
Preference Elicitation for Multi-objective Combinatorial Optimization with Active
Learning and Maximum Likelihood Estimation

Marianne Defresne 1 , Jayanta Mandi 1 and Tias Guns 1

1 Department of Computer Science, KU Leuven, Leuven, Belgium
{marianne.defresne, tias.guns}@kuleuven.be

Abstract
Real-life combinatorial optimization problems of-
ten involve several conflicting objectives, such
as price, product quality and sustainability. A
computationally-efficient way to tackle multiple
objectives is to aggregate them into a single-
objective function, such as a linear combination.
However, defining the weights of the linear com-
bination upfront is hard; alternatively, the use of
interactive learning methods that ask users to com-
pare candidate solutions is highly promising. The
key challenges are to generate candidates quickly,
to learn an objective function that leads to high-
quality solutions and to do so with few user in-
teractions. We build upon the Constructive Pref-
erence Elicitation framework and show how each
of the three properties can be improved: to in-
crease the interaction speed we investigate using
pools of (relaxed) solutions, to improve the learn-
ing we adopt Maximum Likelihood Estimation of a
Bradley-Terry preference model; and to reduce the
number of user interactions, we select the pair of
candidates to compare with an ensemble-based ac-
quisition function inspired from Active Learning.
Our careful experimentation demonstrates each of
these improvements: on a PC configuration task
and a realistic multi-instance routing problem, our
method selects queries faster, needs fewer queries
and synthesizes higher-quality combinatorial solu-
tions than previous CPE methods.

1 Introduction
Combinatorial optimization (CO) problems are omnipresent
in real-life decision-making, such as scheduling and rout-
ing. They often require balancing multiple objectives. For
instance, for a routing problem, a Decision Maker (DM)
may wish to balance duration, fuel consumption and driver
familiarity. One computationally-efficient way to tackle
such a multi-objective CO problem is to build an ap-
proximate single-objective function aggregating individual
(sub)objectives. The simplest and most common aggregation
is a linear combination of sub-objectives [Aneja and Nair,
1978; Halffmann et al., 2022]. The main challenge lies in

defining a set of weights leading to desirable solutions. For a
DM, explicitly stating how sub-objectives should be balanced
is difficult. However, comparing two solutions is an easier
task, and a choice for one over the other implicitly informs
about underlying preferences.

We aim to learn a linear objective function from such pair-
wise comparisons, where that linear function can then be used
to synthesize new desirable solutions by calling a CO solver.
The goal fits within the general preference elicitation frame-
work [Guo and Sanner, 2010]. Preferences are captured in
a utility function, often a weighted average over attributes of
an object. In the general preference elicitation framework,
the learning task is to estimate weights such that after learn-
ing, the DM’s choice from a pool of alternative objects has
the highest estimated utility.

In CO, the utility is the single-objective function, an at-
tribute is a sub-objective and an object is a solution. In this
case, there is no explicit pool of objects. Indeed, feasible
solutions are implicitly defined by the set of constraints and
there can be exponentially many solutions. The learning task
is then to estimate weights such that the resulting utility func-
tion leads to desirable solutions when used as an objective
function for the multi-objective CO problem. Constructive
Preference Elicitation (CPE) [Dragone et al., 2018a] was in-
troduced for this setting. As in regular preference elicitation,
weights are estimated in a two-step loop: first, a query, e.g.
objects to compare, is selected and the DM is asked to ex-
press a preference. Second, the weight estimates are updated
accordingly. What makes this setting constructive is that the
learned utility function is then used to synthesize the best pos-
sible solution by calling a CO solver.

Such preference elicitation involves interacting with a hu-
man DM. Among the target properties listed by Guo and
Sanner [2010], the one that comes first is the ability to pro-
pose queries in real-time. Yet, existing CPE methods select
a query by using a CO solver to generate the objects [Teso
et al., 2016; Dragone et al., 2018b]. When learning prefer-
ences over NP-hard problems, this can become prohibitively
time intensive. The other target properties listed are 2) multi-
attribute in utility function, 3) inducing a low cognitive load
as difficult queries have noisy answers, 4) robust to noise in
the responses and 5) requiring a minimal number of queries.
For CO problems, we add that the method should be 6) con-
structive and 7) contextual to adapt to multiple instances of

ar
X

iv
:2

50
3.

11
43

5v
1

 [
cs

.A
I]

 1
4

M
ar

 2
02

5

the same CO. Indeed, the DM’s preferences depend on the
CO problem but not on a specific instance. For instance, a
DM is likely to balance total distance and fuel consumption
similarly for different sets of stops.

We propose a new CPE approach that follows these prop-
erties. Our main insight is that real-time interaction on NP-
hard problems requires to bypass the need for a solver during
query selection. For this we propose using a pool of precom-
puted (relaxed) solutions. After learning, a CO solver is still
required to synthesize a new desirable solution by optimizing
the learned objective function over the feasible space; thus,
the method is constructive. Queries prompt the user to com-
pare two solutions; pairwise comparisons keep the cognitive
load low [Conitzer, 2007]. For robust learning, both with
respect to solution quality and number of queries, we adopt
a Maximum Likelihood Estimation (MLE) of the Bradley-
Terry preference model [Bradley and Terry, 1952]. Finally,
our method learns preferences over multiple instances of sim-
ilar CO problem instances, making it contextual. Our main
contributions are:

1. We propose to select queries from a precomputed pool
of (relaxed) solutions; it bypasses the need of solving
CO problems during training;

2. For query selection, we adapt the ensemble-based Upper
Confidence Bound acquisition function from the active
learning literature, a non-linear function that would be
difficult for a CO solver to optimize directly;

3. Inspired by Deep Reinforcement Learning, we learn the
weights by maximizing the likelihood of a Bradley-
Terry model. We draw connections with Noise Con-
trastive Estimation (NCE) and the previously-used
Structured Perceptron, which shows that MLE can be
interpreted as a smooth version thereof;

4. We assess our method by extensive experiments on
two multi-objective CO problems: a previously-used
PC configuration problem and a multi-instance Prize-
Collecting Traveling Salesperson Problem (PC-TSP).
On both tasks, our method is orders of magnitude faster,
requires fewer queries and synthesizes higher-quality so-
lutions than existing CPE approaches.

