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ABSTRACT

Policy optimization (PO) has advanced Large Language Models (LLMs), yet
training remains constrained by a stability–exploration trade-off. We analyze the
coupling between the input environment and the policy in LLM RL, and decouple
parameter regularization from the optimization objective by moving regulariza-
tion to the input side. Concretely, we propose Environment-Regularized Pol-
icy Optimization (ERPO), instantiated with Query-KL (QKL), which penalizes
the KL divergence between the evolving query distribution and a fixed reference.
By regularizing the input (query) distribution rather than the action (response)
distribution, QKL indirectly controls policy drift induced by environmental shift
while preserving exploration. To avoid premature convergence, we introduce a
query-weighted advantage that reweights updates according to estimated query
prevalence, reducing estimator variance and improving robustness. Across diverse
mathematical reasoning benchmarks, ERPO achieves KL control comparable to
methods with explicit policy regularization, while delivering stronger final per-
formance and smoother training dynamics. Temperature-swept sampling further
indicates more stable long-horizon behavior. These results suggest that making the
input environment a first-class object—via QKL and query-weighted advantage—
is a principled and practical route to improve the stability–exploration trade-off in
PO for LLMs.

1 INTRODUCTION

Background and challenge. Policy optimization (PO) methods have become the de facto recipe
for post-training large language models (LLMs), spanning trust-region style updates (TRPO/PPO)
and preference-based objectives (DPO) together with broader RLHF/RLAIF variants (Schulman
et al., 2015c; 2017b; Ouyang et al., 2022b; Bai et al., 2022; Rafailov et al., 2023a). Despite impres-
sive progress in mathematical reasoning and beyond, practitioners still face a persistent dilemma:
how to trade off training stability against effective exploration. In long-horizon runs, optimization
noise and distribution shift tend to accumulate, leading to oscillations and occasional collapses.

Instability from the input side. We argue that a key—and under-controlled—source of instabil-
ity is environment non-stationarity induced by the query distribution. During RL fine-tuning, the
inputs used for training are sampled from a mechanism that co-evolves with the policy (e.g., active
data selection, prompt generators, curriculum schedulers). As the policy changes, the conditional
likelihood of future prompts also shifts, altering the effective training environment and amplifying
gradient variance. This mirrors classic RL settings in which either the initial-state distribution or
the transition kernel drifts over time; non-stationary and robust RL therefore advocate explicit dis-
tributional control (Padakandla, 2021; Iyengar, 2005; Nilim & El Ghaoui, 2005). A related lesson
from imitation learning is that policy updates induce covariate (state) shift, motivating interactive
data aggregation such as DAgger/AggreVaTe (Ross et al., 2011; Ross & Bagnell, 2014).

Limitations of action-only regularization. Recent LLM work has started to surface the role of
prompt distributions. EVA frames open-ended alignment as a two-player game in which a cre-
ator evolves the prompt distribution while a solver learns on it, implicitly regularizing prompt shift;
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Align-Pro gives a principled objective to optimize a prompter distribution with explicit KL terms (Ye
et al., 2024; Trivedi et al., 2025). Complementary strands stabilize optimization or reweight data
from the policy side (e.g., StablePrompt, WPO), yet they do not directly constrain the environ-
mental statistics over queries (Kwon et al., 2024; Zhou et al., 2024). In contrast, mainstream PO
for RLHF focuses on action regularization via a Policy-KL budget to an SFT reference (Schulman
et al., 2015c; 2017b; Ouyang et al., 2022b), leaving the input/query process comparatively uncon-
strained. Empirically, even under a fixed Policy-KL budget, the input environment keeps drifting:
the batch-estimated Query-KL rises steadily throughout training while the Policy-KL on responses
remains nearly flat (Figure 1). This demonstrates that constraining only the action distribution fails
to stabilize the input/query process, leaving environment non-stationarity unaddressed.

Figure 1: KL losses during GRPO training.
The Query-KL (dark) rises while the Policy-KL
(light) stays low, showing action-only KL does
not stabilize the query process.

