arXiv:2503.01342v2 [cs.CV] 4 Mar 2025

UFO: A Unified Approach to Fine-grained Visual Perception via
Open-ended Language Interface

Hao Tang!? Chenwei Xie?
Tingyu Weng?

Haiyang Wang!
Pandeng Li?

Xiaoyi Bao??
Yun Zheng?' Liwei Wang'"

LCenter for Data Science, Peking University 2Alibaba Group

3Institute of Automation, Chinese Academy of Sciences

{tanghao@stu, wanghaiyang@stu, wanglw@cis}.pku.edu.cn

baoxiaoyi2021@ia.ac.cn

{eniac.xcw, wengtingyu.wty, lipandeng.lpd, zhengyun.zy}@alibaba—inc.com

Abstract

Generalist models have achieved remarkable success in both
language and vision-language tasks, showcasing the po-
tential of unified modeling. However, effectively integrating
fine-grained perception tasks like detection and segmentation
into these models remains a significant challenge. This is pri-
marily because these tasks often rely heavily on task-specific
designs and architectures that can complicate the model-
ing process. To address this challenge, we present UFO, a
framework that Unifies Fine-grained visual perception tasks
through an Open-ended language interface. By transforming
all perception targets into the language space, UFO unifies
object-level detection, pixel-level segmentation, and image-
level vision-language tasks into a single model. Additionally,
we introduce a novel embedding retrieval approach that re-
lies solely on the language interface to support segmentation
tasks. Our framework bridges the gap between fine-grained
perception and vision-language tasks, significantly simplify-
ing architectural design and training strategies while achiev-
ing comparable or superior performance to methods with
intricate task-specific designs. After multi-task training on
five standard visual perception datasets, UFO outperforms
the previous state-of-the-art generalist models by 12.3 mAP
on COCO instance segmentation and 3.3 mloU on ADE20K
semantic segmentation. Furthermore, our method seam-
lessly integrates with existing MLLMs, effectively combining
fine-grained perception capabilities with their advanced lan-
guage abilities, thereby enabling more challenging tasks
such as reasoning segmentation. Code and models are avail-
able at https://github.com/nnnth/UFO.

1. Introduction

Multimodal large language models (MLLMs) [1, 12, 35,
41, 45, 81] have made significant progress, exhibiting out-

Corresponding author.

standing performance on various visual tasks. Despite these
achievements, their scopes are largely confined to image-
level vision-language tasks, leaving fine-grained perception
(e.g., detection and segmentation) as a critical weakness. Re-
cent studies have shown that enabling MLLM:s to collaborate
with off-the-shelf detectors and segmenters can enhance pre-
cise visual understanding [18, 71] and facilitate advanced ap-
plications such as mobile agents [36, 62, 63, 73], indicating
that endowing MLLMs with fine-grained perception capa-
bilities is beneficial. However, seamlessly integrating these
tasks into MLLMs poses challenges because traditional spe-
cialized methods heavily rely on complex and task-specific
designs, such as RPN [53] and mask decoders [30].

A straightforward approach adopted by many existing
works [33, 47, 51, 54, 68] is to augment MLLMs with task
decoders. As shown in Figure 1 (a), LISA [33] introduces
SAM [30] to support segmentation. Similarly, VisionLLM
v2 [68] employs extra box and mask decoders. However,
this combination introduces several limitations. First, task
decoders add architectural complexity, necessitating com-
patibility among multiple components whenever the LLM
is scaled up or new task decoders are introduced. Second, it
complicates the end-to-end training. For example, the last
stage in VisionLLLM v2 [68] is dedicated to finetuning the
task decoders because they fail to converge in earlier stages.
These issues create a significant discrepancy with traditional
vision-language modeling, limiting their broader applica-
tion in general-purpose MLLMs. To remove task decoders,
another line of research [6, 46, 66, 72] adopt text-based
methods, converting boxes into location tokens or textual
numbers. However, many text-based methods do not support
segmentation due to the challenges of encoding masks of
arbitrary shapes and complexity [3] with limited text tokens.

To address the above limitations, GiT [61] designs a lan-
guage interface to support both box and mask outputs with-
out task decoders. However, it still falls short of unifying

https://github.com/nnnth/UFO

Polygon

Textual Class

> 1
y 1
-l : 1 [DQDD
Box [Mask] | 1 X
Decoder Decoder ' : ’—> retrieval
t . ! (@uln)
It is <DET>. It is <SEG>. I <56><4><96><12> <X0><y0>..<x7><y7> <sheep>... : It is <box>56,4,96,12</box>. Itis <KMASK>. Image Features
1
1 q
Multi-Modal Transformer :[Multi-Modal Transformer] 1 [Multi-Modal Transformer J
1 1
1
f f : t . t
Please - : Please : Please
¥ 1
locate/segment : locate/segment ! locate/segment
the bottom goat. ;‘.,t . the bottom goat. 1 the bottom goat.

(a) Task-Decoder-based (b) Text-based

(c) Ours

Figure 1. Methods to augment MLLMs with fine-grained perception tasks. (a) Relying on task decoders [33, 68], (b) Previous text-based
methods represent boxes with location tokens [46, 61] and represent masks with suboptimal polygons [61, 66] or textual classes [34, 61], (c)
Ours: predicting open-ended text sequences while using a simple yet effective embedding retrieval approach to support masks.

fine-grained perception tasks into MLLMs. For segmenta-
tion, GiT utilizes two suboptimal representations, illustrated
in Figure | (b). In instance segmentation, it predicts polygon
coordinates, which introduce quantization errors. In seman-
tic segmentation, it predicts textual classes for each pixel,
resulting in overly long sequences. For detection, GiT trans-
lates boxes into four location tokens and restricts the output
space exclusively to these tokens, incompatible with other
open-ended vision-language tasks that generate text of arbi-
trary length. In addition, GiT does not scale to MLLM and
uses a Vision Transformer (ViT [21]) for multimodal tasks,
resulting in poor language abilities. Hence, it is essential
to develop a more effective approach to unify fine-grained
perception into MLLMs. This method should effortlessly
align with open-ended language interfaces, involve minimal
structural complexity and deliver excellent performance.

In this paper, we present UFO, which unifies fine-grained
perception tasks through the same open-ended language
interface as vision-language tasks, without any task de-
coders. By translating all task outputs into open-ended text
sequences, we demonstrate that competitive performance
can be achieved without complex task-specific designs. As
illustrated in Figure 1 (c), we reformulate segmentation as
an embedding retrieval problem, where the mask token em-
bedding computes similarity with image features by dot
product, retrieving high-similarity positions to generate the
mask. This design effectively leverages the output image
features processed by MLLMs, which are often overlooked
in previous methods. Our intuition is that since MLLMs
achieve strong visual understanding, the mask information is
already in the image features and we just need to retrieve it.
Furthermore, we introduce a novel method that upsamples
output masks by predicting multiple mask tokens, resulting
in more refined masks and improved performance.

We first validate our method following GiT [61], which
uses a lightweight ViT for multimodal processing but can
share the same formulation as MLLMSs (see Table 1), al-
lowing efficient validation. GiT constructs a comprehensive

multi-task benchmark, which covers various granularity fine-
grained perception tasks. Under the same evaluation pro-
tocols, UFO outperforms GiT by 12.3 mAP and 3.3 mloU
in COCO instance segmentation and ADE20K semantic
segmentation, respectively. We then scale our method to
larger MLLMs. Experimental results demonstrate that UFO
effectively integrates fine-grained perception capabilities
into MLLMs, achieving strong performance without task
decoders. Leveraging the powerful language capabilities of
MLLMs, UFO can extend to more language-dependent tasks,
such as reasoning segmentation.

In summary, our contributions are listed as follows:

(1) We introduce UFO, the first framework to unify di-
verse fine-grained perception tasks through the same open-
ended language interface as vision-language tasks, without
relying on task-specific decoders.

(2) We reformulate segmentation as an embedding re-
trieval problem, exploring both text generation and image
representation abilities of the language interface, signifi-
cantly outperforming previous text-based methods.

(3) Our framework seamlessly integrates with MLLMs,
delivering competitive performance with a wide range of
fine-grained perception tasks of varying difficulties.

2. Related Work

2.1. Multimodal Large Language Models

Inspired by the success of large language models (LLMs),
multimodal large language models (MLLMs) have rapidly
advanced in recent years. Early efforts like LLaVA [39],
MiniGPT-4 [81], and Instruct-BLIP [17] fine-tune LLMs
with instruction-following datasets, demonstrating strong
multimodal understanding. More advanced MLLMs like
DeepSeek-VL [41], Qwen2-VL [65], and InternVL2 [12]
have emerged recently, offering superior multimodal com-
prehension through larger model sizes and extensive training
data. However, these models remain limited to image-level
vision-language tasks, with less exploration of fine-grained

Model Image Tokenizer Text Tokenizer Multimodal Transformer

\ \ \
LLaVA [39] | CLIP[49LMLP | Llama Tokenizer [59] | Vicuna [14]
EVE [20] | Patchembedding | Llama Tokenizer [59] | Vicuna [14]
GiT [61] | Patchembedding | Bert Tokenizer [19] | ViT [21]
UFO-ViT ‘ Patch Embedding ‘ Bert Tokenizer [19] ‘ ViT [21]
UFO-LLaVA-1.5-7B | CLIP [49LMLP | Llama Tokenizer [59] | Vicuna 1.5 [14]
UFO-InternVL2-8B ‘ InternViT [12],MLP ‘ InternLM2.5 Tokenizer [77] ‘ InternLM2.5-7B [77]

Table 1. We abstract current multimodal architectures into three
components: (1) Image tokenizer, converting images into visual
tokens; (2) Text tokenizer, outputting text tokens; (3) Multimodal
transformer, jointly processing visual and text tokens. We construct
three variants by this formulation and list their architecture details.

visual perception, thereby restricting their application scope.

