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ABSTRACT

Policy optimization (PO) has advanced Large Language Models (LLMs), yet
training remains constrained by a stability–exploration trade-off. We analyze the
coupling between the input environment and the policy in LLM RL, and decouple
parameter regularization from the optimization objective by moving regulariza-
tion to the input side. Concretely, we propose Environment-Regularized Pol-
icy Optimization (ERPO), instantiated with Query-KL (QKL), which penalizes
the KL divergence between the evolving query distribution and a fixed reference.
By regularizing the input (query) distribution rather than the action (response)
distribution, QKL indirectly controls policy drift induced by environmental shift
while preserving exploration. To avoid premature convergence, we introduce a
query-weighted advantage that reweights updates according to estimated query
prevalence, reducing estimator variance and improving robustness. Across diverse
mathematical reasoning benchmarks, ERPO achieves KL control comparable to
methods with explicit policy regularization, while delivering stronger final per-
formance and smoother training dynamics. Temperature-swept sampling further
indicates more stable long-horizon behavior. These results suggest that making the
input environment a first-class object—via QKL and query-weighted advantage—
is a principled and practical route to improve the stability–exploration trade-off in
PO for LLMs.

1 INTRODUCTION

Background and challenge. Policy optimization (PO) methods have become the de facto recipe
for post-training large language models (LLMs), spanning trust-region style updates (TRPO/PPO)
and preference-based objectives (DPO) together with broader RLHF/RLAIF variants (Schulman
et al., 2015b; 2017; Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023). Despite impressive
progress in mathematical reasoning and beyond, practitioners still face a persistent dilemma: how
to trade off training stability against effective exploration. In long-horizon runs, optimization noise
and distribution shift tend to accumulate, leading to oscillations and occasional collapses.

Instability from the input side. We argue that a key—and under-controlled—source of instabil-
ity is environment non-stationarity induced by the query distribution. During RL fine-tuning, the
inputs used for training are sampled from a mechanism that co-evolves with the policy (e.g., active
data selection, prompt generators, curriculum schedulers). As the policy changes, the conditional
likelihood of future prompts also shifts, altering the effective training environment and amplifying
gradient variance. This mirrors classic RL settings in which either the initial-state distribution or
the transition kernel drifts over time; non-stationary and robust RL therefore advocate explicit dis-
tributional control (Padakandla, 2021; Iyengar, 2005; Nilim & El Ghaoui, 2005). A related lesson
from imitation learning is that policy updates induce covariate (state) shift, motivating interactive
data aggregation such as DAgger/AggreVaTe (Ross et al., 2011; Ross & Bagnell, 2014).

Limitations of action-only regularization. Recent LLM work has started to surface the role of
prompt distributions. EVA frames open-ended alignment as a two-player game in which a cre-
ator evolves the prompt distribution while a solver learns on it, implicitly regularizing prompt shift;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Align-Pro gives a principled objective to optimize a prompter distribution with explicit KL terms (Ye
et al., 2024; Trivedi et al., 2025). Complementary strands stabilize optimization or reweight data
from the policy side (e.g., StablePrompt, WPO), yet they do not directly constrain the environ-
mental statistics over queries (Kwon et al., 2024; Zhou et al., 2024). In contrast, mainstream PO
for RLHF focuses on action regularization via a Policy-KL budget to an SFT reference (Schulman
et al., 2015b; 2017; Ouyang et al., 2022), leaving the input/query process comparatively uncon-
strained. Empirically, even under a fixed Policy-KL budget, the input environment keeps drifting:
the batch-estimated Query-KL rises steadily throughout training while the Policy-KL on responses
remains nearly flat (Figure 1). This demonstrates that constraining only the action distribution fails
to stabilize the input/query process, leaving environment non-stationarity unaddressed.

Figure 1: KL losses during GRPO training.
The Query-KL (dark) rises while the Policy-KL
(light) stays low, showing action-only KL does
not stabilize the query process.

In this paper. We treat queries as part of the
environment and make environment statistics a
first-class object in the training objective. We
introduce Query-KL regularization (QKL), a
plug-in penalty on the divergence between the
current empirical query sampler and a chosen
reference sampler, explicitly limiting inter-round
drift of the training environment while leav-
ing the action space free to explore. In paral-
lel, we propose a lightweight query reweight-
ing scheme that reduces estimator variance and
improves robustness under high-temperature de-
coding—where LLMs are especially sensitive to
the long tail of decoding distributions (Holtz-
man et al., 2020; Wang et al., 2023). Both com-
ponents are model- and optimizer-agnostic and
drop into PPO/DPO-style implementations with
minimal changes. Figure 2 sketches ERPO: on
top of GRPO we replace the usual Policy-KL with a pre-computed Query-KL, and during advantage
computation we weight the within-query samples by the query’s occurrence probability, yielding an
environment-aware update while preserving action-side exploration.

Contributions. We make four main contributions. (1) Query-environment control: We treat
queries as part of the environment and stabilize training by combining Query-KL (QKL) to bound
query drift with batch self-normalized query weights to reduce variance and tame high-temperature
behavior. (2) Drop-in practicality: The method is optimizer-agnostic and adds only a QKL term
plus per-batch reweighting on top of GRPO/PPO-style pipelines with minimal changes. (3) Stabil-
ity evaluation: We assess RL stability via multi-temperature sampling paired with a multi-metric
suite (Pass@k, Pass@1, Avg@k), enabling comprehensive capability and robustness evaluation. (4)
Empirical gains: Across diverse reasoning benchmarks, the approach consistently improves accu-
racy.

2 RELATED WORKS

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards represents a paradigm shift from traditional RLHF
approaches by leveraging automatically verifiable outcomes rather than human preference annota-
tions. This approach is particularly powerful for domains where ground truth can be objectively
determined, such as mathematical reasoning, code generation, and logical problem solving. Models
like AlphaCode (Li et al., 2022) and recent mathematical reasoning (Jeannotte & Kieran, 2017; Xia
et al., 2025) systems leverage execution results and correctness verification as direct reward signals,
eliminating the need for expensive human annotation.

