®

Check for
updates

Knowledge Transfer with Simulated
Inter-image Erasing for Weakly
Supervised Semantic Segmentation

Tao Chen'®, Xiruo Jiang'®, Gensheng Pei'®, Zeren Sun'®,
Yucheng Wang?®, and Yazhou Yao!(®™)

! Nanjing University of Science and Technology, Nanjing 210094, China
{taochen, jiangxiruo622,peigsh,zerens,yazhou.yao}@njust.edu.cn
2 Horizon Robotics, Beijing 100089, China
yucheng.wang@horizon.cc

Abstract. Though adversarial erasing has prevailed in weakly super-
vised semantic segmentation to help activate integral object regions,
existing approaches still suffer from the dilemma of under-activation and
over-expansion due to the difficulty in determining when to stop erasing.
In this paper, we propose a Knowledge Transfer with Simulated Inter-
Image Erasing (KTSE) approach for weakly supervised semantic seg-
mentation to alleviate the above problem. In contrast to existing erasing-
based methods that remove the discriminative part for more object dis-
covery, we propose a simulated inter-image erasing scenario to weaken
the original activation by introducing extra object information. Then,
object knowledge is transferred from the anchor image to the consequent
less activated localization map to strengthen network localization abil-
ity. Considering the adopted bidirectional alignment will also weaken
the anchor image activation if appropriate constraints are missing, we
propose a self-supervised regularization module to maintain the reliable
activation in discriminative regions and improve the inter-class object
boundary recognition for complex images with multiple categories of
objects. In addition, we resort to intra-image erasing and propose a multi-
granularity alignment module to gently enlarge the object activation to
boost the object knowledge transfer. Extensive experiments and ablation
studies on PASCAL VOC 2012 and COCO datasets demonstrate the
superiority of our proposed approach. Codes and models are available at
https://nust-machine-intelligence-laboratory.github.io/project-KTSE.

Keywords: Weakly Supervised Learning + Semantic Segmentation -
Inter-Image Erasing

1 Introduction

With huge progress in the era of deep learning, semantic segmentation has
been widely applied in fields like autonomous driving and image editing [5,41].
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(¢) Result CAM vs Ground Truth (b) Our Simulated Inter-Image Erasing

Fig. 1. (a) Previous adversarial erasing-based approaches typically suffer from the over-
expansion problem, which is hard to constrain. (b) Different from their information
removal strategy, we propose to add extra object knowledge from a paired image to
weaken the current object activation. The localization ability of the network is then
enhanced by improving the consequent less activated attention map through learning
from the object knowledge of the anchor branch. (C) Result comparison.

Since deep learning thus far is data-driven, the model training typically involves
a large abundance of labeled images. However, collecting accurate pixel-level
annotation for segmentation tasks is highly labor-intensive and time-consuming
[3,9,16]. Therefore, as a promising direction to alleviate such annotation burden,
weakly supervised learning has attracted the attention of many researchers. In
this paper, we focus on the weakly supervised semantic segmentation (WSSS)
under the supervision of image-level labels.

The recent advance of WSSS typically follows the three-step pipeline of: 1)
transforming image tags into pixel-level coarse labels, 2) refining the pseudo
labels, and 3) training the final segmentation model with the refined labels.
Speaking of segmentation label generation, the technique of class activation
map (CAM) [71] has been the de facto paradigm for object localization with
image-level labels. Unfortunately, the naive CAM can only highlight the most
discriminative area of objects and thus its small and sparse activation will lead
to incomplete object mining. Since the first step of seed generation is the foun-
dation of later processes, numerous works have been developed to expand CAM
activation for high-quality pseudo labels. Among them, adversarial erasing is
one of the mainstream approaches, aiming to discover new and complementary
object regions by masking the currently detected area in an adversarial manner
[60,67,69]. For example, the pioneering work of AE-PSL [60] performs the erasing
multiple times to progressively discover increasingly activated areas. The recent
work of AEFT [67] proposes to learn the concept of erasing with the triplet loss
between the input image, erased image, and negatively sampled image. Though
improvement is obtained, existing adversarial erasing-based methods still suffer
from the difficulty in determining when to stop erasing: excessive removal will
lead to over-expansion and insufficient erasure will result in under-activation.

