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Abstract

Partition-based methods are increasingly-used in extreme multi-label classification
(XMC) problems due to their scalability to large output spaces (e.g., millions or
more). However, existing methods partition the large label space into mutually
exclusive clusters, which is sub-optimal when labels have multi-modality and rich
semantics. For instance, the label “Apple” can be the fruit or the brand name, which
leads to the following research question: can we disentangle these multi-modal
labels with non-exclusive clustering tailored for downstream XMC tasks? In this
paper, we show that the label assignment problem in partition-based XMC can be
formulated as an optimization problem, with the objective of maximizing precision
rates. This leads to an efficient algorithm to form flexible and overlapped label
clusters, and a method that can alternatively optimizes the cluster assignments and
the model parameters for partition-based XMC. Experimental results on synthetic
and real datasets show that our method can successfully disentangle multi-modal
labels, leading to state-of-the-art (SOTA) results on four XMC benchmarks.

1 Introduction

The eXtreme Multi-label Classification (XMC) task is to find relevant labels from an enormous output
space of candidate labels, where the size is in the order of millions or more ([1, 2, 3, 4, 5]; etc.)
This problem is of interest in both academia and industry: for instance, tagging a web page given
its contents from tens of thousands of categories [6]; finding a few products that a customer will
purchase from among an enormous catalog on online retail stores [7]; or recommending profitable
keywords given an item/product from millions of advertisement keywords [8].

The XMC problem is challenging not only because of the data scalability (e.g., the number of
instances, features, and labels are of the scale of millions or more), but also due to the label sparsity
issue where there is little training signal for long-tailed labels. To tackle these issues, most prevailing
XMC algorithms use a partition-based approach. Instead of ranking the entire set of millions of labels,
they partition the label space into smaller mutually-exclusive clusters. Each instance is only mapped
to one or a few label clusters based on a matching model, and then ranking is only conducted within
the smaller subset of labels. Some exemplars are Parabel [8], eXtremeText [9], AttentionXML [10],
XR-Linear [11] and X-Transformer [12].
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Partitioning labels into mutually-exclusive clusters may not be ideal. When labels are semantically
complex and multi-modal, it is more natural to assign a label to multiple semantic clusters. In
product categorization, for instance, the tag “belt” can be related to a vehicle belt (under “vehicle
accessories” category), or a man’s belt (under “clothing” category). Assigning “belt” to just one of
the clusters but not the other is likely to cause a mismatch for certain queries. To solve this problem,
we reformulate the label clustering step as an assignment problem, where each label can be assigned
to multiple clusters to allow disentanglement of mixed semantics. Further, we formulate learning
optimal assignments by maximizing the precision as an optimization problem, and propose efficient
solvers that automatically learn a good label assignment based on the current matching models. With
this formulation, we apply our algorithm to alternatively refine label assignments and matching model
in existing partition-based XMC methods to boost their performance. Similar idea can be found in
[13, 14], however, our tree structures are constructed in one pass with hierarchical k-means. Our
contributions can be summarized below:

• We propose a novel way to obtain label assignments that disentangle multi-modal labels to multiple
clusters.

• Unlike previous methods that partition the label set before training, we propose an optimization-
based framework that allows optimizing label assignment with the matching and ranking modules
inside a partition-based XMC solver. Our method is plug-and-play; it is orthogonal to the models
so most of the partition-based methods can benefit from our method.

• Our proposed solution yields consistent improvements over two leading partition-based methods,
XR-Linear [11] and X-Transformer [12]. Notably, with the concatenation of tfidf features and
X-Transformer embeddings, we achieve new SOTA results on four XMC benchmark datasets.

2 Related Work

2.1 XMC literature

Sparse Linear Models Sparse linear one-versus-rest (OVR) methods such as DiSMEC [4],
ProXML [15], PDSparse [16], PPDSparse [17] explore parallelism to speed up the algorithm and
reduce the model size by truncating model weights to encourage sparsity. OVR approaches are
also building blocks for many other XMC approaches. For example, in Parabel [8], SLICE [18],
X-Transformer [12], linear OVR classifiers with negative sampling are used.