Process Reward Models (PRMs) have emerged as a sophisticated extension of RLVR, where inter-
mediate steps in reasoning processes are evaluated and rewarded based on their correctness (Ue-
sato et al., 2022; Lightman et al., 2023). Recent developments include tool-augmented reasoning

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Policy
Model

Reference
Model

query(s)

Reward
Model

Group
Computation

…

·

(a) Environmental constraints (b) GRPO (c) ERPO

o1 on…o1 on…

Figure 2: The Proposed ERPO Overview. (a) For each query, the policy and reference induce
current and reference query samplers, and we pre-compute a Query-KL to penalize environment
drift. (b) For each query, the policy samples a response group scored by the reward model to produce
the standard GRPO learning signal. (c) On top of GRPO we replace response-KL with pre-computed
Query-KL and weight within-query advantages by the query’s occurrence probability, yielding an
environment-aware update.

systems (Schick et al., 2023) and self-verification approaches (Kojima et al., 2022), which combine
language models with external verification tools to enable automatic reward computation for broader
task domains.

While RLVR provides scalable and consistent training signals compared to subjective human pref-
erences, it introduces unique challenges in handling high variance from sparse rewards and potential
reward hacking behaviors. These stability issues motivate the need for robust training methodologies
that can effectively leverage verifiable rewards while maintaining training stability.

2.2 REINFORCEMENT LEARNING STABILITY IN LANGUAGE MODEL TRAINING

The stability of reinforcement learning algorithms in language model training has become a critical
research area due to unique challenges posed by discrete action spaces, large parameter spaces, and
complex reward landscapes (Sutton et al., 1998). Recent works have identified specific stability
issues including reward hacking (Gao et al., 2023) and the alignment tax problem (Dai et al., 2025),
where policy optimization can degrade downstream performance while improving target metrics.
Distribution shift during training has been recognized as a fundamental source of instability in policy
gradient methods (Reddy et al., 2020). In language model contexts, this manifests as shifts in the
query distribution during training, leading to high variance in gradient estimates and potential policy
collapse (Wen et al., 2024). Existing approaches primarily focus on action-space regularization
through trust region methods (Schulman et al., 2015a) and KL divergence penalties between current
and reference policies.

Despite progress in understanding RL stability issues, there remains a notable gap in explicitly
managing the input query distribution during training. Most current approaches focus on output reg-
ularization rather than addressing environmental shifts at the input level, leaving query distribution
management as an underexplored avenue for improving training stability.

3 PRELIMINARIES

3.1 NOTATION AND RLVR SETTING

We consider a standard generative–verify (RLVR) setting for training a large language model (LLM)
with parameters θ. Given a query (or state) s ∈ S, the LLM defines a conditional distribution over
responses (or actions) a ∈ A, denoted by πθ(a | s). After generating a response, a verifier computes
a scalar reward g(s, a) ∈ R, which can be a continuous score or a transformed binary signal (e.g.,
correctness of a solution).

Throughout the paper we use the following notation:

• s ∈ S: query / state (e.g., a math problem or user prompt);

• a ∈ A: response / action generated by the LLM;

3
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• πθ(a | s): policy implemented by the LLM;

• g(s, a): reward returned by the verifier;

• ρθ(s): policy-induced query distribution, defined below;

• ρθ0(s): reference query distribution, e.g., induced by an initial SFT policy πθ0 .

The underlying RL objective can be written as the expected reward

JRL(θ) = Es∼ρθ, a∼πθ(·|s)
[
g(s, a)

]
. (1)

In practice, group-based or advantage-based variants of equation 1 are often used (e.g., GRPO(Shao
et al., 2024), RLOO(Ahmadian et al., 2024), DAPO(Yu et al., 2025)); our method is compatible with
any such policy-gradient estimator and does not depend on a particular choice. In the experiments
we instantiate the policy-gradient surrogate with GRPO (Shao et al., 2024), which defines a group-
relative advantage from K sampled responses for each query s:

AGRPO
θ

(
s, a(k)

)
=

g
(
s, a(k)

)
−mean(g)

std(g)
. (2)

This AGRPO
θ is a concrete instance of the generic advantage Aθ(s, a) in the policy-gradient identity

and will be plugged into our ERPO objective in Section 4.

3.2 POLICY-INDUCED QUERY DISTRIBUTION AND ENVIRONMENT DRIFT

Formally, we view the training process as interacting with an environment whose states are queries
s. Updating the policy πθ not only changes how the model responds to a given query s, but also
changes how likely different queries are to appear in the training batches. This leads to policy-
induced environment drift: as θ evolves, the effective environment seen by the learner shifts from its
initial state.

To quantify this drift, we compare ρθ with a fixed reference distribution ρθ0 , typically taken to be
the query distribution induced by the initial SFT model πθ0 . We define the environment shift as the
forward KL divergence

EnvShift(θ) := KL(ρθ ∥ ρθ0) = Es∼ρθ

[
log ρθ(s)

ρθ0
(s)

]
. (3)

3.3 QUERY LIKELIHOOD IN AUTOREGRESSIVE LLMS

Our method relies on the likelihood of a query s under the current model. For an autoregressive
LLM, any token sequence s = (s1, . . . , sT ) is assigned a probability

Pθ(s) =

T∏
t=1

Pθ(st | s<t) , logPθ(s) =

T∑
t=1

logPθ(st | s<t) , (4)

where s<t denotes the prefix (s1, . . . , st−1). Importantly, this likelihood is well-defined for any
query sequence s, regardless of whether s is sampled on-policy from ρθ, drawn from a static dataset,
or written by humans. Computing logPθ(s) only requires a forward pass of the LLM and does not
depend on how s is obtained.