In this paper, we propose a Knowledge Transfer with Simulated Inter-Image
Erasing (KTSE) approach for WSSS to alleviate the problem mentioned above.
Existing erasing-based methods typically mask the most discriminative object
part to force the classifier into seeking other regions. Based on the observation
that information removal leads to more activation (which might also incur the
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over-expansion illustrated in Fig. 1(a)), we act in a diametrically opposite way.
Specifically, as shown in Fig. 1(b), we propose to simulate an inter-image erasing
(SIE) scenario, introducing extra object information by concatenating a paired
image and rendering the anchor image as the erased one. We then strengthen the
object localization ability of the network by transferring the object knowledge
from the anchor CAM to the consequent less activated localization map. Intu-
itively, our knowledge transfer with simulated inter-image erasing will not cause
the over-expansion problem if the object in the anchor branch is well-discovered.
However, since the above knowledge transfer is bidirectional, it will also
weaken object mining in anchor branch when learning from the sparse activa-
tion of simulated branch. Therefore, as shown in the right of Fig. 2, we propose
a self-supervised regularization module for the anchor CAM feature to maintain
its reliable activation in discriminative regions. Specifically, we first generate
pseudo labels from the CAM feature by locating confident foreground and back-
ground area, which are used to directly supervise the learning of CAM features.
However, extracted labels of the foreground are quite noisy in complex images
with multiple categories of objects due to the inter-class confusion. Therefore,
we also design an inter-class loss to implicitly encourage activation consistency
in complex images to improve recognition of the inter-class object boundary.
Though our proposed self-supervised regularization can effectively constrain
and facilitate the knowledge transfer in our simulated inter-image erasing mod-
ule, the improvement of the network’s object localization ability will be severely
limited by the quality of anchor CAM feature which is usually under-activated.
Therefore, we resort to the traditional intra-image erasing and propose a multi-
granularity alignment (MGA) module to gently expand the object activation
without introducing much background noise. Specifically, as shown in the bot-
tom of Fig.2, we first leverage the image-level global alignment to distill the
soft object confidence from the anchor branch to the masked one for object acti-
vation enlargement. Then, we leverage a pixel-level local alignment to transfer
the newly discovered object information back to the anchor branch. With the
gentle and constrained activation enlargement, the proposed multi-granularity
alignment module further boosts the performance of our simulated inter-image
erasing. As can be seen in Fig. 2, our SIE and MGA are designed in a symmet-
ric way that play the adversarial role of expanding and constraining the anchor
image activation respectively for mining complete and compact object regions.
Our contributions can be summarized as follows:

(1) We propose a knowledge transfer with simulated inter-image erasing app-
roach for weakly supervised semantic segmentation to alleviate the over-
expansion problem of existing adversarial erasing-based methods.

(2) A self-supervised regularization module is proposed to constrain the knowl-
edge transfer for maintaining reliable activation and improving recognition
of the inter-class object boundary.

(3) We propose a multi-granularity alignment module to gently enlarge the
object activation via image-level global alignment and pixel-level local align-
ment, boosting the knowledge transfer with simulated inter-image erasing.
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2 Related Work

2.1 Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation (WSSS) is the task that aims to obtain
a high-performance segmentation model by learning only from weak labels. Com-
pared with bounding boxes [16,25,27,53], scribbles [37,56] and points [3], the
image-level label [1,4,10,12,24,34,42,50,66, 73] is the cheapest weak supervision
to collect, making it the most popular annotation format for WSSS. The recent
advance of WSSS [1,24,34,66, 73] typically relies on the class activation technique
of CAM [71] to locate the target object, which helps transform the image-level
label to pixel-level dense annotation for segmentation network training. Since
the object area highlighted in CAM is usually small and sparse, enlarging the
CAM activation becomes the focus of the WSSS task. For example, RDC [61]
and DRS [28] propagate the object information to less discriminative regions
via dilated convolution with varied rates and attention suppression of most dis-
criminative areas, respectively. Popular contrastive learning [18,48,73] and self-
supervised approaches [8,51,59] are also applied to facilitate object mining by
improving representation learning. Moreover, cross-image information [21,57,72]
is exploited to help the classifier discover more object patterns to obtain con-
sistent and integral target regions. Besides attention expansion, Ahn and Kwak
propose AffinityNet [2] for CAM refinement, which propagates semantic affinity
via a random walk to recover delicate shapes of objects. IRN [1] is then proposed
to exploit class boundary detection for discovering the entire instance areas with
more accurate boundaries.

