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Abstract

The long-tail problem in sequential recommender systems stems from imbalanced
interaction data, resulting in suboptimal model performance for tail users and
items. Recent studies have leveraged head data to enhance tail data for diminish
the impact of the long-tail problem. However, these methods often adopt ad-hoc
strategies to distinguish between head and tail data, which fails to capture the
underlying distributional characteristics and structural properties of each category.
Moreover, due to a substantial representational gap exists between head and tail
data, head-to-tail enhancement strategies are susceptible to negative transfer, often
leading to a decline in overall model performance. To address these issues, we
propose a hierarchical partitioning and stepwise enhancement framework, called
HPSERec, for long-tailed sequential recommendation. HPSERec partitions the
item set into subsets based on a data imbalance metric, assigning an expert network
to each subset to capture user-specific local features. Subsequently, we apply
knowledge distillation to progressively improve long-tail interest representation,
followed by a Sinkhorn optimal transport-based feedback module, which aligns
user representations across expert levels through a globally optimal and softly
matched mapping. Extensive experiments on three real-world datasets demonstrate
that HPSERec consistently outperforms all baseline methods. The implementation
code is available at https://github.com/bolunxier123/HPSERec.

1 Introduction

Recommender systems have been widely adopted across various online platforms to suggest items
that users are likely to engage with. Despite their remarkable success in numerous applications, the
long-tail problem associated with both users and items remains a significant challenge, hindering
the further development of recommender systems. On the user side, a small number of head users
dominate interactions, far surpassing the engagement levels of the majority of tail users (1). As a
result, models tend to focus disproportionately on head users, which ultimately reduces the platform’s
ability to retain new users. On the item side, most user interactions are concentrated on a limited
number of popular items (2)), leaving the majority of less popular items with minimal engagement.
This concentration on popular items narrows the diversity of recommendations and fosters the
emergence of filter bubbles (3} 14).
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Figure 1: The number of consumed items on Yelp and MovieLens-20M

Recent studies focused on addressing the long-tail problem in sequential recommender systems
(SRS). Several approaches address the long-tail problem from the user perspective, tackling the
challenge of tail users by employing adversarial training to map head and tail users into a shared
latent space, or by extending the interaction sequences of tail users (5;6). Other methods focus on the
item perspective, aiming to enhance the representation of tail items through attention mechanisms or
by assigning higher weights to tail items during training (7; 8). In addition, certain works incorporate
large language models (LLMs) to capture user sequence features and rich semantic information,
enhancing the performance of long-tail data (95 [10; [1.15 [12)).

Most existing methods follow a standard pipeline comprising data preprocessing, model training, and
evaluation to deal with the long-tail problem, while those methods share two common limitations.

e Arbitrary Partitioning: During data preprocessing, most existing studies adopt a fixed-ratio
approach to distinguish between head and tail data. For example, define the top 20% of items with
the highest number of interactions as head items, and the remaining 80% as tail items. However,
this ratio is largely based on empirical assumptions and may not generalize well across different
application scenarios. As illustrated in Figure [I(a)]and Figure[I(b)] the item interaction distribution
in the MovieLens-20M dataset exhibits a much stronger long-tail effect compared to the Amazon
Yelp dataset. This variability suggests that fixed-ratio partitioning schemes may not generalize well
across datasets, potentially leading to suboptimal modeling and recommendation performance.

e Flawed Head-Tail Augmentation: During model training, a common approach to mitigate the
long-tail problem is to augment tail data using the rich information available in head data. For instance,
information from head users is often transferred to tail users through shared or similar interaction
sequences. However, due to the significant disparity in information density between head and tail
entities, the presence of superficially similar patterns does not necessarily imply representational
similarity. As a result, such augmentation may introduce noise rather than useful signal, ultimately
degrading model performance.

To address the above problems, we propose a Hierarchical Partitioning and Stepwise Enhancement
Framework for Long-tailed Sequential Recommendation (HPSERec), which leverages imbalance-
aware partitioning, expert-based modeling, and distribution-level alignment to achieve balanced and
effective recommendation. Our method comprises three modules: the distribution balance module,
the feedforward module, and the feedback module. The distribution balance module addresses the
problem of Arbitrary Partitioning by introducing a novel imbalance metric and a corresponding
partitioning algorithm to ensure more balanced data subsets. The feedforward module tackles
Flawed Head-Tail Augmentation by assigning expert networks to each subset and using progressive
knowledge distillation to share tail item knowledge across the dataset. The feedback module further
addresses this issue by refining upstream experts through soft distribution-level alignment using
optimal transport, enabling adaptive updates without strict one-to-one matching.

Through this approach, HPSERec achieves more accurate recommendations for tail items without
compromising recommendation performance for head items.

Contributions. The contributions of this study are summarized as follows:
* We define a metric to quantify data imbalance and design an algorithm to partition the item set

based on this metric. The algorithm ensures that each subset minimizes data imbalance while
maintaining a sufficient total number of interactions to preserve data utility.
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Figure 2: The overall architecture of HPSERec. Distribution balancing module splits the item set
into subsets to reduce long-tail effects and improve training. Feedforward module boosts long-tail
item representations with contrastive learning and refines global expert performance via knowledge
distillation. Feedback module transfers head item information to long-tail experts using an annealing
algorithm, expanding their receptive field.

* We propose a novel framework, called the Hierarchical Partitioning and Stepwise Enhancement
Framework for Long-tailed Sequential Recommendation (HPSERec), which aims to address the
long-tail problem in SRS.