In this paper. We treat queries as part of the
environment and make environment statistics a
first-class object in the training objective. We
introduce Query-KL regularization (QKL), a
plug-in penalty on the divergence between the
current empirical query sampler and a chosen
reference sampler, explicitly limiting inter-round
drift of the training environment while leav-
ing the action space free to explore. In paral-
lel, we propose a lightweight query reweight-
ing scheme that reduces estimator variance and
improves robustness under high-temperature de-
coding—where LLMs are especially sensitive to
the long tail of decoding distributions (Holtz-
man et al., 2020; Wang et al., 2023). Both com-
ponents are model- and optimizer-agnostic and
drop into PPO/DPO-style implementations with
minimal changes. Figure 2 sketches ERPO: on
top of GRPO we replace the usual Policy-KL with a pre-computed Query-KL, and during advantage
computation we weight the within-query samples by the query’s occurrence probability, yielding an
environment-aware update while preserving action-side exploration.

Contributions. We make four main contributions. (1) Query-environment control: We treat
queries as part of the environment and stabilize training by combining Query-KL (QKL) to bound
query drift with batch self-normalized query weights to reduce variance and tame high-temperature
behavior. (2) Drop-in practicality: The method is optimizer-agnostic and adds only a QKL term
plus per-batch reweighting on top of GRPO/PPO-style pipelines with minimal changes. (3) Stabil-
ity evaluation: We assess RL stability via multi-temperature sampling paired with a multi-metric
suite (Pass@k, Pass@1, Avg@k), enabling comprehensive capability and robustness evaluation. (4)
Empirical gains: Across diverse reasoning benchmarks, the approach consistently improves accu-
racy.

2 RELATED WORKS

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards represents a paradigm shift from traditional RLHF
approaches by leveraging automatically verifiable outcomes rather than human preference annota-
tions. This approach is particularly powerful for domains where ground truth can be objectively
determined, such as mathematical reasoning, code generation, and logical problem solving. Models
like AlphaCode (Li et al., 2022) and recent mathematical reasoning (Jeannotte & Kieran, 2017; Xia
et al., 2025) systems leverage execution results and correctness verification as direct reward signals,
eliminating the need for expensive human annotation.

Process Reward Models (PRMs) have emerged as a sophisticated extension of RLVR, where inter-
mediate steps in reasoning processes are evaluated and rewarded based on their correctness (Ue-
sato et al., 2022; Lightman et al., 2023). Recent developments include tool-augmented reasoning
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Figure 2: The Proposed ERPO Overview. (a) For each query, the policy and reference induce
current and reference query samplers, and we pre-compute a Query-KL to penalize environment
drift. (b) For each query, the policy samples a response group scored by the reward model to produce
the standard GRPO learning signal. (c) On top of GRPO we replace response-KL with pre-computed
Query-KL and weight within-query advantages by the query’s occurrence probability, yielding an
environment-aware update.

systems (Schick et al., 2023) and self-verification approaches (Kojima et al., 2022), which combine
language models with external verification tools to enable automatic reward computation for broader
task domains.

While RLVR provides scalable and consistent training signals compared to subjective human pref-
erences, it introduces unique challenges in handling high variance from sparse rewards and potential
reward hacking behaviors. These stability issues motivate the need for robust training methodologies
that can effectively leverage verifiable rewards while maintaining training stability.

2.2 REINFORCEMENT LEARNING STABILITY IN LANGUAGE MODEL TRAINING

The stability of reinforcement learning algorithms in language model training has become a critical
research area due to unique challenges posed by discrete action spaces, large parameter spaces, and
complex reward landscapes (Sutton et al., 1998). Recent works have identified specific stability
issues including reward hacking (Gao et al., 2023) and the alignment tax problem (Dai et al., 2025),
where policy optimization can degrade downstream performance while improving target metrics.
Distribution shift during training has been recognized as a fundamental source of instability in policy
gradient methods (Reddy et al., 2020). In language model contexts, this manifests as shifts in the
query distribution during training, leading to high variance in gradient estimates and potential policy
collapse (Wen et al., 2024). Existing approaches primarily focus on action-space regularization
through trust region methods (Schulman et al., 2015b) and KL divergence penalties between current
and reference policies.

Despite progress in understanding RL stability issues, there remains a notable gap in explicitly
managing the input query distribution during training. Most current approaches focus on output reg-
ularization rather than addressing environmental shifts at the input level, leaving query distribution
management as an underexplored avenue for improving training stability.

