
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BORA: TOWARDS MORE EXPRESSIVE
LOW-RANK ADAPTATION WITH BLOCK DIVERSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method
widely used in large language models (LLMs). It approximates the update of a
pretrained weight matrix W ∈ Rm×n by the product of two low-rank matrices, BA,
where A ∈ Rr×n and B ∈ Rm×r(r ≪ min{m,n}). Increasing the dimension r
can raise the rank of LoRA weights (i.e., BA), which typically improves fine-tuning
performance but also significantly increases the number of trainable parameters. In
this paper, we propose Block Diversified Low-Rank Adaptation (BoRA), which
improves the rank of LoRA weights with a small number of additional parameters.
Specifically, BoRA treats the product BA as a block matrix multiplication, where
A and B are partitioned into b blocks along the columns and rows, respectively
(i.e., A = [A1, . . . , Ab] and B = [B1, . . . , Bb]

⊤). Consequently, the product BA
becomes the concatenation of the block products BiAj for i, j ∈ [b]. To enhance
the diversity of different block products, BoRA introduces a unique diagonal
matrix Σi,j ∈ Rr×r for each block multiplication, resulting in BiΣi,jAj . By
leveraging these block-wise diagonal matrices, BoRA increases the rank of LoRA
weights by a factor of b while only requiring b2r additional parameters. Extensive
experiments across multiple datasets and models demonstrate the superiority of
BoRA, and ablation studies further validate its scalability. The code is available at
https://anonymous.4open.science/r/BoRA.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
tasks (DeepSeek-AI, 2024; OpenAI, 2024). However, the state-of-the-art models usually contain a
vast number of parameters, making full fine-tuning (FFT) for downstream tasks extremely expensive
in terms of both training time and memory usage, thereby limiting their practical deployment (Hu
et al., 2022; Lester et al., 2021). To mitigate this issue, parameter-efficient fine-tuning (PEFT)
methods have been developed to reduce the number of trainable parameters and decrease fine-tuning
costs (Xu et al., 2023). These methods include techniques such as prompt tuning (Lester et al., 2021),
parallel adapters (He et al., 2022) and sequential adapters (Houlsby et al., 2019). Among these, low-
rank adaptation (LoRA) (Hu et al., 2022) has gained popularity due to its ability to avoid additional
inference latency. As shown in Figure 1(c), LoRA freezes the pretrained weight matrix W ∈ Rm×n

and learns two smaller low-rank matrices to approximate the weight update as ∆W = α/rBA, where
A ∈ Rr×n, B ∈ Rm×r, r is the LoRA rank (r ≪ min{m,n}), and α is an adjustable scaling factor.
For simplicity, we omit the coefficient α/r in the subsequent description.

Despite its effectiveness, LoRA generally exhibits a performance gap compared to FFT, which
is typically attributed to the limited rank of LoRA weights (Hu et al., 2022; Ren et al., 2024;
Huang et al., 2025). Specifically, the rank of LoRA weights is constrained as rank(∆W) ≤
min{rank(A), rank(B)} ≤ r. Numerous studies have also demonstrated that increasing the rank of
LoRA weights typically improves fine-tuning performance (Ren et al., 2024; Liu et al., 2024; Huang
et al., 2025). This trend is further corroborated by our experimental results, as shown in Tables 1, 2,
and 3. Recently, Zeng and Lee (2024) further explored LoRA’s expressive power, using the LoRA
rank r to quantify the approximation error between the LoRA weights (i.e., ∆W = BA) and the
assumed optimal weight update. Their findings suggest that a higher rank of LoRA weights leads to
a smaller approximation error. Consequently, efficiently increasing the rank of LoRA weights has
become a consensus strategy for improving fine-tuning performance.

1

https://anonymous.4open.science/r/BoRA

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) LoRA (b) MELoRA (c) BoRA

Figure 1: An illustration of BoRA in comparison to LoRA (Hu et al., 2022) and MELoRA (Ren
et al., 2024). (a) LoRA weights (i.e., BA) can be represented by block matrix multiplication, where
A = [A1, A2, A3] and B = [B1, B2, B3]

⊤. (b) MELoRA zeros out the off-diagonal blocks to
break the correlation between different blocks and enhance the rank of LoRA weights. (c) BoRA
introduces a diagonal matrix for each block multiplication to enhance the diversity among block
products. Notably, LoRA and MELoRA are essentially specific instances of BoRA. BoRA reduces to
LoRA when all Σi,j = I , and to MELoRA when Σi,j = I for i = j and Σi,j = 0 for i ̸= j, where I
denotes the identity matrix.

In this paper, we analyze the rank of LoRA weights through the lens of block matrix multiplication.
Let matrices A and B be evenly partitioned into three blocks along the columns and rows, respectively,
i.e., A = [A1, A2, A3] and B = [B1, B2, B3]

⊤. The product BA can then be represented as the
concatenation of the block products BiAj , as shown in Figure 1(a). This structure limits the
independence of different block products, thereby constraining the rank of BA. Specifically, the
rank of BA depends on the number of linearly independent row vectors; however, the difference
between block rows lies solely in the use of different Bi. This implies that the blocks in one row can
be obtained from those in another row using the same transformation. For instance, left-multiplying
the blocks of the first row by B2B

−1
1 (assuming B−1

1 exists) generates the second row, indicating
that the second row does not contribute to the rank. A similar issue arises with the columns.

To address this issue, we propose Block-Diversified Low-Rank Adaptation (BoRA), which ef-
fectively breaks the correlation between the block products BiAj in different rows or columns. As
illustrated in Figure 1(c), BoRA introduces a unique diagonal matrix, Σi,j , for each block multipli-
cation, resulting in BiΣi,jAj . Assuming matrices A and B are divided into b blocks, BoRA will
increase the rank of LoRA weights by a factor of b, while requiring only b2r additional parameters.
In contrast, MELoRA (Ren et al., 2024) achieves a similar effect by disrupting the correlation of
different blocks through zeroing out the off-diagonal block products, as illustrated in Figure 1(b).
Although this increases the rank of LoRA weights, it may limit LoRA’s expressive power due to the
presence of numerous zero entries. Instead, BoRA ensures block diversity by utilizing block-wise
diagonal matrices, without compromising LoRA’s expressiveness. Importantly, both LoRA and
MELoRA can be seen as specific instances of BoRA. Specifically, BoRA reduces to LoRA when
all Σi,j = I , and to MELoRA when Σi,j = I for i = j and Σi,j = 0 for i ̸= j, where I denotes the
identity matrix.

Our contributions can be summarized as follows:

• We analyze LoRA from the perspective of block matrix multiplication, revealing that the
rank of LoRA weights is constrained due to correlations between different block products.

• We propose BoRA, which break the correlation among different block products with block-
wise diagonal matrices. By dividing matrices A and B into b blocks, BoRA increases the
rank of LoRA weights by a factor of b, requiring only b2r additional parameters.

• We conduct extensive experiments on multiple models and datasets, demonstrating that
BoRA consistently outperforms LoRA and its variants. Using a similar number of trainable
parameters, BoRA can achieve 2-4% accuracy improvement over LoRA.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

To reduce fine-tuning overhead, LoRA (Hu et al., 2022) decomposes the weight update, ∆W ∈ Rm×n,
into two low-rank matrices, A ∈ Rr×n and B ∈ Rm×r, where the LoRA rank r determines the
number of trainable parameters. LoRA can be integrated into a model without altering its architecture
or increasing inference overhead. In contrast, DoRA (Liu et al., 2024) decomposes pretrained weights
into direction and magnitude components, learning the magnitude via a trainable vector and updating
the direction with LoRA. Recent studies have explored various aspects of LoRA to improve its
performance, such as the scaling factor (Kalajdzievski, 2023), initialization methods (Meng et al.,
2024; Wang et al., 2024), learning rates (Hayou et al., 2024), and dynamic parameter allocation
(Zhang et al., 2023; Li et al., 2024). For example, rsLoRA (Kalajdzievski, 2023) modifies the scaling
factor to α/

√
r for more stable fine-tuning. PiSSA (Meng et al., 2024) and LoRA-GA (Wang et al.,

2024) conduct singular value decomposition (SVD) on pretrained weights and sampled gradients to
initialize the matrices A and B of LoRA. LoRA+ (Hayou et al., 2024) suggests that using a higher
learning rate for matrix B can improve fine-tuning performance. AdaLoRA (Zhang et al., 2023)
adaptively adjusts the LoRA rank for different layers during fine-tuning, allocating more parameters
to important layers within a fixed parameter budget. VB-LoRA (Li et al., 2024) composites all the
low-rank matrices of different LoRA layers from a shared vector bank.

