|2022) and sequential adapters (Houlsby et al.,|2019). Among these, low-
rank adaptation (LoRA) (Hu et al.| [2022) has gained popularity due to its ability to avoid additional
inference latency. As shown in Figure LoRA freezes the pretrained weight matrix W/ € R™*"
and learns two smaller low-rank matrices to approximate the weight update as AW = «/r BA, where
A e R™"™ B € R™ ", ris the LoRA rank (r < min{m,n}), and « is an adjustable scaling factor.
For simplicity, we omit the coefficient «/r in the subsequent description.

Despite its effectiveness, LoORA generally exhibits a performance gap compared to FFT, which
is typically attributed to the limited rank of LoRA weights (Hu et al.l [2022; |[Ren et al., [2024;
Huang et al., [2025). Specifically, the rank of LoRA weights is constrained as rank(AW) <
min{rank(A),rank(B)} < r. Numerous studies have also demonstrated that increasing the rank of
LoRA weights typically improves fine-tuning performance (Ren et al., |2024; [Liu et al., 2024} Huang
et al.| 2025). This trend is further corroborated by our experimental results, as shown in Tables E], @
and 3] Recently, Zeng and Lee| (2024) further explored LoRA’s expressive power, using the LORA
rank r to quantify the approximation error between the LoRA weights (i.e., AW = BA) and the
assumed optimal weight update. Their findings suggest that a higher rank of LoRA weights leads to
a smaller approximation error. Consequently, efficiently increasing the rank of LoORA weights has
become a consensus strategy for improving fine-tuning performance.
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Figure 1: An illustration of BoORA in comparison to LoRA (Hu et al., 2022) and MELoRA (Ren
et al.|[2024). (a) LoRA weights (i.e., BA) can be represented by block matrix multiplication, where
A = [A}, Ay, A3] and B = [By, By, B3]". (b) MELoRA zeros out the off-diagonal blocks to
break the correlation between different blocks and enhance the rank of LoRA weights. (c) BoORA
introduces a diagonal matrix for each block multiplication to enhance the diversity among block
products. Notably, LoRA and MELoRA are essentially specific instances of BoORA. BoRA reduces to
LoRA when all ¥; ; = I, and to MELoRA when 3J; ; = I fori = j and ; ; = O for ¢ # j, where [
denotes the identity matrix.

In this paper, we analyze the rank of LoORA weights through the lens of block matrix multiplication.
Let matrices A and B be evenly partitioned into three blocks along the columns and rows, respectively,
ie., A =[Ay, A, A3] and B = [By, Bo, B3]". The product BA can then be represented as the
concatenation of the block products B;A;, as shown in Figure This structure limits the
independence of different block products, thereby constraining the rank of BA. Specifically, the
rank of BA depends on the number of linearly independent row vectors; however, the difference
between block rows lies solely in the use of different B;. This implies that the blocks in one row can
be obtained from those in another row using the same transformation. For instance, left-multiplying
the blocks of the first row by By By 1 (assuming B ! exists) generates the second row, indicating
that the second row does not contribute to the rank. A similar issue arises with the columns.

To address this issue, we propose Block-Diversified Low-Rank Adaptation (BoRA), which ef-
fectively breaks the correlation between the block products B; A; in different rows or columns. As
illustrated in Figure BoRA introduces a unique diagonal matrix, ¥, ;, for each block multipli-
cation, resulting in B;>; ;A;. Assuming matrices A and B are divided into b blocks, BoRA will
increase the rank of LoRA weights by a factor of b, while requiring only br additional parameters.
In contrast, MELoRA (Ren et al.,|2024) achieves a similar effect by disrupting the correlation of
different blocks through zeroing out the off-diagonal block products, as illustrated in Figure[I(b)]
Although this increases the rank of LoORA weights, it may limit LoORA’s expressive power due to the
presence of numerous zero entries. Instead, BORA ensures block diversity by utilizing block-wise
diagonal matrices, without compromising LoRA’s expressiveness. Importantly, both LoRA and
MELORA can be seen as specific instances of BoRA. Specifically, BoRA reduces to LoORA when
all 3; ; = I, and to MELoRA when ¥; ; = I for¢ = j and ¥; ; = 0 for ¢ # j, where I denotes the
identity matrix.

Our contributions can be summarized as follows:

* We analyze LoRA from the perspective of block matrix multiplication, revealing that the
rank of LoRA weights is constrained due to correlations between different block products.

* We propose BoRA, which break the correlation among different block products with block-
wise diagonal matrices. By dividing matrices A and B into b blocks, BoRA increases the
rank of LoRA weights by a factor of b, requiring only b?r additional parameters.

* We conduct extensive experiments on multiple models and datasets, demonstrating that
BoRA consistently outperforms LoRA and its variants. Using a similar number of trainable
parameters, BORA can achieve 2-4% accuracy improvement over LoRA.
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2 RELATED WORK

To reduce fine-tuning overhead, LoRA (Hu et al.,[2022) decomposes the weight update, AW € R™*"™,
into two low-rank matrices, A € R™"™ and B € R™*", where the LoRA rank r determines the
number of trainable parameters. LORA can be integrated into a model without altering its architecture
or increasing inference overhead. In contrast, DoRA (Liu et al.l|2024) decomposes pretrained weights
into direction and magnitude components, learning the magnitude via a trainable vector and updating
the direction with LoRA. Recent studies have explored various aspects of LoRA to improve its
performance, such as the scaling factor (Kalajdzievski, [2023)), initialization methods (Meng et al.,
2024} [Wang et al.| [2024), learning rates (Hayou et al., 2024)), and dynamic parameter allocation
(Zhang et al., 2023} Li et al., [2024). For example, rsLoRA (Kalajdzievski, 2023) modifies the scaling
factor to @/,/r for more stable fine-tuning. PiSSA (Meng et al., 2024)) and LoRA-GA (Wang et al.,
2024])) conduct singular value decomposition (SVD) on pretrained weights and sampled gradients to
initialize the matrices A and B of LoRA. LoRA+ (Hayou et al.}[2024) suggests that using a higher
learning rate for matrix B can improve fine-tuning performance. AdaLoRA (Zhang et al., [2023)
adaptively adjusts the LoRA rank for different layers during fine-tuning, allocating more parameters
to important layers within a fixed parameter budget. VB-LoRA (Li et al.,|2024) composites all the
low-rank matrices of different LoRA layers from a shared vector bank.