4 METHOD

We now instantiate our Environment-Regularized Policy Optimization (ERPO) framework. Build-
ing on the preliminaries in Section 3, we (i) define the population-level ERPO objective and its
empirical approximation, (ii) specify the query-level reweighting and query-level KL regularizer
that stabilize the environment, and (iii) show how ERPO can be combined with any policy-gradient
(PG) algorithm via a unified surrogate loss. The convergence of stochastic gradient descent (SGD)
on the population objective is analyzed in Appendix F.
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4.1 POPULATION OBJECTIVE AND EMPIRICAL LOSS

Recall from Section 3 that the underlying RL objective is the expected return equation 1, and that
the per-query expected return is

ḡθ(s) = Ea∼πθ(·|s)
[
g(s, a)

]
, (5)

as in equation 1–equation 5. To control policy-induced environment drift, we introduce a query-level
regularizer Rquery(θ) that penalizes the forward KL between the policy-induced query distribution
ρθ and a reference distribution ρθ0 (cf. Section 3.2).

Our environment-regularized population objective is

JERPO(θ) := Es∼ρθ

[
ḡθ(s)

]
− αRquery(θ), (6)

where α > 0 controls the strength of environment regularization. The convergence analysis in
Appendix F is stated in terms of this population-level objective: under standard smoothness and
variance assumptions, SGD on JERPO(θ) converges to a stationary point and yields an explicit
bound on Rquery(θ) (hence on environment drift).

In practice we only observe a mini-batch B = {si}mi=1 of queries sampled from ρθ, and thus ap-
proximate the outer expectation in equation 6 via a Monte Carlo estimator. Since queries play the
role of environment states in our formulation, we further introduce query-level importance weights
wB(s) to reweight the empirical query distribution so as to better capture environment variation (see
Section 4.2 for details). Using these weights, we obtain the empirical objective

ĴB(θ) :=
1

m

∑
s∈B

wB(s) ḡθ(s) − α R̂query(θ), (7)

where R̂query(θ) is a batch estimator of the query-level KL (Section 4.2). Our training loss is the
negative of this objective, realized via a PG surrogate described in Section 4.3.

4.2 QUERY REWEIGHTING AND QUERY-LEVEL KL

This subsection specifies (i) how we choose the batch weights wB(s) and (ii) how we instantiate
the query-level KL regularizer. Both constructions directly connect to the preliminaries on query
likelihood and environment drift in Sections 3.2–3.3.

Query-weighted objective. Recall that the policy-induced query distribution ρθ drifts during
training (Section 3.2). In Eq. equation 7, the expectation is taken with respect to this query distribu-
tion, and in our setting we explicitly treat queries as the source of environment variation. Accord-
ingly, beyond the KL regularizer, we further stabilize training by assigning query-level importance
weights that focus gradient updates on high-confidence queries while down-weighting outliers that
may induce large gradient variance.

Using the sequence log-likelihood ℓθ(s) = logPθ(s) from equation 4, we define the batch weight

wB(s) =
ℓ̄B

ℓθ(s)
> 0, ℓ̄B =

1

m

∑
s′∈B

ℓθ(s
′) (< 0), (8)

where higher-likelihood queries receive larger weights. This construction preserves the likelihood-
based ordering while compressing the dynamic range compared to exponential importance weights,
thereby reducing variance. The weights are computed with stop-gradient during backpropagation.
A detailed derivation from a self-normalized substitute distribution is given in Appendix G.

Substituting the batch weights into equation 6 yields the query-weighted Monte-Carlo objective

Ĵ reweight
B (θ) :=

1

m

∑
s∈B

wB(s) ḡθ(s), (9)

which corresponds to the first term in equation 7.

5
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Query-level KL regularization. As discussed in Section 3.2, the policy-induced query distribu-
tion ρθ co-evolves with the policy πθ, leading to environment drift. We regularize this drift using a
query-level forward KL to a fixed or slowly updated reference θ0:

Rquery(θ) := KL
(
ρθ

∥∥ ρθ0
)
= Es∼ρθ

[
log ρθ(s)− log ρθ0(s)

]
. (10)

This penalizes forgetting probability mass under ρθ0 while leaving the action-level policy uncon-
strained, thereby preserving response-side exploration.

In practice we do not have closed-form access to ρθ(s), but we can estimate the gradient of equa-
tion 10 via the “K3” approximation to the KL divergence gradient (Schulman, 2020). Concretely,
on a batch B we approximate

R̂query(θ) ≈ 1

m

∑
s∈B

[
logPθ(s)− logPθ0(s)

]
, (11)

using the query likelihoods Pθ(s) and Pθ0(s) from equation 4, and treat logPθ0(s) as constant
during backpropagation. The resulting estimator is a standard Monte-Carlo approximation to the K3
surrogate gradient of the forward KL. This is the second term in our empirical objective equation 7.

4.3 PG-COMPATIBLE SURROGATE AND ERPO INSTANTIATION

We now describe how to realize stochastic gradients of the ERPO objective using a generic PG-
family surrogate. For any policy-gradient algorithm, we can approximate the gradient of the per-
query return in equation 5 with a surrogate of the form

∇θ ḡθ(s) ≈ Ea∼πθ(·|s)
[
uθ(s, a)A

⋆
θ(s, a)∇θ log πθ(a | s)

]
, (12)

where A⋆
θ(s, a) is an algorithm-specific advantage and uθ(s, a) is an action-level weight. For exam-

ple, uθ ≡ 1 and A⋆
θ equal to the group-relative advantage from equation 2 recover GRPO; clipped

probability ratios recover PPO; and A⋆
θ equal to the sample-wise reward recovers REINFORCE.

Combining the query-weighted objective equation 9 with the query-level KL regularizer equation 10,
and replacing ḡθ(s) by the PG surrogate equation 12, we obtain the following mini-batch loss:

LPG-family(θ) := − 1

m

∑
s∈B

wB(s)
1

K

∑
a∈G(s)

uθ(s, a)A
⋆
θ(s, a) + α R̂query(θ), (13)

where G(s) is the set of K responses sampled for query s. During backpropagation, the outer
weights wB(s) are treated as constants (stop-gradient), so ∇θLPG-family(θ) is an unbiased stochastic
gradient of the ERPO objective equation 6 under standard assumptions; see Appendix F.