In this paper, we focus on LoRA variants that efficiently enhance the rank of LoRA weights. For
example, HiRA (Huang et al., 2025) and KronA (Edalati et al., 2023) use the Hadamard and
Kronecker products, respectively, to improve the rank of LoRA weights. ReLoRA (Lialin et al., 2024)
periodically merges learned LoRA adapters into the pretrained weights to increase the rank of weight
updates. MELoRA (Ren et al., 2024) achieves a higher rank by stacking low-rank matrices along
the diagonal. However, MELoRA introduces many zero values, which can significantly reduce the
expressiveness of LoRA, as shown in Figure 1(b). In contrast to previous approaches, we analyze the
rank of LoRA weights through the lens of block matrix multiplication. Our proposed BoRA increases
the diversity of block products by introducing unique diagonal vectors for each block multiplication.
Notably, both LoRA and MELoRA are special cases of BoRA, as illustrated in Figure 1. Furthermore,
MoELoRA (Luo et al., 2024) trains multiple LoRA adapters as distinct experts and combines their
knowledge via a routing network. HydraLoRA (Tian et al., 2024) improves on this by sharing the
matrix A across the MoELoRA framework for more efficient adaptation. Essentially, MoELoRA can
also be viewed as a form of block matrix multiplication. The main difference between BoRA and
MoELoRA lies in the way matrices A and B are partitioned, which will be discussed in detail in
Section 3.5. Additional discussions of other PEFT-related methods are deferred to Appendix E.

3 METHODOLOGY

3.1 BLOCK MATRIX MULTIPLICATION

Block matrix multiplication is a fundamental operation that partitions matrices into smaller sub-
matrices for efficient multiplication. Let M ∈ Rm×r and N ∈ Rr×n, where M and N are evenly
divided into bm × br and br × bn sub-matrices, respectively. Then, the product P = MN can be
computed block by block, with each block Pi,j (i ∈ [bm], j ∈ [bn]) calculated as follows:

Pi,j =

br∑
k=1

Mi,kNk,j . (1)

In this paper, the matrices A ∈ Rr×n and B ∈ Rm×r of LoRA are evenly partitioned into b
blocks along the columns and rows, respectively (i.e., A = [A1, . . . , Ab] and B = [B1, . . . , Bb]

⊤).
Consequently, each block of the LoRA weights ∆Wi,j (i, j ∈ [b]) can be expressed as:

∆Wi,j = BiAj . (2)

Previous studies have shown that the rank of LoRA weights significantly affects the fine-tuning
performance (Ren et al., 2024; Huang et al., 2025; Lialin et al., 2024). However, the rank of LoRA
weights is generally limited by the dimension r (i.e., the LoRA rank), regardless of the dimensions m
and n, as follows:

rank(∆W) = rank(BA) ≤ min{rank(A), rank(B)} ≤ r. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

From the perspective of block matrix multiplication, this issue primarily stems from the lack of
independence between block products (BiAj) across different rows or columns. As shown in
Figure 1(a), the block products share the same Bi for each row and the same Aj for each column.
Taking rows as an example, the rank of ∆W depends on the number of linearly independent row
vectors. However, the difference between block rows lies only in the use of different Bi. This implies
that blocks in one row can be derived from blocks in another row using the same transformation. For
example, in Figure 1(a), if rank(B1) = r, then B−1

1 exists. Left-multiplying the first row block by
B2B

−1
1 generates the second row, indicating that the second row does not contribute to the rank. A

similar issue applies to the columns. Breaking the correlation between these blocks can increase the
rank of the weight matrix, thereby improving the expressiveness of LoRA.

3.2 BLOCK-DIVERSIFIED LOW-RANK ADAPTATION

To break the correlation between different block products, we propose Block-Diversified Low-
Rank Adaptation (BoRA). Specifically, BoRA introduces a unique diagonal matrix for each block
multiplication to enhance block diversity, as shown in Figure 1(c). Assuming A and B are divided
into b blocks along columns and rows, BoRA will additionally learn a set of diagonal matrices
{Σi,j ∈ Rr×r | i, j ∈ [r]}

:::::::::::::::::::::
{Σi,j ∈ Rr×r | i, j ∈ [b]}, such that the multiplication of each block pair

is computed as follows:
∆Wi,j = BiΣi,jAj . (4)

These block-diagonal matrices, Σi,j , amplify the differences in block products across rows or
columns, thus enhancing the expressiveness of LoRA. Therefore, the core concept of BoRA lies in
learning block-wise diagonal matrices {Σi,j ∈ Rr | i, j ∈ [r]}

:::::::::::::::::::::
{Σi,j ∈ Rr×r | i, j ∈ [b]}, where the

corresponding parameters are represented by a three-dimensional tensor σ ∈ Rb×b×r. To ensure
σ can be effectively optimized with the same learning rate as the matrices A and B, we initialize
σ using the same Kaiming initialization (He et al., 2016) applied to the matrix A. Furthermore, to
facilitate the learning of Σ, we normalize σ by its mean absolute value and apply the exponential
function to generate Σ as follows:

Σi,j = Diag(Exp(
σ[i][j]

Mav(σ)
)), (5)

where Mav(σ) = ∥σ∥1

b2r denotes the mean absolute value of σ, Exp(·) denotes the exponential function,
and Diag(·) denotes the diagonalization function, which converts a vector into a diagonal matrix.
::::
Since

::::::
σ[i][j]

::
is

:::::::::
initialized

::::
with

:
a
:::::

small
::::::::

variance,
:::
the

::::::::::
differences

:::::::
between

::::::
σ[i][j]

::::::
across

:::::
blocks

:::
are

:::::::
minimal,

::::::
which

:::::
limits

:::
the

::::::::
diversity

:::::::
between

::::::
blocks.

:
Normalizing by the mean absolute value of

σ can reduce the impact of its small initialization value on the distribution and optimization of Σ.

::::::::::
Additionally,

:::::::
because

::::::::::::::::::::
Norm(σ[i][j]) = σ[i][j]

Mav(σ)::
is

::::
still

::::::::::::
zero-centered,

::::
zero

::
or

::::::::
near-zero

:::::
values

:::::
could

:::::
nullify

:::
the

::::::
values

::
in
:::
Bi::::

and
:::
Aj .

::
To prevent information loss associated with a zero value in Σ,

we further apply the exponential function to σ, ensuring that Σ contains only positive values
::
and

::::::::
preventing

::::
any

:::
loss

:::
of

::::::::::
information

:::
due

::
to

::::
zero

::
or

::::::::
near-zero

::::::
values.

3.3 RANK UPPER BOUND OF BORA

In the previous discussion, we presented the motivation and formulation of BoRA by expressing
its weight as the concatenation of block products (BiAj). In fact, the weight in BoRA can also be
represented as the product of three matrices, as shown below:

∆W = B′Σ′A′, (6)

where A′ ∈ Rbr×n and B′ ∈ Rm×br are diagonal block matrices formed from the blocks
{A1, . . . , Ab} and {B1, . . . , Bb}, respectively. Σ′ ∈ Rbr×br is the matrix obtained by concatenating
all Σij for i, j ∈ [b]. It is clear that the rank of each of these three matrices is bounded above by br.
Using the properties of rank in matrix multiplication (i.e., rank(BA) ≤ min{rank(A), rank(B)}),
we can derive an upper bound for the rank of the weights in BoRA, as stated in Proposition 1.
Proposition 1 (The Rank Upper Bound of BoRA). Using the low-rank matrices A = [A1, . . . , Ab] ∈
Rr×n and B = [B1, . . . , Bb]

⊤ ∈ Rm×r, along with a set of diagonal matrices {Σi,j ∈ Rr×r |
i, j ∈ [b]}, the weight update generated by BoRA, denoted as ∆W , satisfies

rank(∆W) ≤ min{m,n, br}., (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

:::::
where

:::
the

:::::
rank

::::::
upper

::::::
bound

::::
can

:::
be

:::::::::
achieved

:::::
when

:::
all

::::::
three

::::::::
matrices

:::
are

::::
full

:::::
rank

:::::
(i.e.,

::::::::::::::::::::
rank(B′) = min{m, br},

::::::::::::::::::::
rank(A′) = min{n, br},

::::
and

:::::::::::::
rank(Σ′) = br).

:

:::
The

:::::::
detailed

:::::::::
theoretical

::::::::::
justification

::
for

::::::::::
Proposition

::
1

:
is
::::::::
provided

::
in

::::::::
Appendix

::
F.

:
Note that, by using

the same matrices A and B, the rank of the LoRA weights is constrained by r. Proposition 1
demonstrates that BoRA requires only b2r additional parameters to increase the weight rank by a
factor of b. In contrast, LoRA needs (m+ n)(b2r)

:::::::::
(m+ n)br

:
parameters to achieve the same bound.

::
On

:::
the

:::::
other

:::::
hand,

::
to

:::::::
achieve

:
a
:::::
target

::::
rank

:::::::
R = br,

:::
the

:::::::
number

::
of

:::::::::
parameters

:::::::
required

:::
by

::::::
BoRA

:
is

::::::::::::::::::::::::::::::
N = (m+ n+ b2)r = R(m+n

b + b),
::::
and

:::
this

:::::::
quantity

::
is

:::::::::
minimized

:::::
when

::::::::::::
b =

√
m+ n.

:::::
From

::
the

:::::::::
perspective

::
of

:::::::::
parameter

::::::::
efficiency,

:::
this

::::::::
suggests

:::
that

::::::
setting

:::::::::::
b ≈

√
m+ n

::
is

:
a
::::
good

::::::::
practical

::::::
choice.