In this paper, we focus on LoRA variants that efficiently enhance the rank of LoRA weights. For
example, HiRA (Huang et al., 2025) and KronA (Edalati et al) [2023)) use the Hadamard and
Kronecker products, respectively, to improve the rank of LoRA weights. ReLoRA (Lialin et al.,[2024)
periodically merges learned LoRA adapters into the pretrained weights to increase the rank of weight
updates. MELoRA (Ren et al.,2024) achieves a higher rank by stacking low-rank matrices along
the diagonal. However, MELoRA introduces many zero values, which can significantly reduce the
expressiveness of LoRA, as shown in Figure In contrast to previous approaches, we analyze the
rank of LoRA weights through the lens of block matrix multiplication. Our proposed BoRA increases
the diversity of block products by introducing unique diagonal vectors for each block multiplication.
Notably, both LoRA and MELoRA are special cases of BoRA, as illustrated in Figure[I} Furthermore,
MoELoRA (Luo et al.}2024) trains multiple LoRA adapters as distinct experts and combines their
knowledge via a routing network. HydraLLoRA (Tian et al.| 2024) improves on this by sharing the
matrix A across the MoELoRA framework for more efficient adaptation. Essentially, MOELoRA can
also be viewed as a form of block matrix multiplication. The main difference between BoRA and
MOoELoRA lies in the way matrices A and B are partitioned, which will be discussed in detail in
Section[3.3] Additional discussions of other PEFT-related methods are deferred to Appendix

3 METHODOLOGY

3.1 BLOCK MATRIX MULTIPLICATION

Block matrix multiplication is a fundamental operation that partitions matrices into smaller sub-
matrices for efficient multiplication. Let M € R™*" and N € R"*", where M and N are evenly
divided into b,,, x b, and b, X b,, sub-matrices, respectively. Then, the product P = M N can be
computed block by block, with each block P; ; (i € [by,], j € [bs]) calculated as follows:

br
Pij =Y M;N;. (1
k=1
In this paper, the matrices A € R™™ and B € R™*" of LoRA are evenly partitioned into b
blocks along the columns and rows, respectively (i.e., A = [A;,..., 4] and B = [By, ..., By 7).
Consequently, each block of the LoRA weights AW ; (i, j € [b]) can be expressed as:
AWZ'J = BZA] (2)

Previous studies have shown that the rank of LoRA weights significantly affects the fine-tuning
performance (Ren et al., [2024; |Huang et al., 2025} |Lialin et al., |2024). However, the rank of LoRA
weights is generally limited by the dimension r (i.e., the LoRA rank), regardless of the dimensions m
and n, as follows:

rank(AW) = rank(BA) < min{rank(A),rank(B)} < r. 3)
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From the perspective of block matrix multiplication, this issue primarily stems from the lack of
independence between block products (B;A;) across different rows or columns. As shown in
Figure@], the block products share the same B; for each row and the same A; for each column.
Taking rows as an example, the rank of AT depends on the number of linearly independent row
vectors. However, the difference between block rows lies only in the use of different B;. This implies
that blocks in one row can be derived from blocks i 1n another row using the same transformation. For
example in Flgureu 1f rank(B;) = r, then 31 exists. Left-multiplying the first row block by
BgB generates the second row, indicating that the second row does not contribute to the rank. A
similar issue applies to the columns. Breaking the correlation between these blocks can increase the
rank of the weight matrix, thereby improving the expressiveness of LoRA.

3.2 BLOCK-DIVERSIFIED LOW-RANK ADAPTATION

To break the correlation between different block products, we propose Block-Diversified Low-
Rank Adaptation (BoRA). Specifically, BoRA introduces a unique diagonal matrix for each block
multiplication to enhance block diversity, as shown in Figure[I(c)] Assuming A and B are divided
into b blocks along columns and rows, BoRA will additionally learn a set of diagonal matrices
{—Z—GRWLW{—H—} Y, ER™" | 4,j € [b]}, such that the multiplication of each block pair
is computed as follows:

AWi,j = BiZmAj. (4)
These block-diagonal matrices, X; g amplify the differences in block products across rows or
columns, thus enhancmg the expressiveness of LoRA Therefore the core concept of BoRA lies in
learning block-wise diagonal matrices {2575 : {2, € RT*" € [bl}, where the
corresponding parameters are represented by a three dimensional tensor o € RbXbX’" To ensure
o can be effectively optimized with the same learning rate as the matrices A and B, we initialize
o using the same Kaiming initialization (He et al.|, [2016)) applied to the matrix A. Furthermore, to
facilitate the learning of ¥, we normalize o by its mean absolute value and apply the exponential
function to generate X as follows:

alillj]
3; ; = Diag(E 5
J lag( Xp(Mav( ))) ( )
where Mav(o) = ”UHI denotes the mean absolute value of o, Exp(-) denotes the exponential function,

and Diag(-) denotes 'the diagonalization function, which converts a vector into a diagonal matrix.
i ;|17] is initialized with a small variance, the differences between ¢|i||j]| across blocks are

minimal, which limits the diversity between blocks. Normalizing by the mean absolute value of
o can reduce the impact of its small initialization value on the distribution and optimization of 3.

because Norm(o|? = M is still zero-centered, zero or near-zero values could

nullify the values in B; and A,. To prevent information loss associated with a zero value in X,
we further apply the exponential function to o, ensuring that X contains only positive values and

reventing any loss of information due to zero or near-zero values.

3.3 RANK UPPER BOUND OF BORA

In the previous discussion, we presented the motivation and formulation of BoRA by expressing
its weight as the concatenation of block products (5;A;). In fact, the weight in BoRA can also be
represented as the product of three matrices, as shown below:

AW = B'Y A, (6)
where A’ € RY*" and B’ € R™*" are diagonal block matrices formed from the blocks
{Ay,..., Ay} and {By,..., By}, respectively. &' € R”"*" s the matrix obtained by concatenating
all X;; for 4, j € [b]. It is clear that the rank of each of these three matrices is bounded above by br.
Using the properties of rank in matrix multiplication (i.e., rank(BA) < min{rank(A),rank(B)}),
we can derive an upper bound for the rank of the weights in BoRA, as stated in Proposition I}

Proposition 1 (The Rank Upper Bound of BoRA). Using the low-rank matrices A = [A1,..., Ap] €

R™" and B = [By,...,By]" € R™*", along with a set of diagonal matrices {%; ; € R™*" |
1,7 € [b]}, the weight update generated by BoRA, denoted as AW, satisfies
rank(AW) < min{m,n,br}., ™
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where the rank upper bound can be achieved when all three matrices are full rank (i.e.

rank(B’) = min{m, br}, rank(A’) = min{n, br}, and rank(X') = br).

The detailed theoretical justification for Proposition[Ilis provided in Appendix [Fl Note that, by using
the same matrices A and B, the rank of the LoRA weights is constrained by r. Proposition

demonstrates that BoRA requires only b?r additional parameters to increase the weight rank by a
factor of b. In contrast, LORA needs {m—+n}Hb%-(m + n)br parameters to achieve the same bound.

On the other hand, to achieve a target rank R = br, the number of parameters required by BoRA is
mEn 4 b)) and this quantity is minimized when b = /m + n. From the

erspective of parameter efficiency, this suggests that setting b &~ +/m + n is a good practical choice.
This optimal value arises from a natural trade-off: the achievable rank of BoRA (i.e., br) increases
linearly with b, while the additional parameter cost (i.e., b>r) grows quadratically. Once b exceeds

v/m + n, further increasing b to obtain a higher rank becomes less efficient than simply increasin
the base rank r directly. Therefore, in practice, one can simply set b = |1/n | for BoRA.