2.2. Extend MLLMs with Fine-grained Perception

Extend MLLMs with Task Decoders. Recent works [2, 33,
47,51, 54, 68, 69, 78, 79] introduce task decoders to extend
MLLMs with tasks like detection and segmentation. These
models treat the MLLM as a coarse proposal extractor, pass-
ing the task-relevant embeddings to specialized decoders.
The decoders then manage task-specific details, such as re-
gressing boxes or generating masks. Although this approach
yields strong performance, extra task decoders complicate
architectures and training, undermining the unified design of
MLLM:s and limiting their potential.

Extend MLLMs with Text Outputs. To augment MLLMs
with object-level perception tasks, previous methods [5, 6,
46, 48, 60, 66, 72] have employed location tokens or textual
numbers to represent boxes. However, these approaches face
challenges with pixel-level tasks such as segmentation, of-
ten requiring polygonal approximations [48, 66]. Although
VistaLLM [48] reduces the errors of polygons through adap-
tive sampling and achieves competitive performance in refer-
ring segmentation, it remains inadequate for general segmen-
tation tasks. First, polygons struggle to accurately represent
“stuff” categories with amorphous regions (e.g., roads with
parked cars), which are common in real world [3, 16, 74, 80].
Second, polygons inherently cause information loss, espe-
cially for detailed structures like retinal vessels [58]. In
contrast, UFO leverages the multimodal outputs of MLLMs
to generate precise masks for any shape, offering greater
expressiveness and improved performance.

2.3. Vision Generalist Models

Vision generalist models aim to establish a unified frame-
work supporting various vision-centric tasks. Inspired by
the seq2seq framework in NLP, previous generalist models
[8, 42, 61, 64] transform visual tasks into sequence gener-
ation problems. Notably, GiT [61] unifies five core visual
tasks through a language interface, supporting box, mask,
and text outputs. However, these models typically focus
solely on visual tasks and lack the advanced language capa-
bilities required for complex multimodal tasks.

3. Methods

As our method is applicable to various multimodal architec-
tures, we first present a unified architectural abstraction in
Section 3.1. Then, in Sections 3.2 and 3.3, we explain how to
integrate box and mask representations into the open-ended
language interface. Finally, in Section 3.4, we describe our
multi-task data template for joint training.

3.1. Preliminary

Our goal is to unify fine-grained perception tasks into the
open-ended language interface, thereby ensuring compat-
ibility with any multimodal architecture that supports the
same interface. We abstract existing multimodal architecture
into three components based on the modalities they process:
image tokenizer, text tokenizer and multimodal transformer,
as shown in Tabel 1. For example, in LLaVA [39], the image
tokenizer includes a vision encoder and MLP connector that
extract visual features and map them into the LLM’s input
space, while the multimodal transformer corresponds to the
LLM. This abstraction applies not only to MLLMs with
various image tokenizers [20, 35, 39] but also to vision gen-
eralist models with similar architectures [61], significantly
broadening the scope of our method. To avoid confusion, we
will refer to MLLMSs by default in the following sections.

3.2. Bounding Box Representation

To align with the open-ended language interface while avoid-
ing the addition of extra location tokens, we directly translate
boxes into textual numbers. Each box is represented by the
coordinates of its top-left (z1, y1) and bottom-right (x2, y2)
corners. The continuous values of these coordinates are
discretized into integers within [0, range], enclosed by
<box> and </box> tokens. If a class label is required, we
simply prepend the textual class before the <box> token.
For example, a box of a person can be represented as:

person, <box>465,268,589,344</box>

This approach uses open-ended sequences to represent boxes,
effectively aligning with vision-language tasks.

3.3. Mask Representation

Representing masks via the language interface is more chal-
lenging because masks contain more detailed information
than boxes. Previous methods either use polygon formats,
which sacrifice details, or assign textual classes to each pixel,
resulting in overly long sequences. Therefore, a more effi-
cient method to represent detailed masks is needed.

We observe that in MLLMs, the language interface is ac-
tually multimodal, where projected image features and text
features are combined and jointly processed by the LLM.
However, most existing methods ignore the output image
features processed by the LLM. We argue that since MLLMs
can express where and what objects are in text form, the

Itis <MASK><MASK><MASK>.

It is located at <Box>56,4,96,122</Box>.

dot product
X

Interpolate B

>0

L] o E e H]
Output Mask M (16x16) Final Mask (448x448)

dot product

4
Interpolate
—_—

o

Output Mask M., (32x32) Final Mask (448x448)

M D (a) Segmentation
5 Amn
2 — D => Image Feature h,,
| |2 | 0o 0000
o > E
3 = 5 Ve
£ . 0 It is <MASK>. (e
B | 2| B
g_ D (b) Seg with multiple mask tokens
) | o sinlnlm
- D => Image Feature h,
o |— 0 0000
=)
D R TR N 7]
{, Canyou \ E 6" Ve
E segment/ locate E '_." § D
! the goat nearest —» % — @ —
i tothe bottom 3, = | ~ CTTTT
' stone? ; = (3 () Detection
N e - s = %’ —>
y
Input Texts O |
Xt Outputs

Figure 2. Overview of our approach. (a) Segmentation modeling: the mask token embedding retrieves similar image features to generate
masks (shown with matching colors). (b) Upsampling masks by multiple mask tokens, retrieving more details by more tokens. We use N=2
to illustrate while using N=4 in implementation. (c) We output open-ended text sequences with textual numbers for detection.

mask information is already encoded in the image features.
We just need to teach the model to decode this information.
Therefore, we design a representation method based on im-
age features and text embeddings. Instead of storing mask
information in text embeddings, we use the text embeddings
as query embeddings to extract mask information from the
image features. The detailed approach is described below.
Segmentation by Embedding Retrieval. To incorporate the
segmentation task using only the language interface, we re-
formulate it as an embedding retrieval problem. Specifically,
we approach segmentation via mask prediction. We first
augment the basic vocabulary of the model with a <MASK>
token, which serves as the indicator for mask generation.
When performing segmentation, the model is trained to out-
put the <MASK> token, as shown in Figure 2 (a). Formally,
given an input image x, and a segmentation prompt x¢, the
model F generates the text response y and corresponding
output embeddings hy, image features h,, as:

hvaytaht = JT'.(xva xt)' (1)

We extract the mask token embedding e, corresponding to
the <MASK> token from h¢. To generate the segmentation
mask, we compute the similarity between the mask token
embedding e,,, and the image features h, via a scaled dot
product. Positive scores are retrieved to form the binary
mask M. This process is expressed as:

T
emh ~
s=-—"""" M=I(s>0), 2)
Vd
where d is the embedding dimension, s represents the simi-
larity scores, and I is the indicator function that converts the

similarity scores into a binary mask. By computing the dot
product similarity between the mask token embedding and
image features, we retrieve the most relevant image features
corresponding to the mask token, thereby producing a mask
aligned with the original image.

Our approach removes the need for task decoders while
leveraging the inherent capabilities of the MLLMs to ef-
fectively support segmentation tasks. We hypothesize that,
in well-encoded image features, features sharing the same
semantics will group into clusters. Therefore, generating
a mask token embedding equates to identifying the center
of the relevant image feature cluster, while computing the
similarity between embeddings reflects this relationship.

Upsampling by Multiple Mask Tokens. Due to the re-
dundancy in visual information, it is common to process
visual features at reduced resolutions. For example, the
CLIP-L/14 [49] model downsamples image features by a
factor of 14. In our segmentation method, similarities are
computed using downsampled image features, resulting in
low-resolution masks. However, directly upsampling by
interpolation leads to coarse results and suboptimal perfor-
mance due to the high interpolation factor.

To address this issue, we propose an upsampling method
by predicting multiple mask tokens. For an image x, €
RHXWX3 " we obtain image features h, € RHpxWpxd
downsampled by the patch size p, where d represents the
feature dimension. Our target is to upsample the generated
mask by N times, producing M, € RN XWoN) from
image features h, € RH»*W»>d This requires decoding
an N x N mask for each position in the image features.
To achieve this, we train the model to autoregressively pre-

1
<« MoskOutput 1 Multiple Predictions
Sure, It is <MASK>. I
_______________ 1 cow, <box>...</box>
Box Output
N duck, <box>...</box>
<box>56,4,96,122</box>
: t
{ Multi-Modal Transformer } { Multi-Modal Transformer }

»~

<Image>

Can you segment

v & / Detect cow, d
duck.

nearest to the stone? sauck .

location the goat
<Text Prompt> <Image>

1 N S

<Text Prompt> <Local >

Figure 3. Multi-task data template examples. Red dots represent
sampled grid point features, acting as local visual prompts for
generating text sequences for nearby objects.

dict N2 <MASK> tokens with embeddings {epm, }2¥';. Each
token corresponds to a single position in the N x N upsam-
pling grid, as illustrated in Figure 2 (b). For each mask token
embedding ey,,, we compute the similarity with the visual
features h,:

em; hy |

\/a)

where ey, € R4 h,' e R>*HxWp and s; €
. . . 2

RY>*HpxWo These similarity scores {s;}X, are then con-

catenated and reshaped into an upsampled similarity map:

3

8; =

N2 N2xH,xW,
Sconcat — Concat({si}izl)a Sconcat € R X Hp X , (4)

(HPN)X(WPN). (5)

Sup = I‘eShape(Sconcat)a Sup € R

Finally, we retrieve positive scores in s, to generate the
upsampled binary mask Mup. By default, we set N = 4,
predicting 16 <MASK> tokens, which upsamples the output
mask by a factor of 4. The mask is then aligned with the
original image resolution through interpolation.