2.2 Erasing-Based Approaches

Considering the original CAM technique usually leads to suboptimal perfor-
mance due to failure to localize all object parts, erasing-based approaches are
commonly employed to expand the highlighted region [30,52,60,67,69,70]. They
mask areas in a training image to force the network to seek other relevant
parts. While direct erasing methods like Hide-and-Seek [52] hide image patches
randomly, adversarial erasing-based approaches mask the most discriminative
regions with the attention information, demonstrating more promising activa-
tion expansion potential. The first adversarial erasing-based work for WSSS is
proposed by Wei et al. [60], which progressively discovers new object discrimi-
native regions by erasing the currently activated area. Such a heuristic erasing
strategy then attracts the attention of many researchers. For example, ACoL
[69] proposes adversarial complementary learning with two adversary classifiers.
Recently, Kweon et al. propose to apply the adversarial erasing framework to
exploit the potential of the pre-trained classifier [30] and learn the concept of
erasing with the triplet loss [67]. While adversarial erasing approaches achieve
great success in enlarging the CAM activation, they tend to suffer from the over-
expansion problem due to difficulty in determining when to stop erasing. Unlike
the information removal strategy adopted in these approaches, we propose a
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Fig. 2. The architecture of our proposed approach. We propose a simulated inter-image
erasing (SIE) scenario where extra object information is introduced from another paired
image. We then strengthen the object localization ability of the network by improving
the consequent less activated localization map through learning object knowledge from
the anchor image. A self-supervised regularization (SSR) module is also proposed to
avoid weakening the anchor activation due to bidirectional alignment and improve the
inter-class object boundary recognition for complex images. In addition, we propose a
multi-granularity alignment (MGA) module to gently enlarge the object activation to
further boost the object knowledge transfer.

simulated inter-image erasing scenario to weaken the activation by adding extra
discriminative object information. The localization ability of network is then
enhanced by improving the consequent less activated CAM through knowledge
transfer.

3 Method

In this paper, we propose a knowledge transfer with simulated inter-image eras-
ing approach for weakly supervised semantic segmentation to alleviate the over-
expansion and under-activation problems of existing adversarial erasing-based
methods. Our framework is illustrated in Fig. 2. As demonstrated in the anchor
branch, we train a classification network with the given image-level weak labels,
which consists of a backbone feature extractor and a pooling classification head.
In contrast to existing adversarial erasing-based approaches that expand the
activation through masking the most discriminative object part, as shown in the
top-left of Fig.2, we propose to simulate an inter-image erasing scenario where
extra object information is introduced through concatenating a paired image.
Object knowledge is then transferred from the anchor image to the consequent
less activated localization map for strengthening the object localization ability
of network. We also propose a self-supervised regularization module to avoid
weakening the anchor activation due to bidirectional alignment and improve the
inter-class object boundary recognition for complex multi-category images. In
addition, we propose a multi-granularity alignment module to gently enlarge the
object activation for boosting the object knowledge transfer.



446 T. Chen et al.

3.1 CAM Generation

For the architecture of classification network, we follow the previous erasing-
based work ACoL [69] and remove the final fully-connected layer. We set the
output channel of the backbone to C' + 1, where C is the number of foreground
categories and 1 is added for the background. We can thus directly generate
object localization maps from the class-aware CAM features F' in the forward
pass to facilitate the object knowledge transfer. To obtain CAM for each fore-
ground class ¢, we feed the attention map F'¢ into a ReLLU layer and then nor-
malize it to the range from 0 to 1:

_ ReLU (F°)

A= max (F¢) (1)

To improve the quality of the CAM by capturing the global context and local
details of the image, we adopt the Gated Pyramid Pooling (GPP) layer [67]
as the final pooling head. With the classification logits ¢° generated from the
pooling head, we train the classification network with the multi-label soft margin
loss as follows:

c
1
Los=—7 ; y“loga (¢°) + (1 —y)log [1 — o (¢°)]. (2)
Here, o (-) is the sigmoid function. y° is the image-level label for the c-th class.

3.2 Simulated Inter-image Erasing

Due to the sparsity of the CAM activation, previous adversarial erasing-based
methods typically enlarge the object activation by maintaining the classification
confidence on masked images or features, where the most discriminative regions
are erased. However, due to the absence of guidelines on when to stop erasing,
these approaches easily incur over-expansion with excessive removal and might
also still suffer from under-activation with insufficient erasure. Therefore, we
propose a knowledge transfer with simulated inter-image erasing approach for
weakly supervised semantic segmentation to alleviate the above problem.