Partition-based Methods The efficiency and scalability of sparse linear models can be further
improved by incorporating different partitioning techniques on the label spaces. For instance,
Parabel [8] partitions the labels through a balanced 2-means label tree using label features constructed
from the instances. Other approaches attempt to improve on Parabel, for instance, eXtremeText [9],
Bonsai [19], NAPKINXC [20], and XR-Linear [11] relax two main constraints in Parabel by: 1)
allowing multi-way instead of binary partitions of the label set at each intermediate node, and 2)
removing strict balancing constraints on the partitions. More recently, AttentionXML [10] uses
BiLSTMs and label-aware attention to replace the linear functions in Parabel, and warm-up training
the models with hierarchical label trees. In addition, AttentionXML considers various negative
sampling strategies on the label space to avoid back-propagating the entire bottleneck classifier layer.

Graph-based Methods SLICE [18] uses an approximate nearest neighbor (ANN) graph as an
indexing structure over the labels. For a given instance, the relevant labels can be found quickly via
ANN search. SLICE then trains linear OVR classifiers with negative samples induced from ANN.
Graph-based partitions can be viewed as an extension of tree-based partitions, where at each layer
of the tree, random edges are allowed to connect two leaf nodes to further improve connectivity.
Nevertheless, such construction of overlapping tree structures is fully unsupervised, and is agnostic
to the data distribution or training signals of the downstream XMC problem.

2.2 Overlapped Clustering

Finding overlapped clusters has been studied in the unsupervised learning literature [21, 22, 23, 24].
For example, Cleuziou et al. [22] extend K-means with multi-assignments based on coverage, but
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tends to yield imbalanced clusters. This issue was later improved by Lu et al. [23] with sparsity
constraints. Recently, Whang et al. [24] propose variants of k-mean objectives with flexible clustering
assignment constraints to trade-off the degree of overlapping. However, all these unsupervised
approach cannot be optimized with existing partition-based XMC methods.

Figure 1: An illustration of partition-based XMC models. The matcher is a tree structured model
similar to Parabel or XR-Linear. In this diagram, the hierarchical label tree has a depth of 3, branching
factor of 2, number of clusters K = 4, and number of labels L = 16.

3 Background of partition-based XMC

The XMC problem can be characterized as follows: given an input instance x ∈ Rd and a set of
labels L = {1, 2, . . . , L}, find a model that retrieves top relevant labels in L efficiently. The model
parameters are estimated from the training dataset {(xi,yi) : i = 1, . . . , n} where yi ∈ {0, 1}L
denotes the relevant labels for xi from the label space L. We further denote X ∈ Rn×d as the feature
matrix and Y ∈ Rn×L as the label matrix.

Partition-based XMC methods rely on label space partitioning to screen out irrelevant labels before
running the ranking algorithm. They often have the following three components (depicted in Figure 1):

• The cluster assignments, where a set of labels are assigned to each cluster. Assuming there are K
clusters, we use Si = {`i1, `i2, . . . } to denote the labels assigned to cluster i, and

⋃K
i=1 Si = L. The

clusters are constructed by K-means on label features, such that the clusters {Si}Ki=1 are mutually
exclusive and unaware of the matcherM and rankerR, since clustering is typically performed only
once before the matcher and ranker are trained. On the contrary, as we will see shortly, our new
method provides a way to refine cluster assignments based on the matcher and is able to effectively
unveil multimodal labels.

• The matcher, which matches the input data xi ∈ Rd to a small set of candidate label clusters

M : xi 7→ {S1,S2, . . . ,Sb}, b ≤ K. (1)

Each label set Sk contains a small fraction of labels (a few hundreds), and b is called the beam size.
One recursive implementation of matcher is seen in XR-Linear [11], where inside the matcher,
there is a tree constructed by recursive K-means clustering. On each level of the tree, a maximum
of b nodes is selected according to the scores obtained from linear models. After that, all siblings
of b nodes will be expanded at the next level to repeat this process recursively until b leaves are
obtained, which results in the match set {S1,S2, . . . ,Sb}. See the “Matcher” block in Figure 1.