2 Related work
Preference Elicitation. It aims to estimate the parameters
of a utility function representing preferences. It relies on
an incremental interactive approach of selecting a query and
updating the parameter estimate based on the feedback re-
ceived [Pigozzi et al., 2016]. Most approaches aim to se-
lect the best choice out of an explicit finite set of alternatives.
As such, they are not constructive as we consider here. Ex-
amples include multi-attribute utility theory [Braziunas and
Boutilier, 2007] and multi-criteria decision-making [Martyn
and Kadziński, 2023; Guo et al., 2021]. Moreover, these ap-
proaches are either Bayesian and thus computationally ex-
pensive to train [Guo and Sanner, 2010], or exact regret-
based and not robust to inconsistent answers [Boutilier, 2013;
Toffano et al., 2022]. All these works are non-contextual as
they consider single-instance problems.

Preference elicitation for CO. The dominating approach
to elicit preference weights in the context of multi-objective
CO is the polyhedral method [Toubia et al., 2004; Benabbou
and Perny, 2018; Bourdache and Perny, 2019; Bourdache et
al., 2020]. Each query reduces uncertainty over the weight
space, until the remaining sets of weights lead to the same so-
lution. This weight update is based on minimax regret, which
is computationally expensive (thus limiting real-time interac-
tions), and it assumes no noise in the DM’s answer as that
would make the polyhedron empty through inconsistent con-
straints. Additionally, the number of sub-objectives that can
be considered is limited. Therefore, this approach does not
fulfill the real-time, robustness and contextual properties and
is restricted in the multi-attribute property. We chose to build
upon the CPE framework [Dragone et al., 2018a] because it
is constructive, contextual, robust and is has been extended
to multi-attribute [Dragone et al., 2018b]. However, it is not
real-time as query selection relies on solving CO problems,
potentially NP-hard. Previous CPE approaches have consid-
ered the learning task as structured-output prediction, the out-
put being a CO feasible solution. Weights are updated with
the simple Structured Perceptron [Collins, 2002], adapted for
preference data [Shivaswamy and Joachims, 2015].

Active and Preference Learning. Our investigation adapts
ideas from the active learning community to a constructive
setting. First, queries are selected from a precomputed pool
of solutions using UCB (upper confidence bound) [Cox and
John, 1992; Archetti and Candelieri, 2019] as an acquisition
function. UCB has strong theoretical results in the context of
dueling bandits [Srinivas et al., 2010] and has been used for
active learning [Pandi et al., 2022]. It quantifies both the qual-
ity and the uncertainty of each solution. To estimate uncer-
tainty, we use an ensemble of weights, as also used in query-
by-committee in active learning [Seung et al., 1992]. Second,
we revisit the weight update using Maximum Likelihood Es-
timation of a Bradley-Terry preference model [Bradley and
Terry, 1952]. It was first proposed for Deep Reinforcement
Learning for preference learning [Christiano et al., 2017]
and it is the objective used to align Large Language Mod-
els [Rafailov et al., 2024]. To the best of our knowledge, it is
the first time this objective is used in the context of CPE.

Learning an objective function. As we represent prefer-
ences as a weighted average of sub-objectives, learning pref-
erences is equivalent to learning the parameters of an objec-
tive function. In that respect, it is related to Decision-Focused
Learning (DFL) [Mandi et al., 2024] and inverse optimiza-
tion [Chan et al., 2023]. Instead of preference data (in our
case, comparing a pair of solutions), these approaches learn
from near-optimal solutions and/or historic parameters in a
given dataset. In DFL, features are provided to estimate the
parameters from [Sadana et al., 2024]. Data-driven inverse
optimization uses the same notion of context as we do: pa-
rameters are estimated for multiple instances of the same CO
problem. However it learns from (near) optimal solutions
rather than querying a user as in our case.

Algorithm 1 Template for CPE

Initial weight estimate w0

for t < T do
Observe problem instance pt

(y1, y2)← SELECT QUERY(pt, wt)
DM chooses y+ from (y1, y2)
wt+1 ←WEIGHT UPDATE(wt, y1, y2)

end for
return ŷ = argmaxy∈F ⟨wT , ϕ(y)⟩

3 Problem Statement
We consider a CO problem defined over a set of variables
{y1, . . . , yk}, where each variable yi takes values from its
corresponding domain Di. The Cartesian product of the do-
mains, Y =

∏k
i=1 Di, represents the space of all possible

assignments. This space is restricted by a set of constraints,
defining a feasible region F ⊆ Y . The quality of an assign-
ment y ∈ Y (whether feasible or not) is evaluated using n
sub-objectives, represented by a function ϕ : Y → Rn. As
common in utility theory [Keeney, 1993], we assume sub-
objectives can be aggregated into a utility function u that
captures the DM’s preferences over assignments. An as-
signment y+ is preferred to y−, denoted by y+ ≻ y−, iff
u(y+) > u(y−). We further assume the utility to be linear in
the sub-objectives ϕ:

u(y) = ⟨w, ϕ(y)⟩ =
n∑
i

wiϕi(y)

with wi the weighting of the i-th sub-objective. The learning
task is to estimate the weights w ∈ Rn such that the syn-
thesized solution aligns with the DM’s preferences. Weights
are estimated through interaction with the DM. We follow
the standard preference elicitation process [Guo and Sanner,
2010]: at each iteration, a query is selected and the weights
are updated based on the DM feedback.