Our method effectively leverages mask token embeddings
as upsampling parameters, offering greater flexibility than
traditional methods like bilinear interpolation and transposed
convolution. Bilinear interpolation uses non-learnable pa-
rameters, while transposed convolution allows for learnable
parameters, the same parameters are applied to all images
after training. In contrast, we use embeddings generated
by the network as the parameters, which can be customized
for each image. This approach enables the model to gener-
ate optimal upsampling parameters dynamically, enhancing
flexibility while achieving better performance.

3.4. Multi-Task Data Template

Based on the above designs, we construct multi-task data
templates for joint training. We classify tasks into two cate-
gories based on output prediction number: single-prediction
tasks like visual grounding produce one box or mask, and
multi-prediction tasks like object detection generate sev-
eral boxes. Merging multiple outputs into a long sequence
is inefficient and the order among them is hard to define,

making autoregressive learning of the sequence difficult [7].
Inspired by GiT [61], we adopt a parallel decoding approach
that splits multi-prediction tasks into independent subtasks,
each handling one prediction in parallel. This strategy effec-
tively accelerates inference and enhances task scalability.
Single prediction. For tasks only require a single prediction,
our task template is:

<Text Prompt><Image><Text Response>

As shown in Figure 3, we follow previous methods to con-
struct text prompts and use our unified box and mask repre-
sentation for text responses.

Multiple predictions. To efficiently support multi-
prediction tasks, we split complex tasks into independent
subtasks with single prediction, enabling parallel decoding
within a batch. The key to achieving parallelism is to en-
sure all subtasks are independent. Typically, multiple boxes
and masks correspond to different locations. Therefore, we
introduce local image features in the input to differentiate
these sub-tasks, serving as visual prompts. The template is
structured as follows:

<Text Prompt><Image><Local><Text Response>

where <Local> refers to local image features interpolated
by grids sampled on the image. Specifically, we uniformly
sample M grid points on the whole image and interpolate the
local image features at each grid location. We then match the
M grid points with K predictions, assigning each prediction
to the nearest grid point. As shown in Figure 3, example
sub-sequences might be:

Detect cow,
Segment cow,

.. .<Image><Local>cow, <box>...

...<Image><Local>cow, <MASK>...
The remaining M — K grid points predict the end token.
In this way, M grid points correspond to M independent
subtasks. They share the text prompt and image features
but have distinct local features and text responses, forming
M separate sub-sequences that can be predicted in parallel
within a batch. By breaking down complex tasks into simple
single-prediction subtasks, this approach enhances efficiency
while simplifying learning. We adopt this template for object
detection, instance segmentation and semantic segmentation.

4. Training

To ensure efficient validation and fair comparison, we first
follow GiT [61], using a smaller ViT as the multimodal trans-
former for multi-task training across five standard visual per-
ception tasks. We then scale to MLLMs, validating on the
same multi-task benchmark. Finally, we enrich the data by
incorporating more diverse datasets, enabling fine-grained
instruction tuning of MLLMs. After instruction tuning, the
fine-grained perception capabilities are seamlessly integrated
with the robust language abilities of MLLMs, thereby ap-
plying to perception tasks that require advanced language
capabilities, such as reasoning segmentation.

Table 2. Results on GiT [61]’s multi-task benchmark. “single-task” refers to models trained on each task separately, while “multi-task”
indicates models trained jointly across all selected tasks. “x” denotes the model is capable of the task, though no number is reported.
“-” means incapability in that specific task. We highlight the top-1 entries of one-stage multi-task generalist models and joint training
improvements with bold font. We follow [61] to list specific modules, which are designed for specific functions in architecture.

Methods Specific Modules ‘ #Params Object Detection Instance Seg Semantic Seg ‘ Captioning REC
Examples Num AP AP;, AP;; | AP AP;, AP;; | mloU(SS) | BLEU-4 CIDEr | Acc@0.5
Specialist Models
Deformable-DETR [83] RegressionHead 5 40M 454 647 490 - - - - - - -
Pix2Seq [7] Text Decoder 3 37T™M 430 61.0 456 - - - - - - -
Mask R-CNN [24] FPN,RPN 6 46M 41.0 61.7 449 | 37.1 584 40.1 - - - -
Polar Mask [70] CenternessHead 5 55M - - - 30.5 520 31.1 - - - -
Mask2Former [13] PixelDecoder 5 44M - - - 437 - - 47.2 - - -
VL-T5 [15] Faster R-CNN 3 440M - - - - - - - 345 116.5 -
MDETR [27] RoBERTa,DETR 6 188M - - - - - - - - - 86.8
Generalist Models (MultiTask-Training)
Uni-Perceiver [84] None 1 124M - - - - - - - 32.0 * *
Uni-Perceiver-MoE [82] None 1 167TM - - - - - - - 33.2 * *
VisionLLM-R50 [66] Deform-DETR 6 7B 446 640 481 | 251 500 224 - 31.0 112.5 80.6
GiT-Bgingle-task [61] None 1 13IM | 451 627 49.1 | 314 548 312 47.7 33.7 107.9 83.3
GiT-Bouniask [601] None 1 13IM | 467 642 507 | 319 564 314 478 35.4 1126 85.8
GiT-Lulti-task [61] None 1 387M | 51.3 692 559 | 351 614 347 50.6 35.7 116.0 88.4
GiT-Hmulti-task [01] None 1 756M | 529 71.0 57.8 | 358 62.6 356 524 36.2 118.2 89.2
UFO-ViT-Bgingle-task None 1 13IM | 478 657 520 | 426 658 46.1 49.5 342 111.1 83.6
UFO-ViT-Buiii-task None 1 131M 483 66.6 526 | 435 662 47.0 50.2 353 114.2 85.8
Improvement (single—smulti) +0.5 +0.9 +0.6 | +0.9 +04 +0.9 +0.7 +1.1 +3.1 +2.2
UFO-ViT-Luyti-task None 387M | 529 713 579 | 473 709 516 54.0 359 118.6 88.5
UFO-ViT-H i task None 1 756M | 541 724 589 | 481 71.6 53.0 55.7 37.6 123.6 89.2
UFO-InternVL2-8B,nuii-task None 1 8B 523 717 565 | 458 69.5 497 54.6 39.6 131.6 90.4
Task | Example Sources | Count _Size 4.2. Fine-grained Instruction Tuning
Visual Question Answering LLaVA-v1.5- mix665k [39] 1 0.7m
ﬁe;‘er ExpreSS@on gomprehevsion ﬁe;gggg § ?; Iie;gégg ﬁ:j : 8Agm Architecture. To demonstrate that our method is applicable
efer Expression Segmentation € 5/, Rej 28 .om .
Object Dz[ecﬁon 5 Objecis365 56, COCO[37] | 5 38m to various MLLMs, we use not only InternVL2-8B [12]
Instance Segmentation Openlmages [32], LVIS [23] 6 l4m but also the LLaVA-1.5-7B [40] for pretraining, specifically
Semantic Segmentation COCOStuff [3], ADE20K [80] ‘ 4 0.3m

UFO-LLaVA-1.5-7B. Architecture details are in Table 1.
Datasets. To enhance the model’s versatility, we enrich our
training datasets with more datasets and tasks, extensively
covering major visual perception tasks Our training data
includes 24 datasets across 6 tasks, as detailed in Table 3.
More details of data composition are in the appendix.

Table 3. Datasets used in instruction tuning. The columns, from
left to right, represent task name, dataset examples, dataset count,
and data amount. More details are provided in the appendix.

4.1. Multi-Task Training 5. F . ¢
. Experiments

Architecture. To ensure fair comparison and validate the
effectiveness of our approach across various architectures,
we conduct multi-task training using two variants: UFO-ViT
and UFO-InternVL2-8B. UFO-VIT strictly follows GiT [61],
employing a SAM [30]-pretrained ViT [21] and a text
tokenizer from BERT [19]. It is available in three sizes:
ViT-B, ViT-L, and ViT-H. UFO-InternVL2-8B utilizes the
pretraining weight of InternVL2-8B [12], with detailed
model specifications provided in Table 1.

Datasets. We use the same multi-task dataset as GiT, which
includes five standard visual perception tasks: COCO
2017 [37] for object detection and instance segmentation,
COCO Caption [10] for image captioning, the RefCOCO
series [43, 75] for referring expression comprehension
(REC), and ADE20K [80] for semantic segmentation.

5.1. Experimental Settings

Multi-Task Training Details. To facilitate comparison and
verify the effectiveness of our method, we also conduct
single-task training independently on five selected tasks. For
both single-task and multi-task training, we use a batch size
of 24 and employ the AdamW [29] optimizer with a cosine
annealing schedule, setting the initial learning rate to 0.0002.
More details are in the appendix.