• The ranker, which ranks the candidate labels collected from the matcher, with � denoting the
ranking order:

R :M(xi) 7→ `(1) � `(2) � · · · � `(w),

where {`(1), `(2), . . . , `(w)} =

b⋃
i=1

Si.
(2)

Lastly, top-k labels are returned as the final prediction. See the “Ranker” block of Figure 1.

Partition-based XMC typically assumes labels in the same cluster are similar, and thus when training
the ranker, they focus on distinguishing the labels (and the corresponding samples) within each cluster.
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Taking the widely used linear ranker as an example, they often assign a weight vector for each label.
The weight vector w` for label ` can be obtained by the following training objective:

min
w`

∑
i∈Dpositive

L
(
x>i w`; +1

)
+

∑
i∈Dnegative

L
(
x>i w`;−1

)
, (3)

where L(·, ·) is the loss function (e.g., squared-hinge loss); Dpositive and Dnegative are the positive and
negative samples for label `. In XMC, it is not efficient to collect all non-positive data D \ Dpositive as
the negative part to train w`; instead, they often sample the “hard negatives” which is a tiny subset
Dnegative ⊂ D \ Dpositive. Different negative sampling changes the loss function and the final results.
For instance, in Parabel [8] and XR-Linear [11], Dnegative are the examples having similar labels but
not ` itself, based on the intuition that the learning can be more efficient by separating similar but
different labels. In other words,

Dpositive = {xi | ` ∈ yi}, Dnegative = {xi | ` 6∈ yi but “similar”}. (4)

The label similarity information is hidden in the cluster assignments {S1,S1, . . . ,SK}, with the
assumption that similar labels are clustered.

4 Proposed Method

4.1 Motivation

The central idea of the partition-based XMC methods is to partition labels into disjoint clusters, such
that labels in each cluster share similar semantics. This relies on the unimodal assumption that each
label only represents a pure, uniform semantic across all positive samples. However, we observe in
practice that this assumption may not hold in general. Given labels that have multi-modal semantics,
it is natural to seek a method to disentangle their semantics from each other and treat each semantic
as a separate label, and further assign them to different clusters. To achieve this, we weaken the
requirement that label clusters under leaf nodes are mutually exclusive Si ∩ Sj = ∅, to a more
suitable, limited overlapping: for any label ` ∈ {1, 2, . . . , L}, it can appear at most λ-times among
{S1,S2, . . . ,SK}.
Although allowing label clusters to overlap with each other does not explicitly disentangle the
semantics of a label, it paves the way for learning multiple versions of weights for the same label.
Take the linear model in Eq. (3) for simplicity, label ` is seen in both cluster SA and SB , so we will
have two weight vectors wA and wB for the same label. wA and wB are trained separately in Eq. (3),
where they have different negative examples DAnegative and DBnegative. Recall in Eq. (4) the negative part
of the data relies on the label similarity induced from clusters SA and SB . Therefore, wA and wB

will eventually converge to two different solutions – this is how the semantics are disentangled when
we assign a label to multiple clusters.

4.2 Optimization-based Label Assignment Approaches

How to assign a label to multiple clusters? Previous methods consider clustering as a preprocessing
step and apply unsupervised methods, such as K-means, to partition the label space. In contrast, we
formulate label assignments as an optimization problem to maximize the precision rate for XMC,
which allows learning a matcher-aware clustering assignment as well as alternative updates between
cluster assignments and the matcher.

As mentioned before, our goal is to learn S1, . . . ,SK to cover all the labels, and the sets can
be overlapping. To find the best label assignments, it is natural to maximize the precision rate.
Many previous methods in information retrieval obtain ranking functions by optimizing (surrogates)
Precision/Recall [25, 26]. Here our goal is to find a good combination of matcher and cluster
assignments in the context of partition-based XMC, so the objective is totally different.

To formally define precision, we first define the output of matcher represented by matrix M ∈ Rn×K :

Mij =

{
1, if xi is matched to leaf cluster Sj ,
0, otherwise.