3 PRELIMINARIES

Setting and notation. Queries s ∈ S and responses a ∈A are generated by a single model with
parameters θ, which induces a query distribution ρθ(s) and a response policy πθ(a | s). For each s,
define

ḡθ(s) ≜ Ea∼πθ(·|s)[g(a)], (1)
and the training objective

J(θ) = Es∼ρθ
[ḡθ(s)] =

∑
s

ρθ(s) ḡθ(s). (2)

We can evaluate the sequence log-likelihood

ℓθ(s) = log pθ(s) =

T (s)∑
t=1

log pθ(xt | x<t), (3)

3
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and in fully online generation take ρθ(s) ≡ pθ(s).

Policy-gradient (PG) family. The PG identity (Sutton et al., 1999; Williams, 1992) gives

∇θJ(θ) = Es∼ρθ, a∼πθ

[
Aθ(s, a)∇θ log πθ(a | s)

]
, Aθ(s, a) = g(a)− bθ(s). (4)

TRPO/PPO stabilize updates via KL trust regions or ratio clipping (Schulman et al., 2015a; 2017a).
Large-scale LLM alignment employs PG-style pipelines (RLHF/Instruction tuning) (Ziegler et al.,
2019; Ouyang et al., 2022a) and classification-style surrogates such as DPO (Rafailov et al., 2023b).
We will instantiate experiments with GRPO (Shao et al., 2024), which computes a group-relative
advantage from K sampled responses:

Agrp
θ

(
s, a(k)

)
= g

(
a(k)

)
− 1

K

K∑
j=1

g
(
a(j)

)
. (5)

Query-level KL regularization. KL control is standard for trust regions (Schulman et al., 2015a;
2017a). We apply forward KL (relative to reference θ0) on the query distribution to constrain en-
vironmental drift, while not applying KL on the action layer, thus preserving exploration on the
response end.

4 METHOD

4.1 BATCH SELF-NORMALIZED QUERY-LEVEL REWEIGHTING

Our goal is to construct a low-variance outer reweighting of the objective in equation 2 without
relying on exponential (log-normal) importance ratios. Given a mini-batch B = {si}mi=1 drawn
from a proposal q(s) (a tractable distribution used to sample candidate states for training), we build a
batch self-normalized substitute distribution on B using a monotone, tempered score r(·) computed
with stop-gradient:

µB(si) =
r(si)

ZB
, ZB =

m∑
j=1

r(sj), rθ(s) ≜
1

−ℓθ(s)
(> 0), (6)

where ℓθ(s) = log pθ(s)<0 is the sequence log-likelihood from equation 3. This defines the batch
objective

JB(θ) :=

m∑
i=1

µB(si) ḡθ(si) =
1

ZB

m∑
i=1

rθ(si) ḡθ(si), (7)

where ḡθ(s) is the per-query expected return in equation 1. Because rθ and ZB are treated as
constants (stop-grad),

∇θJB(θ) =
1

ZB

m∑
i=1

rθ(si)∇θ ḡθ(si). (8)

Scale-invariant surrogate. For any batch constant cB > 0 independent of θ, define

J̃B(θ) :=

m∑
i=1

cB rθ(si) ḡθ(si) . (9)

Then ∇θJ̃B(θ) = cBZB ∇θJB(θ), so J̃B and JB share the same gradient direction (differ only by
a positive scale). This allows us to replace µB by an unnormalized but scale-adjusted weight.

Closed-form query weight. Let ℓ̄B = 1
m

∑m
j=1 ℓθ(sj) (< 0) and choose cB = −ℓ̄B > 0. Define

the per-query outer weight

wB(si) := cB rθ(si) =
−ℓ̄B

−ℓθ(si)
=

ℓ̄B
ℓθ(si)

(> 0). (10)

4
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Replacing the outer expectation in equation 2 by a Monte Carlo sum with these weights yields the
query-reweighted objective

Ĵ(θ) :=
1

m

∑
s∈B

wB(s) ḡθ(s) with wB(s) detached from gradients. (11)

The choice rθ(s) = 1/(−ℓθ(s)) preserves the likelihood ordering yet compresses the dynamic range
compared with exp(ℓθ), reducing variance while keeping weights positive. (Optionally one may
replace ℓθ by its length-normalized version ℓ̄θ = ℓθ/T (s); we keep the notation wB unchanged.)