Instantiation with GRPO. For experiments we instantiate equation 13 with a GRPO-style group-
relative baseline. For each query s we sample G(s) = {a(k)}Kk=1, compute the group-relative ad-
vantage AGRPO

θ (s, a) as in equation 2, take uθ ≡ 1, and optimize

LERPO(θ) := − 1

m

∑
s∈B

wB(s)
1

K

∑
a∈G(s)

AGRPO
θ (s, a) log πθ(a | s) + α R̂query(θ). (14)

All other engineering details from GRPO (reward normalization, group size K, sampling temper-
ature, etc.) remain unchanged. Our contribution is orthogonal: we replace the per-query outer
weight by wB(s) and add the query-level KL term, yielding a simple drop-in modification that can
be applied to other PG algorithms as well.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training We conduct experiments on mathematical reasoning tasks using Level 3–5 problems
from the MATH dataset (Hendrycks et al., 2021), totaling approximately 8.5K examples. These are
used to evaluate our proposed ERPO method, in comparison with the vanilla GRPO baseline. As
described in Appendix A, the model must wrap its intermediate reasoning in <think></think>
tags, and place the final answer inside \boxed {}.
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Figure 3: Avg@32 over Sampling Temperatures on Mathematical Reasoning Tasks

Figure 4: Training Dynamics on ERPO

Evaluation We follow standard practice and assess performance on six widely used benchmarks:
AIME24, AIME25, AMC, MATH500 (Hendrycks et al., 2021), Minerva (Lewkowycz et al., 2022),
and OlympiadBench (He et al., 2024). Prior work typically reports Avg@K (Yu et al., 2025),
Pass@1 (Liu et al., 2025), and Pass@K (Hao et al., 2025) after RLVR training, often without speci-
fying or controlling the inference-time sampling temperature. This omission can substantially affect
reported performance and render results across studies not directly comparable. In preliminary
experiments, we found that inference-time sampling temperature has a significant impact on per-
formance, and that the effect intensifies as training progresses. To control for this factor, we fix the
number of training steps across all models and evaluate at temperatures from 0.1 to 1.5; performance
is then aggregated over this range.

Implementation Details We conduct all experiments using the EasyR1 framework (Zheng et al.,
2025), training the Qwen2.5-Math-7B and Qwen2.5-32B model (Yang et al., 2024; Qwen et al.,
2025) with both GRPO and ERPO algorithms. Following prior work (Liu et al., 2025), we set
the maximum sequence length to 3K tokens. For each problem, we sample eight responses at an
inference temperature of 1.0. The rollout batch size is set to 512, and the update batch size to 128,
for a total of 240 training steps. Token-level loss is applied throughout training. To ensure a fair
comparison, we adopt the default KL divergence coefficient of 0.01.

5.2 MAIN RESULTS

Figure 3 summarizes Avg@32 accuracy on six mathematical reasoning benchmarks, averaged over
sampling temperatures from 0.1 to 1.5. ERPO consistently outperforms GRPO, with gains of up
to 14.9% and an overall average improvement of 6.2%, highlighting its enhanced capability. Ta-
ble 1 presents the detailed results for each benchmark, grouped by evaluation metric (e.g., Pass@1,
Pass@K).

For both GRPO and ERPO, the prompts are identical to those used during training, whereas the
Qwen base model adopts the default configuration from Dr.GRPO (Liu et al., 2025) to ensure op-
timal performance. Consistent with the aggregated results in Figure 3 and Table 1, ERPO sur-
passes GRPO across all evaluation metrics, achieving improvements of 6.2% in Avg@32, 3.64% in
Pass@32, and 5.69% in Pass@1. We also applied the concept of ERPO to other RLVR algorithms
and observed similarly effective gains; details are provided in Appendix E.

7
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Table 1: Performance comparison across mathematical reasoning benchmarks. Best results per
column are highlighted in bold.

Mean Avg@32

Method AIME24 AIME25 AMC MATH500 Minerva Olympiad Avg.

Base 0.087 0.030 0.246 0.340 0.058 0.099 0.143
GRPO 0.174 0.072 0.398 0.528 0.207 0.266 0.274
ERPO 0.218 0.110 0.478 0.677 0.214 0.316 0.336

Mean Pass@32

Base 0.373 0.206 0.674 0.764 0.349 0.411 0.463
GRPO 0.471 0.287 0.768 0.850 0.516 0.558 0.575
ERPO 0.509 0.342 0.820 0.904 0.500 0.593 0.611

Mean Pass@1

Base 0.090 0.038 0.264 0.342 0.062 0.099 0.149
GRPO 0.169 0.084 0.398 0.533 0.201 0.263 0.275
ERPO 0.207 0.091 0.477 0.679 0.217 0.320 0.332

5.3 TRAINING DYNAMICS

Figure 4 illustrates the training dynamics of the ERPO method. For both approaches, the sampling
accuracy on the training set remains largely consistent; however, their divergence from the reference
model exhibits markedly different trajectories.

In GRPO, constraints are imposed on the action distribution, causing the query distribution to drift
away from the reference model at a substantially faster rate. Consequently, the KL divergence at the
query level is an order of magnitude greater than at the policy level.

This imbalance leads to pronounced discrepancies in performance between the training and evalua-
tion datasets. In contrast, ERPO applies constraints directly to the query distribution and adjusts the
loss according to the probability of the given problem. This design both limits the degree of diver-
gence from the reference model during training and, by leveraging the independence between the
problem and the response, allows unconstrained exploration at the policy level. A quantitative anal-
ysis can be found in Appendix C. As a result, ERPO achieves superior generalization performance
on general problems.

5.4 ANALYSIS

Ablation Study We conduct ablation studies on the MATH500 benchmarks to assess reasoning
efficiency. Table 2 summarizes the results for several commonly used sampling temperatures. Figure
5 further provides the complete performance–temperature variation curves across different experi-
mental settings, along with the corresponding training dynamics.