(5)

For beam size b, every row of M has exactly b nonzero entries. At the same time, the cluster
assignments S1, . . . ,SK can be parameterized by the clustering matrix C ∈ {0, 1}L×K so that
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Cij = 1 if and only if label-i is seen in cluster Sj , otherwise Cij = 0. With this notation, the
candidate labels generated by matcher is given by Ŷ := Binary(MC>), Ŷ ∈ Rn×L, where
Binary(A) = IA is the element-wise indicator function.

Now consider the number of true positives in top-k predictions (TP@k), it is upper bounded by the
intersection between matcher predictions Ŷ and the ground truth Y , i.e.

TP@k = |Top-k(Ŷ )� Y |
(i)

≤ |Ŷ � Y | (ii)= Tr(Y >Ŷ ), (6)

where | · | denotes the #nnz elements in a sparse matrix; the inequality
(i)

≤ is due to the error of ranker

hidden in Top-k(·); and
(ii)
= is from the fact that both Ŷ and Y are binary.

In this paper, we consider following scenarios that simplifies our analysis

• Perfect ranker: the ranker does not make any mistake, so the gap in Eq. (6) vanishes.

• Probably correct ranker: for any true positive label `+ ∈ Ŷ , it is ranked to top-k with a constant
probability p, i.e. P(`+ ∈ Top-k(Ŷ )|`+ ∈ Ŷ ) = p. Then we have TP@k = p · Tr(Y >Ŷ ).

In both cases, the precision is proportional to Tr(Y >Ŷ ). We can then formulate the problem of
learning the best cluster assignment as

maximize
S1,S2,...,SK⋃K

i=1 Si={1,2,...,L}

Tr
(
Y >Binary(MC>)

)
, s.t.

K∑
i=1

I`∈Si ≤ λ, ∀` ∈ {1, 2, . . . , L}. (7)

Note that {Si, . . . ,SK} are hidden in C. The first constraint ensures we cover the whole label set and
the second constraint mitigates the case of degenerated clusters where some Si’s have too many labels,
resulting in significantly increased time complexity. The parameter λ is the only hyperparameter to
be tuned. In practice, we find λ is stable across datasets and for simplicity we select λ = 2 for all the
experiments. We also show the sensitivity of our algorithm with respect to λ in Section 5.2.

The optimization problem (7) is combinatorial and hard to solve. In fact, we show this is NP-complete:
Theorem 1. Problem (7) is NP-complete.

This can be proved by a polynomial time reduction from the set cover problem to Problem (7), and
the proof is deferred to the Appendix A.1. To develop an efficient algorithm, we approximate the
objective function of (7) with a continuous, ReLU-like function

Binary(MC>) ≈ max(MC>,0) = MC>, (8)
where the first approximation comes from replacing binary function to ReLU; the second equality
is because both M and C are positive in all entries. A special case is when beam size b = 1. In
that case MC> is a binary matrix, so Binary(MC>) = MC>. We then consider the following
simplified problem:

maximize
S1,S2,...,SK⋃K

i=1 Si={1,2,...,L}

Tr
(
Y >MC>

)
, s.t.

K∑
i=1

I`∈Si ≤ λ,∀` ∈ {1, 2, . . . , L}. (9)

This problem can be solved efficiently with a closed form solution:
Theorem 2. Problem (9) has a closed form solution

C∗ = Proj(Y >M), (10)
where the Proj(·) operator selects the top-λ elements for each row of the matrix.

The above result can be easily derived since the objective function is linear and the constraint is a
row-wise `0 norm constraint. The detailed proof can be found in the Appendix A.2.

But is (10) also a good solution to the original problem (7)? In fact, we show that this solution,
despite not being optimal for (7), is provably better than any non-overlapping cluster partitioning,
which is used in almost all the existing partition-based XMC methods.
Theorem 3. For any clustering matrix C corresponding to a non-overlapping partition of the label
set, we have Tr(Y >Binary(M(C∗)>)) > Tr(Y >Binary(MC>)).