4.2 STABILIZING THE ENVIRONMENT VIA A QUERY-LEVEL KL

Because the query distribution ρθ co-evolves with the policy, we constrain its drift using a query-
level forward KL to a fixed or slowly updated reference θ0:

Rquery(θ) := KL
(
ρθ

∥∥ ρθ0
)
= Es∼ρθ

[log ρθ(s)− log ρθ0(s)]. (12)

This penalizes forgetting probability mass under ρθ0 while not imposing any action-level KL, thus
preserving response-side exploration. In practice we estimate the gradient of equation 12 by Monte
Carlo over queries drawn from ρθ0 (or a cached pool), using ∇θ[− log ρθ(s)]; the additive constant
Es∼ρθ

[log ρθ0(s)] is dropped.

4.3 FINAL LOSS AND PG-COMPATIBLE SURROGATE

Combining the query-reweighted objective equation 11 with the query-level KL gives the loss we
minimize

L(θ) := − 1

m

∑
s∈B

wB(s) ḡθ(s) + αRquery(θ), (13)

with trade-off parameter α > 0. To instantiate equation 13 with any policy-gradient (PG) algorithm,
we use the surrogate

LPG-family(θ) := − 1

m

∑
s∈B

wB(s)
1

K

∑
a∈G(s)

uθ(s, a)A
⋆
θ(s, a) + αRquery(θ), (14)

where G(s) is the set of K responses sampled for s, A⋆
θ is the algorithm-specific advantage (e.g.,

Aθ for REINFORCE; Agrp
θ in equation 5 for GRPO), and uθ(s, a) is the algorithm-specific action

weight (uθ≡1 for REINFORCE/GRPO; clipped ratios for PPO). Our contribution is orthogonal: we
replace the per-query outer weight by wB(s) and add the query-KL term. During backpropagation
wB(s) is treated as a constant (stop-grad).

4.4 INSTANTIATION ON ERPO

For experiments we instantiate equation 14 with a GRPO-style group-relative baseline. For each s
we sample G(s) = {a(k)}Kk=1, compute the group-relative advantage using equation 5, take uθ ≡ 1,
and optimize

LERPO(θ) := − 1

m

∑
s∈B

wB(s)
1

K

∑
a∈G(s)

Agrp
θ (s, a) log πθ(a | s) + αRquery(θ). (15)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training We conduct experiments on mathematical reasoning tasks using Level 3–5 problems
from the MATH dataset (Hendrycks et al., 2021), totaling approximately 8.5K examples. These are
used to evaluate our proposed ERPO method, in comparison with the vanilla GRPO baseline. As
described in Appendix A, the model must wrap its intermediate reasoning in <think></think>
tags, and place the final answer inside \boxed {}.

5
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Figure 3: Avg@32 over Sampling Temperatures on Mathematical Reasoning Tasks

Figure 4: Training Dynamics on ERPO

Evaluation We follow standard practice and assess performance on six widely used benchmarks:
AIME24, AIME25, AMC, MATH500 (Hendrycks et al., 2021), Minerva (Lewkowycz et al., 2022),
and OlympiadBench (He et al., 2024). Prior work typically reports Avg@K (Yu et al., 2025),
Pass@1 (Liu et al., 2025), and Pass@K (Hao et al., 2025) after RLVR training, often without speci-
fying or controlling the inference-time sampling temperature. This omission can substantially affect
reported performance and render results across studies not directly comparable. In preliminary
experiments, we found that inference-time sampling temperature has a significant impact on per-
formance, and that the effect intensifies as training progresses. To control for this factor, we fix the
number of training steps across all models and evaluate at temperatures from 0.1 to 1.5; performance
is then aggregated over this range.

Implementation Details We conduct all experiments using the EasyR1 framework (Zheng et al.,
2025), training the Qwen2.5-Math model (Yang et al., 2024) with both GRPO and ERPO algorithms.
Following prior work (Liu et al., 2025), we set the maximum sequence length to 3K tokens. For each
problem, we sample eight responses at an inference temperature of 1.0. The rollout batch size is set
to 512, and the update batch size to 128, for a total of 240 training steps. Token-level loss is applied
throughout training. To ensure a fair comparison, we adopt the default KL divergence coefficient of
0.01.