3.4 EFFICIENT FORWARD PROPAGATION OF BORA

In this section, we discuss the forward propa-
gation process of BORA. Assuming the input

token is X € R", the forward propagation of YeR™ + Y,i} Yf Yf

LoRA isdefinedasY = WX + BAX, where T

BAX represents the LoORA output. Differently, Bl" BZ‘ B3'b

BoRA divides the input token into several seg- Pretrained

ments to efficiently perform block matrix mul- weight

tiplication. As shown in Figure [2] if the ma- z

trices A and B are partitioned into b blocks, W e Rmxn

BoRA also evenly divides the input token X L 4 4, 4

into b segments. These segments, denoted as (] ("]

{X1,..., Xy}, are processed to produce b out- T T T T

put segments, {Y7, ..., Y;}, which are then con- XeR" - X X, X3

catenated to form the final BoRA output. Each . ) )

output segment Y; is of the following form: Figure 2: BoRA d1V1de?s the input token X into sev-

eral segments to efficiently perform block matrix
b multiplication. The dotted line connecting A; and
Y, = B; Z Xk Ar Xy (8) B represents the trainable diagonal matrix ; ;.
k=1

Notably, compared to LoRA, BoRA only re-

quires the additional multiplication of the diagonal matrix ¥; ;, € R™*" with the vector A, X}, € R".
Since ¥; 1 is a diagonal matrix, this operation can be efficiently performed through element-wise
multiplication. Formally, the floating-point operations (FLOPs) per token in the forward propagation
of LoRA is given by mn + (m+ n)r, where mn and (m+ n)r represent the computational overheads
of the pretrained model and the LoRA module, respectively. Taking this additional overhead into
account, the FLOPs per token in the forward propagation of BoRA is mn + (m + n)r + b%r, where
b2r represents the extra computation introduced by the block-wise diagonal matrix. Notably, the
values of mn + (m + n)r and mn + (m + n)r + b?r are also the number of trainable parameters in
LoRA and BoRA, respectively. This indicates that the computational density of BoRA is equivalent
to that of LoRA. It is important to note that, since b < min{m,n}, the additional memory and
computational costs of BoRA is typically negligible.

3.5 COMPARISON WITH LORA AND MELORA

In this section, we analyze the relationships between BoRA, LoRA (Hu et al.;|2022), and MELoRA
(Ren et al.| [2024). As shown in Figure |I|, all three methods can be represented as block matrix
multiplications.

LoRA is actually a special case of BoRA, where all X; ; matrices are set to the identity matrix I. In
contrast, the 3J; ; matrices in BoRA follow different distributions across various ¢ and j, introducing
diversity among the block products and enhancing the expressiveness of BoORA compared to LoRA.
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MELoRA enhances LoRA by setting the off-diagonal blocks to zero, thereby breaking correlations
between different blocks and increasing the rank of the LoORA weights. Similarly, MELoRA is also a
special case of BORA, where ¥, ; = [ fori = j and ; ; = 0 for ¢ # j. In contrast to MELoRA,
which zeros out the off-diagonal blocks, BoRA employs block-diagonal matrices to increase block
diversity, thereby improving the rank of LoRA weights without introducing any zero values.

On the other hand, MoELoRA (Luo et al.| 2024)) is another form of block matrix multiplication for
LoRA. In this paper, we partition the matrices A = [A1, ..., A;] and B = [By, ..., By]' into blocks
along columns and rows, respectively. Conversely, if A = [A4, ... ,Ab}T and B = [By,..., By are
partitioned along the rows and columns, we can derive the LORA weights as follows:

b
AW =" BiAy, ©

k=1

where each By, A, can be viewed as an expert. Further, MoELoRA integrates LoRA with the Mixture-
of-Experts architecture, using a routing network to adaptively combine the knowledge of different
experts (B Ag). In the next section, we compare BoRA’s performance with these methods in detail.

4 EXPERIMENTS

In this section, we evaluate BoRA on three benchmarks using various model architectures, and then
perform ablation studies to assess its scalability and visualize its singular values.

4.1 EXPERIMENTAL SETTINGS

Models and Datasets. First, we assess BoORA’s natural language understanding (NLU) capability
on the GLUE benchmark (Wang et al.;,2019), using RoBERTa-Base (Liu et al., 2019) and RoBERTa-
Large (Liu et al., 2019). The GLUE benchmark consists of eight sub-tasks, each with its own
training and test sets. For each sub-task, we fine-tune the model on the training set and evaluate its
accuracy on the corresponding test set. Next, we evaluate BoRA’s natural language generation (NLG)
capabilities on mathematical reasoning (Math10K) (Hu et al.l 2023) and commonsense reasoning
(Commonsense170K) benchmarks (Hu et al., 2023)). Both benchmarks include a training corpus and
multiple test sub-tasks. For each benchmark, we fine-tune the models on the training data and then
assess their performance across all sub-tasks. To demonstrate the versatility of BoRA, we perform
experiments across various model architectures and scales, including Gemma-7B (Mesnard et al.|
2024)), LLaMA-3-8B (Dubey et al.,[2024)), and Qwen2.5-14B (Yang et al., 2024)).

Baseline Methods. BoRA is compared with several baseline methods to demonstrate its effective-
ness, including LoRA (Hu et al., [2022), along with several LoRA variants: DoRA (Liu et al., 2024),
MELoORA (Ren et al., [2024)) and Hydral.oRA (Tian et al., 2024). DoRA decomposes pretrained
weights into magnitude and direction components. It learns the magnitude by training a learnable vec-
tor and uses LoRA to update the direction, enhancing learning capacity while maintaining parameter
efficiency. MELoRA introduces mini-ensemble low-rank adapters that collectively achieve high-rank
expressive power while requiring far fewer trainable parameters than standard LoRA. HydraLoRA
improves upon LoRA by employing an asymmetric architecture that increases parameter efficiency.
This architecture uses one A matrix and multiple B matrices, which are combined through a router.
These three methods represent distinct approaches to improving LoRA: better optimization, higher
rank, and a mixture-of-experts architecture. A comparison with these methods clearly highlights the
superiority of BoRA.