The proof can be found in the Appendix A.3. This theorem implies our partitioning can achieve
higher precision over any existing non-overlapping clustering for any ranker.
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Practical Implementation After C (or equivalently {Si}Ki=1) is determined, we finetune the
matcherM to accommodate the new deployment of label clusters. Note that most of the existing
partition-based XMC starts from unsupervised label clustering and then alternate between getting a
new (overlapping) clustering and finetune the matcher. Our algorithm can plug-in into most of these
methods by adding one or more loops of alternative cluster assignments and matcher updates. Given
the current matcher, the cluster assignments are updated based on the proposed formulation (10), and
then the matcher will be retrained following the same procedure used in the original partition-based
XMC solver. The whole routine is exhibited in Algorithm 1. Since we use a balanced K-means label
clustering as initialization, we found that after one step update in Line 6 of Algorithm 1, {Si}Ki=1 is
still not too imbalanced in our experiments. It’s possible to add cluster size constraints in Problem
(9) to enforce the label partition to be balanced, as discussed in Appendix A.4, but we do not find a
practical need for such constraints.

Algorithm 1 Our proposed framework.
1: Input: training data 〈X,Y 〉, any partition-based XMC algorithm XMC-part.
2: Output: the trained model (i.e., matcherM, rankerR, label clusters {Si}Ki=1).
3: Initialize {Si}Ki=1 with balanced K-means using label features.
4: InitializeM← XMC-part({Si}Ki=1)
5: Compute matcher prediction matrix M =M(X) by Eq. (5).
6: Update label clustering: {Si}Ki=1 by Eq. (10).
7: %% Following two lines are called “alternative update” hereafter.
8: Finetune the matcher given new clusters:M← XMC-part({Si}Ki=1).
9: Train the ranker with updated clusters and matcher: R ← XMC-part({Si}Ki=1,M).

Deduplication at inference time. To perform inference with the new model, we need to deduplicate
the scores from the same labels but in different clusters. This happens because we use beam search
to efficiently search b paths from root node to leaves. Refer to Figure 1 where b = 2 is shown (S1
and S3 selected), if both S1 and S3 contain a same label `duplicate but different scores s1 and s3, then
we average them together with the final score s(`duplicate) = 1

2 (s1 + s3). In this sense, our algorithm
can be interpreted as a finer-grained ensemble which ensembles the scores inside a tree, rather than
ensembling multiple, independently trained trees.

5 Experimental Results

Our proposed framework serves as a generic plugin for any partition-based XMC methods and we
show its efficacy on multiple experiment setups. First, we verify that the proposed method improves
over the baselines on synthetic datasets where we simulate labels with mixed semantics. Next, we
test the sensitivity of hyperparameter λ, followed by experiments on real-world XMC benchmark
datasets. We end this section with an ablation study.

Datasets. We consider four publicly available XMC benchmark datasets [2, 10] for our experiments.
See Table 1 for data statistics. To obtain state-of-the-art (SOTA) results in Table 3, we concatenate
the dense neural embeddings (from fine-tuned X-Transformer [12, 11]) and sparse TF-IDF features
(from AttentionXML [10]) as the input features to train the models.

Evaluation Metric. We measure the performance with precision metrics (P@k) as well as Propensity-
based scores (PSP@k) [5], which are widely-used in the XMC literature [27, 8, 28, 18, 12, 11].
Specifically, for a predicted score vector ŷ ∈ RL and a ground truth label vector y ∈ {0, 1}L,
P@k = 1

k

∑
l∈rankk(ŷ) yl; PSP@k = 1

k

∑k
l=1

yrank(l)

prank(l)
, the latter focuses more on the tail labels.

Models. As we introduce a new technique that is generally applicable, our method must be combined
with existing partition-based XMC algorithms. We take XR-Linear [11] as the backbone for all
experiments except Section 5.3. To get SOTA results in large-scale real datasets, we change the
backbone to X-Transformer [12] in Section 5.3. The implementation details for combining our
method with XR-Linear and X-Transformer are discussed in the Appendix A.5.