Mechanisms Without modifying other hyperparameters, replacing the policy-based KL diver-
gence with query-based KL divergence yields the best overall performance1, with an average im-
provement of 15.9% over GRPO. In contrast, GRPO with policy-based KL divergence shows its
highest performance only at a temperature of 1.0 (see Figure 5(a)).

To further investigate, an ablation study is conducted on the two mechanisms of ERPO with their
effects evaluated using KL divergence and entropy (Table 3 and Figure 5(d)). The term wB(s)

downweights gradients from low-probability queries, which often lead to low-probability responses,
thereby increasing gradient variance and entropy (Quantitative analysis is provided in Appendix D).
Introducing wB(s) allows sufficient training while concurrently reducing the policy KL divergence.

1We also experimented with completely removing all KL divergence constraints, which resulted in the
training process failing to converge.
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Figure 5: Pass@1 accuracy and training dynamics under different settings: (a)–(c) Model perfor-
mance at various temperatures on MATH500; (d) Policy-KL divergence variation with GRPO using
only Query-KL.

Different regularization strengths α also exert a significant influence on performance. As the con-
straint strength increases (e.g., α = 5× 10−2), the model achieves further improvements in overall
performance (see Table 2). It is worth noting that we did not conduct an exhaustive search for the
optimal α; instead, we retained the default value to ensure a relatively fair comparison.

Table 2: Performance Comparison Under Different Experimental Settings

Base Model Method α w(s) Rollout
Count

Temperature Metrics

0.1 0.6 1 1.5 ≤1.0 1.2-1.5

Baseline — — — — 52.40 46.80 32.80 0.40 44.44 6.15

Qwen-7B

GRPO 1× 10−2 — 8 66.80 68.40 73.80 0.40 68.80 12.50
1× 10−2 — 16 73.00 79.20 75.00 10.60 75.22 39.75

ERPO

1× 10−2 ✓ 8 79.40 80.60 75.20 8.60 78.74 37.90
1× 10−2 — 8 81.60 81.60 79.00 2.60 80.90 38.00
5× 10−3 ✓ 8 53.80 60.60 66.20 15.40 59.94 39.30
5× 10−2 ✓ 8 78.80 81.00 76.00 15.00 79.00 43.35
1× 10−2 ✓ 16 80.40 78.80 74.40 56.20 77.82 66.25

GRPO* 1× 10−2 ✓ 8 78.20 76.80 71.20 7.60 76.14 23.79

Qwen-32B GRPO 1× 10−2 — 8 81.60 82.40 81.20 25.20 81.62 57.20
ERPO 1× 10−2 ✓ 8 85.00 84.80 83.60 80.80 84.60 82.80

Note: Best results per column are highlighted in bold (separate for 7B and 32B). The columns
≤1.0 and 1.2–1.5 show the mean accuracy (Acc) over the corresponding temperature ranges.
The w(s) column indicates whether query-rweighting is applied (✓) or not (—). GRPO*
denotes the GRPO algorithm using only query-reweighting.

Table 3: Influence of Query-KL and Query-Reweighting on Training Stability
Method Query-KL Policy-KL Entropy

GRPO (Avg@3) 0.9679 0.0601 0.5063
GRPO w/wB(s) 0.5933 0.0113 0.2782

GRPO w/Query-KL 0.0041 0.1001 0.5674
ERPO (Avg@3) 0.0828 0.0728 0.4244

Rollouts We also analyze the effect of the number of samples per query. By increasing the sam-
pling number to 16, we achieve the best performance, with the average Pass@1 rising to 74.6%. A
higher sampling count also significantly improves sampling stability at high temperatures (see Ta-
ble 2), without a noticeable increase in divergence from the reference model. Moreover, increasing
the sampling count facilitates ERPO-based models in acquiring the correct reasoning format more
effectively. 2

Long-term Training To assess the stability of long-term RL training, we scale the training
steps up to 1K and monitor changes in model performance over time. As shown in the fig-

2Across multiple experiments, the GRPO method consistently failed to capture the desired output format.
Consequently, for all experiments, we report only the answer accuracy.
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Figure 6: Performance Variation Across Training Steps

Figure 7: Training Dynamics on Long-term RL

ure 6 and 7, GRPO remains stable for sampling temperatures below 1.0 until approximately 240
steps (epoch=15). However, a pronounced performance degradation is first observed in the high-
temperature sampling regime after 400 steps, and subsequently propagates to encompass sampling
across all temperatures as the steps increase.

In contrast, ERPO exhibits a modest performance decline; however, the overall deterioration is
substantially smaller, and its performance even improves within the high-temperature range. Figure
6 presents the complete training trajectories for both GRPO and ERPO. Although ERPO is not
entirely immune to the collapse phenomenon that may occur during extended training—manifested
as a sudden increase in entropy and a loss of sampling capability—it consistently outperforms vanilla
GRPO and achieves a comparable degree of policy distribution constraint without relying on an
explicit policy-based KL divergence term.

6 CONCLUSION

By analyzing the coupling between the environment and the policy space in large language models,
we decouple parameter regularization from the optimization objective during training. Specifically,
we employ query-level KL divergence to indirectly constrain the distance between the policy model
and the reference model. To prevent the model from prematurely converging to suboptimal solutions,
we weight the advantage by the occurrence probability of each query. Experiments across multi-
ple mathematical reasoning benchmarks demonstrate that the proposed ERPO method can achieve
comparable KL divergence control without explicit policy regularization, while delivering superior
performance. Furthermore, by sampling at different temperatures, we examine the evolution of
sampling capability over long-term RL training, providing additional evidence of ERPO’s stability
during training.