Because the utility function u is linear, it can easily be used
as an objective function to the CO problem, to synthesize a
desirable solution:

ŷ = argmax
y∈F

u(y)

To limit the cognitive burden for the DM [Conitzer, 2007],
we restrict queries to be comparisons between pairs of assign-
ments. We allow the DM to indicate indifference (for exam-
ple because the assignments are equally preferred or consid-
ered incomparable). Furthermore, we take into account that a
DM can make mistakes or provide inconsistent answers lead-
ing to noisy observations.

All problem instances are assessed with the same n sub-
objectives, and we assume that the DM balances the sub-
objective in the same manner for all instances. We call a spe-
cific instance p the context. When needed, we will make the
use of context explicit, e.g. u(y, p) = ⟨w, ϕ(y, p)⟩. Note the
preference weights w are agnostic to the specific instance p,
but the sub-objectives ϕ are a function of p. In a routing prob-
lem, p may represent the distance between stops, and thus be
used to compute the total distance travelled of any route y.

Algorithm 2 Proposed method
Input: number of steps T , number of sub-objectives n, num-
ber of models k, number of clusters
Output: synthesized solution ŷ

1: for i ∈ {1, . . . , k} do ▷ Initial weight estimate
2: W 0

i ← Nn(1, In)
3: end for
4: Dataset D ← ∅
5: Generate a pool of random solutions Y
6: Cluster Y with k-means
7: for t < T do
8: Observe problem instance pt

9: for l ∈ {1, 2} do ▷ Query selection
10: Select a cluster C at random
11: yl ← argmaxy∈C UCB(W t, y)
12: end for
13: Ask DM for preference label a
14: D ← (pt, (y1, y2), a)
15: for i ∈ {1, . . . , k} do ▷ Weight update
16: W t+1

i ← MLE(D,W 0
i)

17: end for
18: end for
19: w ← meani({W t

i }i∈{1,...,k})
20: return ŷ = argmaxy∈F ⟨w, ϕ(y)⟩

Formally, the set of preference observations to learn from
will be {(p, (y1, y2), a))} with y1 and y2 two assignments of
the instance p. The preference label is a = 1 if y1 ≻ y2, a =
−1 if y2 ≻ y1 and a = 0 if the DM is indifferent. The data
is collected from the DM one data point at a time, during the
preference elicitation process. We aim to improve the overall
interaction by selecting queries in real-time and minimizing
the number of queries required for effective learning.

4 CPE with Active Learning & Likelihood
We instantiate the CPE framework [Dragone et al., 2018a],
summarized in Algorithm 1. We propose improvements to
its two main steps, query selection and weight update. Algo-
rithm 2 presents the pseudo-code of our proposed approach.

4.1 Active Learning-based Query Selection
A key step in our CPE approach is selecting a query (y1, y2)
given a context p and ask for feedback. Existing CPE meth-
ods call a solver twice to select two feasible solutions. Elic-
iting preferences this way for NP-hard problems can be com-
putationally expensive, leading to waiting times for the DM
and limiting the number of interactions possible. Instead, we
build a pool of precomputed solutions, from which two solu-
tions are selected. This bypasses the need for solver calls dur-
ing training, enabling real-time query selection. After train-
ing, we will still call the solver to synthesize a new solution
(line 20 in Algorithm 2).
Pool generation. A large pool of solutions is built before
training (line 5). We assume that either a large number of
feasible solutions can be enumerated or sampled [Pesant et
al., 2022], or that relaxed solutions can be efficiently gen-
erated. Relaxed solutions are typically problem-specific and

such that it is still meaningful for a DM to express prefer-
ences over. For instance, in a PC-TSP where each city offers
a prize but only a subset can be visited, a feasible solution is
a valid (sub)circuit collecting a minimal reward, while a re-
laxed solution is simply any (sub)circuit. A non-meaningful
relaxation would be the generation of disconnected routes.
Problem-specific relaxations, if applicable, are typically very
efficient to generate; for example, for TSP it amounts to gen-
erating permutations of subsets of stops.

Acquisition function. Not having to call a solver to gen-
erate a solution during query selection has a second major
advantage: we are not limited to acquisition functions that
the solver can efficiently optimize over. For instance, CPE
method Choice Perceptron [Dragone et al., 2018b] selects a
query (y1, y2) by solving the following two CO problems:

y1 = argmax
y∈F

u(y)

y2 = argmax
y∈F

(1− γ)u(y) + γ||ϕ(y1)− ϕ(y)||1

where y1 uses utility as acquisition function and y2 a linear
combination of utility and L1 distance to y1’s sub-objectives.

Instead, we take inspiration from active learning [Balcan et
al., 2010], where the acquisition strategy [Seung et al., 1992]
is often based on selecting the most uncertain sample. To
estimate uncertainty, techniques from preference Reinforce-
ment Learning [Christiano et al., 2017; Marta et al., 2023]
commonly train an ensemble of models, each one giving one
estimation of the utility function. The most uncertain assign-
ment is then the one on which the ensemble disagree the most,
e.g. as measured by the variance of the ensemble predictions.

In CPE, both uncertainty and solution quality matter. How-
ever, variance is a non-linear function, making it difficult for
a solver to optimize. Identifying the solution with the highest
variance in the pool is much simpler. Thus, the pre-computed
pool enables us to propose an ensemble-based acquisition
function that balances both uncertainty and solution quality.
We propose to train an ensemble W t = {W t

1 , . . . ,W
t
n} com-

posed of k weight vectors W t
i ∈ Rn, all initialized differ-

ently following a normal distribution of mean 1 and variance
1 (line 2 in Algorithm 2). Uncertainty is measured by the
variance σ of the ensemble Wt (at time step t) and solution
quality by its mean µ. It corresponds to the UCB [Archetti
and Candelieri, 2019]:

UCB(W t, y) = (1− γ)µ(y) + γσ(y)

with γ ∈ [0, 1] controlling the exploration/exploitation trade-
off. As in [Dragone et al., 2018b], we favour exploration at
early training stages by setting γ = 1/t. We will use UCB
twice as the acquisition function, to select two distinct solu-
tions from the solution pool as queries.