Hyper-parameters. Our technique depends on hyperparameter λ, which is tested in a standalone
section. For hyperparameters in the XMC model, we mostly follow the default settings in the
corresponding software. The details about hyperparameters are listed in the Appendix A.6.
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Dataset ntrn ntst L L̄ n̄ dtfidf

Wiki10-31K 14,146 6,616 30,938 18.64 8.52 101,938
AmazonCat-13K 1,186,239 306,782 13,330 5.04 448.57 203,882
Amazon-670K 490,449 153,025 670,091 5.45 3.99 135,909
Amazon-3M 1,717,899 742,507 2,812,281 36.04 22.02 337,067

Table 1: XMC data statistics. ntrn and ntst are the number of instances in training and testing splits. L
is the number of labels and L̄ is the average number of labels in each instance. n̄ is the average number
of positive data of each label. dtfidf is the sparse TFIDF feature dimension. These four datasets and
the sparse TF-IDF features are downloaded from https://github.com/yourh/AttentionXML
which are the same as used in AttentionXML [10] and X-Transformer [12].
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Figure 2: The relative precision@5 gain over baseline XR-Linear model when adding our proposed
overlapping clusters. The precision values are shown in the Appendix A.7

5.1 Synthetic datasets by grouping true labels

In this experiment, we create a synthetic data derived from public datasets by deliberately entangling
some labels. The motivation is to see the capability of disentangling different semantics from fused
labels. Specifically, we designed several methods to mix up labels in the order of easy, medium and
hard. The grouping is done without replacement: suppose a dataset has L labels, and we want to
entangle every k labels into a fake one, then after this process we will get an artificial dataset with
dLk e labels. Below are three implementations we are going to evaluate:

• Easy mode: we run a balanced dLk e-means clustering on the original label space of size L, so that
each cluster contains about k labels. After that, we represent each cluster with a separate label, and
the new label embedding is the cluster centroid.

• Medium mode: we run a balanced d L32k e-means clustering on the label space. Different from the
setting above, now each cluster contains 32k labels. Next, we randomly group the 32k labels in to
32 subsets, with k labels each.

• Hard mode: the most difficult mode is randomly shuffle labels into dLk e subsets, with k labels in
each subset.

We label the difficulty of three modes based on the idea that when similar labels are entangled
together, it is less a issue for the baseline model, so the accuracy drop is negligible; Whereas if
unrelated labels are bundled together, our method starts to shine. See Figure 2 for the relative
performance improvement over XR-Linear. Several conclusions can be made from this figure: first,
the improvements are all positive, meaning our method consistently beats the baseline XR-Linear
model in all scenarios; secondly, by comparing Wiki10-31K with Amazon-670K, we see Amazon-
670K shows an upwards in performance gain. This is mainly because the larger label space of
Amazon-670K renders this problem even harder after combining labels, so our method exhibits a
big edge over baselines. How are the labels disentangled to different clusters? We attach a random
example from our dataset in Table 2. This example shows that our method can indeed separate labels
with fused semantics, improving the quality of both matcher and ranker.
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Methods P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Wiki10-31K AmazonCat-13K

AnnexML [3] 86.46 74.28 64.20 11.86 12.75 13.57 93.54 78.36 63.30 51.02 65.57 70.13
DiSMEC [4] 84.13 74.72 65.94 10.60 12.37 13.61 93.81 79.08 64.06 51.41 61.02 65.86
Parabel [8] 84.19 72.46 63.37 11.69 12.47 13.14 93.02 79.14 64.51 50.92 64.00 72.10

eXtremeText [9] 83.66 73.28 64.51 - - - 92.50 78.12 63.51 - - -
Bonsai [19] 84.52 73.76 64.69 11.85 13.44 14.75 92.98 79.13 64.46 51.30 64.60 72.48

XML-CNN [27] 81.41 66.23 56.11 9.39 10.00 10.20 93.26 77.06 61.40 52.42 62.83 67.10
AttentionXML [10] 87.47 78.48 69.37 15.57 16.80 17.82 95.92 82.41 67.31 53.76 68.72 76.38
XR-LINEAR [11] 85.13 74.96 66.05 - - - 94.54 79.87 64.67 - - -

X-Transformer [11] 88.26 78.51 69.68 15.12 16.52 17.99 96.48 83.41 68.19 50.36 66.32 76.45