* We are the first to address the long-tail problem in the recommendation domain by segmenting
items and users into multiple subsets based on their long-tail characteristics, rather than merely
classifying them into head and tail categories.

* We conduct extensive experiments on three real-world datasets, demonstrating that our approach
improves the performance of tail items without compromising the performance of head items.
Remarkably, its effectiveness surpasses even SRS integrated with LLM.

2 Problem Definition

Let U and V represent the sets of users and items. The historical interaction sequence of a user
u € U is represented as:

Su:[’l)l,...7’l)k7...,’l)m]7 (])

where m = |5, | indicates the length of the sequence S,,, and vy, represents the k-th item in the
sequence. The embedding representations of a user « and an item v are denoted as e, € R? and
e, € R, where d represents the dimensionality of the hidden space. The goal of a SRS is to predict
the next likely item v, |11 based on the user’s interaction sequence S, and a sequence encoder fy(-).
Formally, this process can be expressed as:

6; = fe(Su) = arg mg}é P(Uerl = Uk|Su)7 (2)
Vg

where e}, is representation of u. By performing a dot product between e, and all e,,, we obtain a
ranked list y = [y1, %2, . ..,yjv||, Where y, represents the probability that v is the next item u will
interact with. The top-K items with the highest probabilities in y are selected as the output of the
recommender system.



3 Methodology

3.1 Overview

In this section, we introduce HPSERec, a framework designed to enhance traditional SRS by
strengthening the representation of users’ interests in long-tail items. HPSERec consists of three
modules, including the distribution balancing module, the feedforward module, and the feedback
module. The distribution balancing module (Section [3.2) partitions the set of items V' into multiple
subsets with minimal long-tailed characteristics, ensuring that each subset can achieve optimal
performance during subsequent training. The feedforward module (Section [3.3) enhances the
embedding of long-tail items through contrastive learning-based data augmentation. This is followed
by knowledge distillation, which transfers knowledge between expert networks to improve the long-
tail performance of the global expert. The feedback module (Section refines upstream experts
via distribution-level alignment. It aligns current upstream user embeddings to a target distribution by
minimizing the entropic regularized optimal transport cost using the Sinkhorn algorithm. Finally, we
describe the overall training strategy of the framework (Section[3.5). The complete architecture of
our model is illustrated in Figure [2]

3.2 Distribution Balancing Module

To more effectively address the intrinsic complexity of the long-tail phenomenon commonly observed
in real-world recommendation datasets, we propose a novel and practical imbalance metric to precisely
quantify the skewness in item interaction distributions.

The item set is denoted as V' = {vy, v9, ..., v, }, where each item v; is associated with an interaction
count ¢;. Assume that the items in V" are sorted in descending order according to their interaction
frequencies. Our objective is to partition V' into L disjoint item subsets {V1, Vs, ...,V }, where
each subset V}, is defined as:

Vk‘ = {ka_1+17"'7uTk}7 (3)
where {T1,...,Tr_1} are index-based splitting points, with Top = 0 and 77, = n. For a given subset
Vi, we define the normalized interaction probability distribution as:

Ci
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To quantify the concentration level of interactions within the subset, we introduce the following
non-linear aggregation functional:

w3 )7) )

1€Vy

The value of &, reflects the dispersion of item interactions within V. A smaller ®, indicates a more
uniform distribution of interactions across items, while a larger ®;, signifies that interactions are
highly concentrated on a few dominant items. The parameter « is a tunable hyperparameter. When
a < 1, @y is more sensitive to tail items, and when o > 1, it becomes more responsive to head items.

To avoid extremely imbalanced partition sizes during the segmentation process, we further introduce
a regularization term defined as:
2
Sk — p
By = ( ; (6)
1

where = STV denotes the expected average size of a partition, and Sy, is the size of subset V};. This
regularization term B}, penalizes partitions that deviate significantly from the target size p, ensuring
that each subset remains balanced not only in the interaction distribution but also in size.

Accordingly, for any given subset V}, we define the overall imbalance score as:

J (Vi) = log®y, + By, 7



where v € [0, +00) is a hyperparameter that controls the strength of the regularization penalty. Thus,
the optimal partitioning strategy can be formalized as the following discrete optimization problem:

L
min > T (Ve). ®)
k=1

This formulation jointly controls interaction skewness and subset size, yielding balanced item groups
for more effective head-tail modeling. The algorithm and proof details of the item subset partitioning
process, based on our defined item interaction imbalance metric and implemented with dynamic
programming and pruning, are provided in the Appendix

3.3 Feedforward Module

To enhance the performance of long-tail items, we initiate training by focusing on users’ interests
in long-tail items and gradually expand their preferences to encompass all items, while maintaining
strong performance specifically on long-tail items. We design distinct expert networks to process
corresponding datasets. For clarity, in the following sections, we refer to the expert responsible for
inferring users’ long-tail interests as the upstream expert and the expert responsible for inferring
users’ global interests as the downstream expert. Unlike traditional MOE models (13)), where datasets
assigned to each expert are statically partitioned, our approach progressively expands the datasets for
each expert. For expert E;, the user embedding e! represents the user’s interest in tail items after
excluding certain head items. Although e! does not fully capture the user’s global preferences, it
serves as a guiding signal for training subsequent experts.