Implementation Details. All experiments were conducted using NVIDIA H20 GPUs. The general
settings included the AdamW optimizer (Loshchilov and Hutter, 2019), linear learning rate decay, a
LoRA dropout rate of 0.05, and no weight decay. For the GLUE benchmark, we applied a warm-up
ratio of 0.03. The learning rates for ROBERTa-Base and RoBERTa-Large were set to 3e-4 and le-4,
respectively. Additionally, the number of training epochs varies across different sub-tasks; further
details are provided in Appendix [B] By default, BORA and the baseline methods were applied to
the query and value weights. For mathematical and commonsense reasoning tasks, we employed a
learning rate of le-4 with 100 warm-up steps and trained for one epoch. In these tasks, BoRA and
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baseline methods were applied to the query, key, and value weights. Our implementation builds upon
the code from (Hu et al.| 2023). In all experiments, we evaluate LoORA’s accuracy across ranks 8, 16,
and 32 to analyze the trade-off between parameter count and model performance. For BoRA, we
set the LoRA rank to 8 and test with 8 and 16 blocks, respectively. For the three LoRA variants, we
adjust the number of trainable parameters to align with LoRA at rank 8. Specifically, the rank of
DoRA was set to 8, while the rank of HydraLoRA was set to 4 with three B matrices. For MELoRA,
the rank of mini LoRAs was set to 8, with four mini LoRA groups. Each experiment was repeated
three times, and the average results were reported. Further details, including standard deviations, are
provided in Appendices [B]and[C|

4.2 OVERALL PERFORMANCE

Results on NLU Tasks. As shown in Table[I] BoRA consistently outperforms other methods on the
GLUE benchmark. Specifically, BORA achieves a 2% improvement in average accuracy over LORA
at the same rank (r = 8). It is worth noting that the additional parameters introduced by BoRA with
8 or 16 blocks are minimal compared to the original LoRA parameters. Even when the rank of LoRA
is increased to 32, BoRA still maintains a comparable or even superior average accuracy. Regarding
other LoRA variants, while some show modest accuracy improvements, they still lag significantly
behind BoRA. Using a similar number of parameters, BoRA outperforms the best baseline by up
to 1% on RoBERTa-Base and 2% on RoBERTa-Large. Moreover, doubling the number of blocks
enhances BoRA’s performance. The impact of block numbers will be examined in Section 4.4} where
it is shown that further increasing the number of blocks continues to yield performance gains.

Table 1: The accuracy on General Language Understanding tasks with various pretrained models.

#Params RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP Avg

LoRA(r = 8) 029M 7256 8725 87.12 56.10 9346 91.58 84.80 87.46 82.55
% LoRA(r = 16) 059M 7292 8799 8746 5521 93.81 91.89 8552 87.79 82.82
@ LoRA(r =32) 1.18M 7509 89.22 88.01 5858 93.58 90.12 85.84 8837 83.60
& DoRA(r = 8) 031M 7292 8775 87.58 55.14 93.12 9126 85.02 87.41 8253
% MELoRA(r = 8) 029M 7148 87.50 87.54 5212 9278 9096 84.68 86.83 81.74
% HydraLoRA(r = 4) 035M 71.84 8946  88.07 5532 93.81 91.62 8527 8725 82.83
~ BoRA(r =8,b=28) 031IM 7545 88.73  88.17 58.12 9392 91.82 85.09 8793 83.65

BoRA(r =8,b=16) 034M 7690 8824 8931 5735 93.12 9178 8569 87.86 83.78

LoRA(r = 8) 0.79M 7196 8840 89.88 59.76 9541 93.07 88.67 87.89 84.38
@3 LoRA(r = 16) 1.57M 7774 8848  90.60 6123 9557 9372 89.29 8825 85.61
S LoRA(r = 32) 3.15M 8135 89.64 9145 6090 95.60 93.76 89.52 88.61 86.35
é'v DoRA(r = 8) 0.84M 7521 87.83 89.94 5947 9541 9299 8858 87.84 84.66
% MELoRA(r = 8) 0.79M 7236 8732 86.85 5937 9530 9270 8837 8733 83.70
m  HydraLoRA(r = 4) 093M 7401 89.22 8947 5990 9541 9288 88.87 87.98 84.72
& BoRA(r =8,b=28) 0.81M 7834 8995 91.18 60.34 95.18 9348 89.66 88.52 85.83

BoRA(r =8,b=16) 0.88M 83.75 8897 9133 6057 9530 93.76 89.81 88.60 86.51

Results on Mathematical Reasoning Tasks. As shown in Table[2] BoRA demonstrates significant
improvements in mathematical reasoning tasks. At the same rank (r = 8), BORA’s accuracy across
the three models is, on average, 2.4% higher than that of LoRA. Notably, even when LoRA’s rank is
increased by four times, the average improvement is only 1.9%. This highlights BoRA’s superiority in
increasing matrix rank and its enhanced expressiveness compared to LoRA. The improvements from
DoRA and HydralLoRA are similarly modest. Although MELoRA also increases the matrix rank, it
introduces many zero elements, resulting in information loss and thus diminishing performance.

Results on Commonsense Reasoning Tasks. As shown in Table [3} BoRA also achieves the best
accuracy in commonsense reasoning tasks. The experimental conclusions are highly consistent with
those in mathematical reasoning tasks. Note that the accuracy of commonsense reasoning tasks is
generally higher than that of mathematical reasoning tasks, and the relative improvement is not so
obvious. Nevertheless, at the same rank (r = 8), BoORA’s accuracy across the three models is, on
average, 0.95% higher than that of LoRA. In comparison, the average improvement from a fourfold
increase in LoRA’s rank is only 0.77%. This suggests that BORA can achieve similar fine-tuning
performance while requiring more than four times fewer parameters.
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Table 2: The accuracy on Mathematical Reasoning tasks with various pretrained models.

#Params AddSub MultiArith  SingleEq GSM8K AQuA SVAMP  Avg

LoRA(r = 8) 4.82M 87.59 90.33 89.76 56.10 29.13 75770  T71.44
LoRA(r = 16) 9.63M 86.84 92.83 89.57 58.15 30.71 7490 7217

Ei LoRA(r = 32) 19.3M 86.58 91.50 91.93 58.45 32.28 7550 7271
g DoRA(r = 8) 5.16M 85.06 93.00 89.57 57.16 27.17 7640  71.39
£ MELoRA(r = 8) 4.82M 86.84 90.56 90.35 58.86 30.18 7453  71.89
& HydraLoRA(r = 4) 5.94M 85.82 91.06 91.27 58.68 29.13 7447  T71.74
BoRA(r =8,b=28) 4.86M 87.93 93.22 90.35 58.91 29.66 75.37 7257
BoRA(r =8,b=16) 4.99M 87.85 92.50 90.94 59.72 31.36 7620  73.10
LoRA(r = 8) 4.72M 82.28 87.06 91.60 55.65 24.02 68.53  68.19

m LoRA(r =16) 9.44M 84.56 91.22 92.26 57.22 25.72 70.17  70.19
®  LoRA(r = 32) 18.9M 87.17 93.39 93.50 57.87 26.25 71.83  71.67
2 DoRA(r = 8) 4.92M 81.39 89.09 92.42 55.77 23.63 68.15  68.41
g MELoRA(r = 8) 4.72M 85.32 85.67 91.34 54.74 20.87 7090 68.14
j HydralLoRA(r = 4) 5.11IM 77.22 89.17 91.73 56.63 24.41 66.30  67.58
BoRA(r =8,b=8) 4.77TM 87.85 93.67 92.72 58.45 26.38 70.10  71.53
BoRA(r =8,b=16) 4.92M 88.35 93.00 92.72 58.83 27.17 7340  72.24
LoRA(r = 8) 8.65M 93.16 96.67 92.32 75.66 31.10 85.60  79.09