::::
This

::::::
optimal

:::::
value

:::::
arises

:::::
from

:
a
::::::
natural

::::::::
trade-off:

:::
the

:::::::::
achievable

:::::
rank

::
of

:::::
BoRA

:::::
(i.e.,

:::
br)

:::::::
increases

::::::
linearly

::::
with

::
b,
:::::
while

:::
the

:::::::::
additional

::::::::
parameter

::::
cost

::::
(i.e.,

::::
b2r)

::::::
grows

:::::::::::
quadratically.

:::::
Once

::
b

::::::
exceeds

::::::::

√
m+ n,

::::::
further

::::::::
increasing

::
b
::
to

:::::
obtain

::
a
:::::
higher

:::::
rank

:::::::
becomes

::::
less

:::::::
efficient

::::
than

::::::
simply

::::::::
increasing

::
the

::::
base

:::::
rank

:
r
:::::::
directly.

:::::::::
Therefore,

::
in

:::::::
practice,

::::
one

:::
can

::::::
simply

:::
set

::::::::
b = ⌊

√
n⌋

:::
for

::::::
BoRA.

:

3.4 EFFICIENT FORWARD PROPAGATION OF BORA

Figure 2: BoRA divides the input token X into sev-
eral segments to efficiently perform block matrix
multiplication. The dotted line connecting Aj and
Bi represents the trainable diagonal matrix Σi,j .

In this section, we discuss the forward propa-
gation process of BoRA. Assuming the input
token is X ∈ Rn, the forward propagation of
LoRA is defined as Y = WX +BAX , where
BAX represents the LoRA output. Differently,
BoRA divides the input token into several seg-
ments to efficiently perform block matrix mul-
tiplication. As shown in Figure 2, if the ma-
trices A and B are partitioned into b blocks,
BoRA also evenly divides the input token X
into b segments. These segments, denoted as
{X1, . . . , Xb}, are processed to produce b out-
put segments, {Y1, . . . , Yb}, which are then con-
catenated to form the final BoRA output. Each
output segment Yj is of the following form:

Yj = Bj

b∑
k=1

Σj,kAkXk. (8)

Notably, compared to LoRA, BoRA only re-
quires the additional multiplication of the diagonal matrix Σj,k ∈ Rr×r with the vector AkXk ∈ Rr.
Since Σj,k is a diagonal matrix, this operation can be efficiently performed through element-wise
multiplication. Formally, the floating-point operations (FLOPs) per token in the forward propagation
of LoRA is given by mn+(m+n)r, where mn and (m+n)r represent the computational overheads
of the pretrained model and the LoRA module, respectively. Taking this additional overhead into
account, the FLOPs per token in the forward propagation of BoRA is mn+ (m+ n)r + b2r, where
b2r represents the extra computation introduced by the block-wise diagonal matrix. Notably, the
values of mn+ (m+ n)r and mn+ (m+ n)r + b2r are also the number of trainable parameters in
LoRA and BoRA, respectively. This indicates that the computational density of BoRA is equivalent
to that of LoRA. It is important to note that, since b ≪ min{m,n}, the additional memory and
computational costs of BoRA is typically negligible.

3.5 COMPARISON WITH LORA AND MELORA

In this section, we analyze the relationships between BoRA, LoRA (Hu et al., 2022), and MELoRA
(Ren et al., 2024). As shown in Figure 1, all three methods can be represented as block matrix
multiplications.

LoRA is actually a special case of BoRA, where all Σi,j matrices are set to the identity matrix I . In
contrast, the Σi,j matrices in BoRA follow different distributions across various i and j, introducing
diversity among the block products and enhancing the expressiveness of BoRA compared to LoRA.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

MELoRA enhances LoRA by setting the off-diagonal blocks to zero, thereby breaking correlations
between different blocks and increasing the rank of the LoRA weights. Similarly, MELoRA is also a
special case of BoRA, where Σi,j = I for i = j and Σi,j = 0 for i ̸= j. In contrast to MELoRA,
which zeros out the off-diagonal blocks, BoRA employs block-diagonal matrices to increase block
diversity, thereby improving the rank of LoRA weights without introducing any zero values.

On the other hand, MoELoRA (Luo et al., 2024) is another form of block matrix multiplication for
LoRA. In this paper, we partition the matrices A = [A1, . . . , Ab] and B = [B1, . . . , Bb]

⊤ into blocks
along columns and rows, respectively. Conversely, if A = [A1, . . . , Ab]

⊤ and B = [B1, . . . , Bb] are
partitioned along the rows and columns, we can derive the LoRA weights as follows:

∆W =

b∑
k=1

BkAk, (9)

where each BkAk can be viewed as an expert. Further, MoELoRA integrates LoRA with the Mixture-
of-Experts architecture, using a routing network to adaptively combine the knowledge of different
experts (BkAk). In the next section, we compare BoRA’s performance with these methods in detail.

4 EXPERIMENTS

In this section, we evaluate BoRA on three benchmarks using various model architectures, and then
perform ablation studies to assess its scalability and visualize its singular values.

4.1 EXPERIMENTAL SETTINGS

Models and Datasets. First, we assess BoRA’s natural language understanding (NLU) capability
on the GLUE benchmark (Wang et al., 2019), using RoBERTa-Base (Liu et al., 2019) and RoBERTa-
Large (Liu et al., 2019). The GLUE benchmark consists of eight sub-tasks, each with its own
training and test sets. For each sub-task, we fine-tune the model on the training set and evaluate its
accuracy on the corresponding test set. Next, we evaluate BoRA’s natural language generation (NLG)
capabilities on mathematical reasoning (Math10K) (Hu et al., 2023) and commonsense reasoning
(Commonsense170K) benchmarks (Hu et al., 2023). Both benchmarks include a training corpus and
multiple test sub-tasks. For each benchmark, we fine-tune the models on the training data and then
assess their performance across all sub-tasks. To demonstrate the versatility of BoRA, we perform
experiments across various model architectures and scales, including Gemma-7B (Mesnard et al.,
2024), LLaMA-3-8B (Dubey et al., 2024), and Qwen2.5-14B (Yang et al., 2024).

Baseline Methods. BoRA is compared with several baseline methods to demonstrate its effective-
ness, including LoRA (Hu et al., 2022), along with several LoRA variants: DoRA (Liu et al., 2024),
MELoRA (Ren et al., 2024) and HydraLoRA (Tian et al., 2024). DoRA decomposes pretrained
weights into magnitude and direction components. It learns the magnitude by training a learnable vec-
tor and uses LoRA to update the direction, enhancing learning capacity while maintaining parameter
efficiency. MELoRA introduces mini-ensemble low-rank adapters that collectively achieve high-rank
expressive power while requiring far fewer trainable parameters than standard LoRA. HydraLoRA
improves upon LoRA by employing an asymmetric architecture that increases parameter efficiency.
This architecture uses one A matrix and multiple B matrices, which are combined through a router.
These three methods represent distinct approaches to improving LoRA: better optimization, higher
rank, and a mixture-of-experts architecture. A comparison with these methods clearly highlights the
superiority of BoRA.

Implementation Details. All experiments were conducted using NVIDIA H20 GPUs. The general
settings included the AdamW optimizer (Loshchilov and Hutter, 2019), linear learning rate decay, a
LoRA dropout rate of 0.05, and no weight decay. For the GLUE benchmark, we applied a warm-up
ratio of 0.03. The learning rates for RoBERTa-Base and RoBERTa-Large were set to 3e-4 and 1e-4,
respectively. Additionally, the number of training epochs varies across different sub-tasks; further
details are provided in Appendix B. By default, BoRA and the baseline methods were applied to
the query and value weights. For mathematical and commonsense reasoning tasks, we employed a
learning rate of 1e-4 with 100 warm-up steps and trained for one epoch. In these tasks, BoRA and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

baseline methods were applied to the query, key, and value weights. Our implementation builds upon
the code from (Hu et al., 2023). In all experiments, we evaluate LoRA’s accuracy across ranks 8, 16,
and 32 to analyze the trade-off between parameter count and model performance. For BoRA, we
set the LoRA rank to 8 and test with 8 and 16 blocks, respectively. For the three LoRA variants, we
adjust the number of trainable parameters to align with LoRA at rank 8. Specifically, the rank of
DoRA was set to 8, while the rank of HydraLoRA was set to 4 with three B matrices. For MELoRA,
the rank of mini LoRAs was set to 8, with four mini LoRA groups. Each experiment was repeated
three times, and the average results were reported. Further details, including standard deviations, are
provided in Appendices B and C.

4.2 OVERALL PERFORMANCE

Results on NLU Tasks. As shown in Table 1, BoRA consistently outperforms other methods on the
GLUE benchmark. Specifically, BoRA achieves a 2% improvement in average accuracy over LoRA
at the same rank (r = 8). It is worth noting that the additional parameters introduced by BoRA with
8 or 16 blocks are minimal compared to the original LoRA parameters. Even when the rank of LoRA
is increased to 32, BoRA still maintains a comparable or even superior average accuracy. Regarding
other LoRA variants, while some show modest accuracy improvements, they still lag significantly
behind BoRA. Using a similar number of parameters, BoRA outperforms the best baseline by up
to 1% on RoBERTa-Base and 2% on RoBERTa-Large. Moreover, doubling the number of blocks
enhances BoRA’s performance. The impact of block numbers will be examined in Section 4.4, where
it is shown that further increasing the number of blocks continues to yield performance gains.