We adopt a knowledge distillation approach (14), transferring knowledge from upstream experts to
downstream experts. To mitigate performance degradation caused by substantial differences in the
capacities of expert models, we restrict the knowledge distillation process to adjacent expert networks.
This design ensures that downstream models can effectively learn from upstream models without
being adversely affected by significant capability gaps.

The distillation loss is computed using a softened target distribution, where the smoothness of the
logits is controlled by a temperature parameter 7. The distillation loss is defined as:

Lkp ! Z KL(Softmax(szl/T) I Softmax(zf)/T)), )
ev;

i -

where 2¢~! and 2! are the logits produced by experts E;_1 and E;, respectively.

3.4 Feedback Module

To enhance the representation quality of users in lower-level experts, we propose a Sinkhorn-based
(15 116) Feedback Module that adaptively transfers knowledge from higher-level experts via a
principled optimal transport framework. This module aligns user representations across expert
layers by computing a soft matching plan that minimizes the overall transport cost, thereby enabling
fine-grained and globally optimal feedback supervision.

Let the user representation sets from two adjacent expert levels be denoted as U* = {u}, ub, ... ul}
and U+ = {u! Tt bt ... ult'), where each vector is normalized. We define the transport cost
matrix C' € R™*" as:

Cij = 1 — cos(uf,ult), (10)

which captures the pairwise dissimilarity between user representations across levels using cosine
distance. Through this distance-based cost matrix, we formulate the entropy-regularized optimal
transport problem as:
min Y 5,0 — e Y 7ijlog Vi (11)
.

€M (u,v) “—
Rl (lw)m

where v € R"*"™ is the transport plan, € > 0 is a regularization parameter, and y = v = % are

uniform marginals. This formulation enables efficient, differentiable, and globally consistent feedback
propagation via Sinkhorn iterations, facilitating stable optimization and improving representation
alignment across expert layers in long-tailed scenarios.



The feedback supervision is imposed through the expected cost under the transport plan:
Liack = Z%‘jcz‘j- (12)
,J

This loss encourages each user representation in the current expert to softly align with structurally
similar representations from the higher-level expert, thus enhancing representation consistency and
improving learning in sparse regions of the long-tail distribution. Unlike hard matching schemes,
our soft alignment mechanism, grounded in optimal transport theory, offers greater flexibility and
robustness by leveraging its ability to model structured correspondences under distributional shifts,
especially beneficial for handling noisy or sparse user signals. The detailed proof of this module is
provided in the Appendix [A.2]

3.5 Training Strategy

The HPSERec framework adopts a dual-stage training paradigm to leverage the interaction between
the upstream and downstream expert models. In the forward stage, HPSERec emphasizes the use of
upstream models to guide downstream models in discovering latent user features, particularly those
associated with long-tail interests. In contrast, in the feedback stage, HPSERec aims to enhance user
representations in upstream models by leveraging the global interest features extracted by downstream
models. We have designed an alternating two-stage training strategy for the entire framework.

Feedforward Stage. During this stage, the training process starts with the top-level expert model
and gradually incorporates adjacent downstream expert models. The downstream experts are treated
as student networks, guided by the knowledge distilled from the upstream models. The overall loss
function for this stage is defined as:

Eforw = ‘Crec + ﬂ‘CKD7 (13)
where L., denotes the recommendation loss, and L p corresponds to the knowledge distillation
loss. The weight 3 controls the weighting of the user’s long-tail interest representation relative to the
global interest.

Feedback Stage. In this stage, the training direction is reversed. This phase starts from the
bottommost global expert and proceeds sequentially to the upstream adjacent experts. The goal is to
address the knowledge gaps in the long-tail experts, improving their ability to capture users’ long-tail
interests. The loss function for this stage is Ly,ck, Which can be calculated by Eq.(14). The detailed
training procedure is outlined in Appendix A.3.

4 Experiment

4.1 Experimental Settings

Datasets. We compare HPSERec with baseline models using three real-world datasets from online
services: Yelp, Amazon Beauty, and Amazon Music. For data pre-processing, we follow previous
studies by excluding users with less than five interactions. More details about the datasets and
preprocessing can be seen in Appendix [B.1]

Evaluation Metrics. Performance is evaluated using top-k ranking metrics, specifically Hit Rate
(HR@10) and Normalized Discounted Cumulative Gain (NDCG @ 10) (5;[17). Consistent with prior
research SAS, we randomly select 100 items that the user has not engaged with to serve as negative
samples (18 [19)), paired with the ground truth, for metric computation.

Compared Methods. To assess the effectiveness of HPSERec, we compared it with two standard
SRS models: SASRec (18) and BERT4Rec (17), two traditional enhancement framework for the
long-tailed sequential recommendation: CITIES (7) and MELT (2)), and three large model-based SRS
approaches: RLMRec (10), LLMInit (12;20) and LLM-ESR (21). The more details about baselines

are put in Appendix [B.2]

Implementation Details. To assess the effectiveness of each method, we initially identified the best
hyperparameters with a single seed applied to the validation set. Subsequently, each method was
trained with the selected hyperparameters across five different random seeds. More details about the
datasets and preprocessing can be seen in Appendix



Table 1: The overall results of competing baselines and our HPSERec. The boldface refers to
the highest score and the underline indicates the next best result of the models. "*" indicates the

statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline.