REPRODUCIBILITY STATEMENT

We use open-source datasets for both training and testing, and conduct all experiments on an
NVIDIA A100 GPU cluster. The complete environment configuration and step-by-step instructions
for reproducing our results are openly available at: https://anonymous.4open.science/
r/ERPO-5B0C/
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Figure 8: Variation of Metrics with Temperature

A PROMPT

{{ content | trim }} You FIRST think about the reasoning process
as an internal monologue and then provide the final answer. The
reasoning process MUST BE enclosed within <think> </think> tags.
The final answer MUST BE put in \boxed {}.

B VARIATION OF METRICS WITH TEMPERATURE

Figure 8 illustrates the model performance across different evaluation metrics and sampling temper-
atures. Our approach reduces the performance gap between different sampling temperatures, while
increasing the likelihood of sampling correct outputs.

C ANALYSIS OF REWARD HACKING

In the course of our experiments, we observed a severe reward hacking phenomenon when training
with the baseline GRPO method. Specifically, while the model consistently achieved high rewards
on the training data, its performance on the evaluation set often plateaued or even degraded during
the later stages of optimization. This pronounced discrepancy suggests that the model overfits to
the specific characteristics of the reward signal during training sampling, failing to generalize to the
standard decoding distribution used during inference.

To quantitatively investigate this issue, we monitored the Train–Evaluation Consistency throughout
the training process. We periodically evaluated both the training accuracy and the evaluation ac-
curacy every ten optimization steps. To ensure the robustness of our inference metrics, evaluation
was conducted using vLLM under two different Tensor Parallelism settings (TP1 and TP2), a factor
which has been shown in previous work (Yao et al., 2025) to impact model performance.

Table 4: Quantification of Reward Hacking via Train–Inference Gap. The table compares the
average accuracy during training sampling versus inference decoding. A larger gap indicates severe
reward hacking (overfitting to training dynamics). ERPO reduces this gap by ≈ 51%, demonstrating
robust generalization.

Method Avg. Train Acc Avg. Eval@TP1 Avg. Eval@TP2 Gap@TP1 Gap@TP2 Avg. Gap
GRPO 77.3 69.8 70.1 7.5 5.5 6.47
ERPO 77.1 74.1 73.8 3.0 3.3 3.14

Improvement – – – ↓ 4.5 (60%) ↓ 2.2 (40%) ↓ 3.33 (51%)

Table 4 summarizes the average performance gap across six key checkpoints (Steps 40, 80, 120,
160, 200, and 240). The results confirm our hypothesis:

• GRPO exhibits a substantial average gap of 6.47%, indicating a significant misalignment
between training and inference behaviors. Notably, as shown in the detailed trajectories in
Table 5, GRPO’s evaluation accuracy drops sharply at Step-240 (from ≈ 75% to 58.4%)
despite maintaining high training accuracy, a classic signature of reward hacking.
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Figure 9: Likelihood Relationship between Query and Response

• ERPO, in contrast, demonstrates superior consistency. It reduces the average Train–Eval
gap by approximately 51% (from 6.47% to 3.14%).

Table 5: Trajectory of Train vs. Inference Accuracy. Detailed performance recorded at 40-
step intervals. Note the divergence in GRPO at Step-240, where Eval accuracy drops significantly
while Train accuracy remains high—a clear sign of reward hacking. ERPO maintains consistency
throughout.

Model / Metric Step-0 Step-40 Step-80 Step-120 Step-160 Step-200 Step-240 Avg.
GRPO (Baseline)

Train Acc 44.48 76.41 76.09 78.29 78.95 79.44 76.70 72.91
Eval@TP1 31.20 73.20 76.00 73.40 72.20 73.60 58.40 65.43
Eval@TP2 30.60 74.00 74.80 74.20 76.60 75.80 66.20 67.46

ERPO (Ours)
Train Acc 44.55 75.63 76.53 78.66 80.63 78.41 81.46 73.70
Eval@TP1 31.20 74.00 77.20 77.00 78.40 78.60 78.40 70.69
Eval@TP2 30.60 72.60 77.00 76.60 77.40 78.60 80.20 70.43

This significant reduction in the performance gap indicates that ERPO effectively regularizes the
training process, preventing the model from exploiting spurious patterns in the reward function and
ensuring that improvements in training translate reliably to inference performance.

D CORRELATION ANALYSIS BETWEEN QUERY AND RESPONSE
PROBABILITIES

We sampled over 8K questions from the training dataset at a temperature of 1.0 and independently
computed the negative log-likelihood (NLL) for both the prompt and response parts:

NLL(x) = −
∑

log p(x)

where x denotes the generation probabilities of tokens in the prompt or response. The resulting
histogram is shown in Figure 9. We observe a positive correlation between the NLL of the prompt
and that of the response. For 95% of the training samples (where the NLL of the prompt is less
than 300), the correlation coefficient is close to 1. Low-probability responses appearing in positive
samples contribute to an increase in entropy during training.

E ERPO ON DIFFERENT ALGORITHMS

Additional experiments were conducted on DAPO(Yu et al., 2025) and RLOOAhmadian et al.
(2024) with and without the global KL divergence constraint, yielding absolute improvements of
10.24% and 2.28% at temperatures below 1.0, respectively (see Table 6). These findings demonstrate
that the proposed method can achieve significant gains when applied to other RLVR algorithms.
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Table 6: Performance Comparison Under Different Experimental Settings

Base Model Method D KL Rollout Temperature

0.1 0.6 1 1.5 ≤1.0 1.2-1.5

Baseline – – – 52.4 46.8 32.8 0.4 44.44 6.15

Qwen-7B

GRPO Policy 8 66.8 68.4 73.8 0.4 68.8 12.5
16 73.0 79.2 75.0 10.6 75.22 39.75

ERPO Query 8 79.4 80.6 75.2 8.6 78.74 (+9.94) 37.9
16 80.4 78.8 74.4 56.2 77.82 (+2.6) 66.25

DAPO – 8 62.0 77.4 65.4 5.6 68.16 14.0
DAPO+ERPO Query 80.2 79.4 75.8 20.2 78.4 (+10.24) 36.93

RLOO Policy 8 77.6 78.4 75.4 12.4 77.28 35.93
RLOO+ERPO Query 81.2 80.4 79.4 17.6 79.56 (+2.28) 40.8

Qwen-32B GRPO Policy 8 81.6 82.4 81.2 25.2 81.62 57.2
ERPO Query 85.0 84.8 83.6 80.8 84.6 (+2.98) 82.8

Note: The columns ≤1.0 and 1.2–1.5 show the mean accuracy (Acc) over the corresponding
temperature ranges. Values in parentheses indicate improvements over baseline methods. Best
results per column are highlighted in bold, second-best results are underlined.