Clustering. The two highest-scoring UCB solutions may
be highly similar or even identical in sub-objective values.
A DM is likely to be indifferent to such a query, which
would not provide a training signal. To ensure more di-
versity, previous work in preference-based Reinforcement
Learning [Marta et al., 2023] proposed to cluster the sam-
ples in a (learned) latent representation space. In the case

Fuel consumption

Duration
C1

C2

C31.6

1.7

1.8

0.81.3
1.4

1.2

0.9

0.8

1.0

0.9

0.5

0.7

Selected

Selected if no cluster

Solution

Figure 1: Query selection on a routing problem with 2 sub-
objectives (duration and fuel consumption) : 1) the pool of solution
is clustered based on the sub-objectives (k=3), 2) two clusters (un-
derlined) are chosen at random, 3) the UCB values in those clusters
are computed and 4) the solution with the highest UCB value in each
cluster is selected (in red).

of CO, the sub-objectives ϕ : Y → Rn can be interpreted
as a latent representation of an assignment y. Therefore, we
cluster the solution pool based on the sub-objective values,
using k-means. At each iteration, two clusters are randomly
chosen and the solution with the highest UCB is selected in
each cluster (line 11 in Algorithm 2). The resulting pairwise
query is both informative (thanks to UCB) and diverse (due
to clustering). Our query selection is illustrated in Figure 1.
Complexity. The time complexity of a single query selec-
tion is the complexity of sorting the points of two clusters by
UCB value, O(2 ∗m log(m)) with m the size of the largest
cluster. It does not depend on the complexity of the CO prob-
lem considered, resulting in high-efficiency even for NP-hard
and large-scale problems. The computation time of the so-
lutions is amortized in the pre-computation of a large pool of
feasible or relaxed solutions, which can easily be parallelized.

4.2 Weight Update with Maximum Likelihood
At each iteration, weight estimates are updated according to
the received feedback on the selected query. If the DM is
not indifferent, they select one preferred solution, denoted
y+ (the other one is denoted y−). In case of indifference,
a new query is selected. Existing CPE approaches [Drag-
one et al., 2018a; Dragone et al., 2018b] update preference
weights using the Preference Perceptron (PP) [Shivaswamy
and Joachims, 2015], a variant of the Structured Perceptron
(SP) [Collins, 2002] for preference data. The weight update
rule of PP is based on how the two selected solutions differ in
sub-objectives, measured by ∆ = ϕ(y+, p)−ϕ(y−, p). In the
following, we omit the context p to simplify notation. The PP
weight update rule is

wt+1
PP = wt

PP + η.∆

with η the learning rate. The original SP is updated only in
case of misprediction. As with preference data, the prediction
is incorrect if ut(y+) < ut(y−), the SP-based update rule is:

wt+1
SP = wt

SP + η.1ut(y+)<ut(y−)∆

Maximum Likelihood
Instead of considering the learning task as structured-output
prediction, we formulate it with Maximum Likelihood Es-

7.5 5.0 2.5 0.0 2.5 5.0 7.5
ut(y) ut(y +)

0.00

0.25

0.50

0.75

1.00

Up
da

te
 fa

ct
or

MLE
SP
NCE/PP

Figure 2: Comparing the update factor of MLE, SP and PP/NCE.

timation (MLE). Under the well-established Bradley-Terry
model [Bradley and Terry, 1952], the probability of y+ be-
ing preferred over y− is

P (y+ ≻ y−) =
eu

∗(y+)

eu∗(y+) + eu∗(y−)

with u∗ the true (unknown) DM’s utility. Training with MLE
aims to maximize this probability. As usual, MLE is re-
written as a loss L minimizing the negative log-likelihood:

L = − log
e
∑

i wiϕi(y+)

e
∑

i wiϕi(y+) + e
∑

i wiϕi(y−)

= − log
1

1 + e−
∑

i wi[ϕi(y+)−ϕi(y−)]

= − logS(
∑
i

wi∆i)

With S the sigmoid function and ∆i = ϕi(y+) − ϕi(y−).
This loss is the standard ML objective to fit a Bradley-Terry
model [Rafailov et al., 2024], but has not been used for CPE
so far.

Using gradient descent, the update rule is: wt+1 = wt −
η∇L. The partial gradients w.r.t. to a given weight wi are:

∂L

∂wi
= −∆i

e−
∑

j wj∆j

1 + e−
∑

j wj∆j
= −∆i

1

1 + e
∑

j wj∆j
= −α∆i

With α = S(−
∑

j wj∆j) = S(u(y−) − u(y+)). Note that
α is independent of i and is therefore the same for all weights
wi. Therefore, the MLE update rule is

wt+1
MLE = wt

MLE + η.S(ut(y−)− ut(y+))∆

When an ensemble is used for query selection, this update is
applied to each weight vector of the ensemble.

A unified view
The PP update can be interpreted in the context of Noise Con-
trastive Estimation (NCE). As in [Mulamba et al., 2021], we
write the probability of a solution y as P (y|w) = eu(y,w).
Then, the infoNCE loss [Oord et al., 2018] can be used to in-
crease the separation between the preferred solution y+ (pos-
itive sample) and the other solution y− (negative sample):
LNCE := − log P (y+|w)

P (y−|w) = − log eu(y+,w)

eu(y−,w) = −
∑

i wi∆i.

The partial gradients ∂L
∂wi

= −∆i lead to the same gradient
update as PP: wt+1

NCE = wt
NCE +∆.