Fine-grained Instruction Tuning Details. In training, we
use a batch size of 32 with gradient accumulation set to 16,
running on 8 NVIDIA A100 GPUs for 120K iterations. The
AdamW [29] optimizer and a cosine annealing schedule are
employed, with a learning rate of 0.0002 and weight decay
of 0.01. For efficient training, we employ LoRA [25] with a
rank of 8, freezing the image tokenizer while keeping only

Referring Expression Comprehension (REC) Referring Expression Segmentation (RES)

Methods RefCOCO RefCOCO+ RefCOCOg Avg RefCOCO RefCOCO+ RefCOCOg Avg

val testA testB | val testA testB | val test val testA testB | val testA testB | val test
MLLMs with Task Decoders
LISA [33] - - - - - - - - - 74.1 765 71.1 | 624 674 565 | 66.4 685 | 679
PixelLM [54] - - - - - - - - - 73.0 765 682 | 663 717 583 | 693 705 | 69.2
SAM4MLLM-7B [11] - - - - - - - - - 77.1 809 725 | 715 768 647 | 745 752 | 74.2
NExXT-Chat [76] 855 900 779 | 772 845 680 | 80.1 79.8 | 80.4 | 747 789 695 | 651 719 56.7 | 67.0 67.0 | 68.9
PerceptionGPT [47] 88.6 925 846 | 821 836 742 |841 852|850 751 786 717|685 739 613|703 717|714
VisionLLM v2 [68] 90.0 93.1 87.1 |81.1 873 745 |850 864 (856|792 83 770 | 689 758 61.8 | 733 748 | 74.1
MLLMs w/o Task Decoders
Shirka-7B [6] 87.0 90.6 802 | 81.6 874 72.1 | 823 822 | 829 - - - - - - - - -
MiniGPT-v2-7B [5] 88.1 913 843 | 79.6 855 733 | 842 843 | 83.8 - - - - - - - - -
Ferret-7B [72] 875 914 825 | 80.8 874 73.1 | 839 848 | 839 - - - - - - - - -
VistaLLM [48] 88.1 915 830 | 829 89.8 748 | 83.6 844 | 848|745 760 727 | 69.1 737 64.0 | 69.0 709 | 71.2
UFO-LLaVA-1.5-7B 899 930 860 | 843 903 775 | 8.0 86.8 | 867|762 785 730|698 751 639 |71.1 719|724
UFO-LLaVA-1.5-7B* | 90.8 93.0 87.3 | 8.5 905 786 |89 872 |875|772 794 738 |70.8 755 64.1 |721 732|733
UFO-InternVL2-8B 90.7 940 874 |854 901 792 |86.7 870|876 | 773 792 747 | 713 757 665 | 72.8 732 | 73.8
UFO-InternVL2-8B* 914 938 882 (857 907 79.7 | 8.8 874 |88.0 | 780 797 756|723 768 66.6 | 73.7 743 | 74.6

Table 4. Comparison of referring expression comprehension (REC) and segmentation (RES) performance. Results on REC are reported
based on P@0.5. Results for RES are reported based on cumulative IoU (cloU). * denotes the model is specifically finetuned on the dataset.

the LLM trainable. More details are in the appendix.
Training Objectives. All tasks utilize a CrossEntropy Loss

as they are unified under the open-ended language interface.

For segmentation tasks, we additionally apply focal loss [55]
and dice loss to supervise the binary mask output. The final
loss for segmentation tasks is expressed as:

»Cseg = ACEECE + Afocalﬁfocal + Adiceﬁdice

We empirically find that setting all weights to 1 offers better
overall performance. See appendix for more details.

Methods ReasonSeg
overall short query long query

GRES [38] 21.3 17.6 22.6
X-Decoder [85] 21.7 20.4 22.2
SEEM [86] 243 20.1 25.6
LISA-LLaVA-7B [33] 36.8 37.6 36.6
LISA-LLaVA-7B [33]* 47.3 40.6 49.4
LISA-LLaVA-1.5-7B [33] 48.7 47.1 49.2
LISA-LLaVA-1.5-7B [33]* 55.6 48.3 57.9
UFO-LLaVA-1.5-7B 53.8 40.1 58.2
UFO-LLaVA-1.5-7B* 58.0 46.3 61.7
UFO-InternVL2-8B 55.4 41.9 59.8
UFO-InternVL2-8B* 61.2 49.6 64.9

Table 5. Results (gloU) on ReasonSeg test set. * denotes using 239
reasoning segmentation data samples to fine-tune the model.

5.2. Multi-Task Evaluation

We evaluate our model’s performance in both single-task and
multi-task settings across five standard vision-centric tasks,
benchmarking it against specialized and generalist models.
Without extra task decoders, our model adapts to various
tasks through the proposed open-ended language interface
and achieves outstanding performance.

Comparison with Specialist Models. As shown in Ta-
ble 2, our single-task model effectively bridges the perfor-
mance gap with specialized models, achieving either supe-
rior or on-par performance. For example, we achieve 47.8
mAP in detection compared to 45.4 mAP with Deformable-
DETR [83] and 49.5 mloU in semantic segmentation against
47.2 mloU with Mask2Former [13]. In instance segmen-
tation, we also outperform specialized methods like Mask
R-CNN [24] and Polar Mask [70] while matching the perfor-
mance of Mask2Former [13].

Comparison with Generalist Models. To facilitate compar-
ison with GiT [61], we adopt its one-stage training method
without task-specific finetuning. This involves jointly train-
ing on a mixed dataset of the five tasks and directly testing
on their respective validation or test sets. Table 2 shows
that our model outperforms the previous leading generalist
model, GiT, across all tasks, with the same pretraining and
data. Notably, in the largest model size, we outperform GiT
by 12.3 mAP on COCO instance segmentation and 3.3 mIoU
on ADE20K semantic segmentation, demonstrating the su-
periority of our segmentation modeling. The improvement
in captioning is mainly because we use a standard vocabu-
lary for all tasks, while GiT uses task-specific vocabularies,
hindering the learning of general text representation.

We also observe a multi-task synergy effect like GiT,
with performance on instance segmentation improved by 0.9
mAP and captioning increased by 3.1 CIDEr. Our multi-task
improvements on segmentation also outperform GiT (0.7
vs. 0.1 mIoU). We attribute this to unified modeling across
segmentation tasks, whereas GiT employs separate methods
for instance and semantic segmentation.

After scaling to MLLMs, we observe improved perfor-
mance on captioning and REC, while performance on other
tasks remains comparable to the UFO-ViT-L. We speculate

that this performance difference primarily arises from differ-
ent pretraining. For UFO-ViT, we use SAM [30] pretraining,
making it more aligned with detection and segmentation. In
contrast, InternVL2-8B is mainly pre-trained on image-level
vision-language tasks, which better suit captioning and REC.

5.3. Fine-grained Instruction Tuning Results

After training MLLMs with data shown in Table 3, we first
evaluate their object and pixel-level perception performance
on the visual grounding tasks. Then we evaluate on a more
difficult task, reasoning segmentation, examining whether
our method effectively combines fine-grained perception
with the MLLMs’ language reasoning abilities.

Visual Grounding maps textual descriptions to objects in
an image, which can be further categorized into referring ex-
pression comprehension (REC) and segmentation (RES). We
comprehensively list the results for the two tasks in Table 4.
We report results in two settings: direct evaluation after joint
training and specifically finetuning. Without using box de-
coders, our best model surpasses the previous state-of-the-art
VisionLLM v2 [68] by an average of 2.0%. After specific
finetuning, our model achieves stronger performance with
88.0% on average. While all previous approaches rely on
mask decoders or polygon approximations for segmentation,
our method delivers superior or comparable performance
without them. For instance, our InternVL2 variant outper-
forms the SAM [30]-based LISA [33] by an average of 5.9
cloU and matches with VisionLLM v2 [68]. These outcomes
validate the effectiveness of our method, demonstrating that
with proper task modeling, MLLMs can handle fine-grained
perception tasks without task decoders.

Reasoning Segmentation (ReasonSeg) is a challenging
benchmark introduced by LISA [33], which presents more
sophisticated and nuanced instructions, requiring models
to leverage world knowledge and engage in deeper logical
reasoning. We adhere to the evaluation protocol of LISA,
reporting both zero-shot and finetuned results. As shown
in Table 5, with the same pretraining, our LLaVA-1.5 vari-
ant outperforms LISA by 5.1 gloU in zero-shot settings.
With advanced MLLM InternVL2, our performance further
improves, exceeding LISA by 6.7 gloU. Finetuning also sig-
nificantly improves performance, with our InternVL2 variant
improving by 5.8 gloU compared to zero-shot.

Since reasoning segmentation requires both language rea-
soning and precise segmentation, we attribute our improve-
ment to better task integration through unified modeling. In
LISA, the MLLM handles only language reasoning and gen-
erates coarse segmentation prompts, relying on an additional
SAM for finer segmentation. This leads to information loss
and insufficient synergy. In our unified modeling, the MLLM
manages both language reasoning and precise segmentation,
allowing different task capabilities to fully integrate within a
shared parameter space, thereby enhancing synergy.