Dataset Model Overall ‘ Tail Item Head Item Tail User Head User Tmprov.
HR@10 ND@I0 | HR@10 ND@10 HR@I0 ND@10 | HR@10 ND@10 HR@10 ND@10 :
Bert4Rec | 0.3945  0.2453 0.0342  0.0085 04917  0.2922 | 0.3845 0.2384 04593  0.2941 33.9%
SASRec 0.4488  0.2861 0.1593 0.0856  0.7187  0.4815 04236 02690  0.5261 0.3611 17.7%
CITIES 03894  0.2462 | 0.1127 0.0013 0.4974  0.2745 03852  0.2249 04554  0.2594 35.6%
Beauty MELT 0.4869  0.3144 | 0.1598  0.0628  0.8055  0.5595 | 0.4719  0.3021 0.5523  0.3679 8.5%
RLMRec | 0.4077  0.2565 0.1924  0.1660  0.6302  0.4657 0.4356 03016  0.4892  0.3345 29.5%
LLMInit 0.4351 02914 | 02714  0.1708  0.6984  0.5198 | 0.4919 03117  0.5430  0.3632 21.4%
LLM-ESR | 04945  0.3275 02986  0.1713 0.7270  0.5232 | 0.4821 0.3103 0.5501 0.3425 6.8%
HPSERec | 0.5281* 0.3665* 0.3203* 0.2060* 0.7306  0.5229  0.5163* 0.3557* 0.5799* 0.4148* -
Bert4Rec | 0.5307  0.3025 0.0131 0.0045 0.6834  0.3913 0.5319 03036  0.5251 0.2978 28.6%
SASRec 0.5866  0.3536 | 0.0890  0.0386  0.8002  0.4888 0.5848  0.3525 0.5945  0.3585 16.4%
CITIES 0.5745 0.3404 | 0.0776  0.0341 0.7648  0.4573 0.5751 0.3416  0.5891 0.3419 18.8%
Yelp MELT 0.6038  0.3687 0.0697  0.0263 0.8245  0.5041 0.6037 03688  0.6042  0.3681 13.1%
RLMRec | 0.5306 03909 | 0.0104 0.0140 0.7683  0.4568 0.5351 0.3065 0.5137  0.2936 28.7%
LLMInit 0.6099  0.3781 0.0874  0.0330 0.7766  0.4797 0.6204  0.3795 0.6187  0.3823 11.9%
LLM-ESR | 0.6190 0.3784 | 0.1584 0.0670  0.8045  0.5055 0.6138  0.3761 0.6331 0.3844 10.3%
HPSERec | 0.6827* 0.4231* 0.3252* 0.1832* 0.8361* 0.5261* 0.6884* 0.4280* 0.6583* 0.4027* -
Bertd4Rec 0.4721 0.3056 0.1222 0.0494 0.8299 0.5929 0.4475 0.2870 0.5638 0.3752 39.6%
SASRec 0.5031 0.3345 0.2243 0.0832 0.8328 0.6124 0.4835 0.3237 0.6317 0.4364 31.0%
CITIES 0.4421 0.2710 0.0824 0.0312 0.8347 0.5391 0.4192 0.2609 0.5082 0.3085 49.1%
Music MELT 0.5442 0.3832 0.3271 0.1539 0.8531 0.6292 0.5070 0.3374 0.6677 0.4722 21.1%
] RLMRec | 0.5431 03714 | 0.2473 0.1405 0.8511 0.6256 | 0.4946 03426  0.6604  0.4631 21.3%
LLMInit 0.5537  0.3877 0.3024  0.1574 0.8312  0.6426 | 0.5145 0.3591 0.6843  0.4746 19.1%
LLM-ESR | 0.5958  0.4035 0.3318  0.1548  0.8961 0.6835 | 0.5672  0.3824  0.7069  0.4846 10.6%
HPSERec | 0.6592* 0.4786* 0.4425* 0.2959* 0.8989* 0.6806  0.6428* 0.4701* 0.7144* 0.5069* -
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Figure 3: The hyper-parameter experiments on the weight of user’s long-tail interest representation 3
and distillation temperature 7. The result are based on the Music dataset with the SASRec model.

4.2 Overall Performance Comparison

The comparative evaluation of HPSERec and other baseline models in three datasets is shown in Table
[1} which includes overall recommendation performance along with specific performance metrics for
head and tail users, as well as head and tail items. For the sake of comparison, we categorize the top
20% as head data and the remaining data as tail data.

Upon examining the table, we find that HPSERec significantly improves overall performance across
all datasets. Specifically, in terms of HR@ 10, HPSERec outperforms the best baseline model,
LLM-ESR, by 6.8% (Beauty), 10.3% (Yelp) and 10.6% (Music).

Compared to models specifically designed for the long-tail problem, HPSERec delivers substantial
performance gains for both head and tail items, with especially notable improvements for tail items.
Although HPSERec lacks a dedicated module for enhancing user representations, it still achieves
optimal performance for both head and tail users. This suggests that enhancing both item and user
performance is not always necessary. Since users and items share the same vector space, improving
item performance also benefits user performance.

HPSERec significantly enhances the performance of tail items while maintaining strong performance
for head items. In contrast, CITIES demonstrates a trade-off, as it often sacrifices the performance of
head items across most datasets to boost the performance of tail items, creating seesaw problem. This
stark contrast underscores the advantage of HPSERec, which effectively balances performance across
both head and tail groups, addressing the long-tail challenge more comprehensively and equitably.
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Figure 4: The results of the proposed HPSERec and competing baselines in user and item groups.
The results are based on the Beauty dataset with the SASRec model.