Ours 88.85 79.52 70.67 15.23 16.81 18.42 96.48 83.55 68.36 50.46 66.76 77.01
Amazon-670K Amazon-3M

AnnexML [3] 42.09 36.61 32.75 21.46 24.67 27.53 49.30 45.55 43.11 11.69 14.07 15.98
DiSMEC [4] 44.78 39.72 36.17 26.26 30.14 33.89 47.34 44.96 42.80 - - -
Parabel [8] 44.91 39.77 35.98 26.36 29.95 33.17 47.42 44.66 42.55 12.80 15.50 17.55

eXtremeText [9] 42.54 37.93 34.63 - - - 42.20 39.28 37.24 - - -
Bonsai [19] 45.58 40.39 36.60 27.08 30.79 34.11 48.45 45.65 43.49 13.79 16.71 18.87

XML-CNN [27] 33.41 30.00 27.42 17.43 21.66 24.42 - - - - - -
AttentionXML [10] 47.58 42.61 38.92 30.29 33.85 37.13 50.86 48.04 45.83 15.52 18.45 20.60
XR-LINEAR [11] 42.51 37.32 33.60 - - - 46.65 43.38 41.05 - - -

X-Transformer [12, 11] 48.07 42.96 39.12 36.06 38.38 41.04 51.20 47.81 45.07 18.64 21.56 23.65

Ours 50.70 45.40 41.55 36.39 39.15 41.96 52.70 49.92 47.71 18.79 21.90 24.10

Table 3: Comparing the Precision@k (P@k) and Propensity-based scores (PSP@k) for k = 1, 3, 5
on four datasets. First place is marked red; second place is marked blue. Our method is trained
with same concatenation of dense neural and sparse TF-IDF features, where the former is from
fine-tuned X-Transformer [12, 11]. Used as a plugin upon existing X-Transformer models, our
proposed framework achieves new SOTA results on three out of four datasets.

5.2 Hyperparameter sensitivity (λ)

In real applications, we never know the number of semantics a label has - either because the label
space is huge, or it is uneconomical. In this section, we check the sensitivity of model performance on
hyperparameter λ. To this end, we consider four different datasets and choose λ = {1, 2, . . . , 6}. The
results are exhibited in Figure 3. From the figure above, we observe that the performance generally
improves as we increase λ – our prior on the number of different meanings of each labels. However,
since the benefits diminishes quickly, we choose λ = 2 for all the following experiments in this paper.

Fused label: “tanks” and “fashion scarves”
Cluster ID Input text

96

Chiffon Butterfly Print on Black -
Silk Long Scarf 21x; (Clearance): ...
offers you one of delightful styles as
you desire.

103

This Scuba Yoke Fill Station device
allows a person to fill high pressure
nitrogen/compressed air tanks from
a scuba tank...

Table 2: An example of how a fused label is dis-
entangled into two labels, both then falling into
different clusters (cluster ids are 96 and 103), fi-
nally labeled correctly despite the fusion of labels.

0 1 2 3 4 5 6

58.0

58.5

EURLEX-4K

Prec@5

0 1 2 3 4 5 6

64.5

65.0

65.5

WIKI10-31K

Prec@5

0 1 2 3 4 5 6

35.5

36.0

36.5
AMAZON-670K

Prec@5

0 1 2 3 4 5 6

42.0

42.5

43.0
AMAZON-3M

Prec@5

Figure 3: Precision@5 (y-axis) versus different λ
ranging from 0 to 6. We generally see that higher
λ converts to better performance, but it plateaus
at λ = 4.

5.3 Real datasets

The above experiments showed that our method is indeed better at disentangling complex meanings
from labels. In real scenarios, it is certainly not the case that every label will have tens of underlying
semantics. On the contrary, they behave more like a mix of both unimodal and multimodal labels.
However, in this experiment, we will show that our method is still favorable. We conduct experiments
to show that our method can successfully boost the performance of existing partition-based XMC
models, including XR-Linear [11] and X-Transformer [11].

