
Computing Tractable Probabilistic Models: A Hardware Perspective

Abstract

Several deep learning models recently raised
overconfidence and reliability concerns, and al-
ternative models for trustworthy and explicit
decision-making systems are on the rise. Among
them, tractable probabilistic models (TPMs) have
recently gained significant interest, exploiting
their tractability for energy-efficient and general-
purpose inference. Yet, although "software" im-
plementations of TPMs have shown great poten-
tial, the hardware computation and acceleration
of these models is still largely underexplored. In
this work, we offer a perspective on why this is
the case, and elaborate on what can be done to
design more efficient processors suited for TPMs.
Our analysis shows that although research seems
currently fragmented, several pieces of the puzzle
can be combined to enable a larger use and a more
efficient computation of TPMs in edge AI systems.

1 INTRODUCTION

The development of explainable, compact and trustworthy
AI is essential for the next generation of decision-making
systems, targeting applications in healthcare, smart systems,
or automotive [Ghahramani, 2015]. In this context, deep
neural networks (NNs) have become a de facto standard,
providing at the same time state-of-the-art performance
and possibilities of efficient hardware computation [Hooker,
2020]. Yet, DNNs have many known limitations, whether
regarding their low interpretable nature or overconfidence
[Nalisnick et al., 2019], making them potentially unsuited
for explainable and trustworthy AI. Moreover, the drastic
increase in DNN model size and inference costs [Marcus,
2020, Heljakka et al., 2023] introduces challenges in their
computation on resource-constrained hardware. Thus, al-
ternative or complementary models are explored, such as

probabilistic models (PMs) [Ghahramani, 2015], allowing
for explicit probabilistic inference. A particularly promising
direction in this line of work is exploiting tractable proba-
bilistic models (TPMs), as they enable provably exact and
efficient inference in many scenarios and have shown to
be successful in many settings including speech or image
recognition [Nicolson and Paliwal, 2020, Wang and Wang,
2018, Stelzner et al., 2019], semantic mapping [Zheng and
Pronobis, 2019], outlier detection [Peharz et al., 2020] or
neurosymbolic AI, including uncertainty estimation [Kang
et al., 2024] or rule-based integration [Maene et al., 2025].

Naturally, many of those applications will benefit from being
embedded, i.e. computed online by dedicated edge devices.
Yet, the development of hardware accelerators for TPMs
is still in its infancy compared to their DNN counterparts,
practically limiting their use in resource-constrained appli-
cations (see Fig. 1 (a)). In this work, we aim to provide
a perspective on this challenge by answering three ques-
tions in the remainder of this work: (i) What makes TPMs
more difficult to compute on hardware (Section 2)? (i) What
are the current trends in hardware acceleration of TPMs
(Section 3)? (iii) What still needs to be done for the next
generation of TPM accelerators (Section 4)?

2 COMPUTING TPMs

In this section, we target the first of our questions: What
makes TPMs more difficult to compute on hardware?

2.1 PROBABILISTIC CIRCUITS AS TPMs

To discuss challenges related to TPMs, we use the frame-
work of probabilistic circuits (PCs) [Choi, 2022]. PCs are
probabilistic models that use computational graphs, com-
prising arithmetic operations, such as weighted sums ⊕
and multiplication ⊗. In PCs, many inference queries can
be answered with a single pass through the circuit, mak-
ing them particularly suited for embedded scenarios. To
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Figure 1: Illustration of the current challenges, proposed solutions and opportunities for the next generation TPM accelerators.
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Figure 2: Example of a probabilistic circuit.

make the analogy with deep NNs, PCs can be decomposed
into two operations, multiply-and-accumulate and product
operations. Sum nodes are computed as a weighted sum, cor-
responding to multiply-and-accumulate, and product nodes
correspond to product operations. Fig. 2 illustrates a PC
over discrete variables (X1, X2, X3), representing the joint
distribution P (X1, X2, X3) through a computational graph
consisting of weighted summations and multiplications1.
PCs have recently been vectorised for better scalability and
trained in mainstream deep learning frameworks such as
Tensorflow and PyTorch (e.g., [Peharz et al., 2020, Loconte
et al., 2024, Liu et al., 2024]).