Table 2: The ablation study on the Amazon Music dataset with SASRec as the backbone SRS model.
The boldface refers to the highest score and the underline indicates the next best result of the models.
(DB: Distribution Balancing Module, FF: Feedforward Module, FB: Feedback Module)

Dataset | Row ‘ DB FF FB Overall Head User Tail User Head Item Tail Item
HR@10 ND@l10 | HR@10 ND@10 HR@10 ND@10 | HR@10 ND@10 HR@10 ND@I10
1 0.5431 0.3714 0.6843 0.4746 0.5149 0.3591 0.8511 0.6256 0.2473 0.1405
2 v 0.5889  0.3977 | 0.6661 0.4659  0.5401 0.3875 | 0.8655  0.6341 03461  0.1982
Music 3 v v | 06094 04163 | 0.6729 04921  0.5803  0.4127 | 0.8730  0.6631  0.3640  0.2174
4 v v 0.6122 04314 | 0.7020 0.5016  0.5726  0.4105 | 0.8532  0.6431 0.3782  0.2399
5 v v v | 06524 04696 | 0.7212 0.5248  0.6175 04314 | 0.8943  0.6798  0.4154  0.2765

4.3 Hyper-parameter Analysis

To investigate the effects of the hyper-parameters in HPSERec, we show the performance trend
along with their changes in Figure [3] The hyper-parameter 3 controls the weighting of the user’s
long-tail interest representation relative to the global interest. With /3 ranging from 0.8 to 1.2,
the recommending accuracy rises first and drops then. A larger value of 5 leads to suboptimal
performance because it overemphasizes the user’s long-tail representations, thereby compromising
the recommendation accuracy for head items. Conversely, a smaller 3 weakens the model’s ability to
capture long-tail item characteristics, ultimately degrading overall performance. As for the distillation
temperature 7, the optimal value is found to be 1.2. This is because a smaller 7 limits the amount
of informative signal conveyed by the upstream expert outputs, while a larger 7 makes it more
difficult for the downstream expert to effectively learn from the softened distributions. Additional
experimental results can be found in Appendix [C1}

4.4 Group Analysis

To conduct a more detailed analysis of HPSERec’s performance, we divided users and items into
seven groups based on user sequence lengths and item popularity, the performance of each group is
shown in Figure[d] From the results, we find that HPSERec consistently outperforms the baseline
across all sequence lengths. This indicates that, although our model does not explicitly optimize for
tail users, the enhancement of item representations also strengthens user embeddings. On the item
side, we observe that MELT achieves optimal performance in the head group but underperforms in the
extreme long-tail. In contrast, HPSERec demonstrates superior performance in the extreme long-tail
while maintaining strong performance in the head group. Compared to the LLM-ESR, HPSERec
achieves significant improvements, highlighting the advantage of our framework in enhancing the
performance of tail items. Additional experimental results can be found in Appendix [C.2]

4.5 Ablation Studies

The results of the ablation study are presented in Table 2] First, to evaluate the impact of the
Distribution Balancing Module, we replaced it with a conventional classification scheme that separates
head and tail classes based on item popularity, where the top 20% most interacted items are considered
head items and the remaining are classified as tail items. A comparison between Rows 2 and 4, as
well as Rows 3 and 5, demonstrates that our proposed method, which quantifies data imbalance



and enables knowledge transfer across subgroups, significantly improves overall performance. This
improvement confirms the effectiveness of our subclass partitioning strategy, which is based on the
imbalance characteristics defined earlier in the paper. Next, we examined the effect of the Feedback
Module by removing it from two variants: one with the Distribution Balancing Module and one
without, while keeping other components unchanged. Comparing Rows 2 and 3, as well as Rows 4
and 5, shows that the Feedback Module further enhances performance, working complementarily with
the Feedforward Module. These results validate the design rationale of each module in HPSERec.
Additional experimental results can be found in Appendix [C.3]

5 Related work

Sequential Recommendation. The goal of sequential recommendation is to predict the next po-
tential interaction item based on a user’s historical interactions (225235 245 25;26). These models
are designed to capture the evolving preferences of users users over time. Traditional sequential
recommendation systems often rely on Markov chain models (27), which excel at modeling user-item
interactions. However, Markov models are limited to capturing short-term dependencies, making
them less effective in real-world recommendation scenarios. Subsequent research has shifted to-
ward neural networks as the primary approach for sequence modeling. GRU4Rec (28) employs
recurrent neural networks to capture the sequential relationships in user-item interaction histories,
enabling the prediction of the next potential item of interest. In contrast, SASRec (18)) leverages
attention mechanisms to model user sequences and capture global user interests. Bert4Rec (17)
introduces the Cloze task to the sequential recommendation, training a bidirectional model to extend
SASRec. TempRec (29) introduces a time-diversity-sensitive approach to news recommendation,
using Transformer-based sequential modeling to capture temporal patterns effectively. However,
these methods overlook the long-tail problem inherent in recommendation systems, resulting in poor
performance on tail data.

Long-tail Recommendation. Despite significant progress in SRS, the long-tail problem remains
underexplored. Regarding the issue of long-tail users, INSERT (5)) formulates the recommendation
task as a Few-Shot Learning problem, seeking similar sequences from other users and leveraging
useful prior knowledge from different sessions to enhance recommendations for long-tail users.
Similarly, ASREP (6) addresses this issue by generating pseudo-prior items through training with
reversed sequences, effectively augmenting the sequence data for long-tail users. For long-tail
items, CITIES (7)) employs a self-attention mechanism to enhance the performance of tail items by
leveraging head items, while Tail-Net (8) explicitly weights items within each user’s sequence during
inference based on the ratio of head to tail items. Among these works, MELT (_2) is the only approach
that simultaneously addresses both challenges, mitigating the issues of user and tail item by enabling
mutual enhancement between user and item embeddings.