All three weights updates – SP, PP/NCE and MLE – can be
expressed using an update factor α and a learning rate η:

wt+1 = wt + η.αt∆

There is αt = 1ut(y+)<ut(y−) for SP, αt = 1 for PP/NCE
and αt = S(ut(y−) − ut(y+)) for MLE. The update factor
αt ranges between 0 and 1 and controls the amplitude of the
gradient step amplitude. As plotted in Figure 2, MLE can be
interpreted as a smoothed version of SP. When the difference
in predicted utility between y+ and y− is large, i.e., a clear
preference is predicted, the update factor tends to 0 if the
prediction is correct and is maximum (1) otherwise. When
no clear preference is predicted , the MLE update factor is a
function of the utility difference.
Batch learning. Previous CPE approaches update weights
online, i.e., after each received feedback. We instead pro-
pose to train MLE with batch training. We create a feedback
dataset and retrain the whole model at each iteration (line 16
in Algorithm 2). Since the model is a single linear vector –
the estimated weights w – fully retraining it is still fast.

5 Experiments
5.1 Experimental setting
Baselines. We re-implemented the two CPE methods ap-
plicable for pairwise queries. The first, Set-wise Max-margin
(SetMargin) [Teso et al., 2016] does not follow the preference
elicitation steps but rather turns each data point into a con-
straint, and the weight vector is optimized to have the largest
separation margin. This method is limited to Boolean sub-
objectives. The second, Choice Perceptron [Dragone et al.,
2018b], was proposed to overcome this limitation and han-
dles both Boolean and numerical sub-objectives. With the
Choice Perceptron, weights are updated according to the PP
weight update, and queries (y1, y2) are selected by solving as
explained in Section 4.1. It uses γ = 1/t with t an iteration
counter. It also includes costly learning-rate tuning between
iterations that we omit for more equal comparison.
Tasks. We first consider the single-instance task of PC Con-
figuration used by both baselines as a constructive variant of
PC recommendation [Guo and Sanner, 2010]. Each config-
uration is described by 7 components – such as storage and
CPU model – and the price. Sub-objectives are Boolean in-
dicating if a component is selected plus the normalized price.
We also consider the more realistic multi-instance task of
Prize-Collecting Traveling Salesperson Problem (PC-TSP),
previously used for structured prediction [Véjar et al., 2024].
Each node represents a city, which offers a prize if visited
and costs a penalty ρ if not. Each edge (i, j) has k = 4

values vijk that can be interpreted as distances, duration, fuel
consumption and driver familiarity. The total penalty is a 5th
sub-objective. Mathematically, the CO problem objective is

min
y∈F

k∑
l=1

wl

∑
(i,j)∈E

vijl yij + wk+1

∑
i∈V

ρi(1− σi)

where Boolean variables yi,j (resp. σi) indicate whether the
edge (i, j) (resp. city i) is part of the solution. The constraints
state that the chosen edges form a Hamiltonion circuit. All
sub-objectives are normalized by dividing the columns of the
distance matrices by its largest value, ensuring all entries lies
in [0, 1]. We consider problems with 10, 20 and 100 nodes.

Query SetMargin ChoicePerc r-pool (ours)

Configuration 1.9 0.54 0.004
PC-TSP 10 NA 0.24 0.001
PC-TSP 20 NA 52.2 0.004

PC-TSP 100 NA Timeout 0.050

Table 1: Average time (s) for selecting a single query single. Set-
Margin is not applicable to the PC-TSP (indicated by NA).

These problems are multi-instance: we train on 50 instances
and test (i.e., synthesize solutions) on 10 unseen instances.
User simulation. We replicate the same experimental pro-
tocol as baselines. Each experiment is repeated 20 times, each
with a different DM whose ground-truth utility is obtained
by randomly sampling each weight. For the configuration
task, DM weights were sampled from a normal distribution
N (25, 25/3) [Teso et al., 2016] then 80% were randomly
set to 0 to create sparse preferences. For the PC-TSP, DM
weights were sampled from a Dirichlet’s distribution of con-
centration parameter 100 [Véjar et al., 2024].

The DM’s response to a query is simulated based on the
Bradley-Terry model extended to indifference, to create noisy
responses including indifference [Guo and Sanner, 2010]. For
both tasks, the quality of synthesized solutions is assessed
using relative regret: u∗(y∗)−u∗(ŷ)

u∗(y∗) , with ŷ the synthesized
solution and y∗ the true optimal solution. At test time, we
measure how many of the 20 DMs are satisfied, meaning that
they are indifferent between ŷ and y∗. We also measure the
number of queries needed to reach an average relative regret
below 10%. This threshold is considered an ‘acceptable’ so-
lution by Teso et al [2016].
Implementation. The code will be made available pub-
licly on GitHub. The experiments are implemented using
CPMpy [Guns, 2019] and GurobiPy [Gurobi Optimization,
LLC, 2024]. MLE was trained both online and with batch
training, the latter for 4 epochs and a batch size of 4. Pa-
rameters were tuned based on a separate set of 10 DMs. Af-
ter tuning, the learning rate for the configuration task is 2;
for PC-TSP it is 0.5 for SP-online and MLE-online, 0.1 for
PP-online and 1 for MLE-batch. We applied 100 training
steps like [Teso et al., 2016; Dragone et al., 2018b]. For
the ensemble-based acquisition functions, an ensemble of 25
models is used. Since the sub-objectives are Boolean for
the Configuration problem, all configurations with the same
number of identical components are equidistant, so no clus-
tering is applied. For PC-TSP, the number of clusters used
was 5. For each problem, a pool of 10, 000 different ran-
dom relaxed solutions was generated, by randomly select-
ing attributes (configuration task) or by randomly sampling
node permutations (PC-TSP). For PC-TSP, varying-size cir-
cuits were generated (the circuit is completed when the ware-
house node is reached).