Table 1: The accuracy on General Language Understanding tasks with various pretrained models.

#Params RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP Avg

R
oB

E
R

Ta
-B

as
e

LoRA(r = 8) 0.29M 72.56 87.25 87.12 56.10 93.46 91.58 84.89 87.46 82.55
LoRA(r = 16) 0.59M 72.92 87.99 87.46 55.21 93.81 91.89 85.52 87.79 82.82
LoRA(r = 32) 1.18M 75.09 89.22 88.01 58.58 93.58 90.12 85.84 88.37 83.60
DoRA(r = 8) 0.31M 72.92 87.75 87.58 55.14 93.12 91.26 85.02 87.41 82.53
MELoRA(r = 8) 0.29M 71.48 87.50 87.54 52.12 92.78 90.96 84.68 86.83 81.74
HydraLoRA(r = 4) 0.35M 71.84 89.46 88.07 55.32 93.81 91.62 85.27 87.25 82.83
BoRA(r = 8, b = 8) 0.31M 75.45 88.73 88.17 58.12 93.92 91.82 85.09 87.93 83.65
BoRA(r = 8, b = 16) 0.34M 76.90 88.24 89.31 57.35 93.12 91.78 85.69 87.86 83.78

R
oB

E
R

Ta
-L

ar
ge

LoRA(r = 8) 0.79M 71.96 88.40 89.88 59.76 95.41 93.07 88.67 87.89 84.38
LoRA(r = 16) 1.57M 77.74 88.48 90.60 61.23 95.57 93.72 89.29 88.25 85.61
LoRA(r = 32) 3.15M 81.35 89.64 91.45 60.90 95.60 93.76 89.52 88.61 86.35
DoRA(r = 8) 0.84M 75.21 87.83 89.94 59.47 95.41 92.99 88.58 87.84 84.66
MELoRA(r = 8) 0.79M 72.36 87.32 86.85 59.37 95.30 92.70 88.37 87.33 83.70
HydraLoRA(r = 4) 0.93M 74.01 89.22 89.47 59.90 95.41 92.88 88.87 87.98 84.72
BoRA(r = 8, b = 8) 0.81M 78.34 89.95 91.18 60.34 95.18 93.48 89.66 88.52 85.83
BoRA(r = 8, b = 16) 0.88M 83.75 88.97 91.33 60.57 95.30 93.76 89.81 88.60 86.51

Results on Mathematical Reasoning Tasks. As shown in Table 2, BoRA demonstrates significant
improvements in mathematical reasoning tasks. At the same rank (r = 8), BoRA’s accuracy across
the three models is, on average, 2.4% higher than that of LoRA. Notably, even when LoRA’s rank is
increased by four times, the average improvement is only 1.9%. This highlights BoRA’s superiority in
increasing matrix rank and its enhanced expressiveness compared to LoRA. The improvements from
DoRA and HydraLoRA are similarly modest. Although MELoRA also increases the matrix rank, it
introduces many zero elements, resulting in information loss and thus diminishing performance.

Results on Commonsense Reasoning Tasks. As shown in Table 3, BoRA also achieves the best
accuracy in commonsense reasoning tasks. The experimental conclusions are highly consistent with
those in mathematical reasoning tasks. Note that the accuracy of commonsense reasoning tasks is
generally higher than that of mathematical reasoning tasks, and the relative improvement is not so
obvious. Nevertheless, at the same rank (r = 8), BoRA’s accuracy across the three models is, on
average, 0.95% higher than that of LoRA. In comparison, the average improvement from a fourfold
increase in LoRA’s rank is only 0.77%. This suggests that BoRA can achieve similar fine-tuning
performance while requiring more than four times fewer parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The accuracy on Mathematical Reasoning tasks with various pretrained models.

#Params AddSub MultiArith SingleEq GSM8K AQuA SVAMP Avg
G

em
m

a-
7B

LoRA(r = 8) 4.82M 87.59 90.33 89.76 56.10 29.13 75.70 71.44
LoRA(r = 16) 9.63M 86.84 92.83 89.57 58.15 30.71 74.90 72.17
LoRA(r = 32) 19.3M 86.58 91.50 91.93 58.45 32.28 75.50 72.71
DoRA(r = 8) 5.16M 85.06 93.00 89.57 57.16 27.17 76.40 71.39
MELoRA(r = 8) 4.82M 86.84 90.56 90.35 58.86 30.18 74.53 71.89
HydraLoRA(r = 4) 5.94M 85.82 91.06 91.27 58.68 29.13 74.47 71.74
BoRA(r = 8, b = 8) 4.86M 87.93 93.22 90.35 58.91 29.66 75.37 72.57
BoRA(r = 8, b = 16) 4.99M 87.85 92.50 90.94 59.72 31.36 76.20 73.10

L
L

am
a-

3-
8B

LoRA(r = 8) 4.72M 82.28 87.06 91.60 55.65 24.02 68.53 68.19
LoRA(r = 16) 9.44M 84.56 91.22 92.26 57.22 25.72 70.17 70.19
LoRA(r = 32) 18.9M 87.17 93.39 93.50 57.87 26.25 71.83 71.67
DoRA(r = 8) 4.92M 81.39 89.09 92.42 55.77 23.63 68.15 68.41
MELoRA(r = 8) 4.72M 85.32 85.67 91.34 54.74 20.87 70.90 68.14
HydraLoRA(r = 4) 5.11M 77.22 89.17 91.73 56.63 24.41 66.30 67.58
BoRA(r = 8, b = 8) 4.77M 87.85 93.67 92.72 58.45 26.38 70.10 71.53
BoRA(r = 8, b = 16) 4.92M 88.35 93.00 92.72 58.83 27.17 73.40 72.24

Q
w

en
2.

5-
14

B

LoRA(r = 8) 8.65M 93.16 96.67 92.32 75.66 31.10 85.60 79.09
LoRA(r = 16) 17.3M 91.90 96.33 92.91 74.37 34.65 86.40 79.43
LoRA(r = 32) 34.6M 92.24 97.39 92.98 76.37 34.78 87.13 80.15
DoRA(r = 8) 8.99M 92.91 96.72 91.86 75.26 33.73 86.13 79.44
MELoRA(r = 8) 8.65M 91.65 97.17 92.32 75.66 33.46 84.90 79.19
HydraLoRA(r = 4) 9.29M 92.74 96.78 91.60 75.76 33.33 86.23 79.41
BoRA(r = 8, b = 8) 8.72M 91.65 96.83 92.78 75.41 34.78 86.93 79.73
BoRA(r = 8, b = 16) 8.95M 91.90 98.00 92.72 75.82 38.19 87.00 80.60

Table 3: The accuracy on Commonsense Reasoning tasks with various pretrained models.

#Param BoolQ PIQA SIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Avg

G
em

m
a-

7B

LoRA(r = 8) 4.82M 70.15 88.96 78.05 94.08 89.82 83.96 94.02 88.60 85.95
LoRA(r = 16) 9.63M 75.17 88.74 77.58 95.21 89.11 84.73 92.93 88.00 86.43
LoRA(r = 32) 19.3M 74.34 89.72 78.10 95.77 88.95 84.73 94.11 87.20 86.61
DoRA(r = 8) 5.16M 74.86 89.55 78.76 93.66 89.74 83.45 92.68 86.20 86.11
MELoRA(r = 8) 4.82M 71.22 88.90 78.97 94.46 88.32 83.36 93.64 87.20 85.76
HydraLoRA(r = 4) 5.94M 71.77 87.92 80.76 95.00 88.24 84.47 94.44 87.20 86.23
BoRA(r = 8, b = 8) 4.86M 72.66 90.26 78.97 94.77 90.77 84.73 93.39 89.00 86.82
BoRA(r = 8, b = 16) 4.99M 73.08 90.42 80.04 95.10 89.82 84.95 94.36 88.53 87.04

L
L

am
a-

3-
8B

LoRA(r = 8) 4.72M 73.17 89.34 80.64 93.22 87.42 80.20 92.51 87.13 85.45
LoRA(r = 16) 9.44M 73.54 89.50 81.18 94.18 88.00 81.11 93.15 88.53 86.15
LoRA(r = 32) 18.9M 73.87 90.01 82.09 94.95 88.37 82.20 93.57 88.73 86.72
DoRA(r = 8) 4.92M 72.72 89.17 80.76 93.51 88.32 80.89 92.34 88.00 85.71
MELoRA(r = 8) 4.72M 72.66 89.28 81.53 94.19 86.74 80.89 93.10 89.00 85.92
HydraLoRA(r = 4) 5.11M 72.66 88.85 81.01 93.48 87.37 80.20 92.68 87.80 85.51
BoRA(r = 8, b = 8) 4.77M 74.10 89.61 81.68 93.81 88.24 80.97 93.01 88.40 86.23
BoRA(r = 8, b = 16) 4.92M 74.22 89.66 81.93 94.27 88.48 82.08 93.10 89.20 86.62

Q
w

en
2.