Decoding | Beam Positive | Detection N2 ‘ 1 ‘ 4 ‘ 16 ‘ 25
Rule Search | Predictions mAP

o1 3.0 mAP ‘ 38.9 ‘ 41.3 ‘ 42.6 ‘ 429

v 100 451 FPS | 70 | 59 | 36 | 28

‘ v 67.0 45.1

- Table 7. Mask token number
Table 6. Ablation of open-ended gplation on UFO-ViT-Biingle task

decoding on UFO-ViT-Biingiewsk- for instance segmentation.

Open | Beam | Embedding | Copy | Repeat | Detection | Ins Seg
Ended | Search | Retrieval Paste GT AP AP
45.1 314
v 43.0 30.4
v v 45.1 31.3
v v v 45.1 39.2
v v v v 46.2 40.4
v v v v v 47.8 42.6

Table 8. Ablation on COCO detection and instance segmentation.

5.4. Ablation Study

Open-ended decoding. We explore the impact of our open-
ended decoding on single-task detection. As noted in Sec-
tion 3.4, we split object detection into sub-tasks for each grid
point (e.g., 625 grid points for a 1120x1120 image), which
leads to an imbalance between positive and negative samples
due to more grid points than objects. Our method utilizes a
standard vocabulary (e.g., BERT’s 30,524 tokens) for open-
ended decoding. This output space is much bigger than the
range of positive classes (e.g., 80 in COCO), worsening class
imbalance and reducing positive predictions in inference. As
shown in Table 6, while using decoding rules like remov-
ing negative classes from the vocabulary [61] could force
all outputs to be positive, this compromises our generality.
Therefore, we use beam search [52], which allows the model
to explore multiple potential sequences. This approach ef-
fectively increases positive predictions and improves perfor-
mance. By default, we only apply beam search for COCO
detection, instance segmentation, and image captioning.

Number of Mask tokens. We ablate the number of mask
tokens on the COCO instance segmentation task. As shown
in Table 7, using multiple tokens significantly improves per-
formance compared to a single token, but the gains plateau
after 16. Considering the increased training and inference
costs, we set N2 = 16 by default for a balanced trade-off.

Adavanced training strategies. The sparsity of positive
samples in multi-prediction tasks hampers effective learning.
To mitigate this, we use two advanced strategies to increase
the ratio of positive samples. First, copy-paste data aug-
mentation [22], where objects from other images are pasted
onto the target image. Second, we repeat ground truth k
times [26], defaulting to 3. As seen in Table 8, copy-paste
boosts mAP by 1.1 for detection and 1.2 for instance seg-
mentation, while repeating ground truth further boosts mAP
by 1.6 and 2.2. This demonstrates that the sparsity of is a key
bottleneck, and our performance can be effectively improved
with these strategies. By default, we only use these strategies
for COCO detection and instance segmentation.

6. Conclusion

In this paper, we present UFO, a unified approach for various
fine-grained visual perception tasks with an open-ended

language interface.

We translate all perception targets

into open-ended text sequences and introduce a novel
embedding retrieval method for segmentation. Experiments
show that our method can achieve excellent performance
on MLLMs without requiring architecture modifications.
Our unification fully aligns with vision-language tasks,
providing a flexible, effective, and scalable solution to
enhance the fine-grained perception capabilities of MLLMs,
paving the way to build more general multimodal models.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A frontier large vision-language model with
versatile abilities. arXiv:2308.12966, 2023. |

Xiaoyi Bao, Siyang Sun, Shuailei Ma, Kecheng Zheng, Yuxin
Guo, Guosheng Zhao, Yun Zheng, and Xingang Wang. Cores:
Orchestrating the dance of reasoning and segmentation. In
ECCV,2024. 3

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In CVPR, 2018. 1,
3,6,2

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020. 2

Jun Chen, Deyao Zhu, Xiaogian Shen, Xiang Li, Zechun
Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas
Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-
v2: large language model as a unified interface for vision-
language multi-task learning. arXiv:2310.09478, 2023. 3,
7

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng
Zhu, and Rui Zhao. Shikra: Unleashing multimodal llm’s
referential dialogue magic. arXiv:2306.15195,2023. 1,3,7
Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and
Geoffrey Hinton. Pix2seq: A language modeling framework
for object detection. In /ICLR, 2022. 5, 6

Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J
Fleet, and Geoffrey E Hinton. A unified sequence interface
for vision tasks. In NeurIPS, 2022. 3, 4

Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. Detect what you can: De-
tecting and representing objects using holistic models and
body parts. In CVPR, 2014. 2

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
tam, Saurabh Gupta, Piotr Dollér, and C Lawrence Zitnick.
Microsoft coco captions: Data collection and evaluation
server. arXiv:1504.00325, 2015. 6

Yi-Chia Chen, Wei-Hua Li, Cheng Sun, Yu-Chiang Frank
Wang, and Chu-Song Chen. Sam4mllm: Enhance multi-
modal large language model for referring expression segmen-
tation. In ECCV, 2024. 7

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen,
Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu,
Lewei Lu, et al. Internvl: Scaling up vision foundation mod-
els and aligning for generic visual-linguistic tasks. In CVPR,
2024. 1,2,3,6

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask trans-
former for universal image segmentation. In CVPR, 2022. 6,
7

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhang-
hao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yong-
hao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt quality.
https://vicuna. Imsys. org, 2023. 3

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying
vision-and-language tasks via text generation. In /CML, 2021.
6

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In CVPR, 2016. 3
Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung,
and Steven Hoi. Instructblip: Towards general-purpose vision-

language models with instruction tuning. In NeurIPS, 2023.
2

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi,
Yue Yang, Jae Sung Park, Mohammadreza Salehi, Niklas
Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and
pixmo: Open weights and open data for state-of-the-art multi-
modal models. arXiv:2409.17146, 2024. 1

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv:1810.04805, 2018. 3,
6

Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang,
Huchuan Lu, and Xinlong Wang. Unveiling encoder-free
vision-language models. arXiv:2406.11832,2024. 3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 2, 3,6

Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In CVPR, 2021. 8

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset
for large vocabulary instance segmentation. In CVPR, 2019.
6,2

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 6, 7

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models. In ICLR,
2022. 6

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

[39]

(40]

(41]

[42]

Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu,
Weihong Lin, Lei Sun, Chao Zhang, and Han Hu. Detrs with
hybrid matching. In CVPR, 2023. 8

Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel
Synnaeve, Ishan Misra, and Nicolas Carion. Mdetr-modulated
detection for end-to-end multi-modal understanding. In ICCV,
2021. 6

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara Berg. Referitgame: Referring to objects in pho-
tographs of natural scenes. In EMNLP, 2014. 6, 2

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014. 6
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. 1, 6, 8

Harold W Kuhn. The hungarian method for the assignment
problem. In NRL, 1955. 1

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings,
Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov,
Matteo Malloci, Alexander Kolesnikov, et al. The open im-
ages dataset v4: Unified image classification, object detection,
and visual relationship detection at scale. In ZJCV, 2020. 6, 2
Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan,
Shu Liu, and Jiaya Jia. Lisa: Reasoning segmentation via
large language model. In CVPR, 2024. 1,2,3,7,8
Mengcheng Lan, Chaofeng Chen, Yue Zhou, Jiaxing Xu,
Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang.
Text4seg: Reimagining image segmentation as text generation.
In ICLR, 2025. 2

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen
image encoders and large language models. In /CML, 2023.
1,3

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh
Agrawal, Xiujun Li, Mohana Prasad Sathya Moorthy, Jeff
Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Master-
ing universal user interface understanding across platforms.
arXiv:2410.18967,2024. 1

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV,2014. 6,2

Chang Liu, Henghui Ding, and Xudong Jiang. Gres: Gen-
eralized referring expression segmentation. In CVPR, 2023.
7

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In NeurIPS, 2023. 2,3, 6

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved baselines with visual instruction tuning. In CVPR,
2024. 6

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong,
Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu Li, Yaofeng
Sun, et al. Deepseek-vl: towards real-world vision-language
understanding. arXiv:2403.05525,2024. 1,2

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mot-
taghi, and Aniruddha Kembhavi. UNIFIED-IO: A unified

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(50]

[51]

[52]

(53]

[54]

[55]

(561

(571

(58]

model for vision, language, and multi-modal tasks. In /CLR,
2023. 3,4

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Cam-
buru, Alan L Yuille, and Kevin Murphy. Generation and com-
prehension of unambiguous object descriptions. In CVPR,
2016. 6

Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In ICCV, 2017. 2

OpenAl. Gpt-4 technical report, 2023. 1

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shao-
han Huang, Shuming Ma, and Furu Wei. Kosmos-2:
Grounding multimodal large language models to the world.
arXiv:2306.14824,2023. 1,2, 3

Renjie Pi, Lewei Yao, Jiahui Gao, Jipeng Zhang, and Tong
Zhang. Perceptiongpt: Effectively fusing visual perception
into llm. In CVPR, 2024. 1, 3,7

Shraman Pramanick, Guangxing Han, Rui Hou, Sayan Nag,
Ser-Nam Lim, Nicolas Ballas, Qifan Wang, Rama Chellappa,
and Amjad Almahairi. Jack of all tasks master of many:
Designing general-purpose coarse-to-fine vision-language
model. In CVPR, 2024. 3,7

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, 2021. 3, 4

Vignesh Ramanathan, Anmol Kalia, Vladan Petrovic, Yi Wen,
Baixue Zheng, Baishan Guo, Rui Wang, Aaron Marquez,
Rama Kovvuri, Abhishek Kadian, et al. Paco: Parts and
attributes of common objects. In CVPR, 2023. 2