5.2 Query selection time
Table 1 compares the average time to select a single query for
the SetMargin method, the Choice Perceptron method, and
our method with a solution pool of 10, 000 relaxed solutions
(r-pool). Due to its Boolean attribute restriction, SetMargin

can only be run on the Configuration problem, and we can
see that it has the slowest query selection here. For the Choice
Perceptron, we can see that the runtime is heavily influenced
by the difficulty of the CO problem, even timing out (300s)
for PC-TSP problems of size 100. Our query selection using
the solution pool takes marginal compute time.

Most of our computation time is offline, before interact-
ing with the DM. The generation of the relaxed solution pool
takes fewer than 20 minutes for the largest considered prob-
lem (PC-TSP with 100 nodes). Note that in the Choice Per-
ceptron, one could also replace the solver call with an argmax
call over our solution pool to achieve similar speed-ups.

5.3 Impact of query selection and weight update
We now compare the baseline query selection technique of
the Choice Perceptron, with our proposed UCB selection over
a pool of relaxed solutions. For each, we also compare the
three weight updates discussed (the standard Choice Percep-
tron uses ’PP’), plus batched MLE. Results for Configuration
and for the Prize-collecting TSP are shown in Table 2.

Selecting queries with UCB on a relaxed pool outperforms
the Choice Perceptron query selection on both tasks and for
each weight update except PP + ChoicePerc on Configura-
tion. On the other cases, using UCB leads synthesized solu-
tions of higher quality – both in regret and % DM – and up
to half the number of queries are required. The results are es-
pecially pronounced on the multi-instance PC-TSP problem,
where using the UCB query selection leads to DMs being sat-
isfied across all the weight updates, and with considerably
fewer queries needed to reach 10% regret (#Q).

Looking closer at the different weight updates, SP per-
forms the worst overall. The smooth variant MLE-online im-
proves all metrics on both problems and both query selec-
tions, showing that the smooth weight update is beneficial.
Moving from online to batch re-training (MLE-batch) pro-
vides further improvements, in particular in the required num-
ber of queries. Overall, the choice of the UCB query selection
with the MLE-batch update rule leads to higher-quality solu-
tions by a wide margin, while requiring fewer queries.

5.4 Ablations
Acquisition function. We assess how restricting the acqui-
sition function to either uncertainty or solution quality affects
performances in Table 3. Focusing only on solution quality is
achieved by setting γ to zero; it is close to CO-based query
selection schemes. Using only uncertainty restricts UCB to
the variance (γ = 1) and this is how ensemble-based Active
Learning is usually used for single samples. In both cases,
the synthesized solution quality drops while requiring more
queries. Using only the mean results in 3 times lower regret
than with variance only, confirming the importance of solu-
tion quality in a constructive setting.

We also verify the effect of using clustering to increase di-
versity (only applicable to PC-TSP). We here describe the re-
sults of that experiment: when no clustering was used, 98.3%
of selected pairs were similar, i.e., they would have belonged
to the same cluster. This lack of diversity led to more indif-
ferent answers: 8.0%, vs 0.7% with clustering. The quality

Configuration Prize-Collecting TSP

Query ChoicePerc UCB, rpool (ours) ChoicePerc UCB, rpool (ours)

Update Regret (%) #Q % DM Regret (%) #Q % DM Regret (%) #Q % DM Regret (%) #Q % DM

PP-online 6.6 ± 0.5 51 55 7.7 ± 0.5 67 45 2.7 ± 0.2 66 75 1.1 ± 0.05 29 100
SP-online 14.6 ± 0.7 - 20 8.9 ± 0.5 69 55 12.1 ± 0.7 - 40 1.2 ± 0.06 22 100
MLE-online 8.2 ± 0.6 90 65 4.9 ± 0.6 70 60 1.7 ± 0.1 39 90 0.6 ± 0.03 24 100
MLE-batch 8.6 ± 0.6 47 50 2.2 ± 0.2 50 80 1.4 ± 0.1 25 100 0.5 ± 0.02 20 100

Table 2: PC Configuration and Prize-Collecting TSP (10 stops) for changing query selection (columns) and weight update (rows).
#Q (↓) is the number of queries to reach 10% regret, % DM (↑) is the percentage of satisfied DMs. For regret (↓), standard errors are given.

Regret (%) #Q % DM PoolGen (s)

Variance, r-pool 8.0 ± 0.5 78 45 0.3
Mean, r-pool 2.7 ± 0.2 55 60 0.3

UCB, r-pool 2.2 ± 0.2 50 80 0.3
UCB, f-pool 1.9 ± 0.2 54 85 9.5

Table 3: PC Configuration, varying acquisition functions, MLE-
batch weight update. PoolGen is upfront time for pool generation.

of synthesized solutions also dropped, with a regret of 13.5%
(vs 0.5%) and only 40% (vs 100%) of DMs were satisfied.

Feasible vs relaxed solutions. We compare training on fea-
sible solutions or generating relaxed solutions. On the con-
figuration task, all the feasible solutions (∼ 60, 000) can be
enumerated and the results are shown in Table 3. Generating
the feasible pool takes about 30 times longer than randomly
generating a pool of 10, 000 relaxed solutions. Training on a
pool of relaxed solutions (r-pool) instead of feasible ones (f-
pool) only marginally degrades metrics. Therefore, a random
pool offers a much better efficiency/quality trade-off.

5.5 Comparison to state-of-the-art
We compare our complete proposed method, combining our
query selection (UCB, r-pool) with the MLE-batch weight
update, to previous CPE baselines, SetMargin [Teso et al.,
2016] and Choice Perceptron [Dragone et al., 2018b]. On the
configuration task (Table 4), our method outperforms both
baselines in terms of quality of synthesized solutions while
training an order of magnitude faster.