m LoRA(r = 16) 17.3M 91.90 96.33 92.91 74.37 34.65 86.40  79.43
X LoRA(r = 32) 34.6M 92.24 97.39 92.98 76.37 34.78 87.13  80.15
¥,  DoRA(r = 8) 8.99M 92.91 96.72 91.86 75.26 33.73 86.13  79.44
::: MELoRA(r = 8) 8.65M 91.65 97.17 92.32 75.66 33.46 84.90  79.19
2 HydraLoRA(r = 4) 9.29M 92.74 96.78 91.60 75.76 33.33 86.23  79.41
4 BoRA(r =8,b=8) 8.72M 91.65 96.83 92.78 75.41 34.78 86.93  79.73
BoRA(r =8,b=16) 8.95M 91.90 98.00 92.72 75.82 38.19 87.00  80.60

Table 3: The accuracy on Commonsense Reasoning tasks with various pretrained models.

#Param BoolQ PIQA SIQA HellaSwag WinoGrande ARC-c  ARC-e OBQA Avg

LoRA(r = 8) 4.82M  70.15 88.96 78.05 94.08 89.82 83.96  94.02 88.60  85.95
LoRA(r = 16) 9.63M  75.17 88.74 77.58 95.21 89.11 84.73 92.93 88.00 86.43

Ei LoRA(r = 32) 193M 7434 89.72 78.10 95.77 88.95 84.73 94.11 87.20  86.61
g DoRA(r = 8) 5.16M  74.86 89.55 78.76 93.66 89.74 83.45 92.68 86.20  86.11
£ MELoRA(r = 8) 4.82M 7122 8890 7897 94.46 88.32 8336  93.64 87.20 85.76
& HydraLoRA(r = 4) 594M 7177 87.92 80.76 95.00 88.24 84.47 94.44 87.20 86.23
BoRA(r = 8,b=28) 486M  72.66 90.26 78.97 94.77 90.77 84.73 93.39 89.00 86.82
BoRA(r =8,b=16) 4.99M 73.08 90.42 80.04 95.10 89.82 84.95 94.36 88.53  87.04
LoRA(r = 8) 4.72M 7317 89.34  80.64 93.22 87.42 80.20  92.51 87.13 8545

m LoRA(r = 16) 9.44M 7354 89.50 81.18 94.18 88.00 81.11 93.15 88.53  86.15
% LoRA(r = 32) 189M  73.87 90.01 82.09 94.95 88.37 8220 9357 88.73  86.72
(E DoRA(r = 8) 492M 7272 89.17 80.76 93.51 88.32 80.89 92.34 88.00 85.71
£ MELoRA(r = 8) 472M  72.66 89.28 81.53 94.19 86.74 80.89 93.10  89.00 85.92
j HydraLoRA(r = 4) 5.1IM  72.66 88.85 81.01 93.48 87.37 80.20  92.68 87.80 85.51
BoRA(r = 8,b=28) 477TM  74.10 89.61 81.68 93.81 88.24 80.97 93.01 88.40 86.23
BoRA(r =8,b=16) 4.92M 7422 89.66 81.93 94.27 88.48 82.08 93.10  89.20 86.62
LoRA(r = 8) 8.65M 7599 9380 84.34 96.39 92.34 94.03 98.06 9500 91.24

m LoRA(r = 16) 173M  76.15 93.74 84.44 96.87 92.50 9420 9836  95.80 91.51
T LoRA(r = 32) 346M 7670 9391 84.90 96.91 92.42 94.62  98.23 95.80  91.69
“;  DoRA(r = 8) 8.99M 7635 93.49 84.32 96.56 92.66 94.34  98.13 95.73 9145
% MELOoRA(r = 8) 8.65SM  76.41 93.67 84.87 96.78 91.92 94.25 98.01 9593 9148
2z HydraLoRA(r = 4) 9.29M  76.02 9391 84.24 96.50 92.58 94.11 97.98 9520 91.32
© BoRA(r = 8,b=8) 872M  77.09 93.85 84.75 96.95 92.27 94.62 9832  96.00 91.73
BoRA(r =8,b=16) 895M  77.06 9391 85.57 96.96 92.66 93.52 98.11 96.80  91.82

4.3 ABLATION STUDIES

To optimize the block-wise diagonal matrices X effectively, BORA applies both an exponential and a
normalization function to the learnable parameters o, as shown in Eq.@]). In this section, we conduct
ablation experiments on mathematical reasoning tasks to assess the importance of these two functions.
As shown in Figure omitting either the exponential or the normalization function leads to a
significant decrease in accuracy across various models. Notably, the absence of normalization has a
more significant effect on performance. This can be attributed to the small initial values of o; without
normalization, most entries in X remain close to 1, which restricts the expressiveness of BoRA.
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Figure 3: Ablation studies and scalability analysis on mathematical reasoning tasks. (a) Ablation
results for the exponential function (Exp) and normalization function (Norm) in BoRA. (b) Accuracy
of BoRA at varying ranks and block numbers. (c) Accuracy of BoRA at different tuning granularity.
The figures present only the average accuracy, and the detailed results are available in Appendixlg

4.4 SCALABILITY ANALYSIS

In this section, we evaluate the scalability of BoRA on mathematical reasoning tasks using LLama-3-
8B, from three perspectives: the LoRA rank, the number of blocks, and the tuning granularity.

Results of Different LoRA Ranks and Number of Blocks. In Section[f.2] we set the rank of BORA
to 8 and evaluated its performance with 8 and 16 blocks. In this section, we investigate the effects of
varying the LoRA rank (r) and the number of blocks (b) from the set {2, 4, 8,16, 32, 64}. Notably,
the number of additional parameters introduced by BoRA is br, which increases quadratically with
b. For comparison, when b = 64, the number of trainable parameters in BoRA is approximately
1.6 times greater than that in LoRA at the same rank. As shown in Figure 3(b)] BoRA consistently
outperforms LoRA across various ranks, even when b = 2. As b increases, the performance of BORA
improves. However, when r increases and b surpasses a certain threshold, accuracy begins to decline,
which is attributed to potential overfitting caused by the higher rank of the weight matrix.