In view of their increased use in various applications, the
hardware acceleration of PCs has gained interest, targeting
a whole range of platforms, such as CPUs/GPUs [Sommer
et al., 2021, Liu et al., 2024], FPGAs [Sommer et al., 2018,
Sommer et al., 2020a, Kruppe et al., 2022, Choi et al., 2022,

1The reader is referred to [Choi, 2022] for an in-depth intro-
duction to PCs.

Periasamy et al., 2024, Zhang et al., 2025] and custom
Application Specific Integrated Circuits (ASICs) [Shah et al.,
2021a, 2022].

2.2 SPECIFICITY OF PC ACCELERATION

Generally, designing a good AI accelerator requires fast and
efficient hardware, and is done in three steps: (1) identifying
the most hardware-costly operations and building dedicated
Processing Elements (PEs) to execute them efficiently, (2)
reusing these PEs as much as possible for maximum effi-
ciency, and (3) executing the PEs in parallel to maximise
the hardware speed (throughput). As such, accelerators are
benchmarked regarding their speed (in operations per sec-
ond, OPS) and their efficiency (in OPS/W). As shown in
Fig. 1 (a), these principles apply well to deep NNs, because:
(1) the most intensive operation is multiply-and-accumulate
(MAC), which can be done very efficiently at low resolution
on a dedicated PE, (2) MAC is performed by every neuron
of the model, leading to a large PE reuse, and (3) many neu-
rons (hence PEs) can be computed in parallel to increase the
throughput. In addition, there exist common development
frameworks to directly port DNNs into hardware.

Yet, this does not apply to PCs, which are generally high-
resolution and more irregular, complicating these hardware
acceleration principles. We consider the following two chal-
lenges:

Graph Irregularity. Typical ‘scalar’ PCs are relatively
sparse, especially compared to deep NNs. This sparsity
reduced the performance of classical accelerators. Hence, as
analysed in [Shah et al., 2020], computing a PC on highly
parallel GPUs leads to poor performance, as it is difficult to
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identify repeated computations and parallel threads.

Computation resolution. As variables to be computed rep-
resent probabilities, they lie in the (0, 1) range. These values
are successively added and multiplied, leading to potentially
extremely small values at the top layers. Thus, computa-
tions require significantly higher resolution than deep NNs
(typically 30− 40 floating point bits for medium-sized PCs
[Shah et al., 2019, Sommer et al., 2020a], requiring double
precision).

3 EXISTING TPM ACCELERATORS

Based on these aforementioned challenges, we discuss cur-
rently implemented solutions, as depicted in Fig. 1 (b): What
are the current trends in hardware acceleration of TPMs?

Let us consider ‘software’ PCs as a baseline, i.e., effectively
computed in a generic processor (CPU or GPU). Generic
platforms use a linear 32-bit or 64-bit floating point repre-
sentation, hence computing PCs (especially during training)
can quickly lead to underflow. An underflow occurs when a
computed probability falls below the smallest representable
number due to limited precision, causing it to be treated
as zero, which is detrimental to performance and learning.
In this case, logarithmic computation is used, where mul-
tiplications become additions and additions are efficiently
computed using the ‘Log-Sum-Exp’ (LSE) trick,

LSE(x1, x2, . . . , xn) = c+ log

(
n∑

i=1

exi−c

)
, (1)

where c = max(x1, x2, . . . , xn) and xi represent log prob-
abilitites. Note that the LSE function introduces a constant
c, which scales the exponential values to prevent under-
flow. Smaller values are shifted before the linear transfer,
effectively preventing underflow when exponenting the log
probabilities. Here, log values xi are encoded in 32-bit or
64-bit floating point, resulting in a large effective range in
the linear domain. However, LSE necessitates customized
hardware functions, because it still contains explicit log()
and exp() operations, even using already existing logarith-
mic computing hardware blocks. Those functions can still
be relatively costly to implement, thus hardware implemen-
tations are limited.