5.2 MAIN RESULTS

Figure 3 summarizes Avg@32 accuracy on six mathematical reasoning benchmarks, averaged over
sampling temperatures from 0.1 to 1.5. ERPO consistently outperforms GRPO, with gains of up
to 14.9% and an overall average improvement of 6.2%, highlighting its enhanced capability. Ta-
ble 1 presents the detailed results for each benchmark, grouped by evaluation metric (e.g., Pass@1,
Pass@K).

For both GRPO and ERPO, the prompts are identical to those used during training, whereas the
Qwen base model adopts the default configuration from Dr.GRPO (Liu et al., 2025) to ensure opti-
mal performance. Consistent with the aggregated results in Figure 3, ERPO surpasses GRPO across
all evaluation metrics, achieving improvements of 6.2% in Avg@32, 3.64% in Pass@32, and 5.69%
in Pass@1.

6
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Table 1: Performance comparison across mathematical reasoning benchmarks. Best results per
column are highlighted in bold.

Mean Avg@32

Method AIME24 AIME25 AMC MATH500 Minerva Olympiad Avg.

Base 0.087 0.030 0.246 0.340 0.058 0.099 0.143
GRPO 0.174 0.072 0.398 0.528 0.207 0.266 0.274
ERPO 0.218 0.110 0.478 0.677 0.214 0.316 0.336

Mean Pass@32

Base 0.373 0.206 0.674 0.764 0.349 0.411 0.463
GRPO 0.471 0.287 0.768 0.850 0.516 0.558 0.575
ERPO 0.509 0.342 0.820 0.904 0.500 0.593 0.611

Mean Pass@1

Base 0.090 0.038 0.264 0.342 0.062 0.099 0.149
GRPO 0.169 0.084 0.398 0.533 0.201 0.263 0.275
ERPO 0.207 0.091 0.477 0.679 0.217 0.320 0.332

5.3 TRAINING DYNAMICS

Figure 4 illustrates the training dynamics of the ERPO method. For both approaches, the sampling
accuracy on the training set remains largely consistent; however, their divergence from the reference
model exhibits markedly different trajectories.

In GRPO, constraints are imposed on the action distribution, causing the query distribution to drift
away from the reference model at a substantially faster rate. Consequently, the KL divergence at the
query level is an order of magnitude greater than at the policy level.

This imbalance leads to pronounced discrepancies in performance between the training and evalua-
tion datasets. In contrast, ERPO applies constraints directly to the query distribution and adjusts the
loss according to the probability of the given problem. This design both limits the degree of diver-
gence from the reference model during training and, by leveraging the independence between the
problem and the response, allows unconstrained exploration at the policy level. As a result, ERPO
achieves superior generalization performance on general problems.

5.4 ANALYSIS

Ablation Study We conduct ablation studies on the MATH500 benchmarks to assess reasoning
efficiency. Table 2 summarizes the results for several commonly used sampling temperatures. Figure
5 further provides the complete performance–temperature variation curves across different experi-
mental settings, along with the corresponding training dynamics.

Without modifying other hyperparameters, replacing the policy-based KL divergence with
query-based KL divergence yields the best overall performance1, with an average improvement
of 15.9% over GRPO. In contrast, the policy-based KL divergence shows larger fluctuations (see
Figure 5(a)) and its effectiveness diminishes under high-temperature sampling. We attribute this to
the model learning from all queries without distinction, making it more sensitive to outlier data and
more susceptible to noise, thereby reducing its generalization ability. Figure 5(d) of Figure 5 illus-
trates the policy distribution shift with and without wB(s), showing that variance-reduced sampling
effectively constrains divergence from the reference model during training, leading to improved
generalization.

1We also experimented with completely removing all KL divergence constraints, which resulted in the
training process failing to converge.

7
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Figure 5: Pass@1 accuracy and training dynamics under different settings: (a)–(c) Model perfor-
mance at various temperatures on MATH500; (d) Policy-KL divergence variation with GRPO using
only Query-KL.

Different regularization strengths α also exert a significant influence on performance. As the con-
straint strength increases (e.g., α = 5× 10−2), the model achieves further improvements in overall
performance (see Table 2). It is worth noting that we did not conduct an exhaustive search for the
optimal α; instead, we retained the default value to ensure a relatively fair comparison.