Results of Different Tuning Granularity. Finally, we evaluate the scalability of BoRA under
different tuning granularity. In Section we apply LoRA and BoRA only to the query, key,
and value weights. In this section, we introduce four additional strengths: Q, QV, QKVUD, and
QKVOGUD, where O, G, U, and D represent the output, gate, up, and down projection weights,
respectively. The rank is set to 8, and the number of blocks is set to 16 for BoRA. Note that,
within any given tuning granularity, the number of parameters and computational costs in BoORA are
approximately the same as in LORA. The goal of this experiment is to compare BoRA’s performance
relative to LoRA at each granularity. As shown in Figure BoRA consistently outperforms LoRA
across different tuning granularity, demonstrating that BoORA’s performance improvement over LORA
is consistent across various layers of the model (e.g., k_proj and v_proj).

4.5 SINGULAR VALUE ANALYSIS

BoRA aims to enhance the rank of LoRA weights. To illustrate this more clearly, we analyze the
singular values of both LoORA and BoRA. Specifically, we present the sum of the squared singular
values and the count of singular values exceeding 0.005 for the weight of each query layer. The
threshold of 0.005 is chosen to calculate the effective rank, following the settings used in HiRA
Huang et al|(2025). As shown in Figure[d] the number of singular values greater than 0.005 in LoRA
corresponds to its rank. As the rank increases, the sum of squared singular values also increases. In
contrast to LoRA, BoRA exhibits significantly more singular values greater than 0.005, and the sum
of squared singular values is substantially larger, effectively demonstrating BoRA’s role in enhancing
rank.
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Figure 4: The sum of the squared singular values and the number of singular values greater than
0.005 across the query layers in LoORA and BoRA, with different ranks and block numbers.

4.6 EFFICIENCY ANALYSIS

As discussed in Section we highlighted the minimal computational and memory overhead
introduced by the block-wise diagonal matrices in BoORA. To validate this point more rigorousl
we measured the wall-clock time and memory usage of various methods. One epoch of trainin

on the mathematical reasoning task was performed using the LLama-3-8B model with an Nvidia

Table 4: Computational cost and memory usage of different methods using the LLama-3-8B model.
# Param (M) _Memory (GB) _Time (Min)

As shown in Table BoRA and MELoRA exhibit nearly identical training time and memo

footprint compared to LoRA. Hydral.oRA introduces additional gating layers, which add minor.
computational cost and result in a small increase in runtime. DoRA, due to its reparameterization
of directions and magnitudes, requires more complex computation and therefore introduces some
overhead as well. Overall, the empirical evidence supports our argument that the end-to-end training
overhead of BoRA is essentially on par with LoRA, and comparable or lower than several other

state-of-the-art methods.

5 CONCLUSION

In this paper, we analyze the rank of LoORA weights from the perspective of block matrix multiplication.
Our analysis revealed that standard LoRA suffers from rank limitations due to correlations among
different block products. To solve this limitation, we propose Block-Diversified Low-Rank Adaptation
(BoRA), a simple yet powerful extension to LoRA that enhances the rank of LoRA weights. BoORA
effectively breaks the correlations among different block products by introducing a unique diagonal
matrix for each block multiplication, thereby increasing the rank of LoRA weights by a factor of b,
where b denotes the number of blocks. Extensive experiments demonstrate that BORA outperforms
LoRA and several LoRA variants across various tasks and models. Notably, BORA achieves a 2-4%
accuracy improvement over LoRA, while maintaining similar parameter and computational costs.

10
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A LLM USAGE

Large language models (LLMs) were only used as writing assistants to polish the language, improve
clarity, and check grammar. They were not involved in the generation of research ideas, the design
or implementation of methods, data analysis, or the production of results. The authors take full
responsibility for all content of the paper.

B DETAILED EXPERIMENTAL SETTINGS

Datasets and Models. The GLUE benchmark [Wang et al.| (2019)) includes two single-sentence
classification tasks (CoLLA, SST-2), five pairwise text classification tasks (MNLI, RTE, QQP, MRPC,
and QNLI), and one text similarity prediction task (STS-B). This paper reports the overall matched
and mismatched accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B,
and accuracy for the remaining tasks. Due to the differing dataset sizes, the number of epochs varies:
10 epochs for RTE and MRPC, 5 epochs for STS-B and CoLA, 2 epochs for SST-2 and QNLI, and
1 epoch for MNLI and QQP. The models used are ROBERTa-Base and RoBERTa-Large [Liu et al.
(2019).

LoRA Hyperparameters. The scaling factor is set to « = 2r, where r is the LoRA rank. LoRA is
applied to the query and value weights with a dropout rate of 0.05, using full precision (FP32).

Training Hyperparameters. AdamW |Loshchilov and Hutter (2019)) is used with 5; = 0.9,
B2 = 0.999, ¢ = le—8, and no weight decay. The learning rate is selected from the set
{3e—5,1e—4,3e—4,1e—3}, with optimal values of 3e—4 for RoBERTa-Base and le—4 for
RoBERTa-Large. A warm-up ratio of 0.03 is applied, and the batch size is set to 32. The maximum
sequence length is 512.

B.1 EXPERIMENTS ON MATHEMATICAL AND COMMONSENSE REASONING TASKS

Datasets. Mathematical and commonsense reasoning tasks contain 10K and 170K training samples,
respectively, along with several test tasks. Note that we directly utilize the data from Hu et al.|(2023))
for our experiments. The training process consists of a single epoch. Three models are employed:
Gemma-7B [Mesnard et al.| (2024}, LLama-3-8B [Dubey et al.| (2024), and Qwen2.5-14B |Yang et al.
(2024).

LoRA Hyperparameters. The scaling factor is set to o = 2r, where r is the LoRA rank. LoRA is
applied to the query, key, and value weights with a dropout rate of 0.05, using half precision (BF16).

Training Hyperparameters. AdamW is employed with the same settings as previously mentioned.
The learning rate is chosen from the set {3e—5, 1e—4, 3e—4, le—3} and is set to le—4. A warm-up
of 100 steps is applied, and the batch size is set to 16. The maximum sequence length is 256.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 STANDARD DEVIATIONS

As discussed in Section[4.2] each experiment was repeated three times, and the average results are
reported. For conciseness, standard deviations are provided in the Appendix. Table 5] shows the
standard deviations for each GLUE dataset, where a separate model was trained for each. Table
[6] presents the standard deviation of the average accuracy for the commonsense and mathematical
reasoning tasks, where a single model was used across these sub-tasks. Notably, the standard deviation
remains stable and is much smaller than the accuracy improvement achieved by BoRA.

C.2 DETAILED ABLATION RESULTS

In Section[4.3] ablation experiments were conducted on mathematical reasoning tasks to evaluate the
contributions of exponential and normalization functions. Figure [3(a)|shows the average accuracy of
various methods across multiple sub-tasks. Full experimental results are provided in Table[7]for a
more detailed comparison.
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Table 5: The standard deviation of different methods on the GLUE benchmark.