8



In Table 4, we combine the proposed method with competitive linear models XR-Linear on four
XMC benchmark datasets. We assume only the TF-IDF features are given and assume the single
model setting without any ensemble. Our method consistently improves the performance over the
baseline XR-Linear. Moreover, we tested how finetuning increases the accuracies (by comparing
No/Yes in “alternative update?” column). The results prove that it is indeed necessary to train both
the model parameters and cluster map in an alternative fashion (i.e., see Algorithm 1).

Next, we repeat the same process but based on the current SOTA X-Transformer model. The results
are shown in Table 3. Notice that our method reuses the same dense+sparse features as in the X-
Transformer model, and the results are the ensemble of 9 models [12]. From Table 3 we can observe
that our method achieves new SOTA precision results with a significant margin while still maintaining
good PSP scores, comparing with other strong algorithms such as Parabel, AttentionXML, XR-Linear
and X-Transformer. Notably, the numbers show that our method is more suitable for large label space
(such as Amazon-3M) compared with smaller label space (e.g., AmazonCat-13K).

To benchmark the training and inference overhead due to repeated clustering and training in our
method, we report the relative training and inference time under different λ’s shown in Table 5. We
remark that our method is more economical when the underlying model is inherently slow to train.
On Amazon-3M for example, our framework only introduces 1.1% training overhead and 21.1%
inference overhead over the X-Transformer models.

In Appendix A.8, we provided one more experiment on the real-world datasets that compares
our method with random baseline. The random baseline is constructed by duplicating the
same amount of labels to random clusters, as opposed to our precision maximization algorithm.

Method Alternative update? Prec@1 Prec@3 Prec@5

Wiki10-31K
XR-Linear N/A 84.14 72.85 64.09

+Ours No 84.52 74.23 65.41
+Ours Yes 84.57 74.55 65.59

AmazonCat-13K
XR-Linear N/A 92.53 78.45 63.85

+Ours No 90.63 78.12 63.86
+Ours Yes 92.90 79.04 64.35

Amazon-670K
XR-Linear N/A 44.17 39.14 35.38

+Ours No 43.22 38.19 34.10
+Ours Yes 44.82 39.93 36.34

Amazon-3M
XR-Linear N/A 46.74 43.88 41.72

+Ours No 46.95 44.24 42.18
+Ours Yes 47.51 44.76 42.67

Table 4: Experiments with XR-Linear. Our
method is called “XR-Linear+Ours”, we also
tested the finetune step detailed in Algo-
rithm 1(L7). When joinly train option is dis-
abled, the matcherM won’t be updated despite
the creation of new cluster map.

Method Extra training time Extra inference time

Wiki10-31K (baseline: Ttrn = 0m30s, Ttst = 0.7ms/pts)
+Ours (λ = 1) 2.32× 2.40×
+Ours (λ = 2) 5.58× 4.80×
AmazonCat-13K (baseline: Ttrn = 1m37s, Ttst = 0.2ms/pts)
+Ours (λ = 1) 3.05× 0.71×
+Ours (λ = 2) 4.54× 1.59×
Amazon-670K (baseline: Ttrn = 1m30s, Ttst = 0.4ms/pts)
Ours (λ = 1) 0.47× 0.07×
Ours (λ = 2) 0.96× 0.60×
Amazon-3M (baseline: Ttrn = 13m49s, Ttst = 0.5ms/pts)

Ours (λ = 1) 0.33× 1.12×
Ours (λ = 2) 1.63× 2.51×

Table 5: Extra training time and inference time (in
ms/pts, which is millisecond per data point) of our
method compared to the baseline XR-Linear. Our
method posts negligible overhead for big model.
For X-Transformer on Amazon-3M, we only have
1.1% training overhead and 21.1% inference over-
head.

6 Conclusion

In this paper, we have proposed a simple way to disentangle the semantics reside in the labels of
XMC problems. We have shown how to do this in an indirect way that builds overlapping label
clusters. We proposed an optimization algorithm to solve both parts: the matcher model, the ranker
and cluster assignments. In experiments, we tested under various cases and the results indicate that
our method is exceptionally good when the label space is huge (such as Amazon-3M) or when the
label contains many different meanings (such as the artificial data we created).
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