On the PC-TSP with 10 nodes (Table 2), SetMargin is not
applicable due to numerical sub-objectives. Our method out-
performs the Choice Perceptron (with its native PP-online
weight update) by reaching twice lower regret, requiring half
the queries and satisfying 100% of DMs (vs 75%). We also
want to test the approaches on larger instances; however
query selection time becomes prohibitive for Choice Percep-
tron. To enable a comparison, we run both our method and
the Choice Perceptron on our randomized pool of solutions

Regret (%) #Q % DM Train (s)

SetMargin 4.9 ± 0.7 62 75 348
Choice Perceptron 6.6 ± 0.5 51 55 64
UCB, r-pool (ours) 2.2 ± 0.2 50 80 4

Table 4: Our method and the baselines on the configuration task.

Regret (%) % DM Train (s)

Choice Perc, r-pool 2.9 ± 0.30 85 0.44
UCB, r-pool 1.4 ± 0.06 95 0.93

Table 5: PC-TSP with 20 nodes. Average training time per iteration.

for PC-TSP with 20 nodes in Table 5. Training on the pre-
computed pool is fast and leads to high-quality solution with
both methods. Our UCB-based acquisition function with the
MLE-batch weight update results in half the regret and 10%
more satisfied DMs than (relaxed) Choice Perceptron. Train-
ing time per iteration is longer due to batch training, but re-
mains under one second.

6 Conclusion
We revisited CPE to learn preferences over the sub-objectives
of a multi-objective CO problem. We targeted desirable prop-
erties for preference elicitation systems: real-time, robust to
noisy answers and a minimal number of queries while syn-
thesizing high-quality solutions. Previous solutions repeat-
edly called a CO solver during query selection; we instead
select from a pool of relaxed solutions, ensuring real-time
query selection even for NP-hard problems, which in turn en-
abled us to use ensemble-based activation functions. We also
proposed the smoothed MLE weight update, and a batch re-
training strategy. In the experiments, our method synthesized
higher-quality solutions, both in terms of regret and DM sat-
isfaction, and required fewer queries than the baselines.

Multiple avenues for further methodological developments
are possible. First, we sampled solution pools using problem-
specific relaxations. Automating the relaxation for any CO
problem would broaden the applicability of this approach; as
would techniques for sampling feasible solutions. The chal-
lenge there is to obtain a diverse and unbiased sampling in an
efficient way [Pesant et al., 2022]. We ran all experiments for
100 iterations as in previous work; developing an instance-
dependent stopping criterion would be desirable as it could
restrict the number of needed DM interactions or continue
to obtain even better performance. An acquisition function
defined over pairs directly could potentially further boost ef-
ficiency. And while we used simple linear models, the weight
updates can be used in gradient descent for arbitrary neural
networks; meaning DM-specific features could also be taken
into account. Finally, by improving on the desirable proper-
ties, we hope our method opens the door to real-life testing
on rich multi-objective optimization problems.

References
[Aneja and Nair, 1978] Yash P Aneja and Kunhiraman PK

Nair. The constrained shortest path problem. Naval Re-
search Logistics Quarterly, 25(3):549–555, 1978.

[Archetti and Candelieri, 2019] Francesco Archetti and An-
tonio Candelieri. Bayesian optimization and data science,
volume 849. Springer, 2019.

[Balcan et al., 2010] Maria-Florina Balcan, Steve Hanneke,
and Jennifer Wortman Vaughan. The true sample com-
plexity of active learning. Machine learning, 80:111–139,
2010.

[Benabbou and Perny, 2018] Nawal Benabbou and Patrice
Perny. Interactive resolution of multiobjective combina-
torial optimization problems by incremental elicitation of
criteria weights. EURO journal on decision processes,
6(3):283–319, 2018.

[Bourdache and Perny, 2019] Nadjet Bourdache and Patrice
Perny. Active preference learning based on generalized
gini functions: Application to the multiagent knapsack
problem. In Proceedings of the AAAI conference on ar-
tificial intelligence, volume 33, pages 7741–7748, 2019.

[Bourdache et al., 2020] Nadjet Bourdache, Patrice Perny,
and Olivier Spanjaard. Bayesian preference elicitation for
multiobjective combinatorial optimization. arXiv preprint
arXiv:2007.14778, 2020.

[Boutilier, 2013] Craig Boutilier. Computational decision
support: Regret-based models for optimization and pref-
erence elicitation, 2013.

[Bradley and Terry, 1952] Ralph Allan Bradley and Milton E
Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–
345, 1952.

[Braziunas and Boutilier, 2007] Darius Braziunas and Craig
Boutilier. Minimax regret based elicitation of generalized
additive utilities. In UAI, volume 7, pages 25–32, 2007.

[Chan et al., 2023] Timothy CY Chan, Rafid Mahmood, and
Ian Yihang Zhu. Inverse optimization: Theory and appli-
cations. Operations Research, 2023.

[Christiano et al., 2017] Paul F Christiano, Jan Leike, Tom
Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences.
Advances in neural information processing systems, 30,
2017.

[Collins, 2002] Michael Collins. Discriminative training
methods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings of
the 2002 conference on empirical methods in natural lan-
guage processing (EMNLP 2002), pages 1–8, 2002.

[Conitzer, 2007] Vincent Conitzer. Eliciting single-peaked
preferences using comparison queries. In Proceedings
of the 6th international joint conference on Autonomous
agents and multiagent systems, pages 1–8, 2007.

[Cox and John, 1992] Dennis D Cox and Susan John. A sta-
tistical method for global optimization. In [Proceedings]

1992 IEEE international conference on systems, man, and
cybernetics, pages 1241–1246. IEEE, 1992.

[Dragone et al., 2018a] Paolo Dragone, Stefano Teso, and
Andrea Passerini. Constructive preference elicitation.
Frontiers in Robotics and AI, 4:71, 2018.

[Dragone et al., 2018b] Paolo Dragone, Stefano Teso, and
Andrea Passerini. Constructive preference elicitation over
hybrid combinatorial spaces. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[Guns, 2019] Tias Guns. Increasing modeling language con-
venience with a universal n-dimensional array, cppy as
python-embedded example. In Proceedings of the 18th
workshop on Constraint Modelling and Reformulation at
CP (Modref 2019), volume 19, 2019.