5-
14

B

LoRA(r = 8) 8.65M 75.99 93.80 84.34 96.39 92.34 94.03 98.06 95.00 91.24
LoRA(r = 16) 17.3M 76.15 93.74 84.44 96.87 92.50 94.20 98.36 95.80 91.51
LoRA(r = 32) 34.6M 76.70 93.91 84.90 96.91 92.42 94.62 98.23 95.80 91.69
DoRA(r = 8) 8.99M 76.35 93.49 84.32 96.56 92.66 94.34 98.13 95.73 91.45
MELoRA(r = 8) 8.65M 76.41 93.67 84.87 96.78 91.92 94.25 98.01 95.93 91.48
HydraLoRA(r = 4) 9.29M 76.02 93.91 84.24 96.50 92.58 94.11 97.98 95.20 91.32
BoRA(r = 8, b = 8) 8.72M 77.09 93.85 84.75 96.95 92.27 94.62 98.32 96.00 91.73
BoRA(r = 8, b = 16) 8.95M 77.06 93.91 85.57 96.96 92.66 93.52 98.11 96.80 91.82

4.3 ABLATION STUDIES

To optimize the block-wise diagonal matrices Σ effectively, BoRA applies both an exponential and a
normalization function to the learnable parameters σ, as shown in Eq.(4). In this section, we conduct
ablation experiments on mathematical reasoning tasks to assess the importance of these two functions.
As shown in Figure 3(a), omitting either the exponential or the normalization function leads to a
significant decrease in accuracy across various models. Notably, the absence of normalization has a
more significant effect on performance. This can be attributed to the small initial values of σ; without
normalization, most entries in Σ remain close to 1, which restricts the expressiveness of BoRA.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Gemma-7B Llama-3-8B Qwen2.5-14B
Pretrained Model

66

68

70

72

74

76

78

80

82

Av
er

ag
e

Ac
cu

ra
cy

73.10
72.24

80.60

71.77

68.51

79.79

72.15

68.48

79.26

BoRA
BoRA w.o. Exp
BoRA w.o. Norm

(a) Ablation Results of BoRA

LoRA b=2 b=4 b=8 b=16 b=32 b=64
Number of Blocks

r=2

r=4

r=8

r=16

r=32

r=64

Lo
RA

 R
an

k

66

67

68

69

70

71

72

73

74

Av
er

ag
e

Ac
cu

ra
cy

(b) Different Ranks and Block Num-
bers

Q QV QKV QKVUD QKVOGUD
Target Modules

60

62

64

66

68

70

72

74

Av
er

ag
e

Ac
cu

ra
cy

64.97

68.05 68.19

72.14 72.23

67.87

71.01

72.24

73.40
73.88LoRA

BoRA

(c) Differnt Tuning Granularity

Figure 3: Ablation studies and scalability analysis on mathematical reasoning tasks. (a) Ablation
results for the exponential function (Exp) and normalization function (Norm) in BoRA. (b) Accuracy
of BoRA at varying ranks and block numbers. (c) Accuracy of BoRA at different tuning granularity.
The figures present only the average accuracy, and the detailed results are available in Appendix C.

4.4 SCALABILITY ANALYSIS

In this section, we evaluate the scalability of BoRA on mathematical reasoning tasks using LLama-3-
8B, from three perspectives: the LoRA rank, the number of blocks, and the tuning granularity.

Results of Different LoRA Ranks and Number of Blocks. In Section 4.2, we set the rank of BoRA
to 8 and evaluated its performance with 8 and 16 blocks. In this section, we investigate the effects of
varying the LoRA rank (r) and the number of blocks (b) from the set {2, 4, 8, 16, 32, 64}. Notably,
the number of additional parameters introduced by BoRA is b2r, which increases quadratically with
b. For comparison, when b = 64, the number of trainable parameters in BoRA is approximately
1.6 times greater than that in LoRA at the same rank. As shown in Figure 3(b), BoRA consistently
outperforms LoRA across various ranks, even when b = 2. As b increases, the performance of BoRA
improves. However, when r increases and b surpasses a certain threshold, accuracy begins to decline,
which is attributed to potential overfitting caused by the higher rank of the weight matrix.

Results of Different Tuning Granularity. Finally, we evaluate the scalability of BoRA under
different tuning granularity. In Section 4.2, we apply LoRA and BoRA only to the query, key,
and value weights. In this section, we introduce four additional strengths: Q, QV, QKVUD, and
QKVOGUD, where O, G, U, and D represent the output, gate, up, and down projection weights,
respectively. The rank is set to 8, and the number of blocks is set to 16 for BoRA.

::::
Note

::::
that,

:::::
within

:::
any

:::::
given

::::::
tuning

:::::::::
granularity,

:::
the

:::::::
number

::
of

:::::::::
parameters

::::
and

::::::::::::
computational

::::
costs

::
in

::::::
BoRA

::
are

::::::::::::
approximately

::
the

:::::
same

::
as

::
in

::::::
LoRA.

::::
The

:::
goal

:::
of

:::
this

:::::::::
experiment

::
is

::
to

:::::::
compare

:::::::
BoRA’s

::::::::::
performance

::::::
relative

::
to

:::::
LoRA

::
at
::::
each

::::::::::
granularity.

:
As shown in Figure 3(c), BoRA consistently outperforms LoRA

across different tuning granularity
:
,
::::::::::::
demonstrating

:::
that

:::::::
BoRA’s

::::::::::
performance

:::::::::::
improvement

::::
over

::::::
LoRA

:
is
:::::::::
consistent

:::::
across

:::::::
various

:::::
layers

::
of

:::
the

::::::
model

::::
(e.g.,

::::::
k_proj

:::
and

:::::::
v_proj).

4.5 SINGULAR VALUE ANALYSIS

BoRA aims to enhance the rank of LoRA weights. To illustrate this more clearly, we analyze the
singular values of both LoRA and BoRA. Specifically, we present the sum of the squared singular
values and the count of singular values exceeding 0.005 for the weight of each query layer.

:::
The

:::::::
threshold

:::
of

:::::
0.005

::
is

::::::
chosen

:::
to

:::::::
calculate

::::
the

:::::::
effective

:::::
rank,

::::::::
following

::::
the

::::::
settings

:::::
used

::
in

::::::
HiRA

::::::::::::::::
Huang et al. (2025).

:
As shown in Figure 4, the number of singular values greater than 0.005 in LoRA

corresponds to its rank. As the rank increases, the sum of squared singular values also increases. In
contrast to LoRA, BoRA exhibits significantly more singular values greater than 0.005, and the sum
of squared singular values is substantially larger, effectively demonstrating BoRA’s role in enhancing
rank.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0 10 20 30
Layer

23

24

25

26

27

Nu
m

be
r o

f S
in

gu
la

r V
al

ue
s

0 10 20 30
Layer

2 5

2 4

2 3

2 2

2 1

20

21

22

23

Su
m

 o
f S

qu
ar

ed
 S

in
gu

la
r V

al
ue

s

0 10 20 30
Layer

23

24

25

26

27

Nu
m

be
r o

f S
in

gu
la

r V
al

ue
s

0 10 20 30
Layer

2 4

2 3

2 2

2 1

20

21

22

Su
m

 o
f S

qu
ar

ed
 S

in
gu

la
r V

al
ue

s

Mathematical Reasoning Tasks Commonsense Reasoning Tasks

LoRA (r=8) LoRA (r=16) LoRA (r=32) BoRA (r=8,b=8) BoRA (r=8,b=16)

Figure 4: The sum of the squared singular values and the number of singular values greater than
0.005 across the query layers in LoRA and BoRA, with different ranks and block numbers.

4.6
::::::::::
EFFICIENCY

:::::::::
ANALYSIS

::
As

:::::::::
discussed

::
in

:::::::
Section

::::
3.4,

:::
we

::::::::::
highlighted

:::
the

::::::::
minimal

::::::::::::
computational

::::
and

:::::::
memory

::::::::
overhead

:::::::::
introduced

::
by

:::
the

::::::::::
block-wise

:::::::
diagonal

::::::::
matrices

::
in

:::::::
BoRA.

::
To

:::::::
validate

::::
this

:::::
point

::::
more

::::::::::
rigorously,

::
we

:::::::::
measured

:::
the

:::::::::
wall-clock

::::
time

::::
and

:::::::
memory

:::::
usage

:::
of

::::::
various

::::::::
methods.

:::::
One

:::::
epoch

:::
of

::::::
training

::
on

:::
the

::::::::::::
mathematical

::::::::
reasoning

::::
task

::::
was

:::::::::
performed

:::::
using

:::
the

:::::::::::
LLama-3-8B

::::::
model

::::
with

::
an

::::::
Nvidia

:::::
A6000

:::::
GPU

:::
and

::
a
:::::
batch

:::
size

::
of

::
4.
:

Table 4:
::::::::::::
Computational

:::
cost

::::
and

:::::::
memory

:::::
usage

::
of

::::::::
different

:::::::
methods

:::::
using

:::
the

:::::::::::
LLama-3-8B

:::::
model.