In contrast to existing erasing-based approaches that remove the discrimi-
native part for more object mining, we propose a simulated inter-image erasing
(SIE) scenario to enable the network to benefit from introducing extra discrimi-
native object information. Specifically, as shown in the top-left of Fig. 2, a larger
synthetic image, created by concatenating the anchor image and another paired
one, plays the role of the original image needing masking. Correspondingly, the
anchor image can be treated as the erased one where the paired image is masked.
Due to the introduction of extra discriminative object information, fewer object
regions will be highlighted in the anchor part of the synthetic image. Therefore,
we then strengthen the object localization ability of the network by transfer-
ring the more integral object knowledge from the original anchor CAM to the
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consequently less activated anchor part of the synthetic image. The knowledge
transfer loss for the simulated inter-image erasing can be formulated as follows:

Lis = ReLU (F _ F) . where F, = CFE (F,,y), F, = CFE(F,,y). (3)

Here, F, and F denote the CAM features of the anchor and simulated branches,
respectively. CFE represents class feature extraction, which extracts the feature
channel related to the classes that exist in the image. The ReLU operation means
that our alignment focuses on the more highlighted object region rather than
the background. Note that no rotation or resize is performed for the concate-
nated image. We only introduce extra object information from the paired image
and control other variables to guarantee the weakened activation for the anchor
part. Intuitively, our knowledge transfer with simulated inter-image erasing will
not cause the over-expansion problem when the object in the anchor branch
is well-discovered. Our experiments demonstrate that such knowledge transfer
can effectively strengthen the localization ability of the network to alleviate the
under-activation, especially when multiple object instances co-exist in the image.
Besides, benefiting from the bidirectional alignment, the anchor branch will also
learn from the weakened activation of the simulated one and produce compact
attention maps for small objects to mitigate the over-expansion problem.

3.3 Self-supervised Regularization

Our simulated inter-image erasing aims to improve the object localization ability
of the network by maintaining the high activation given extra discriminative
object information. However, the adopted knowledge transfer is bidirectional,
which will also weaken the anchor branch object mining when learning from
the sparse activation of the simulated branch. Since simply cutting the gradient
propagation of the anchor branch makes the training unstable, we propose a
self-supervised regularization module for the anchor CAM feature to maintain
its reliable activation in discriminative regions. Specifically, with the generated
CAM feature F, and the corresponding CAM A, we first leverage two thresholds
By, = 0.3 and §; = 0.15 to locate the confident foreground and background as
follows (the subscript a is omitted for simplicity):

argmax(F; ;.), if max(A;;.) > Bn,
Yi; =<0, if max(A;;.) < 6, (4)
255, otherwise,

where 255 denote the ignored labels for uncertain regions and argmax(-) extracts
the semantic class with the maximum activation value. After refining the pseudo
label Y with the pixel-adaptive refinement module [47], we leverage it to directly
supervise the learning of CAM features with the cross-entropy loss (coordinates
1,7 are omitted):

C
Loe ==Y YlogD (F)° +ws Vi, logI' (F)°. (5)
c=0
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I" () denotes the softmax function. We also leverage the pseudo label Y generated
from the anchor branch to guide the learning of the simulated CAM feature
with the same cross-entropy loss. However, we notice that the extracted labels
of the foreground are quite noisy, especially for complex images with multiple
categories of objects where the inter-class boundary is blurred. Here, we define
images with objects of only one category as simple images and others containing
two or more categories as complex ones. Therefore, we discount the influence of
foreground label Yfg with the weight of wg, = 0.0125. Besides, as shown in the
right of Fig. 2, we design an inter-class loss to implicitly encourage the activation
consistency for the multiple foreground classes in complex images as follows:

‘ B Z (V2nd _ Vma:z) _Mf
['znter - ‘Mf| ) (6)

Here, M/ denotes the foreground mask obtained with a threshold 3, = 0.2 and
|-| return the value of I;-norm. V™% and V2"? denotes the largest and second
largest activation value along the channel dimension of the CAM feature Fy,
which can be obtained as follows:

V4" = max(F; ;.), F'eft = remove(F, Vinaz), ijnd = maX(Fil;{t). (7)
Equation (6) improves the exclusivity of the class activation for each pixel, lead-
ing to more accurate boundaries between foreground objects. Our proposed self-
supervised regularization module treats the simple and complex images differ-
ently, intending to maintain the reliable activation of the main branch without
deteriorating the inter-class boundary caused by inaccurate pseudo labels.