RTE MRPC STS-B CoLA SST2 QNLI MNLI QQP

LoRA(r = 8) 0.51 0.46 0.27 0.57 0.11 0.15 0.11 0.10
LoRA(r = 16) 0.84 040 0.34 0.64 0.29 0.11 0.04 0.08
LoRA(r = 32) 078 035 0.39 0.56 0.14 1.00 0.11 0.03
RoBERTa-Base DoRA(r = 8) 0.51 0.80 0.41 0.49 0.41 0.09 0.12  0.10
MELoRA(r = 8) 0.85  0.72 0.76 0.68 0.09 0.30 030  0.09

HydraLoRA(r = 4) 0.18 053 0.51 0.55 0.24 0.15 027  0.05
BoRA(r=8,b=8) 0.86 0.12 0.61 0.52 0.22 0.02 027  0.04
BoRA(r =8,b=16) 0.64  0.61 0.88 0.64 0.19 0.20 0.14  0.12

LoRA(r = 8) 055 0.8l 0.26 0.64 0.50 0.22 023  0.05
LoRA(r = 16) 0.51 0.20 0.59 0.98 0.19 0.16 027  0.04
LoRA(r = 32) 040  0.66 0.13 0.65 0.33 0.44 032  0.02
ROBERTa-Large DoRA(r = 8) 0.79 042 0.03 0.78 0.19 0.30 025 0.02
MELoRA(r = 8) 059 035 0.89 0.24 0.19 0.25 038  0.04

HydraLoRA(r = 4) 025  0.60 0.63 0.59 0.09 0.04 029  0.09
BoRA(r =8,b=8) 036  0.60 0.15 0.43 0.09 0.13 048  0.03
BoRA(r =8,b=16) 059 023 0.17 0.53 0.19 0.17 012 0.03

Table 6: The standard deviation of the average accuracy on the mathematical and commonsense
reasoning tasks with various pretrained models.

Mathematical Reasoning Commonsense Reasoning
Gemma-7B  LLama-3-8B  Qwen2.5-14B Gemma-7B LLama-3-8B Qwen2.5-14B
LoRA(r = 8) 0.19 0.88 0.60 0.63 0.13 0.13
LoRA(r = 16) 0.61 0.62 0.50 0.22 0.19 0.10
LoRA(r = 32) 0.48 0.80 0.78 0.18 0.29 0.06
DoRA(r = 8) 0.47 0.47 0.49 0.48 0.35 0.17
MELoRA(r = 8) 0.34 0.58 0.23 0.22 0.48 0.02
HydraLoRA(r = 4) 0.21 0.36 0.39 0.43 0.19 0.23
BoRA(r = 8,b=28) 0.42 0.61 0.38 0.12 0.26 0.06
BoRA(r = 8,b = 16) 0.44 0.38 0.32 0.38 0.28 0.01

C.3 DETAILED RESULTS OF THE SCALABILITY ANALYSIS

In Section[4.4] the scalability of BORA was evaluated using LLama-3-8B on mathematical reasoning
tasks from three perspectives: LoRA rank, number of blocks, and tuning granularity. Figure
presents the average accuracy of different settings across sub-tasks. Complete experimental results
are available in Tables [§and 9] for further comparison.

D BROADER IMPACTS

This paper introduces BoRA, a method for increasing the rank of LoRA weights. BoRA achieves the
same fine-tuning performance as LoRA while using fewer parameters and reducing computational
overhead, thus contributing to energy savings. Our work builds upon LoRA, and we assert that our
approach does not introduce any negative social implications requiring further discussion.

E ADDITIONAL RELATED WORK

In addition to LoRA, there are two other commonly used PEFT methods: adapter-based and soft
prompt-based methods. The adapter-based method Houlsby et al.[(2019); He et al.| (2022); |Wang
et al.| (2022)) inserts new layers into the model and fine-tunes only these layers, significantly reducing
resource consumption. However, the additional layers introduce increased latency. The soft prompt-
based method |Lester et al.|(2021);|Li and Liang|(2021); Razdaibiedina et al.|(2023)) adds learnable soft
tokens (prompts) to the input, enabling the model to adapt to specific tasks. This method leverages
the pretrained model’s inherent capabilities and requires only appropriate prompts for downstream
task adaptation. However, it also adds computational overhead and increases inference latency. In
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Table 7: The accuracy of BORA without exponential or normalization functions on mathematical
reasoning tasks using LLama-3-8B.

AddSub  MultiArith  SingleEq GSM8K AQuA SVAMP  Avg

BoRA 87.85 92.50 90.94 59.72 31.36 7620  73.10
Gemma-7B BoRA w.o. Exp 86.33 90.67 89.37 58.45 30.71 7510  71.77
BoRA w.o. Norm  86.58 91.83 88.78 58.23 32.28 7520 7215
BoRA 88.35 93.00 92.72 58.83 27.17 7340 7224
LLama-3-8B  BoRA w.o. Exp 83.04 87.00 90.94 55.19 26.77 68.10  68.51
BoRA w.o. Norm  81.77 88.17 91.34 56.10 25.20 68.30  68.48
BoRA 91.90 98.00 92.72 75.82 38.19 87.00  80.60
Qwen2.5-14B  BoRA w.o. Exp 92.66 96.67 92.52 77.63 33.86 8540  79.79
BoRA w.o. Norm  93.16 96.17 92.13 76.42 32.28 8540  79.26

Table 8: The accuracy of LoORA and BoRA with varying target modules on mathematical reasoning
tasks using LLama-3-8B.

Target Modules Method #Params AddSub MultiArith  SingleEq GSM8K AQuA SVAMP  Avg
Q LoRA(r = 8) 2.10M 7443 86.39 88.45 52.26 26.64 61.67 6497
BoRA(r =8,b=16) 2.16M 81.18 90.78 90.42 54.54 23.23 67.10 67.87
Qv LoRA(r = 8) 3.41M 81.27 90.00 91.54 56.25 22.83 66.40  68.05
BoRA(r =8,b=16) 3.54M 86.50 91.22 93.18 58.18 25.98 71.03  71.01
QKV LoRA(r = 8) 4.72M 82.28 87.06 91.60 55.65 24.02 68.53  68.19
BoRA(r =8,b=16) 4.92M 88.35 93.00 92.72 58.83 27.17 7340  72.24
QKVUD LoRA(r = 8) 14.2M 88.69 92.11 93.83 59.79 24.93 73.50  72.14
BoRA(r =8,b=16) 14.5M 89.11 95.25 93.60 61.79 24.41 7620  73.40
QKVOGUD LoRA(r = 8) 21.0M 87.59 93.28 93.90 59.41 24.15 75.03  72.23
BoRA(r =8,b=16) 21.4M 89.62 95.67 94.00 62.47 25.40 76.10  73.88

contrast, both LoRA and the proposed BoRA allow for manual integration of weight updates into
pretrained weights after fine-tuning, avoiding additional inference latency._

F THEORETICAL JUSTIFICATION FOR PROPOSITION[I]

In Section we briefly discussed the theoretical justification for Proposition[I] Here, we provide

a more detailed expansion and explain under which assumptions BoRA’s rank can achieve the upper
bound presented in Proposition

Without loss of generality, for a pre-trained weight W, € R™*" LoRA maintains two low-rank
matrices B € R”*" and A € R"™ "™, Let matrix B € R™*" = [By, B T be divided into

b blocks, where B, € R% *", Similarly, matrix A € R"™*" = .., Ap] is divided into b
blocks, where A; € R"*% . The LoRA weights generated by the proposed BoRA can be denoted as

follows:_

B1¥11A1 Bi¥1242 ... BiX1A4

By¥o1 A1 Bo¥poAs ... DY A
AW = . . . .