On top of LSE, there has been interest in compiling and ac-
celerating inference on CPUs/GPUs, for instance, using the
SPNC framework [Sommer et al., 2021]. SPNC uses a work-
flow to compile the PC for CPU or GPU execution, based
on specific compiler architectures (MLIR and LLVM). The
500× to 800× observed compared to baseline learning algo-
rithms (SPFlow) indicates that there exist large optimization
possibilities in the PC graph.

3.1 PCs ON DEDICATED HARDWARE

Compared to utilising generic processors, considerably
larger speed-up and efficiency can be found with dedicated
hardware, spanning across FPGA (i.e., reconfigurable hard-
ware) and ASIC (i.e., dedicated chips) platforms. Note that
a direct comparison between different hardware is challeng-
ing, as the computation format, type of PC and benchmarks
vary. Hence, we abstract this comparison into three aspects:

Quantise and compress? From the existing literature, it
is clear that not all nodes in a PC need the same computa-
tion resolution, enabling the reduction of the hardware cost
[Periasamy et al., 2024, Sommer et al., 2020b]. Hence, quan-
tisation and compression techniques are a promising avenue.
For instance, pruning and growing can change the shape of
the PC to learn better models [Dang et al., 2022]. Going
further, recent works have shown that PC compression is
possible [Zhang et al., 2025] and can reduce hardware and
memory costs by around 50% on average, compared to the
initial PC model. Although limiting memory and hardware
use, these methods do not solve the (lack of) parallelism of
the PC, that remains an issue.

How to identify computation patterns? The optimal struc-
ture of a PC inherently depends on the encoded proba-
bility distribution. Thus, it is challenging to find one (or
a few) repeated computations to form PEs. We consider
two approaches to tackle this issue: (1) change the model’s
structure, or (2) adapt the hardware architecture. Regarding
(1), recent tensorised PCs, such as RAT-SPN [Peharz et al.,
2019] or Einsum networks [Peharz et al., 2020] allow to
fix a computing structure and replicate it over the graph,
significantly increasing the throughput on GPU devices dur-
ing training and inference. Regarding (2), accelerators are
generally coupled with a dedicated compiler to group com-
putation ‘patterns’ and accelerate them in dedicated blocks
(if possible in parallel). One example of such a compiler tool
is GraphOpt [Shah et al., 2021a], coupled with the DPU_V2
accelerator [Shah et al., 2022]. Here, each pattern is mapped
to a given PE tree, increasing the accelerator’s performance.
Although offering more parallelism to compute the model,
transforming the structure can lead to models that are more
compute-intensive than scalar PCs.

Linear or Log computing? Generally, hardware acceler-
ators typically prefer linear computing systems. This is
motivated by two reasons: (1) ‘exact’ linear hardware is
generally much more efficient than logarithmic [Sommer
et al., 2018], and (2) ‘approximate’ log computation, while
more efficient, introduces errors that are not suitable for
high-resolution PC computation. Hence, most accelerators
rely on floating-point (FP) [Shah et al., 2020, Zhang et al.,
2025] or Posit [Shah et al., 2021b] number systems, while
other FPGA platforms allow the user to choose [Sommer
et al., 2018, Periasamy et al., 2024]. Regarding (1), using a
custom resolution (i.e. not only single or double precision)
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is desirable for efficiency. This can be done by theoretically
determining the best resolution [Shah et al., 2019], by it-
erative search [Sommer et al., 2020b] or a mix between
them [Periasamy et al., 2024]. The PC can also be effec-
tively quantised (after being partitioned) to further reduce its
memory footprint [Zhang et al., 2025]. Regarding point (2),
approximate computing has been recently studied to replace
exact multiplications, obtaining significant power savings
on FPGA hardware while limiting the accuracy loss [Yao
et al.]. While this direction is promising, further research is
needed.