F CONVERGENCE ANALYSIS OF ERPO

In this appendix, we provide a simple theoretical view of Environment-Regularized Policy Opti-
mization (ERPO) as stochastic gradient descent (SGD) on a regularized objective, and give a basic
convergence guarantee to a stationary point under standard assumptions. We also show that the
Query-KL term implicitly bounds environment drift measured in KL divergence.

Throughout this appendix, let s denote a query (input), and let ρθ(s) denote the query distribution
induced by the current policy parameterized by θ. The initial query distribution at the beginning of
training is denoted by ρθ0(s). We write the query-weighted gain (e.g., a query-weighted advantage)
as ḡθ(s). The Query-KL regularizer is defined as

Rquery(θ) ≜ KL
(
ρθ ∥ ρθ0

)
, (15)

and the corresponding ERPO objective is

JERPO(θ) = Es∼ρθ

[
ḡθ(s)

]
− λRquery(θ), (16)

with regularization coefficient λ > 0. We consider the associated loss

L(θ) = −Es∼ρθ

[
ḡθ(s)

]
+ λRquery(θ), (17)

which ERPO seeks to minimize.

ERPO AS A REGULARIZED OBJECTIVE

Proposition 1 (ERPO as a regularized objective). Consider the ERPO objective

JERPO(θ) = Es∼ρθ

[
ḡθ(s)

]
− λRquery(θ), Rquery(θ) ≜ KL

(
ρθ ∥ ρθ0

)
, (18)

and its corresponding loss

L(θ) = −Es∼ρθ

[
ḡθ(s)

]
+ λRquery(θ). (19)

In the idealized infinite-sample limit, the ERPO update is equivalent to stochastic gradient descent
on the regularized loss L(θ), i.e.,

θt+1 = θt − ηt ∇L(θt), (20)

where ηt is the learning rate.
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Proof. By definition, the loss L(θ) can be written as

L(θ) = Es∼ρθ

[
− ḡθ(s) + λ ℓQKL(θ; s)

]
, (21)

where ℓQKL(θ; s) denotes the per-query contribution of the Query-KL term (for instance, the Monte
Carlo integrand of KL(ρθ ∥ ρθ0)). Let B denote a mini-batch of queries sampled from the training
procedure, and consider the empirical loss

L̂B(θ) =
1

|B|
∑
s∈B

(
− ḡθ(s) + λ ℓQKL(θ; s)

)
. (22)

Under standard Monte Carlo sampling assumptions (or in the infinite-sample limit), L̂B(θ) is an
unbiased estimator of L(θ), and its gradient ∇L̂B(θ) is an unbiased estimator of ∇L(θ). Therefore,
the ERPO parameter update based on ∇L̂B(θ) corresponds to stochastic gradient descent on the
regularized loss L(θ).

CONVERGENCE TO A STATIONARY POINT

We now give a simple convergence guarantee under standard nonconvex SGD assumptions.
Theorem 1 (Convergence to a stationary point of the ERPO loss). Let L(θ) be the ERPO loss

L(θ) = −Es∼ρθ

[
ḡθ(s)

]
+ λRquery(θ), Rquery(θ) = KL

(
ρθ ∥ ρθ0

)
. (23)

Assume that:

1. Smoothness. L(θ) is L-smooth, i.e., its gradient is Lipschitz continuous:

∥∇L(θ)−∇L(θ′)∥ ≤ L ∥θ − θ′∥ for all θ, θ′. (24)

2. Unbiased stochastic gradients with bounded variance. The mini-batch gradient gt used
by ERPO at iteration t satisfies

E[gt | θt] = ∇L(θt), E
[
∥gt −∇L(θt)∥2 | θt

]
≤ σ2 (25)

for some σ2 < ∞.

3. Robbins–Monro step sizes. The learning rates {ηt}t≥1 satisfy
∞∑
t=1

ηt = ∞,

∞∑
t=1

η2t < ∞. (26)

Then the sequence {θt} produced by the ERPO update

θt+1 = θt − ηtgt (27)

satisfies
lim
t→∞

E
[
∥∇L(θt)∥2

]
= 0, (28)

i.e., ERPO converges to a stationary point of the regularized loss L(θ) in the standard nonconvex
SGD sense.

Proof sketch. The proof follows the classical analysis of stochastic gradient descent for smooth
nonconvex objectives. By L-smoothness of L(θ) and the ERPO update θt+1 = θt − ηtgt, we have

L(θt+1) ≤ L(θt)− ηt ∇L(θt)
⊤gt +

L

2
η2t ∥gt∥2. (29)

Taking conditional expectation with respect to θt and using the unbiasedness and bounded variance
of gt yields

E
[
L(θt+1) | θt

]
≤ L(θt)− ηt ∥∇L(θt)∥2 +

L

2
η2t
(
∥∇L(θt)∥2 + σ2

)
. (30)
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Rearranging terms and taking full expectation, one obtains a recursion of the form

E
[
L(θt+1)

]
≤ E

[
L(θt)

]
− c1ηt E

[
∥∇L(θt)∥2

]
+ c2η

2
t , (31)

for some constants c1, c2 > 0 depending on L and σ2. Summing this inequality over t and using the
Robbins–Monro conditions on {ηt}, along with the lower boundedness of L(θ), yields

∞∑
t=1

ηt E
[
∥∇L(θt)∥2

]
< ∞. (32)

This implies limt→∞ E[∥∇L(θt)∥2] = 0, which completes the proof.