:
#
::::::
Param

::::
(M)

::::::::
Memory

::::
(GB)

:::::
Time

:::::
(Min)

:::::::::::
LoRA(r = 8)

: :::
4.72

: ::::
23.57

: ::::
18.5

::::::::::::::::::
BoRA(r = 8, b = 16)

:::
4.92

: ::::
23.63

: ::::
18.6

::::::::::::::
MELoRA(r = 8)

: :::
4.72

: ::::
23.57

: ::::
18.6

::::::::::::::::
HydraLoRA(r = 4)

: :::
5.11

: ::::
24.98

: ::::
19.6

:::::::::::
DoRA(r = 8)

: :::
4.92

: ::::
24.36

: ::::
22.3

::
As

::::::
shown

:::
in

:::::
Table

::
4,

::::::
BoRA

::::
and

:::::::::
MELoRA

::::::
exhibit

::::::
nearly

::::::::
identical

:::::::
training

::::
time

::::
and

::::::::
memory

:::::::
footprint

:::::::::
compared

::
to

::::::
LoRA.

:::::::::::
HydraLoRA

:::::::::
introduces

:::::::::
additional

::::::
gating

::::::
layers,

:::::
which

::::
add

::::::
minor

:::::::::::
computational

::::
cost

::::
and

:::::
result

::
in

:
a
:::::

small
::::::::

increase
::
in

:::::::
runtime.

:::::::
DoRA,

:::
due

::
to
:::

its
:::::::::::::::
reparameterization

::
of

::::::::
directions

::::
and

::::::::::
magnitudes,

:::::::
requires

:::::
more

::::::::
complex

::::::::::
computation

::::
and

::::::::
therefore

:::::::::
introduces

::::
some

:::::::
overhead

::
as

:::::
well.

:::::::
Overall,

:::
the

::::::::
empirical

:::::::
evidence

:::::::
supports

:::
our

::::::::
argument

::::
that

:::
the

:::::::::
end-to-end

::::::
training

:::::::
overhead

:::
of

:::::
BoRA

::
is
::::::::::

essentially
::
on

::::
par

::::
with

::::::
LoRA,

::::
and

::::::::::
comparable

::
or

:::::
lower

::::
than

:::::::
several

:::::
other

::::::::::::
state-of-the-art

::::::::
methods.

5 CONCLUSION

In this paper, we analyze the rank of LoRA weights from the perspective of block matrix multiplication.
Our analysis revealed that standard LoRA suffers from rank limitations due to correlations among
different block products. To solve this limitation, we propose Block-Diversified Low-Rank Adaptation
(BoRA), a simple yet powerful extension to LoRA that enhances the rank of LoRA weights. BoRA
effectively breaks the correlations among different block products by introducing a unique diagonal
matrix for each block multiplication, thereby increasing the rank of LoRA weights by a factor of b,
where b denotes the number of blocks. Extensive experiments demonstrate that BoRA outperforms
LoRA and several LoRA variants across various tasks and models. Notably, BoRA achieves a 2-4%
accuracy improvement over LoRA, while maintaining similar parameter and computational costs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors confirm that the submitted work does not raise any concerns with respect to the ICLR
Code of Ethics. It does not involve human subjects, sensitive or private data, or applications with
potential ethical risks. All resources used are publicly available and properly licensed, and the
research was conducted in full compliance with ethical and legal standards.

REPRODUCIBILITY STATEMENT

This paper includes detailed descriptions of the training setups, hyperparameter choices, and eval-
uation protocols, enabling full verification of the methodology. To further support reproducibility,
the complete source code and experimental scripts are provided at the anonymous repository link:
https://anonymous.4open.science/r/BoRA.

REFERENCES

DeepSeek-AI. Deepseek-v3 technical report. CoRR, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, et al. The
llama 3 herd of models. CoRR, 2024.

Ali Edalati, Marzieh S. Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J. Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. In Advances in Neural
Information Processing Systems (NeurIPS) Workshop, 2023.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models. In
International Conference on Machine Learning (ICML), 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations (ICLR), 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In
International Conference on Machine Learning (ICML), 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In International
Conference on Learning Representations (ICLR), 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning of
large language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2023.

Qiushi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. HiRA: Parameter-efficient
hadamard high-rank adaptation for large language models. In International Conference on Learning
Representations (ICLR), 2025.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. CoRR,
abs/2312.03732, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, (ACL/IJCNLP), 2021.

11

https://anonymous.4open.science/r/BoRA

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Li, Shaobo Han, and Jonathan Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with
vector banks. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. In International Conference on Learning Representations
(ICLR), 2024.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In International
Conference on Machine Learning (ICML), 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large language
models. CoRR, abs/2402.12851, 2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, et al. Gemma: Open models based on gemini
research and technology. CoRR, abs/2403.08295, 2024.

OpenAI. Gpt-4 technical report. CoRR, 2024.

Anastasia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and Amjad
Almahairi. Residual prompt tuning: improving prompt tuning with residual reparameterization. In
Findings of the Association for Computational Linguistics (ACL), 2023.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke,
Zhumin Chen, and Jiahuan Pei. Melora: Mini-ensemble low-rank adapters for parameter-efficient
fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (ACL), 2024.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric
lora architecture for efficient fine-tuning. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations (ICLR), 2019.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
Awadallah, and Jianfeng Gao. Adamix: Mixture-of-adaptations for parameter-efficient model
tuning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2022.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. CoRR,
2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, et al. Qwen2.5
technical report. CoRR, abs/2412.15115, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In International
Conference on Learning Representations (ICLR), 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Conference
on Learning Representations (ICLR), 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large language models (LLMs) were only used as writing assistants to polish the language, improve
clarity, and check grammar. They were not involved in the generation of research ideas, the design
or implementation of methods, data analysis, or the production of results. The authors take full
responsibility for all content of the paper.

B DETAILED EXPERIMENTAL SETTINGS

Datasets and Models. The GLUE benchmark Wang et al. (2019) includes two single-sentence
classification tasks (CoLA, SST-2), five pairwise text classification tasks (MNLI, RTE, QQP, MRPC,
and QNLI), and one text similarity prediction task (STS-B). This paper reports the overall matched
and mismatched accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B,
and accuracy for the remaining tasks. Due to the differing dataset sizes, the number of epochs varies:
10 epochs for RTE and MRPC, 5 epochs for STS-B and CoLA, 2 epochs for SST-2 and QNLI, and
1 epoch for MNLI and QQP. The models used are RoBERTa-Base and RoBERTa-Large Liu et al.
(2019).

LoRA Hyperparameters. The scaling factor is set to α = 2r, where r is the LoRA rank. LoRA is
applied to the query and value weights with a dropout rate of 0.05, using full precision (FP32).

Training Hyperparameters. AdamW Loshchilov and Hutter (2019) is used with β1 = 0.9,
β2 = 0.999, ϵ = 1e−8, and no weight decay. The learning rate is selected from the set
{3e−5, 1e−4, 3e−4, 1e−3}, with optimal values of 3e−4 for RoBERTa-Base and 1e−4 for
RoBERTa-Large. A warm-up ratio of 0.03 is applied, and the batch size is set to 32. The maximum
sequence length is 512.

B.1 EXPERIMENTS ON MATHEMATICAL AND COMMONSENSE REASONING TASKS

Datasets. Mathematical and commonsense reasoning tasks contain 10K and 170K training samples,
respectively, along with several test tasks. Note that we directly utilize the data from Hu et al. (2023)
for our experiments. The training process consists of a single epoch. Three models are employed:
Gemma-7B Mesnard et al. (2024), LLama-3-8B Dubey et al. (2024), and Qwen2.5-14B Yang et al.
(2024).

LoRA Hyperparameters. The scaling factor is set to α = 2r, where r is the LoRA rank. LoRA is
applied to the query, key, and value weights with a dropout rate of 0.05, using half precision (BF16).

Training Hyperparameters. AdamW is employed with the same settings as previously mentioned.
The learning rate is chosen from the set {3e−5, 1e−4, 3e−4, 1e−3} and is set to 1e−4. A warm-up
of 100 steps is applied, and the batch size is set to 16. The maximum sequence length is 256.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 STANDARD DEVIATIONS

As discussed in Section 4.2, each experiment was repeated three times, and the average results are
reported. For conciseness, standard deviations are provided in the Appendix. Table 5 shows the
standard deviations for each GLUE dataset, where a separate model was trained for each. Table
6 presents the standard deviation of the average accuracy for the commonsense and mathematical
reasoning tasks, where a single model was used across these sub-tasks. Notably, the standard deviation
remains stable and is much smaller than the accuracy improvement achieved by BoRA.

C.2 DETAILED ABLATION RESULTS

In Section 4.3, ablation experiments were conducted on mathematical reasoning tasks to evaluate the
contributions of exponential and normalization functions. Figure 3(a) shows the average accuracy of
various methods across multiple sub-tasks. Full experimental results are provided in Table 7 for a
more detailed comparison.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: The standard deviation of different methods on the GLUE benchmark.

RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP

RoBERTa-Base

LoRA(r = 8) 0.51 0.46 0.27 0.57 0.11 0.15 0.11 0.10
LoRA(r = 16) 0.84 0.40 0.34 0.64 0.29 0.11 0.04 0.08
LoRA(r = 32) 0.78 0.35 0.39 0.56 0.14 1.00 0.11 0.03
DoRA(r = 8) 0.51 0.80 0.41 0.49 0.41 0.09 0.12 0.10
MELoRA(r = 8) 0.85 0.72 0.76 0.68 0.09 0.30 0.30 0.09
HydraLoRA(r = 4) 0.18 0.53 0.51 0.55 0.24 0.15 0.27 0.05
BoRA(r = 8, b = 8) 0.86 0.12 0.61 0.52 0.22 0.02 0.27 0.04
BoRA(r = 8, b = 16) 0.64 0.61 0.88 0.64 0.19 0.20 0.14 0.12

RoBERTa-Large

LoRA(r = 8) 0.55 0.81 0.26 0.64 0.50 0.22 0.23 0.05
LoRA(r = 16) 0.51 0.20 0.59 0.98 0.19 0.16 0.27 0.04
LoRA(r = 32) 0.40 0.66 0.13 0.65 0.33 0.44 0.32 0.02
DoRA(r = 8) 0.79 0.42 0.03 0.78 0.19 0.30 0.25 0.02
MELoRA(r = 8) 0.59 0.35 0.89 0.24 0.19 0.25 0.38 0.04
HydraLoRA(r = 4) 0.25 0.60 0.63 0.59 0.09 0.04 0.29 0.09
BoRA(r = 8, b = 8) 0.36 0.60 0.15 0.43 0.09 0.13 0.48 0.03
BoRA(r = 8, b = 16) 0.59 0.23 0.17 0.53 0.19 0.17 0.12 0.03

Table 6: The standard deviation of the average accuracy on the mathematical and commonsense
reasoning tasks with various pretrained models.

Mathematical Reasoning Commonsense Reasoning

Gemma-7B LLama-3-8B Qwen2.5-14B Gemma-7B LLama-3-8B Qwen2.5-14B
LoRA(r = 8) 0.19 0.88 0.60 0.63 0.13 0.13
LoRA(r = 16) 0.61 0.62 0.50 0.22 0.19 0.10
LoRA(r = 32) 0.48 0.80 0.78 0.18 0.29 0.06
DoRA(r = 8) 0.47 0.47 0.49 0.48 0.35 0.17
MELoRA(r = 8) 0.34 0.58 0.23 0.22 0.48 0.02
HydraLoRA(r = 4) 0.21 0.36 0.39 0.43 0.19 0.23
BoRA(r = 8, b = 8) 0.42 0.61 0.38 0.12 0.26 0.06
BoRA(r = 8, b = 16) 0.44 0.38 0.32 0.38 0.28 0.01

C.3 DETAILED RESULTS OF THE SCALABILITY ANALYSIS

In Section 4.4, the scalability of BoRA was evaluated using LLama-3-8B on mathematical reasoning
tasks from three perspectives: LoRA rank, number of blocks, and tuning granularity. Figure 3
presents the average accuracy of different settings across sub-tasks. Complete experimental results
are available in Tables 8 and 9 for further comparison.

D BROADER IMPACTS

This paper introduces BoRA, a method for increasing the rank of LoRA weights. BoRA achieves the
same fine-tuning performance as LoRA while using fewer parameters and reducing computational
overhead, thus contributing to energy savings. Our work builds upon LoRA, and we assert that our
approach does not introduce any negative social implications requiring further discussion.

E ADDITIONAL RELATED WORK

In addition to LoRA, there are two other commonly used PEFT methods: adapter-based and soft
prompt-based methods. The adapter-based method Houlsby et al. (2019); He et al. (2022); Wang
et al. (2022) inserts new layers into the model and fine-tunes only these layers, significantly reducing
resource consumption. However, the additional layers introduce increased latency. The soft prompt-
based method Lester et al. (2021); Li and Liang (2021); Razdaibiedina et al. (2023) adds learnable soft
tokens (prompts) to the input, enabling the model to adapt to specific tasks. This method leverages
the pretrained model’s inherent capabilities and requires only appropriate prompts for downstream
task adaptation. However, it also adds computational overhead and increases inference latency. In

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: The accuracy of BoRA without exponential or normalization functions on mathematical
reasoning tasks using LLama-3-8B.

AddSub MultiArith SingleEq GSM8K AQuA SVAMP Avg

Gemma-7B
BoRA 87.85 92.50 90.94 59.72 31.36 76.20 73.10
BoRA w.o. Exp 86.33 90.67 89.37 58.45 30.71 75.10 71.77
BoRA w.o. Norm 86.58 91.83 88.78 58.23 32.28 75.20 72.15

LLama-3-8B
BoRA 88.35 93.00 92.72 58.83 27.17 73.40 72.24
BoRA w.o. Exp 83.04 87.00 90.94 55.19 26.77 68.10 68.51
BoRA w.o. Norm 81.77 88.17 91.34 56.10 25.20 68.30 68.48

Qwen2.5-14B
BoRA 91.90 98.00 92.72 75.82 38.19 87.00 80.60
BoRA w.o. Exp 92.66 96.67 92.52 77.63 33.86 85.40 79.79
BoRA w.o. Norm 93.16 96.17 92.13 76.42 32.28 85.40 79.26

Table 8: The accuracy of LoRA and BoRA with varying target modules on mathematical reasoning
tasks using LLama-3-8B.

Target Modules Method #Params AddSub MultiArith SingleEq GSM8K AQuA SVAMP Avg

Q LoRA(r = 8) 2.10M 74.43 86.39 88.45 52.26 26.64 61.67 64.97
BoRA(r = 8, b = 16) 2.16M 81.18 90.78 90.42 54.54 23.23 67.10 67.87

QV LoRA(r = 8) 3.41M 81.27 90.00 91.54 56.25 22.83 66.40 68.05
BoRA(r = 8, b = 16) 3.54M 86.50 91.22 93.18 58.18 25.98 71.03 71.01

QKV LoRA(r = 8) 4.72M 82.28 87.06 91.60 55.65 24.02 68.53 68.19
BoRA(r = 8, b = 16) 4.92M 88.35 93.00 92.72 58.83 27.17 73.40 72.24

QKVUD LoRA(r = 8) 14.2M 88.69 92.11 93.83 59.79 24.93 73.50 72.14
BoRA(r = 8, b = 16) 14.5M 89.11 95.25 93.60 61.79 24.41 76.20 73.40

QKVOGUD LoRA(r = 8) 21.0M 87.59 93.28 93.90 59.41 24.15 75.03 72.23
BoRA(r = 8, b = 16) 21.4M 89.62 95.67 94.00 62.47 25.40 76.10 73.88

contrast, both LoRA and the proposed BoRA allow for manual integration of weight updates into
pretrained weights after fine-tuning, avoiding additional inference latency.

:

F
:::::::::::::::
THEORETICAL

::::::::::::::::
JUSTIFICATION

::::
FOR

:::::::::::::::
PROPOSITION

::
1

::
In

::::::
Section

::::
3.3,

:::
we

:::::
briefly

::::::::
discussed

:::
the

:::::::::
theoretical

::::::::::
justification

:::
for

::::::::::
Proposition

::
1.

:::::
Here,

:::
we

::::::
provide

:
a
::::
more

:::::::
detailed

:::::::::
expansion

:::
and

::::::
explain

:::::
under

::::::
which

::::::::::
assumptions

:::::::
BoRA’s

::::
rank

:::
can

:::::::
achieve

:::
the

:::::
upper

:::::
bound

::::::::
presented

::
in

::::::::::
Proposition

::
1.

:

::::::
Without

::::
loss

:::
of

:::::::::
generality,

:::
for

:
a
::::::::::

pre-trained
::::::
weight

::::::::::::
W0 ∈ Rm×n,

:::::
LoRA

:::::::::
maintains

::::
two

::::::::
low-rank

:::::::
matrices

:::::::::
B ∈ Rm×r

::::
and

::::::::::
A ∈ Rr×n.

:::
Let

::::::
matrix

::::::::::::::::::::::::::::
B ∈ Rm×r = [B1, B2, . . . , Bb]

⊤
::
be

:::::::
divided

:::
into

:
b
::::::
blocks,

::::::
where

:::::::::::
Bi ∈ Rm

b ×r.
::::::::::

Similarly,
::::::
matrix

:::::::::::::::::::::::::
A ∈ Rr×n = [A1, A2, . . . , Ab]::

is
:::::::

divided
::::
into

:
b

::::::
blocks,

:::::
where

:::::::::::
Ai ∈ Rr×n

b .
:::
The

::::::
LoRA

:::::::
weights

::::::::
generated

::
by

:::
the

::::::::
proposed

::::::
BoRA

:::
can

::
be

:::::::
denoted

::
as

:::::::
follows:

∆W =


B1Σ1,1A1 B1Σ1,2A2 . . . B1Σ1,bAb

B2Σ2,1A1 B2Σ2,2A2 . . . B2Σ2,bAb

...
...

...
...

BbΣb,1A1 BbΣb,2A2 . . . BbΣb,bAb


::

:::::
where

:::::::::::::::::::::
Σi,j ∈ Rr×r (∀i, j ∈ [b])

:::
are

:::::::
diagonal

::::::::
matrices.