3.4 Multi-granularity Alignment

Our proposed self-supervised regularization module can effectively constrain and
boost the knowledge transfer in our simulated inter-image erasing module. How-
ever, the improvement of the network’s object localization ability will be severely
limited by the quality of the anchor CAM, which is usually under-activated.
Therefore, it is natural to resort to the traditional intra-image erasing, which
aims to expand the object area. Following AEFT [67], we leverage a threshold of
0.6 to mask the most discriminative region. To avoid introducing too much back-
ground noise, we propose a multi-granularity alignment module to gently expand
the object activation, which encourages the CAM expansion of the erased image
and then transfers the learned object knowledge back to the anchor branch. As
shown in the bottom of Fig. 2, we first input the anchor feature F, and masked
feature F,, into a class feature extraction module to obtain the corresponding
features of the existing target categories (F‘a and ﬁm) Following the experi-
mental finding of AEFT [67] that rigid classification supervision [69] for the
masked branch tends to trigger the over-expansion problem in adversarial eras-
ing, we resort to the soft class confidence guidance from the anchor branch to
the masked one. Specifically, we directly adopt a global average pooling (GAP)
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operation to obtain the final class confidence for each branch and an image-level
global alignment loss can be formulated as follows:

Lyobat = GAP (ReLU (F,) ) = GAP (ReLU (F,.)),
where FE,, = CFE (Fp,y). (8)

E, and CFE have been defined in Eq. (3). Another difference with rigid classifi-
cation supervision is that benefiting from the class feature extraction, our global
alignment loss only focuses on the logit confidence for classes that exist in the
image, enabling more effective and efficient gradient propagation. Unlike AEFT
[67] that utilizes the feature space of the GPP layer as embedding space for loss
construction, our experiments reveal that direct alignment with the CAM fea-
ture leads to more promising performance. With class information learned from
the anchor branch, we further leverage a pixel-level local activation alignment to
transfer the newly discovered object information from the erased image to guide
the anchor branch learning.

Livear = ReLU (Fm - Fa) . 9)

Such pixel-level local alignment can also hinder the erased branch from activating
the unwanted background area by learning from the lowly-activated regions of
the anchor branch. With the gentle and constrained activation enlargement,
the multi-granularity alignment module further boosts the performance of our
proposed simulated inter-image erasing approach. As can be seen in Fig. 2, our
proposed SIE and MGA branches are designed in a symmetric way that play
the adversarial role of expanding and constraining the anchor image activation,
respectively. Their synergically cooperation facilitates the convergence for mining
complete and compact object regions.

3.5 Training Objective
The overall training loss is as follows:
L= Lcls + Ekt + ﬁglobal + Elocal + ﬁce + )\interﬁinter- (10)

We empirically set A;pter = 0.005 as the hyperparameter that controls the weight
of inter-class loss.

4 Experiment

4.1 Datasets and Implementation Details

We evaluate our approach on the PASCAL VOC 2012 [19] and COCO [3§]
datasets. The PASCAL VOC 2012 dataset contains 21 classes (20 object cate-
gories and the background) for semantic segmentation. It has 10,582 images for
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Table 1. Accuracy of pseudo-masks eval- Table 2. Quantitative comparisons on
uated on PASCAL VOC 2012 training set. PASCAL VOC 2012 val and test sets
with VGG backbone. Sup: Supervision,

Methods Seed | w/IRN [1] I: Image-level label, S: Saliency maps.
IRN [1]cveRrio 48.3 |66.3

MBMNet [40]yi20 | 50.2 |66.8 Methods Sup|Val |Test
CONTA [68]n1ps20  |48.8 |67.9 DRS [28]aaAI21 1+S(63.6 |64.4
AdvCAM [32]cvprat | 55.6 |69.9 GSM [36]aaAl21 1+S/63.3 |63.6
RIB [31]N1Ps21 56.6 |70.6 NSROM [66]cvpro1 |I+S|65.5 |65.3
ReCAM [14]cypraz | 56.6 |70.5 EPS [34]cvpRra1 1+S/67.0 |67.3
ESOL [35]Nn1Ps22 53.6 |68.7 L2G [24]cvPRra2 1+S68.5 |68.9
CLIMS [63]cvpr22 |56.6 |70.5 AffinityNet [2]cvprig|I  |58.4 |60.5
AEFT [67]gccvez |56.0 |71.0 ICD [20]cvpPRr20 I |61.2 (609
ACR [15]¢vpRas 60.3 |72.3 BES [7leccvzo I [60.1 |61.1
FPR [6]1ccvas 63.8 |- ECS [55]1ccval I 1621 634
KTSE (Ours) 67.0/73.8 KTSE (Ours) 1 67.3/67.0

training (expanded with SBD [22]), 1,449 for validation and 1,456 for testing.
The COCO dataset is a more challenging benchmark with 80 semantic classes
and the background. Following previous works [36,58,68], we use the default
train/val splits (80k images for training and 40k for validation) in the experi-
ment. Mean intersection over union (mlIoU) is adopted as the metric to evaluate
the quality of our pseudo labels and segmentation results.