Due to their powerful reasoning and learning capabilities, LLMs have recently garnered significant
attention in the field of long-tail recommendation (30;/31). Many researchers have explored leveraging
LLM:s to enhance the representations of long-tail items and users. RLMRec (10) utilizes LLMs to
generate user and item profiles, effectively capturing their interaction preferences. LLMInit (125 20)
employs LLM-generated embeddings to initialize the embedding layer in SRS models. Additionally,
LLM-ESR (21)) adopts a dual-view modeling framework augmented with a retrieval-enhanced self-
distillation method, improving the performance of long-tail users and items.

However, these methods overlook two critical aspects: (1) how to leverage the characteristics of the
data to partition head and tail classes effectively, and (2) how to divide items into multiple subsets to
reduce semantic disparities among them, thereby enabling more effective data augmentation.

6 Conclusion

In this work, we propose HPSERec, a novel framework to address the challenges posed by the
long-tail problem in SRS. First, we define metrics to quantify the long-tail characteristics of the data
and design a dynamic programming algorithm to partition the dataset, ensuring that the resulting
subsets are as balanced as possible. HPSERec prioritizes learning the features of tail items and
subsequently employs a combination of MoE and knowledge distillation techniques to transfer
knowledge effectively. Following this, an annealing algorithm is applied to enhance the representation



of long-tail interests. This enhancement leverages users’ global preferences, guided by the model’s
training progress and the similarity of interaction sequences between adjacent experts. Experimental
results on three publicly available datasets demonstrate that HPSERec outperforms all baselines,
including sequential recommendation models integrated with LLM. Furthermore, ablation studies
confirm that HPSERec significantly enhances the performance of both tail items and tail users.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of the paper are included in the abstract and
Section [Tl

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitation section is included in the Appendix D.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For each of our main theorems, we provide a detailed description of the
modeling assumptions prior to the theorem. We provide complete proof in Appendix A.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce the details of the experiment, such as the information on hardware
and software, in the implementation detail section, i.e., Appendix B.3.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have attached the data and code used in this paper in the supplementary
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details of the experimental settings, such as the data split,
optimizer, etc., in the experimental setting section (Section 4.1) in the main paper and the
implementation detail section (Appendix B.3) in the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the two-sided t-test with p < 0.05 results in the main experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the details of compute resources in Appendix B.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive impacts that our algorithm will bring in the
Introduction section, i.e., Section 1.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk of misuse of the proposed method and the datasets used in the
paper are open-sourced.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper or attached the link to the existing assets used
in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have attached the introduction of how to run the code and the license in the
code repository.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowd sourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

17


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not utilize LLM during the development of this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplement to Method

In this section, the details of prompt design and the HPSERec procedures are addressed.

A.1 Distribution Balancing Module

In Section@ we introduced the formulation of data imbalance. In this section, we provide a detailed
description of the algorithmic procedure used to partition the item set into balanced subsets.

Let I(©) = Zle J(Vi), where © = {T7,...,Tr_1} is the set of threshold.

Algorithm [T]describes the dynamic programming approach used to identify the optimal threshold
values © that minimize the overall imbalance score I(O).

Algorithm 1: Distribution Balancing Module

Data: An array V storing the set of items, and an array NV storing the interaction counts for items
in the set.
Result: The list of thresholds ©.

Sort V' in descending order based on item interaction counts;
Initialize dp[0 : [V|,0: L] + oo
Initialize path[0 : |V],0: L] < —1;
for [ < 1to L do
for i < 1to |V|do
for j <[ —1toido
Calculate J(V[j : i]) by Eq. (7);
if H(V]j :4]) + dp[i][l — 1] < dp[i][{] then
dpli][l] < H(V[j : i]) + dp[i] [l + 1];
Ol —1] « j5;
end
end
end
end
return O;
Based on the threshold set ©, the item subsets V{, Vy, ..., V] CV are generated after partitioning.

To better enable long-tail experts to guide the training of downstream experts, we propose that
gradually expanding the range of input items for each expert, rather than providing disjoint item sets,
is more effective in allowing long-tail experts to play an active role in subsequent training. The final
subset assigned to each expert model is defined as:

k
V=W (14)
=1

where V}, represents the item input range for the k-th expert Ej, in the feedforward module. When
k approaches 1, the input user sequence contains only tail items, causing the model to focus on
capturing the user’s tail-item preferences. Conversely, as k approaches L, the input user sequence
closely resembles the user’s complete interaction history, prompting the model to capture the user’s
global interests.

A.2 Feedback Module

In this section, we present a detailed proof of the feedback module. For clarity of exposition, we
begin by redefining the following notations.
User embeddings produced by the ¢-th expert can be defined as:

Ut = {637"'7651}7 (15)
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while user embeddings produced by the ¢ + 1-th expert can be defined as:
Up = eltt ettt (16)

rEn

We define the cost matrix C' € R™*" using cosine distance:

(ut, ut™)

— v

= gy €2 i
i j

Since users are sampled uniformly during training, we assume that both user distributions are uniform:

1 1
u:yz(,...,)GAn (18)
n n
We consider the following entropy-regularized optimal transport objective:
min <7a C> - 8H(7)7 (19)
YE(p,v)
where v € R™" is the transport plan, H(y) = — ), ; ijlog~ij is the Shannon entropy, and

M(p,v) = {7y €RY" |71 =p, v 1 =v}.
Let f(v) = (7,C) —eH(7).