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrah-
man Shaker, Salman Khan, Hisham Cholakkal, Rao M Anwer,
Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm:
Pixel grounding large multimodal model. In CVPR, 2024. 1,
J

Raj Reddy. Speech understanding systems: A summary of
results of the five-year research effort at carnegie mellon
university. Techical Report, 1977. 8

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NeurlPS, 2015. 1

Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao,
Dongmei Fu, Jiashi Feng, and Xiaojie Jin. Pixellm: Pixel
reasoning with large multimodal model. In CVPR, 2024. 1, 3,
-

T-YLPG Ross and GKHP Dolldr. Focal loss for dense object
detection. In CVPR, 2017. 7

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang
Yu, Xiangyu Zhang, Jing Li, and Jian Sun. Objects365: A
large-scale, high-quality dataset for object detection. In ICCV,
2019. 6,2

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from rgbd
images. In ECCV, 2012. 4

Joes Staal, Michael D Abramoff, Meindert Niemeijer, Max A
Viergever, and Bram Van Ginneken. Ridge-based vessel
segmentation in color images of the retina. TMI, 2004. 3

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

[71]

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv:2302.13971,2023. 3

Haiyang Wang, Yue Fan, Muhammad Ferjad Naeem, Yongqin
Xian, Jan Eric Lenssen, Liwei Wang, Federico Tombari, and
Bernt Schiele. Tokenformer: Rethinking transformer scaling
with tokenized model parameters. arXiv:2410.23168, 2024.
J

Haiyang Wang, Hao Tang, Li Jiang, Shaoshuai Shi, Muham-
mad Ferjad Naeem, Hongsheng Li, Bernt Schiele, and Liwei
Wang. Git: Towards generalist vision transformer through
universal language interface. In ECCV, 2024. 1,2,3,5,6,7,
8,4

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan,
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang. Mobile-
agent-v2: Mobile device operation assistant with effective
navigation via multi-agent collaboration. arXiv:2406.01014,
2024. 1

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou
Shen, Ji Zhang, Fei Huang, and Jitao Sang. Mobile-agent:
Autonomous multi-modal mobile device agent with visual
perception. arXiv:2401.16158, 2024. 1

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai,
Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and
Hongxia Yang. Ofa: Unifying architectures, tasks, and modal-
ities through a simple sequence-to-sequence learning frame-
work. In ICML, 2022. 3

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, et al. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv:2409.12191,
2024. 2

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu,
Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie Zhou, Yu
Qiao, et al. Visionllm: Large language model is also an open-
ended decoder for vision-centric tasks. arXiv:2305.11175,
2023.1,2,3,6

Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and
Tiejun Huang. Images speak in images: A generalist
painter for in-context visual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6830-6839, 2023. 4

Jiannan Wu, Muyan Zhong, Sen Xing, Zeqgiang Lai, Zhaoyang
Liu, Wenhai Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong
Lu, et al. Visionllm v2: An end-to-end generalist multimodal
large language model for hundreds of vision-language tasks.
In NeurIPS, 2024. 1,2,3,7, 8

Zhuofan Xia, Dongchen Han, Yizeng Han, Xuran Pan, Shiji
Song, and Gao Huang. Gsva: Generalized segmentation via
multimodal large language models. In CVPR, 2024. 3

Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo
Liu, Ding Liang, Chunhua Shen, and Ping Luo. Polarmask:
Single shot instance segmentation with polar representation.
In CVPR, 2020. 6, 7

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan
Li, and Jianfeng Gao. Set-of-mark prompting unleashes ex-

(72]

(73]

[74]

[75]

[76]

(771

(78]

(791

(80]

(81]

(82]

[83]

[84]

(85]

[86]

traordinary visual grounding in gpt-4v. arXiv:2310.11441,
2023. 1

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen
Zhang, Zirui Wang, Liangliang Cao, Shih-Fu Chang, and
Yinfei Yang. Ferret: Refer and ground anything anywhere at
any granularity. arXiv:2310.07704,2023. 1, 3,7

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang, and Zhe
Gan. Ferret-ui: Grounded mobile ui understanding with mul-
timodal 1lms. arXiv:2404.05719, 2024. 1

Fisher Yu, Haofeng Chen, Xin Wang, Wengqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020. 3

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg,
and Tamara L Berg. Modeling context in referring expressions.
In ECCV, 2016. 6, 2

Ao Zhang, Liming Zhao, Chen-Wei Xie, Yun Zheng, Wei Ji,
and Tat-Seng Chua. Next-chat: An Imm for chat, detection
and segmentation. arXiv:2311.04498, 2023. 7

Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui
Qian, Lin Chen, Qipeng Guo, Haodong Duan, Bin Wang,
Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile
large vision language model supporting long-contextual input
and output. arXiv:2407.03320, 2024. 3

Tao Zhang, Xiangtai Li, Hao Fei, Haobo Yuan, Shengqiong
Wu, Shunping Ji, Chen Change Loy, and Shuicheng Yan.
Omg-llava: Bridging image-level, object-level, pixel-level
reasoning and understanding. arXiv:2406.19389, 2024. 3
Yichi Zhang, Zigiao Ma, Xiaofeng Gao, Suhaila Shakiah,
Qiaozi Gao, and Joyce Chai. Groundhog: Grounding large
language models to holistic segmentation. In CVPR, 2024. 3
Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In CVPR, 2017. 3,6, 2

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. Minigpt-4: Enhancing vision-
language understanding with advanced large language models.
arXiv:2304.10592,2023. 1, 2

Jinguo Zhu, Xizhou Zhu, Wenhai Wang, Xiaohua Wang,
Hongsheng Li, Xiaogang Wang, and Jifeng Dai. Uni-
perceiver-moe: Learning sparse generalist models with condi-
tional moes. In NeurIPS, 2022. 6

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2020. 6, 7

Xizhou Zhu, Jinguo Zhu, Hao Li, Xiaoshi Wu, Hongsheng Li,
Xiaohua Wang, and Jifeng Dai. Uni-perceiver: Pre-training
unified architecture for generic perception for zero-shot and
few-shot tasks. In CVPR, 2022. 6

Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li,
Chunyuan Li, Xiyang Dai, Harkirat Behl, Jianfeng Wang,
Lu Yuan, et al. Generalized decoding for pixel, image, and
language. In CVPR, 2023. 7

Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li,
Jianfeng Wang, Lijuan Wang, Jianfeng Gao, and Yong Jae
Lee. Segment everything everywhere all at once. In NeurIPS,
2024. 7

UFO: A Unified Approach to Fine-grained Visual Perception via
Open-ended Language Interface

Supplementary Material

Our supplementary material provides detailed informa-
tion, including implementation details (§7), dataset descrip-
tions (§8), and training specifics (§9). Inference speed and
additional ablation studies are covered in §10 and §11, re-
spectively. Experiments on more tasks and discussions with
previous work are included in §12 and §13. Qualitative re-
sults from two training setups and visualizations of multiple
mask tokens are presented in §14.

7. Implementation Details

B masked O unmasked

(a) Text Image It is <box> 56 , 4 (b) Text Image <Local>cai<box> <Local>dog<box>

L/l NN NN EEE (N I BN EEE
OO SN BN EEN U0 NN BN NN
OO0 00 AEE mEe OO0 00 SoE BEN
mEpminy | | N |] Ol EeE EEm
OO0 00 0OME EEN 00 00 ONN EEe
s JO OO0 O0m mEe -« 000000 amm
<o (][] OO OO0 mEE - 00 00 000 mmEm
s 0O ud ood OEN we-00 OO0 MEE OEE
- U0 00 oo oom « 00 OO0 mEE OOm
« OO 00O OO0 000 <« 00 Od B 000

Single-prediction Multi-prediction

Text

Image

Figure 4. Attention mask visualizations. (a) We apply bidirectional
attention for image features. (b) For multi-prediction tasks, we
mask each subsequence from seeing others.

ViT Architecture. Our ViT architecture follows the same
design as GiT [61], using the SAM variant of ViT. We also
follow GiT to add 6 newly initialized transformer layers
upon the original ViT, leading to better performance. For
example, UFO-ViT-B consists of 18 layers.

Grid Generation. As mentioned in the multi-task template
(Section 3.4), we divide multi-prediction tasks into sub-tasks,
each corresponding to the nearest grid point. The number of
grid points is roughly proportional to the image resolution,
as shown in Table 11. Calculating the loss for all sub-tasks
is computationally expensive. Therefore, we sample grid
points and compute the loss on a subset, as presented in
Table 11. When sampling, we prioritize positive samples. If
the number of positive samples is less than the target size,
we then sample from negative samples. During multi-task
training on InternVL2-8B, we adjust the resolution based on
the default resolution of the image tokenizer (using multiples
of 448) and modify the grid point configurations accordingly.
In fine-grained instruction tuning, we use the default resolu-
tion of the image tokenizer, such as 4482 for InternVL2 and
3362 for LLaVA-1.5. For the multi-prediction tasks of the
two MLLMs, we use 100 grids and sample 40 of them.