For the classification network, we follow the work of AEFT [67] and employ
ResNet38 [62] as the backbone. We adopt a poly learning rate with an initial
value of 1072 and a power of 0.9. For the second stage training of WSSS, following
the recent work of BECO [45], we adopt DeeplabV2 [5] as the segmentation
network, which uses ResNet101 [23] as the backbone. The momentum and weight
decay of the SGD optimizer are 0.9 and 10~%. The initial learning rate is set
to 1072 and is decreased using polynomial decay. The segmentation model is
trained for 80 epochs and 40 epochs on VOC and COCO datasets, respectively,
with a common batch size of 16. We also follow the default setting of DeeplabV2
[5] and conduct experiments with VGG16 backbone for a more comprehensive
comparison with previous approaches [7,20,24,34,55]. All our backbones are
pre-trained on ImageNet [17].

4.2 Comparisons to the State-of-the-Arts

Accuracy of Pseudo-masks. We first report the quality of the segmentation
seeds and the generated pseudo-masks derived from our approach. The com-
parison with other state-of-the-arts is presented in Table1l. As can be seen, our
segmentation seed can reach the mIoU of 67.0%, bringing a gain of 18.7% com-
pared to the baseline reported by IRN [1]. Our method can outperform the
state-of-the-art method FPR [6] by 3.2%. With the further refinement of IRN
[1], the mIoU of our generated pseudo-masks can arrive at 73.8%, surpassing the
previous SOTA of AEFT [67] and ACR [15] by more than 1.5%.
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Table 3. Quantitative comparisons on Table 4. Quantitative comparisons on
PASCAL VOC 2012 val and test sets with COCO val set with VGG backbone.
ResNet backbone. Sup: Supervision, I: Sup: Supervision, I: Image-level label, S:
Image-level label, S: Saliency maps, O: Saliency maps.

Out-of-distribution data, L: Language.

Methods Sup |Val
Methods Sup |Val |Test TAL [58]15cv20 14S27.7
DRS [28]AAAI21 I+S |71.2 |71.4 GWSM [36]AAAI21 1+S/28.4
NSROM [66]CVPR21 I+S|70.4 |70.2 EPS [34]CVPR21 I+S/35.7
EPS [34]cvpra1 I+S |71.0 |71.8 I12CRC [73]rmme22 [I+S[31.2

AuxSeg [64]100\/21 I1+S 169.0 |68.6 RCA [73]CVPR22 1+S/36.8
PPC [18]cvprae I+S72.6 |73.6 MDBA [11]7ipas |I4+S|37.8

RCA [73]cvpraz I+S72.2 |72.8 BFBP [49]gccovis |1 20.4
L2G [24)cvpRrae I+S |72.1 |71.7 SEC [29]gccvie I 22.4
W-00D [33]cyprze  |[I+0[69.8 69.9 CONTA [68]n1ps20 |1 23.7
CLIP-ES [39]cvpres |I4+L|71.1 |71.4 KTSE (Ours) 1 37.2

LPCAM [13]CVPR23 I+S |71.8 |72.1
AdvCAM [32]0\/131:{21

Table 5. Quantitative comparisons on
68.1 68.0 OO val set with ResNet backbone.

—

CDA [54]100\/21 I 66.1 /66.8 Sup: Supervision, I: Image-level label, S:
CSE [30]iccvar I 68.4 68.2 Saliency maps, L: Language.