AN UPPER BOUND ON QUERY-KL (ENVIRONMENT DRIFT)

We finally show that, under a mild boundedness assumption on the query-weighted gain, the Query-
KL term is uniformly bounded along the ERPO training trajectory, provided that the regularized loss
does not increase beyond its initial value.

Proposition 2 (Implicit upper bound on Query-KL). Assume the query-weighted gain ḡθ(s) is uni-
formly bounded: there exists Gmax > 0 such that∣∣ḡθ(s)∣∣ ≤ Gmax for all θ and s. (33)

Consider the ERPO loss

L(θ) = −Es∼ρθ

[
ḡθ(s)

]
+ λRquery(θ), Rquery(θ) = KL

(
ρθ ∥ ρθ0

)
. (34)

Assume that training is initialized at θ0 such that Rquery(θ0) = 0, and that the ERPO updates satisfy

L(θt) ≤ L(θ0) for all iterations t. (35)

Then the Query-KL term is uniformly bounded:

Rquery(θt) = KL
(
ρθt ∥ ρθ0

)
≤ L(θ0) +Gmax

λ
for all t. (36)

Proof. By the boundedness of ḡθ(s), we have

−Es∼ρθ

[
ḡθ(s)

]
≥ −Gmax for any θ. (37)

Therefore,
L(θ) = −Es∼ρθ

[
ḡθ(s)

]
+ λRquery(θ) ≥ −Gmax + λRquery(θ). (38)

For any iteration t, using the assumption L(θt) ≤ L(θ0), we obtain

−Gmax + λRquery(θt) ≤ L(θt) ≤ L(θ0). (39)

Rearranging terms yields

Rquery(θt) ≤ L(θ0) +Gmax

λ
, (40)

which shows that the Query-KL term, and hence the environment drift measured in KL divergence,
is uniformly bounded throughout training.

G DERIVATION OF THE QUERY WEIGHTS

This appendix derives the closed-form batch weights wB(s) used in Section 4.2 from a self-
normalized substitute distribution over queries.
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Self-normalized substitute distribution. Consider the outer expectation over queries in the
ERPO objective equation 6. On a mini-batch B = {si}mi=1 drawn from some proposal distribu-
tion (e.g., the current policy-induced query distribution ρθ or a replay buffer), we introduce a batch
self-normalized substitute distribution over B:

µB(si) =
rθ(si)

ZB
, ZB =

m∑
j=1

rθ(sj), (41)

where rθ(s) > 0 is a monotone score and ZB is its batch partition function. In the main text we
choose rθ(s) = 1/(−ℓθ(s)) with ℓθ(s) = logPθ(s) < 0 from equation 4, but the derivation below
holds for any positive rθ.

Using µB , we define the batch objective

JB(θ) :=

m∑
i=1

µB(si) ḡθ(si) =
1

ZB

m∑
i=1

rθ(si) ḡθ(si), (42)

where ḡθ(s) is the per-query expected return in equation 5. Crucially, rθ and ZB are computed with
stop-gradient: during backpropagation we treat them as constants and do not differentiate through
the log-likelihoods used to form rθ. Under this convention, the gradient of JB is

∇θJB(θ) =
1

ZB

m∑
i=1

rθ(si)∇θ ḡθ(si). (43)

Thus, relative to the unweighted estimator 1
m

∑
i ∇θ ḡθ(si), the query contributions are reweighted

by rθ(si), but the gradient remains a linear combination of per-query gradients.

Scale-invariant surrogate. The normalization constant ZB in equation 43 is independent of θ, so
it only affects the overall scale of the gradient, not its direction. We therefore introduce a scale-
invariant surrogate

J̃B(θ) :=

m∑
i=1

cB rθ(si) ḡθ(si), (44)

where cB > 0 is any batch-dependent constant that does not depend on θ. Differentiating under the
stop-gradient convention yields

∇θJ̃B(θ) = cB

m∑
i=1

rθ(si)∇θ ḡθ(si) = cBZB ∇θJB(θ). (45)

Hence J̃B and JB induce the same gradient direction, differing only by a positive scalar factor
cBZB . This allows us to replace the normalized weights µB by unnormalized but scale-adjusted
weights cBrθ(s) without changing the SGD update direction.

Closed-form query weights. To obtain a concrete and numerically well-behaved choice of cB ,
we use the batch-averaged log-likelihood

ℓ̄B =
1

m

m∑
j=1

ℓθ(sj) < 0, (46)

and set cB = −ℓ̄B > 0. With this choice and rθ(s) = 1/(−ℓθ(s)), the unnormalized weight for
each query si becomes

wB(si) := cB rθ(si) =
−ℓ̄B

−ℓθ(si)
=

ℓ̄B
ℓθ(si)

> 0, (47)

which is exactly the weight used in equation 8. Intuitively, this construction preserves the likelihood-
based ordering of queries—higher likelihood (less negative ℓθ(s)) implies larger rθ(s) and thus
larger wB(s)—while compressing the dynamic range compared to exp(ℓθ(s)), avoiding the extreme
ratios induced by log-normal importance weights.
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Finally, substituting wB(s) into the surrogate objective J̃B and normalizing by m yields the query-
reweighted Monte-Carlo estimator used in the main text,

Ĵ reweight
B (θ) =

1

m

∑
s∈B

wB(s) ḡθ(s), (48)

which appears in equation 9 and constitutes the first term of the empirical ERPO objective equa-
tion 7. Under the assumptions in Appendix F, using this surrogate does not affect the convergence
guarantee for SGD on the population objective JERPO(θ).

H USAGE OF LARGE LANGUAGE MODELS

In this work, we leveraged large language model to assist in the writing process by polishing the
language. The LLM provided grammatical refinement, rephrased ambiguous expressions, and en-
hanced overall readability, while all technical content and claims remain the sole responsibility of
the authors.
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