Attention Mask. To accurately model multi-modal fea-
tures and manage relationships among sub-tasks in multi-
prediction tasks, we customize the attention mask based on
autoregressive attention. As shown in Figure 4 (a), for tasks
with a single prediction, we use autoregressive attention but
apply bidirectional attention to the image features to better
capture inter-image relationships. For tasks with multiple
predictions, during training, we concatenate multiple sub-
task sequences into a long sequence but use attention masks
to prevent different sub-tasks from seeing each other, as il-
lustrated in Figure 4 (b). This approach enables different
sub-tasks to be decoded in parallel during inference. As-
suming there are M sub-tasks, we first process the <Text
Prompt> and <Image> and save their key-value (KV)
caches. These KV caches are then duplicated M times to
create caches for M subsequences. By batching these sub-
sequences together, the model can decode them in parallel,
thereby accelerating the inference speed.

Label Assignment. In multi-prediction tasks, we use the
Hungarian algorithm [31] to match sub-tasks with grid
points, specifically to associate boxes and masks with grid
points. For boxes, the matching is based on the distance be-
tween the center of each box and the grid points. For masks,
we first convert them into box format before matching.
Coordinate Discretization. We follow GiT to convert con-
tinuous coordinates into discrete numbers within the range
[0, range]. Specifically, we define the range as twice
the image resolution. For example, for a 448 x 448 image,
we convert coordinate values into integers within [0, 896].
Data Augmentation. For object detection, instance
and sematic segmentation, we use RandomFlip and
RandomResizedCrop. We also use CopyPaste for
object detection and instance segmentation. For other tasks,
we simply resize the images to the required resolution.
Indicator function. In segmentation, we use sigmoid as the
indicator and then get a mask with a 0.5 threshold.

8. Dataset Details

Fine-grained Instruction Tuning Datasets As shown in
Table 9, our Fine-grained Instruction Tuning datasets build
upon GiT [61]’s universal datasets with the following mod-
ifications: (1) Replacing captioning datasets with VQA
datasets to maintain the multimodal conversation capabili-
ties of MLLMs. (2) Excluding datasets with smaller data
volumes, such as Pascal VOC and BDD100K. (3) Following
LISA [33], adding PACO-LVIS and Pascal Part to enhance
segmentation of object parts.

Task ‘ Sources ‘ Size

VQA LLaVA-v1.5- mix665k [39] 0.7m
woares | RRKOLLKKOONTL
s | S LIS L €001

Table 9. Fine-grained instruction tuning datasets.

9. Training Details

Multi-Task Training Details. Multi-task training setting
is in Table 10. For single-task training, we simply reduce
the training iterations to 120k. For multi-task training on
InternVL2-8B, we keep all parameters trainable and reduce
the iterations to 400k because of its faster convergence.

Progressive High-resolution Training of MLLMs. In
multi-task training, object detection, instance segmentation,
and semantic segmentation require predicting a large num-
ber of targets, including many small objects, making perfor-
mance highly sensitive to resolution. For the relatively small
UFO-ViT, we train directly using high resolution. How-
ever, for multi-task training on MLLMSs, high resolution
significantly increases training costs. Therefore, we adopt
a progressive high-resolution training strategy: first train-
ing at a resolution of 4482 for 300k iterations, then at 8962
for 60Kk iterations, and finally at 13442 for 40k iterations.
We utilize InternVL2-8B’s dynamic resolution to support
high-resolution inputs. As shown in Table 12, increasing
the resolution leads to substantial improvements in detection
and segmentation performance, even with fewer iterations.
Fine-grained Instruction Tuning Details. Training setting
is in Table 10. The training data for the MLLM includes
six tasks, each containing multiple datasets. We first sample
evenly from the six tasks, with a sampling ratio of 1/6 for
each task. Then, within each task, we sample evenly from the
corresponding datasets. For example, for object detection,
the sampling ratio for each dataset is 1/30. When fine-tuning
on a specific dataset, we maintain the same training setup
but train for only 20k iterations.

10. Inference Speed

Table 11 shows the speed of UFO-ViT-B. By using parallel
decoding for multi-prediction tasks, we achieve inference
speeds comparable to single-prediction tasks, despite higher
resolutions (1120% vs. 224%) and more predictions. Table 13
shows the speed on MLLMs. Our LLaVA-1.5 variant is
slower than InternVL2 on REC because its tokenizer con-
verts textual numbers into longer token sequences. In em-
bedding retrieval, the extra scaled-dot product operation only
costs a negligible 0.17 ms for InternVL2-8B on an A100.

config ViT MLLM MLLM:-instruct
optimizer AdamW AdamW | AdamW
learning rate 2e-4 2e-4 2e-4
weight decay 0.05 0.01 0.01
layer-wise Ir decay 0.85 0.85 -
schedule cosine cosine cosine
gradient norm clip 0.1 1.0 1.0
warmup iters 1k 1k 1k
training iters 640k 400k 120k
batch size 24 24 32
gradient accumulation | - - 16

LoRA rank - - 8

LoRA alpha - - 16
LoRA dropout - - 0.05
LoRA modules - - LLMs
drop path 0.1(B), 0.4(L,H) | - -
precision FP16 BF16 BF16
GPUS 24 x V100 8x A100 | 8x A100

Table 10. Multi-task training and instruction tuning settings.

Task ‘ Resolution ‘ Grid ‘ Sample Grid ‘ Speed
Object Detection 11202 625 250 4.1
Instance Seg 11202 625 250 3.6
Semantic Seg 6722 225 90 4.8
Image Captioning 2242 0 0 7.7
REC 2242 0 0 9.1

Table 11. Resolution, grid number and sample grid number for the
five tasks in multi-task training on UFO-ViT. Speed is measured on
UFO-ViT-B, single A100 with batch size 1.

Resolution | Iters | Detection | Ins Seg | Sem Seg
4482 300k 443 37.4 53.9
8962 60k 51.7 44.1 54.6
13442 40k 52.3 45.8 -

Table 12. Iterations and performance in progressive high-resolution
training on UFO-InternVL2-8B.

Model | REC | RES | ReasonSeg
UFO-InternVL2-8B 1.10 0.58 0.57

UFO-LLaVA-1.5-7B | 0.78 0.67 0.65

Table 13. Inference speed on MLLMs. Speed is measured on an
A100 GPU with batch size 1.

Beam | Detection | Instance Seg Captioning

Number mAP mAP BLEU-4 CIDEr
1 45.6 40.9 33.0 108.5
2 474 42.1 34.2 111.1
3 47.8 42.6 34.0 110.8
5 47.9 42.6 339 111.0

Table 14. Ablation of beam number on UFO-ViT-Bgingie-task-

11. More ablation studies

Beam Search. In Table 14, we present ablation studies
on the beam number. As the beam number increases, per-
formance initially improves and then stabilizes, but further

CE:Focal | 1:1 | 1:3 | 3:1 Method | P@0.5 | FPS

43.5 ‘ 43.7 ‘ 434 box 90.7 ‘ 1.10

Ins Seg
Caption

353 | 349 | 353 mask2box | 89.5 | 0.57
Table 16. REC performance.

Table 15. Loss weight ablation.

REC ‘ RES ‘ VQA | Ins Seg | Sem Seg | Det REfC]?E%O val REfClSECSO val R“[Se":seg

v 88.2 - -

v v 88.6 735 47.7

oV v 89.2 74.4 502

v vV v v 89.6 76.7 549

vy v v v 90.7 713 55.4

Table 17. Ablation of MLLM training data on UFO-InternVL2-8B.

Model ‘ Det ‘ Ins Seg ‘ Sem Seg ‘ REC ‘ RES

UFO-InternVL2-8B | 52.3 | 45.8 54.6 90.7 | 77.3
Table 18. Comparisons with baseline MLLMs.

InternVL2-8B [9] ‘10.5‘ - ‘ - ‘87.1‘ -

increases cause a slight performance drop in the captioning.
Since larger beam numbers increase inference time, we se-
lect the optimal beam number: 3 for object detection and
instance segmentation and 2 for captioning.

Loss weights. In Table 15, we ablate loss weights on UFO-
ViT-B. We jointly training both instance segmentation and
image captioning tasks. Although increasing the focal loss
weight is slightly better for segmentation, it leads to a drop
in captioning. Since our goal is better overall multi-task per-
formance, we set all weights to 1 to avoid task competition.
Data contributions. In Table 17, we illustrate the impact of
different task data on performance. We observe that adding
VQA data significantly enhances performance on Reason-
Seg, likely because it helps maintain the language reasoning
abilities of MLLMs. The inclusion of instance and seman-
tic segmentation data benefits both RES and ReasonSeg by
providing dense mask annotations. Additionally, incorporat-
ing detection data leads to noticeable improvements in the
REC task, as it offers dense bounding box annotations and
potentially exposes the model to a broader range of concepts.
Comparisons with baseline MLLMs. In Table 18, we pro-
vide comparisons between UFO and the baseline MLLM.
Firstly, UFO significantly expands the task range, enabling
the model to handle all types of segmentation. Secondly,
although InternVL2-8B can support REC and perform detec-
tion by breaking it into multiple single-category prediction
tasks, its performance is markedly inferior to us, especially
in detection. This is primarily because InternVL2-8B cannot
predict multiple boxes for a single category nor model the re-
lationships among multiple categories, leading to insufficient
and contradictory predictions. In contrast, UFO effectively
supports multi-prediction tasks through local prompts, al-
lowing it to accommodate any prediction number.
Mask2Box. A simple way to output box based on segmenta-
tion is mask2box, which uses bounding rectangle of masks.
Table 16 shows the performance of mask2box, which is
slightly lower than directly predicting boxes. This is mainly

because some masks have outlier predictions, distorting the
converted boxes. Moreover, boxes are generally shorter than
masks, resulting in a faster speed (see Table 13). Notably,
our box and mask representations are unified through the
language interface. The only difference is that for boxes, tex-
tual numbers are converted into coordinates, and for masks,
embedding retrieval is used. These operations are as simple
as mask2box, which greatly reduces task-specific details
compared to methods that use task decoders.