RIB [31]n1pso1 I 68.3 68.6

AMR [44]AaAT22 I 68.8 169.1 Methods Sup | Val
MCT [65]cvpr22 I 71.9|71.6 L2G [24]cvpRra2 14S144.2
AFA [47]CVPR22 1 66.0 66.3 CLIP-ES [39]CVPR23 I+L|45.4
SIPE [8]CVPR22 I 68.8 [69.7 LPCAM [13]CVPR23 1+S42.1
ReCAM [14}CVPR22 I 68.5 |68.4 OC-CSE [30]100\/21 I 36.4
PPC [18]cvprae I |67.7|67.4 CDA [54]iccvar I [33.2
ViT-PCM [46]ECCV22 I 70.3 {70.9 RIB [31]NIPS21 I 43.8
S-BCE [46]gccvae I 70.0 |71.3 MCT [65]cvpra22 I 42.0
AEFT [67]ECCV22 I 70.9 |71.7 SIPE [S]CVPRQQ 1 40.6
TOCO [48]cvpr23 I 69.8 170.5 TOCO [48]cvpres |1 41.3
OCR [15]cvPRas I 72.7|72.0 OCR [15]cvPRras I 42.5
ACR [15]CVPR23 I 71.9|71.9 ACR [15]CVPR23 I 45.3
BECO [45]CVPR23 I 72.1|71.8 BECO [45]CVPR23 I 45.1
FPR [6]iccvas I 70.3 |70.1 FPR [6]iccvas I 43.9
MARS [26]1ccovas I 70.3 |71.2 USAGE [43)iccves |1 44.3
KTSE (Ours) I 73.0/72.9 KTSE (Ours) I 45.9

Accuracy of Segmentation Maps on PASCAL VOC 2012. Our segmen-
tation results on the PASCAL VOC 2012 dataset with the backbone of VGG and
ResNet are demonstrated in Table2 and Table 3, respectively. As can be seen,
with the VGG backbone, our approach achieves the performance of 67.3% on the
validation set and 67.0% on the test set, better than other state-of-the-art meth-
ods with only image-level labels. Our segmentation results are also competitive
to many approaches that rely on saliency maps, e.g., NSROM [66] and EPS [34].
With the ResNet backbone, we can improve the results to 73.0% and 72.9% on
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Table 6. Element-wise component anal- Table 7. Comparison of Our Multi-
ysis. SIE: Simulated Inter-Image Eras- Granularity Alignment with Previous
ing, SSR: Self-Supervised Regularization, FErasing-based Approaches. GA: Global

MGA: Multi-Granularity Alignment. Alignment; LA: Local Alignment.
Base |SIE | SSR|MGA mloU Method mloU

v 54.2 Base 54.2

v v 57.1 Rigid Classification [69]|55.6

v v 57.4 Soft GPP Feature [67] |54.9

v v 60.2 Our GA 58.7

v v 63.8 Our GA & LA 60.2

v o v 67.0

the validation and test sets, respectively. As can be seen in Table 3, our proposed
approach can achieve better performance compared with recent SOTA methods.
For example, our approach outperforms OCR [15] and ACR [15] by about 1%
on the test set, demonstrating the superiority of our knowledge transfer with
simulated inter-image erasing.

Accuracy of Segmentation Maps on COCO. For the more challenging
COCO dataset, we provide performance comparisons with state-of-the-art WSSS
methods using the backbone of VGG and ResNet in Table4 and Table 5, respec-
tively. As shown in Table 4, our proposed KTSE with VGG backbone can achieve
the performance of 37.2% mloU, much better than previous methods supervised
with only image-level labels, e.g., 13.5% mIoU higher than CONTA [68]. Besides,
our results are also competitive compared to previous SOTA methods with addi-
tional saliency guidance like RCA [73] and MDBA [11]. With the ResNet back-
bone, our proposed KTSE reaches the best result of 45.9% mlIoU compared to
previous SOTA WSSS methods. Specifically, our approach outperforms ACR
[15] and BECO [45] by 0.6% and 0.8% mIoU, respectively.

4.3 Ablation Studies

Element-Wise Component Analysis. In this part, we demonstrate the con-
tribution of each component proposed in our approach to improving the quality
of pseudo-masks. As mentioned in Sect. 3.1, we incorporate the GPP [67] into
the classification network as our strong baseline. As shown in Table 6, with our
simulated inter-image erasing (SIE) module, we can improve the accuracy of seg-
mentation seeds from the baseline of 54.2% to 57.1%, which demonstrates the
benefit of strengthening the localization ability of the network through weak-
ening the activation with extra object information and then learning from the
anchor branch. By maintaining reliable activation in discriminative regions, our
self-supervised regularization (SSR) module can achieve the mlIoU of 57.4%.
Moreover, the combination of our proposed SIE and SSR can significantly boost
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(a) Image (b) Ground Truth (c) AEFT (d) Baseline (e) + SIE () +SSR (g) + MGA

Fig. 3. Example localization maps on the PASCAL VOC 2012 training set. For each
(a) image, we show (b) ground truth, localization maps produced by (c) previous work
of AEFT [67], (d) our baseline, (e) baseline + SIE, (f) baseline + SIE + SSR, and (g)
baseline 4+ SIE + SSR + MGA. Best viewed in color.

the performance to 63.8% mlIoU. With our proposed multi-granularity align-
ment module to gently expand the object activation, the mIoU of pseudo masks
finally arrives at 67.0%, highlighting the importance of improving the quality of
anchor CAM to boost the performance of our knowledge transfer with simulated
inter-image erasing.