Table 2: Performance Comparison Under Different Experimental settings

Method KL Type α wB(s)
Rollout
Count

Temperature Setting

0.1 0.6 1.0 1.5 Mean

Baseline — — — — 0.524 0.468 0.328 0.004 0.331

GRPO Policy 1× 10−2 — 8 0.668 0.684 0.738 0.004 0.533
Query 1× 10−2 — 8 0.816 0.816 0.790 0.026 0.692

ERPO Query

5× 10−3 ✓ 8 0.538 0.606 0.662 0.154 0.549
1× 10−2 ✓ 8 0.794 0.806 0.752 0.086 0.678
5× 10−2 ✓ 8 0.788 0.810 0.760 0.150 0.692
1× 10−2 ✓ 16 0.804 0.788 0.744 0.562 0.746

Note: Best results per column are highlighted in bold, second-best results are underlined.
Mean represents the average performance across all temperature settings (0.1–1.5). The wB(s)
column indicates whether bias weighting is applied (✓) or not (—).

Rollouts We also analyze the effect of the number of samples per query. By increasing the sam-
pling number to 16, we achieve the best performance, with the average Pass@1 rising to 74.6%. A
higher sampling count also significantly improves sampling stability at high temperatures (see Ta-
ble 2), without a noticeable increase in divergence from the reference model. Moreover, increasing
the sampling count facilitates ERPO-based models in acquiring the correct reasoning format more
effectively. 2

Long-term Training To assess the stability of long-term RL training, we scale the training steps
up to 1K and monitor changes in model performance over time. As shown in the figure 6, GRPO
remains stable for sampling temperatures below 1.0 until approximately 240 steps (epoch=15).
However, a pronounced performance degradation is first observed in the high-temperature sampling
regime after 400 steps, and subsequently propagates to encompass sampling across all temperatures
as the steps increase.

In contrast, ERPO exhibits a modest performance decline; however, the overall deterioration is
substantially smaller, and its performance even improves within the high-temperature range. Figure
6 presents the complete training trajectories for both GRPO and ERPO. Although ERPO is not
entirely immune to the collapse phenomenon that may occur during extended training—manifested
as a sudden increase in entropy and a loss of sampling capability—it consistently outperforms vanilla
GRPO and achieves a comparable degree of policy distribution constraint without relying on an
explicit policy-based KL divergence term.

2Across multiple experiments, the GRPO method consistently failed to capture the desired output format.
Consequently, for all experiments, we report only the answer accuracy.
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Figure 6: Performance Variation Across Training Steps

Figure 7: Training Dynamics on Long-term RL

6 CONCLUSION

By analyzing the coupling between the environment and the policy space in large language models,
we decouple parameter regularization from the optimization objective during training. Specifically,
we employ query-level KL divergence to indirectly constrain the distance between the policy model
and the reference model. To prevent the model from prematurely converging to suboptimal solutions,
we weight the advantage by the occurrence probability of each query. Experiments across multi-
ple mathematical reasoning benchmarks demonstrate that the proposed ERPO method can achieve
comparable KL divergence control without explicit policy regularization, while delivering superior
performance. Furthermore, by sampling at different temperatures, we examine the evolution of
sampling capability over long-term RL training, providing additional evidence of ERPO’s stability
during training.

REPRODUCIBILITY STATEMENT

We use open-source datasets for both training and testing, and conduct all experiments on an
NVIDIA A100 GPU cluster. The complete environment configuration and step-by-step instructions
for reproducing our results are openly available at: https://anonymous.4open.science/
r/ERPO-5B0C/
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Figure 8: Variation of Metrics with Temperature

A PROMPT

{{ content | trim }} You FIRST think about the reasoning process
as an internal monologue and then provide the final answer. The
reasoning process MUST BE enclosed within <think> </think> tags.
The final answer MUST BE put in \boxed {}.

B VARIATION OF METRICS WITH TEMPERATURE

Figure 8 illustrates the model performance across different evaluation metrics and sampling temper-
atures. Our approach reduces the performance gap between different sampling temperatures, while
increasing the likelihood of sampling correct outputs.

C USAGE OF LARGE LANGUAGE MODELS

In this work, we leveraged large language model to assist in the writing process by polishing the
language. The LLM provided grammatical refinement, rephrased ambiguous expressions, and en-
hanced overall readability, while all technical content and claims remain the sole responsibility of
the authors.
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