12. Extended Experiments

Retinal Vessel Segmentation. Our embedding retrieval
method offers superior expressive capability compared to
polygons, particularly in highly complex and detailed masks,
which require a large number of vertices when using poly-
gons. To further illustrate this, we fine-tune our model on
the retinal vessel segmentation, where the vessels possess
very irregular and narrow shapes, which are hard to represent
as polygons. We follow the few-shot settings in GiT [61],
fine-tuning both UFO-ViT-H and UFO-InternVL2-8B on the
DRIVE [58] training set for only 100 steps. As shown in
Figure 5, UFO accurately segments the retinal vessels. In
performance, UFO-ViT-H achieves 77.4 Dice, outperform-
ing GiT-H with 57.9 Dice. UFO-InternVL2-8B also achieves
a competitive 76.3 Dice. This result validates the effective-
ness of our segmentation method on extremely fine-grained
structures, enabling support for more general segmentation.

Original Predicted

Ground Truth

UFO-ViT-H

Predicted Ground Truth

Original

UFO-InternVL2-8B

Figure 5. Visualizations of retinal vessel segmentation.
Depth Estimation. Thanks to the flexibility of our method,
we can easily extend it to depth estimation similar to seg-
mentation. We can apply a sigmoid to the dot product result
to interpret it as relative depth 7, which can be then mapped
into absolute depth. For depth D within [Dinins Dinazl, we
can predict it as follows:

T
%), ﬁ:T'Dmaz+(1_T)'Dmin (6)

eq is the embedding of <DEPTH> token. As shown in Ta-
ble 19, we can achieve competitive performance.

r=o(

The above approach essentially shares the same model-
ing as segmentation, differing only on how to interpret the
model output. In segmentation, dot product results serve
as confidence scores that are thresholded to create masks,
whereas in depth estimation, they represent relative depth
and are then converted to absolute depth. This process can
be seen as a simple post-processing, which is very common
in general-purpose models [8, 67]. For example, Painter [67]
converts RGB values to categories and depth using task-
specific rules. Our unification lies in modeling all tasks
through the standard language interface. When specific out-
puts (e.g., masks, depth) are needed, the corresponding post-
processing is then performed. This design unifies the core
understanding capabilities across tasks while requiring only
minimal, learning-free post-processing for various formats.

Methods | RMSE} | 611 | REL{ | logl0)

Painter [67] 0.327 | 0.930 | 0.090 -
Unified-10 2 [42] 0.423 - - -
UFO-InternVL2-8B | 0.320 | 0.928 | 0.091 | 0.039

Table 19. Depth estimation performance on NYUv2 Depth [57].

13. Discussions

Comparisons with GiT. GiT [61] also aims to build a gen-
eralist model for fine-grained perception tasks. Compared
with GiT, we provides six key improvements: 1) Segmen-
tation by embedding retrieval, a simple yet intuitive way
to support segmentation by language interface. GiT uses
polygons and textual classes, leading to information loss or
lengthy sequences. In contrast, UFO can accurately segment
using only 16 mask tokens. 2) Alignment with the open-
ended language interface: unlike GiT, which requires sepa-
rate vocabularies and fixed output lengths per task, UFO uses
shared vocabulary and outputs arbitrary-length sequences.
Tables 6 and 18 demonstrate that open-ended detection is
challenging due to severe class imbalance. We address this
issue with a text-aligned beam search and achieve enhanced
performance. 3) Scalability to MLLMs: while GiT only
experiments on relatively small ViTs, UFO can easily scale
to larger MLLMs thanks to the aligned language interface.
4) Exploring the image representation capabilities of the lan-
guage interface. GiT is a purely text-based method, while
UFO can effectively extract mask information from image
features. 5) Better task universality: GiT uses different meth-
ods for instance and semantic segmentation (polygon and
textual class), while we adopt a unified approach for both
tasks because UFO can support masks with any shape. As
UFO is aligned with vision-language tasks, we can effort-
lessly combine VQA reasoning and segmentation, enabling
ReasonSeg. 6) Significant performance improvements. In
Table 2, UFO-ViT-H outperforms GiT-H by 1.2 mAP and
12.3 mAP on COCO detection and instance segmentation,
and 3.3 mloU on ADE20K semantic segmentaion.

14. Visualization

Multi-task Training Results. In Figure 7, we visualize the
multi-task training results of UFO-ViT-H. The model can
not only handle simple perception tasks but also accurately
detect and segment multiple objects in complex scenarios.
Instruction Tuning Results. We present qualitative results
of UFO-InternVL2-8B in Figue 8. Leveraging the language
capabilities of MLLMs, the model can accurately locate and
segment based on both simple phrases and complex queries.
Multiple Mask Tokens. In Figure 9, we visualize the masks
corresponding to each of multiple mask tokens. Each token
captures specific details, such as different legs of a horse
or the tail of a dog. Therefore, combining all the mask
tokens results in a higher-resolution, more detailed mask. In
Figure 10, we visualize the results for different numbers of
mask tokens. Using only one mask token results in rough
edges, while increasing the number of mask tokens produces
more refined masks, leading to better performance.

Failure cases. We visualize the failure cases of UFO-
InternVL2-8B on REC, RES and ReasonSeg in Figure 6.
In the first example, the model misunderstands “fourth” and
detects the third guy from the right, showing its inaccuracy in
counting. In the second example, the model only marks visi-
ble table parts (blocked by food), while the human guesses
hidden areas. This is mainly because the semantics of image
features on occluded areas are different. However, whether
to include occluded areas is also ambiguous. In the third
example, the model fails to identify the answer as “river”
due to limited knowledge, leading to segmentation errors.

Ground Truth

Original Predicted

Please segment the table in the image.

Predicted

-

What is the key feature of the rainforest that supports the growth of various types of plants,
creating a rich habitat for many animals? Please output segmentation mask.

Figure 6. Failure case visualizations of UFO-InternVL2-8B on
REC, RES and ReasonSeg respectively.

Detect objects in [List of
COCO Classes].

¢ Person, <box>...</box>

¢ Chair, <box>...</box>

Segment objects in [List of
COCO Classes].

* Sheep, <Mask>...<MASK> J

e Person, <Mask>...<MASK>

Segment categories in [List of
ADE20K Classes]. J

* Flower, <Mask>...<MASK>

* Floor, <Mask>... <MASK>)

Please describe this image
briefly.

A dog playing with a ball on ‘
the floor.

Detect objects in [List of

COCO Classes].)

« Kite, <box>...</box> J

¢ Person, <box>...</box>

Segment objects in [List of

COCO Classes].)

* Cat, <Mask>... <MASK>

* TV, <Mask>.. <MASK> J

Segment categories in [List of
ADE20K Classes]. J

¢ Bed, <Mask>...<MASK>

¢ Pillow, <Mask>...<MASK> |

Please locate the third bottle
from the left.

<box>211,14,245,198</box> |

Figure 7. Qualitative results of multi-task training. The first three rows correspond to object detection, instance segmentation, and semantic

segmentation, while the last row shows results on captioning and referring expression comprehension.

Please locate the man holding a
child in the image.

<b0x>320,47,402,274</box>. J >

Please segment the man
flopping around on the right.

Sure, <MASK>...<MASK>.

Please segment the area that
people can walk on.

Sure, <MASK>...<MASK>. |

Please locate the book named
That’s not my puppy. J

<box>289,167,356,254</box>. |

Please segment the cat laying
on spotted bed.

It is <MASK>...<MASK>. |

Driving at night is very
dangerous due to poor
visibility. What part of the car
needs to be turned on when
driving at night?)

It is <MASK>...<MASK>.

Figure 8. Qualitative results of Fine-grained Instruction Tuning. The three rows correspond to REC, RES, and reasoning segmentation in

order.

Segment objects in [List of

Do

COCO Classes].
Y_& Horse,
(coo)

Input Image Final Mask

% Segment objects in [List of
COCO Classes].

Wy Do

Input Image Final Mask

Figure 9. Visualization of multiple mask tokens. We illustrate with four mask tokens (with N=2). Employing multiple mask tokens allows
for capturing finer details, such as the horse leg and the dog tail, resulting in more precise and refined masks.

Input Image N%=1 N%=4 N*=16

Figure 10. Instance segmentation results with different mask token number (N?) on UFO-ViT-Biingle. task-

	Introduction
	Related Work
	Multimodal Large Language Models
	Extend MLLMs with Fine-grained Perception
	Vision Generalist Models

	Methods
	Preliminary
	Bounding Box Representation
	Mask Representation
	Multi-Task Data Template

	Training
	Multi-Task Training
	Fine-grained Instruction Tuning

	Experiments
	Experimental Settings
	Multi-Task Evaluation
	Fine-grained Instruction Tuning Results
	Ablation Study

	Conclusion
	Implementation Details
	Dataset Details
	Training Details
	Inference Speed
	More ablation studies
	Extended Experiments
	Discussions
	Visualization