Some example localization maps on the PASCAL VOC 2012 training set can
be viewed in Fig.3. As seen from the first two rows, after strengthening the
localization ability of the network with our simulated inter-image erasing (SIE)
module, we can successfully expand the object activation and discover the less
discriminative object in the image (e.g., the smaller animals on the right). We
can notice that our SIE can also help alleviate the over-expansion problem and
generate more compact activation, e.g., the cow in the first row. However, as
demonstrated in the last two rows, the bidirectional alignment in SIE will also
lead to more severe under-activation when the anchor branch learns from the
sparse activation of the simulated one, especially for larger objects. Fortunately,
our proposed self-supervised regularization (SSR) module can help maintain reli-
able activation in discriminative regions to guarantee effective knowledge trans-
fer. Moreover, as seen in the last row, our multi-granularity alignment (MGA)
module can further help discover the integral target region by gently expanding
the object activation. Comparing the results of ours with that of AEFT [67],
Fig. 3(g) vs Fig.3(c), we can see that our proposed approach can significantly
alleviate the under-activation and over-expansion of previous approaches due to
insufficient or excessive erasure.

MGA vs. Previous Erasing-Based Approaches. For the multi-granularity
alignment, we resort to the soft class confidence knowledge from the anchor
branch to guide the gentle activation expansion of the masked image. In Table 7,
we compare performance improvement from different guidance settings. As can
be seen, our global alignment of CAM feature can improve the baseline from
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54.2% to 58.7%, outperforming the rigid classification guidance in ACoL [69]
and GPP feature alignment adopted in AEFT [67] by 3.1% and 3.8%, respec-
tively. It highlights the importance of direct global alignment in CAM features
rather than embedding space with extra projection layers. With our pixel-level
local alignment, our multi-granularity alignment module can finally improve the
performance to 60.2%, demonstrating the benefit of our gentle alignment strat-
egy compared with previous erasing-based approaches.

Phenomenon of SIE. Based on the observation of classic adversarial erasing
methods that removing the most discriminative region will lead to the extra
activation of other object parts, the reversal thinking comes naturally-what if
we introduce extra discriminative object information? The answer is the original
highly activated area will become less discriminative and be lowly activated. We
then enhance this weakened activation by learning from the original CAM. When
the network learns to increase the attention for the less-discriminative region in
the concatenated image, it will also learn to activate less-discriminative object
region in the original image to locate more objects.

SIE vs. Data Augmentation. Though data augmentations like CutMix will
also change the anchor image and lead to activation perturbation, they do not
guarantee the weakened activation (which might cause over-expansion) for the
anchor part of the concatenated image like ours. In contrast, we only introduce
extra object information from the paired image and control other variables.
Most importantly, our novelty lies in constructing the simulated inter-image
erasing scenario (reversal thinking on existing masking methods) rather than
simply augmenting the data input. It enhances the network’s localization ability
by improving the consequent less activated attention map through learning from
the object knowledge of the anchor branch. Accompanied by our proposed MGA,
they are designed in a symmetric way that play the adversarial role of expanding
and constraining the anchor image activation respectively for mining complete
and compact object regions. Note that our approach significantly outperforms
the CutMix-based augmentation method of CDA [54] with 73.0 vs. 66.1 on VOC
(Table 3) and 45.9 vs. 33.2 on COCO (Table5).

5 Conclusion

This paper proposed a Knowledge Transfer with Simulated Inter-Image Erasing
(KTSE) approach for weakly supervised semantic segmentation. Specifically, in
contrast to existing adversarial erasing-based methods that remove the discrim-
inative part for mining less-discriminative areas, we proposed to simulate an
inter-image erasing scenario where extra object information was added through
concatenating a paired image. We then strengthened the object localization
ability of the network by enhancing the consequent less activated localization
map. In addition, we proposed a self-supervised regularization module to main-
tain reliable activation in the discriminative regions and improve the inter-class
object boundary recognition for complex images. Moreover, we proposed a multi-
granularity alignment module to gently enlarge the object activation via intra-
image erasing for boosting the object knowledge transfer. Extensive experiments
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and ablation studies were conducted on PASCAL VOC 2012 and COCO datasets
to demonstrate the superiority of our proposed approach.
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