:::::
Note

::::
that

::::
∆W

::::
can

::::
also

::
be

::::::::::
represented

::
as

::
the

:::::::
product

::
of

:::::
three

:::::::
matrices

::::::::::::
(B′ ∈ Rm×br,

:::::::::::
Σ′ ∈ Rbr×br,

::::
and

:::::::::::
A′ ∈ Rbr×n),

::
as

::::::
shown

::::::
below:

∆W = B′Σ′A′ =


B1 0 . . . 0
0 B2 . . . 0
...

...
...

...
0 0 . . . Bb




Σ1,1 Σ1,2 . . . Σ1,b

Σ2,1 Σ2,2 . . . Σ2,b

...
...

...
...

Σb,1 Σb,2 . . . Σb,b




A1 0 . . . 0
0 A2 . . . 0
...

...
...

...
0 0 . . . Ab


::

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: The accuracy of LoRA and BoRA with varying ranks and block numbers on mathematical
reasoning tasks using LLama-3-8B.

Rank Method #Params AddSub MultiArith SingleEq GSM8K AQuA SVAMP Avg

r = 2

LoRA 1.18M 77.64 85.56 89.24 52.87 23.36 65.53 65.70
BoRA(b = 2) 1.18M 74.94 89.17 88.19 56.03 26.77 61.90 66.17
BoRA(b = 4) 1.18M 80.64 88.75 90.36 54.93 24.61 66.65 67.65
BoRA(b = 8) 1.19M 79.37 88.67 90.06 56.94 25.59 67.10 67.96
BoRA(b = 16) 1.23M 81.86 87.33 91.73 55.34 24.67 67.47 68.07
BoRA(b = 32) 1.38M 80.76 88.67 91.14 55.42 26.77 67.70 68.41
BoRA(b = 64) 1.97M 84.30 87.83 90.75 56.33 22.83 69.10 68.53

r = 4

LoRA 2.36M 79.49 86.83 88.85 55.12 23.10 66.03 66.57
BoRA(b = 2) 2.36M 79.24 88.67 90.16 55.88 22.05 64.40 66.73
BoRA(b = 4) 2.37M 79.24 89.50 93.90 58.30 22.05 63.90 67.81
BoRA(b = 8) 2.38M 83.29 90.17 91.53 55.55 24.28 67.73 68.76
BoRA(b = 16) 2.46M 82.95 90.56 92.92 57.70 24.54 69.17 69.64
BoRA(b = 32) 2.75M 81.60 91.39 92.78 58.20 25.98 68.10 69.68
BoRA(b = 64) 3.93M 85.06 92.33 92.91 56.68 27.04 69.23 70.54

r = 8

LoRA 4.72M 82.28 87.06 91.60 55.65 24.02 68.53 68.19
BoRA(b = 2) 4.72M 81.01 92.33 91.34 59.36 24.41 66.10 69.09
BoRA(b = 4) 4.73M 84.30 91.39 92.78 58.10 24.67 69.67 70.15
BoRA(b = 8) 4.77M 87.85 93.67 92.72 58.45 26.38 70.10 71.53
BoRA(b = 16) 4.92M 88.35 93.00 92.72 58.83 27.17 73.40 72.24
BoRA(b = 32) 5.51M 87.34 95.17 92.91 58.53 27.56 73.60 72.52
BoRA(b = 64) 7.86M 87.34 94.33 94.09 60.35 27.95 72.60 72.78

r = 16

LoRA 9.44M 84.56 91.22 92.26 57.22 25.72 70.17 70.19
BoRA(b = 2) 9.44M 83.04 91.67 94.69 59.59 26.38 68.00 70.56
BoRA(b = 4) 9.46M 86.16 91.33 93.83 59.26 26.51 70.70 71.30
BoRA(b = 8) 9.54M 85.82 93.61 93.31 59.61 25.46 72.10 71.65
BoRA(b = 16) 9.83M 86.75 93.67 93.90 58.94 26.51 72.27 72.01
BoRA(b = 32) 11.0M 89.37 94.83 94.29 58.91 25.20 74.10 72.78
BoRA(b = 64) 15.7M 87.34 95.58 94.29 59.40 30.52 73.20 73.39

r = 32

LoRA 18.9M 87.17 93.39 93.50 57.87 26.25 71.83 71.67
BoRA(b = 2) 18.9M 87.85 91.83 94.29 59.06 25.98 72.30 71.89
BoRA(b = 4) 18.9M 90.13 93.56 93.24 59.59 25.20 74.57 72.71
BoRA(b = 8) 19.1M 89.11 93.67 93.70 60.42 24.02 75.00 72.65
BoRA(b = 16) 19.7M 88.61 95.83 93.50 59.59 27.56 73.50 73.10
BoRA(b = 32) 22.0M 89.50 95.42 93.60 59.93 27.36 75.30 73.52
BoRA(b = 64) 31.5M 89.62 96.67 92.91 60.65 23.62 74.00 72.91

r = 64

LoRA 37.7M 88.10 94.33 93.70 60.05 25.20 73.10 72.41
BoRA(b = 2) 37.8M 89.62 91.17 94.29 60.73 25.59 76.30 72.95
BoRA(b = 4) 37.8M 88.77 94.72 93.70 60.78 26.51 74.53 73.17
BoRA(b = 8) 38.1M 90.13 94.50 94.49 62.70 25.20 75.40 73.74
BoRA(b = 16) 39.3M 89.87 94.83 94.29 60.50 26.77 76.00 73.71
BoRA(b = 32) 44.0M 89.62 96.17 95.08 61.56 27.95 75.90 74.38
BoRA(b = 64) 62.9M 90.13 95.67 93.90 61.26 25.59 76.90 73.91

:::::
Based

::
on

:::
the

::::::
shapes

::
of

:::
the

::::::::
matrices,

::
we

::::
can

:::::
derive

:::
the

:::::
upper

:::::
bound

:::
for

:::
the

::::
rank

::
of

:::
the

::::
three

::::::::
matrices:

rank(B′) ≤ min{m, br}, rank(A′) ≤ min{n, br}, rank(Σ′) ≤ br
:::

::::::::
According

::
to
:::
the

:::::::::
properties

::
of

::::::
matrix

::::::::::::
multiplication:

:

rank(∆W) ≤ min{rank(A′), rank(Σ′), rank(B′)} = min{m,n, br}.
:::

:
It
:::

is
::::::::
important

:::
to

:::::
note

::::
that

::::::::::
rank(∆W)

::::
can

::::
only

:::::
have

::
a
:::::::

clearly
:::::::
defined

:::::
upper

:::::::
bound,

::::
with

::
the

:::::::::
minimum

::::::
value

:::::
being

:::
0.

:::::
For

::::::::
example,

:::
in

:::::::
BoRA,

:::
the

:::::::
matrix

:::
B

::
is

:::::::::
initialized

:::
to

:::::
zero,

::
so

::
at
::::

the
:::::::::

beginning
:::

of
::::::::
training,

::::::::::::
rank(B′) = 0,

::::::
which

:::::::
results

::
in
:::::::::::::::

rank(∆W) = 0.
::::::::::

However,

::::
when

:::
all

:::::
three

:::::::
matrices

:::
are

::::
full

::::
rank

::::
(i.e.,

:::::::::::::::::::::
rank(B′) = min{m, br},

:::::::::::::::::::::
rank(A′) = min{n, br},

:::
and

:::::::::::::
rank(Σ′) = br),

:::::::
equality

:::::
holds,

:::
and

:::
the

:::::
upper

::::::
bound

::
for

::::::::::
rank(∆W)

:::
can

::
be

::::::::
achieved.

::::
This

::::::::
condition

:
is
::::::::

typically
::::::::

satisfied
:::::::
because

:::
Σ′

::::
and

:::
A′

::::
are

:::::::::
initialized

:::::::::
randomly,

::::::
which

::::::
usually

:::::::
ensures

::::
that

:::::::::::::::::::
rank(A′) = min{n, br}

::::
and

::::::::::::
rank(Σ′) = br.

:::
As

:::::::
training

:::::::::
progresses,

:::
B′

::
is

::::::::::
continually

:::::::
updated,

:::
and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

:::::::
rank(B′)

::::
can

::::::::
gradually

::::::::
approach

:::
full

:::::
rank.

:::::
This

::
is

::::::
evident

:::::
from

:::::
Figure

::
4
::
in

:::
the

::::::
paper,

:::::
where

:::
the

:::::::
effective

::::
rank

::
of

::::::
BoRA

:::
(the

:::::::
number

::
of

:::::::
singular

::::::
values

::::::
greater

::::
than

:::::
0.005)

::::::::::
approaches

::
br.

18

	Introduction
	Related Work
	Methodology
	Block Matrix Multiplication
	Block-Diversified Low-Rank Adaptation
	Rank Upper Bound of BoRA
	Efficient Forward Propagation of BoRA
	Comparison with LoRA and MELoRA

	Experiments
	Experimental Settings
	Overall Performance
	Ablation Studies
	Scalability Analysis
	Singular Value Analysis
	Efficiency Analysis

	Conclusion
	LLM Usage
	Detailed Experimental Settings
	Experiments on Mathematical and Commonsense Reasoning Tasks

	Additional Experimental Results
	Standard Deviations
	Detailed Ablation Results
	Detailed Results of the Scalability Analysis

	Broader Impacts
	Additional Related Work
	Theoretical Justification for Proposition 1