ByXy 1A BpXpoAs ... BpXppAp

where ¥, ; € R™" (Vi, j € [b]) are diagonal matrices. Note that AW can also be represented as
the product of three matrices (B’ € R™*b7 3/ ¢ R *br and A’ € RP"*™) a5 shown below:

B1 0 e 0 2171 21_’2 e El,b A1 0 0
AW B/E/A’ 0 BQ . 0 2271 22’2 A 22717 0 AQ e 0
0 0 ... By Xp1 Mp2 -.- b 0 0 ... A4

)
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Table 9: The accuracy of LoORA and BoRA with varying ranks and block numbers on mathematical
reasoning tasks using LLama-3-8B.

Rank Method #Params AddSub MultiArith  SingleEq GSM8K AQuA SVAMP  Avg
LoRA 1.18M 77.64 85.56 89.24 52.87 23.36 65.53  65.70
BoRA(b = 2) 1.18M 74.94 89.17 88.19 56.03 26.77 6190  66.17
BoRA(b = 4) 1.18M 80.64 88.75 90.36 54.93 24.61 66.65  67.65
r=2  BoRA(®b =28) 1.19M 79.37 88.67 90.06 56.94 25.59 67.10  67.96
BoRA(b =16) 1.23M 81.86 87.33 91.73 55.34 24.67 67.47  68.07
BoRA(b =32) 1.38M 80.76 88.67 91.14 55.42 26.77 67.70  68.41
BoRA(b =64) 1.97M 84.30 87.83 90.75 56.33 22.83 69.10  68.53
LoRA 2.36M 79.49 86.83 88.85 55.12 23.10 66.03  66.57
BoRA(b = 2) 2.36M 79.24 88.67 90.16 55.88 22.05 64.40  66.73
BoRA(b = 4) 23T 79.24 89.50 93.90 58.30 22.05 6390 67.81
r=4  BoRA( =8) 2.38M 83.29 90.17 91.53 55.55 24.28 67.73  68.76
BoRA(b =16) 2.46M 82.95 90.56 92.92 57.70 24.54 69.17  69.64
BoRA(b =32) 2.75M 81.60 91.39 92.78 58.20 25.98 68.10  69.68
BoRA(b =64) 3.93M 85.06 92.33 9291 56.68 27.04 69.23  70.54
LoRA 4.72M 82.28 87.06 91.60 55.65 24.02 68.53  68.19
BoRA(b = 2) 4.72M 81.01 9233 91.34 59.36 24.41 66.10  69.09
BoRA(b = 4) 4.73M 84.30 91.39 92.78 58.10 24.67 69.67  70.15
r=8 BoRA(b =28) 4.77TM 87.85 93.67 92.72 58.45 26.38 70.10  71.53
BoRA(b =16) 4.92M 88.35 93.00 92.72 58.83 27.17 7340  T72.24
BoRA(b =32) S55IM 87.34 95.17 9291 58.53 27.56 73.60  72.52
BoRA(b =64) 7.86M 87.34 94.33 94.09 60.35 27.95 72.60 7278
LoRA 9.44M 84.56 91.22 92.26 57.22 25.72 70.17  70.19
BoRA(b = 2) 9.44M 83.04 91.67 94.69 59.59 26.38 68.00  70.56
BoRA(b = 4) 9.46M 86.16 91.33 93.83 59.26 26.51 70.70  71.30
r=16 BoRA(b=28) 9.54M 85.82 93.61 93.31 59.61 25.46 72.10  71.65
BoRA(b =16) 9.83M 86.75 93.67 93.90 58.94 26.51 7227  72.01
BoRA(b =32) 11.0M 89.37 94.83 94.29 5891 25.20 74.10 7278
BoRA(b =64) 15.7M 87.34 95.58 94.29 59.40 30.52 7320  73.39
LoRA 18.9M 87.17 93.39 93.50 57.87 26.25 71.83  71.67
BoRA(b = 2) 18.9M 87.85 91.83 94.29 59.06 25.98 7230  71.89
BoRA(b = 4) 18.9M 90.13 93.56 93.24 59.59 25.20 7457 7271
r =32 BoRA(b=28) 19.1IM 89.11 93.67 93.70 60.42 24.02 75.00  72.65
BoRA(b =16) 19.7M 88.61 95.83 93.50 59.59 27.56 7350  73.10
BoRA(b =32) 22.0M 89.50 95.42 93.60 59.93 27.36 7530  73.52
BoRA(b =64) 31.5M 89.62 96.67 92.91 60.65 23.62 74.00 7291
LoRA 37. M 88.10 94.33 93.70 60.05 25.20 73.10 7241
BoRA(b = 2) 37.8M 89.62 91.17 94.29 60.73 25.59 7630  72.95
BoRA(b = 4) 37.8M 88.77 94.72 93.70 60.78 26.51 7453 73.17
r =64 BoRA(b =8) 38.IM 90.13 94.50 94.49 62.70 25.20 7540  73.74
BoRA(b =16) 39.3M 89.87 94.83 94.29 60.50 26.77 76.00  73.71
BoRA(b =32) 44.0M 89.62 96.17 95.08 61.56 27.95 7590  74.38
BoRA(b =64) 62.9M 90.13 95.67 93.90 61.26 25.59 7690 7391

Based on the shapes of the matrices, we can derive the upper bound for the rank of the three matrices:
rank(B’) < min{m, br}, rank(A’) < min{n,br}, rank(X") < bor

According to the properties of matrix multiplication:
rank(AW) < min{rank(A’), rank(¥’), rank(B’)} = min{m,n, br}.

It is important to note that rank(AW) can only have a clearly defined upper bound, with

the_minimum_value being 0. For example, in BoRA, the matrix B is initialized to_zero,
so_at_the beginning of training, rank(B’) = 0, which results in_rank(AW) = 0. __However,
when all three matrices are full rank (i.e., rank(B’) = min{m, br}, rank(A’) = min{n,br}, and
rank(3Y) = br), equality holds, and the upper bound for rank(AW) can be achieved. This condition
is_typically satisfied because 3 and A’ are initialized randomly, which usually ensures_that

rank(A’) = min{n, br} and rank(X>’) = br. As training progresses, B’ is continually updated, and
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rank(B’) can gradually approach full rank. This is evident from Figure [ in the paper, where the
effective rank of BORA (the number of singular values greater than 0.005) approaches br.
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