Lemma 1 The objective function f(v) is strictly convex over its domain.

Proof. The cost term (v, C) is linear in ~, and the entropy term H (v) is strictly concave. Therefore,
the regularized term —e H () is strictly convex. The sum of a linear and strictly convex function
remains strictly convex.

Lemma 2 The feasible set I1(1,v) C R™*™ is non-empty, closed, convex, and compact.

Proof. The constraints Y1 = g, v "1 = v, and -y > 0 define a convex polytope. The entries of v are
bounded within the interval [0, 1] and their total sum is constant, ensuring compactness. The set is
non-empty since v = pv ' is a valid coupling that satisfies the marginal constraints.

Proposition 1 The entropy-regularized optimal transport problem

min _(y,C) —eH(y) (20)
~yE(p,v)

admits a unique optimal solution v* € I (u, v).
Proof. From Lemmas 1 and 2, the objective function is strictly convex and the feasible set is compact

and non-empty. Therefore, by the fundamental theorem of convex optimization, a unique global
minimizer exists.

Proposition 2 The unique minimizer v* has the following closed-form structure:

C
v* = diag(u) - K - diag(v), K =exp (—) 2D
€
for some positive scaling vectors u,v € R}.

Proof. Consider the Lagrangian:

Ly, B) = %;Ciy —e > viglogvij+ Y i (=Y % | + D5 <Vj - Z%’j)

(22)
Taking the derivative with respect to v;; and setting it to zero yields:
i+ B8 —Cij
Vij = €xp (a—l—ﬁj—1> =u; - K5 - vj (23)
€

where u; = exp (%) , Uj =exp (BJ).

€
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Theorem 1 Given a positive matrix K € R.*"™ and marginal distributions j1,v € Ay, there exist
scaling vectors u,v € R} such that:

v = diag(u) K diag(v) € II(p,v) (24)
and the vectors u, v can be computed via the following iterative updates:
(k+1) _ H
S K 1 2
’U(k+1) _ ; (26)

- K Tqk+1) +4

where § > 0 is a small constant to ensure numerical stability.

A.3 Training Strategy

For a clearer illustration of the training and inference process, we conclude them in Algorithm 2]

Algorithm 2: HPSERec

Data: S, for u € U, learning rate [r, hyperparameters «, 3, 7,1, 7, L.
Result: Last expert model parameters Wr,.

1 Getitem sets V7, ...V by Algorithm 1;

[ 8]

e X A AW

11

12
13
14
15
16
17
18

for i < 1 to E (number of epochs) do
/* Feedforward stage */
for j < 1to L do
if 7 > 1 then
| Calculate Lk p by Eq. (9);
end
Set L for by Eq. (13);
Apply Adam optimizer to L for;
Perform back-propagation to L 7., getting gradients G;
Update W; based on G;

end
/* Feedback stage */
for j < Lto1ldo
Calculate Ly, by Eq. (12);
Perform back-propagation to Ly, getting gradients G;
Update W; based on G;
end

end
return Wy ;

B Experimental Settings
In this section, we will refer to more details about the experimental settings.

B.1 Dataset and Preprocessing

We compare HPSERec with baseline models using three real-world datasets from online services:
Yelp, Amazon Beauty, and Amazon Music. For data pre-processing, we follow prior research by
filtering out users with fewer than five interactions. Table [3| presents the statistics of the datasets after
pre-processing.

B.2 Backbone and Baseline
We compare our proposed method with the following baseline methods.

* SASRec employs a self-attention mechanism to model the user’s entire interaction sequence
and predict the next potential item for interaction.
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Table 3: Statistics of datasets. #Int denotes interaction.

Dataset #Items #Users #Int Avg |5, |
Beauty 57,289 52,204 394,908 5.6
Yelp 15,720 4,722 192,214 3.8
Music 20,356 20,165 132,595 5.1
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o — o - [ ]
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Figure 5: The hyper-parameter experiments on the weight of number of subsets L and the weight of
the regularization penalty . The result are based on the Music dataset with the SASRec model.

* BERT4Rec adopts the Cloze task to train a bidirectional model, extending SASRec for
better sequential modeling.

» CITIES applies a self-attention mechanism, leveraging head items to improve the represen-
tation of tail items.

* MELT optimizes the representation of both long-tailed items and users, marking its first
effort in this area.

* RLMRec leverages LLMs to generate user and item profiles, effectively capturing their
interaction preferences.

* LLMInit uses LLM embeddings to initialize the embedding layer of the element in the SRS
model.

¢ LLM-ESR enhances both long-tailed items and users through a dual view modeling frame-
work combined with a retrieval-augmented self-distillation method.