[Guo and Sanner, 2010] Shengbo Guo and Scott Sanner.
Real-time multiattribute bayesian preference elicitation
with pairwise comparison queries. In Proceedings of the
Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pages 289–296. JMLR Workshop and
Conference Proceedings, 2010.

[Guo et al., 2021] Mengzhuo Guo, Qingpeng Zhang, Xiuwu
Liao, Frank Youhua Chen, and Daniel Dajun Zeng. A
hybrid machine learning framework for analyzing human
decision-making through learning preferences. Omega,
101:102263, 2021.

[Gurobi Optimization, LLC, 2024] Gurobi Optimization,
LLC. Gurobi Optimizer Reference Manual, 2024.

[Halffmann et al., 2022] Pascal Halffmann, Luca E Schäfer,
Kerstin Dächert, Kathrin Klamroth, and Stefan Ruzika.
Exact algorithms for multiobjective linear optimization
problems with integer variables: A state of the art survey.
Journal of Multi-Criteria Decision Analysis, 29(5-6):341–
363, 2022.

[Keeney, 1993] Ralph L Keeney. Decisions with multiple ob-
jectives: Preferences and value tradeoffs. Cambridge uni-
versity press, 1993.

[Mandi et al., 2024] Jayanta Mandi, James Kotary, Senne
Berden, Maxime Mulamba, Victor Bucarey, Tias Guns,
, and Ferdinando Fioretto. Decision-focused learning:
Foundations, state of the art, benchmark and future op-
portunities. Journal of Artificial Intelligence Research,
80:1623–1701, 2024.

[Marta et al., 2023] Daniel Marta, Simon Holk, Christian
Pek, Jana Tumova, and Iolanda Leite. Variquery:
Vae segment-based active learning for query selection
in preference-based reinforcement learning. In 2023
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 7878–7885. IEEE, 2023.

[Martyn and Kadziński, 2023] Krzysztof Martyn and Miłosz
Kadziński. Deep preference learning for multiple criteria
decision analysis. European Journal of Operational Re-
search, 305(2):781–805, 2023.

[Mulamba et al., 2021] Maxime Mulamba, Jayanta Mandi,
Michelangelo Diligenti, Michele Lombardi, Victor Bu-
carey, Tias Guns, et al. Contrastive losses and solution

caching for predict-and-optimize. In Proceedings of the
Thirtieth International Joint Conference on Artificial In-
telligence, pages 2833–2840. ijcai. org, 2021.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[Pandi et al., 2022] Amir Pandi, Christoph Diehl, Ali
Yazdizadeh Kharrazi, Scott A Scholz, Elizaveta Bobkova,
Léon Faure, Maren Nattermann, David Adam, Nils
Chapin, Yeganeh Foroughijabbari, et al. A versatile ac-
tive learning workflow for optimization of genetic and
metabolic networks. Nature Communications, 13(1):3876,
2022.

[Pesant et al., 2022] Gilles Pesant, Claude-Guy Quimper,
and Hélène Verhaeghe. Practically uniform solution sam-
pling in constraint programming. In Pierre Schaus, editor,
Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research, pages 335–344, Cham,
2022. Springer International Publishing.

[Pigozzi et al., 2016] Gabriella Pigozzi, Alexis Tsoukias,
and Paolo Viappiani. Preferences in artificial intelligence.
Annals of Mathematics and Artificial Intelligence, 77:361–
401, 2016.

[Rafailov et al., 2024] Rafael Rafailov, Archit Sharma, Eric
Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36, 2024.

[Sadana et al., 2024] Utsav Sadana, Abhilash Chenreddy,
Erick Delage, Alexandre Forel, Emma Frejinger, and
Thibaut Vidal. A survey of contextual optimization meth-
ods for decision-making under uncertainty. European
Journal of Operational Research, 2024.

[Seung et al., 1992] H Sebastian Seung, Manfred Opper, and
Haim Sompolinsky. Query by committee. In Proceedings
of the fifth annual workshop on Computational learning
theory, pages 287–294, 1992.

[Shivaswamy and Joachims, 2015] Pannaga Shivaswamy
and Thorsten Joachims. Coactive learning. Journal of
Artificial Intelligence Research, 53:1–40, 2015.

[Srinivas et al., 2010] Niranjan Srinivas, Andreas Krause,
Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experi-
mental design. In Proceedings of the 27th International
Conference on Machine Learning, pages 1015–1022. Om-
nipress, 2010.

[Teso et al., 2016] Stefano Teso, Andrea Passerini, and
Paolo Viappiani. Constructive preference elicitation by
setwise max-margin learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial
Intelligence, pages 2067–2073, 2016.

[Toffano et al., 2022] Federico Toffano, Michele Garraffa,
Yiqing Lin, Steven Prestwich, Helmut Simonis, and Nic
Wilson. A multi-objective supplier selection framework
based on user-preferences. Annals of Operations Re-
search, pages 1–32, 2022.

[Toubia et al., 2004] Olivier Toubia, John R Hauser, and
Duncan I Simester. Polyhedral methods for adaptive
choice-based conjoint analysis. Journal of Marketing Re-
search, 41(1):116–131, 2004.

[Véjar et al., 2024] Bastián Véjar, Gaël Aglin, Ali İrfan
Mahmutoğulları, Siegfried Nijssen, Pierre Schaus, and
Tias Guns. An efficient structured perceptron for np-hard
combinatorial optimization problems. In International
Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pages
253–262. Springer, 2024.

	Introduction
	Related work
	Problem Statement
	CPE with Active Learning & Likelihood
	Active Learning-based Query Selection
	Weight Update with Maximum Likelihood
	Maximum Likelihood
	A unified view

	Experiments
	Experimental setting
	Query selection time
	Impact of query selection and weight update
	Ablations
	Comparison to state-of-the-art

	Conclusion