Model-generic or Model-specific accelerator? Model-
specific accelerators directly replicate the PC graph into ele-
mentary computation blocks and compute them sequentially.
This provides a tailored computation for each PC graph, yet
requiring reconfigurable hardware (FPGA) [Sommer et al.,
2018, Shah et al., 2020, Kruppe et al., 2022, Periasamy
et al., 2024, Zhang et al., 2025]. In contrast, model-generic
accelerators use a more generic approach, necessary when
developing ASICs. The hardware typically comprises par-
allel PEs, each computing a small part of the PC. Hence,
any PC can be fitted using a dedicated compiler/scheduler.
The first example is DPU [Shah et al., 2020], comprising 64
parallel PEs, each PE implementing an addition or a multipli-
cation. A main feature of the design is the use of load/store
streaming units and a local scratchpad, enhancing data reuse
and allowing 12× gains compared to a GPU. This architec-
ture has been improved, based on the GraphOpt compiler
[Shah et al., 2021a], leading to DPU-v2 [Shah et al., 2022],
containing parallel trees of PEs, each able to perform an
addition, a multiplication or being bypassed. However, the
final performance gains are limited by inherent trade-offs in
IC design (essentially, adding more flexibility requires more
hardware, in turns degrading efficiency and/or throughput).

The current state of hardware acceleration. Based on
the ‘map’ of existing PC-specific hardware shown in Fig. 3,
we can see that while ASICs are 10− 100× more efficient
than FPGA implementations (one order of magnitude effi-
ciency corresponds to the space between two diagonal lines).
For instance, DPU_v1 shows a throughput of 33.7 GOPS
(@0.9V, 288 MHz, 8b) and a peak energy efficiency of 248
GOPS/W (@0.6 V, 113MHz, 8b), which is around 10× bet-
ter than FPGA-based accelerators. DPU_v2 improved the
speed to be 34.6 GOPS, with a peak energy efficiency of
31.6 GOPS/W. However, as it can be seen, their computing
speed stays in the same order of magnitude, which seems to
indicate that the current models they accelerate can’t be fur-
ther parallelised. In the next section, we provide directions
to improve the current situation.

4 TRENDS AND OPPORTUNITIES

Our literature review shows that solutions exist at various
levels, offering two clear opportunities (O):
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Figure 3: Comparison of academic accelerators for PCs:
"Sommer18" is [Sommer et al., 2018] "Sommer20" is
[Shah et al., 2020], "AutoPC" is [Periasamy et al., 2024],
"DPU_V1" is [Shah et al., 2021a], "DPU_V2" is [Shah et al.,
2022]

(O1): Even though the computation resolution remains an
issue, this challenge is tackled mostly through smart quan-
tisation and compression techniques. For model-generic
ASICs, reconfiguration is key, although it is yet to be com-
bined with online mixed-precision computation. On the
other hand, compression techniques remain to be applied at
larger scales on existing systems. Alternatively, it is needed
to explore efficient log-computing frameworks to enable
accurate and efficient PC computation.

(O2): The irregularity challenge is mostly tackled by tighter
hardware/software integration. At the model level, this can
be enabled through vectorisation, with proven results on
GPUs. Going further, this trend is pushed by recent tensor
factorisation software such as CirKit [Lab, 2024] that are
yet to be demonstrated with dedicated hardware implemen-
tations. Regarding the hardware itself, novel compilation
frameworks and processor architectures are both necessary
to improve the throughput of current accelerator and reduce
the memory overheads.

5 CONCLUSION AND PERSPECTIVES

There is now a large body of literature tackling the accel-
eration of TPMs are various abstraction levels. We expect
to see significant gains in accelerator’s performance when
combining the different solutions, ideally through new stan-
dards in terms of model representation and compilation (see
Fig. 1 (c)). When becoming a reality, TPMs could become
the new winners of the hardware lottery [Hooker, 2020],
alongside deep NNs.
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