B.3 Implementation Details

We conduct all experiments on an Intel Core i7-11700KF platform with dual NVIDIA GeForce RTX
3090 (24GB) GPUs. Besides, the implementation is based on Python 3.8.19 and PyTorch 2.0.0. For
the backbone SRS models, the number of GRU layers is set to 1 for GRU4Rec, while the number
of self-attention layers is fixed at 2 for SASRec and Bert4Rec. Also, the dropout rate is 0.6 for
Bert4Rec. We use the Adam optimizer for parameter optimization with a learning rate of 1 x 10™%.
The embedding size is 128 for all baselines, We choose the Adam as the optimizer. For Eq. (5), the
default value of « is set to 0.6. For Eq. (6), the default value of L is set to 4. For Eq. (7), the default
value of v is set to 1.2. For Eq. (9), the default value of 7 is set to 1.2. For Eq. (13), the default value
of B issetto 1.

C More Experimental Results

C.1 Hyper-parameter Analysis

Figure [5]illustrates the impact of several key hyperparameters on the performance of HPSERec. The
hyperparameter L controls the number of item subsets generated by the Distribution Balancing module.
As L increases from 2 to 6, the recommendation accuracy initially improves and then gradually
declines. The suboptimal performance with a small L can be attributed to the large representational
disparity between subsets, while an excessively large L may degrade the representation quality of
upstream item subsets due to data sparsity. Regarding the regularization weight ~, which controls the
penalty term in the partitioning objective, the optimal value is found to be 1.2. A smaller y results in
imbalanced subset sizes, whereas a larger v overly suppresses the influence of item-level imbalance,
thus impairing the quality of the learned partitions.
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Figure 6: The results of the proposed HPSERec and competing baselines in user and item groups.
The results are based on the Music dataset with the SASRec model.
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Figure 7: The results of the proposed HPSERec and competing baselines in user and item groups.
The results are based on the Yelp dataset with the SASRec model.

C.2 Group Analysis

To further evaluate the effectiveness of HPSERec, we conduct group-wise performance analysis on
two additional datasets, Music and Yelp. The results are presented in Figures [6]and Figures[7] From
the results, we observe that the LLM-based framework consistently improves performance across all
user and item groups. Moreover, HPSERec demonstrates a clear advantage under extreme long-tail
scenarios, while maintaining competitive performance on head users and items, indicating its ability
to enhance tail representations without compromising head accuracy.

C.3 Ablation Studies

In this section, we present additional ablation experiments on two benchmark datasets, Yelp and
Beauty, with results summarized in Table[d Specifically, Row 1 corresponds to the baseline SASRec.
Row 2 shows the performance when head and tail classes are partitioned using conventional frequency-
based heuristics, and data augmentation is applied via the Feedforward module. Building on this,
Row 3 incorporates the Feedback module to further enhance tail-side representations. Row 4 reflects
the effect of applying our proposed Distribution Balancing module for data partitioning, coupled with
Feedforward-based augmentation. Finally, Row 5 adds the Feedback module to Row 4, forming the
complete HPSERec framework. Notably, although HPSERec does not include a dedicated module
targeting tail users, we observe a consistent performance gain for this group. This is because user
and item representations are embedded in the same vector space, and user embeddings are computed
based on the items they interact with—thus, improving item representations inherently enhances user
representations as well. Moreover, unlike many long-tail recommendation methods that favor tail
performance at the cost of head accuracy, HPSERec achieves balanced improvements across head and
tail users/items. The full model leads to consistent performance gains in both head and tail segments,
demonstrating effective representation alignment and knowledge propagation across levels of data
sparsity.
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Table 4: The ablation study on the Yelp and Amazon Beauty dataset with SASRec as the backbone
SRS model. The boldface refers to the highest score and the underline indicates the next best result
of the models.

Dataset | Row ‘ DB FF FB Overall Head User Tail User Head Item Tail Item
HR@10 ND@I0 | HR@10 ND@10 HR@10 ND@10 | HR@Q10 ND@I0 HR@10 ND@10
1 0.5866  0.3536 | 0.5945 03585  0.5848  0.3591 0.8002  0.48838  0.0890  0.0386
2 v 0.6181 03799 | 0.6135  0.3784  0.6142  0.3807 0.8055 0.4941 0.1061 0.0582
Yelp 3 v v | 06313 03974 | 0.6237 03897  0.6311 0.4008 0.8130  0.5031 0.1440  0.0874
4 v v 0.6719  0.4225 0.6440  0.4065  0.6738  0.4238 0.8243 0.5206  0.3200  0.1797
5 v v 0.6827  0.4231 0.6583  0.4027  0.6884  0.4280 | 0.8361  0.5261  0.3252  0.1832
1 0.4488  0.2861 0.5261 0.3611 0.4236  0.2690 | 0.7187 04815  0.1593  0.0856
2 v 0.4606  0.2977 0.5461 03873  0.4367  0.2875 0.7195 0.4844  0.1872  0.1083
Beauty 3 v v | 04826 03209 | 05522 0.3907 04898  0.3216 | 0.7257  0.5026  0.2152  0.1439
4 v v 0.5198  0.3417 | 0.5564  0.3965  0.5047  0.3402 | 0.7271 0.5125  0.2612  0.1712
5 v o 0.5281  0.3665 | 0.5799  0.4148  0.5163  0.3557 | 0.7306  0.5229  0.3203  0.2060

D Limitation

Two potential limitations of this work should be noted. First, the proposed framework involves a
number of hyperparameters, and identifying optimal configurations for specific tasks may require
considerable tuning effort. Second, the subset partitioning algorithm in the Distribution Balancing
module incurs relatively high computational complexity, making it more suitable for scenarios with a
moderate number of items. In practical applications with large-scale item sets, further optimization
or integration with incremental learning strategies may be necessary.
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