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Abstract

Motion planning is still an open problem for many disciplines, e.g., robotics, au-
tonomous driving, due to their need for high computational resources that hinder
real-time, efficient decision-making. A class of methods striving to provide smooth
solutions is gradient-based trajectory optimization. However, those methods usually
suffer from bad local minima, while for many settings, they may be inapplicable
due to the absence of easy-to-access gradients of the optimization objectives. In
response to these issues, we introduce Motion Planning via Optimal Transport
(MPOT)—a gradient-free method that optimizes a batch of smooth trajectories over
highly nonlinear costs, even for high-dimensional tasks, while imposing smooth-
ness through a Gaussian Process dynamics prior via the planning-as-inference
perspective. To facilitate batch trajectory optimization, we introduce an original
zero-order and highly-parallelizable update rule—-the Sinkhorn Step, which uses
the regular polytope family for its search directions. Each regular polytope, cen-
tered on trajectory waypoints, serves as a local cost-probing neighborhood, acting
as a trust region where the Sinkhorn Step “transports” local waypoints toward
low-cost regions. We theoretically show that Sinkhorn Step guides the optimizing
parameters toward local minima regions of non-convex objective functions. We
then show the efficiency of MPOT in a range of problems from low-dimensional
point-mass navigation to high-dimensional whole-body robot motion planning,
evincing its superiority compared to popular motion planners, paving the way for
new applications of optimal transport in motion planning.

1 Introduction
Motion planning is a fundamental problem for various domains, spanning robotics [1], autonomous
driving [2], space-satellite swarm [3], protein docking [4]. etc., aiming to find feasible, smooth, and
collision-free paths from start-to-goal configurations. Motion planning has been studied both as
sampling-based search [5, 6] and as an optimization problem [7–9]. Both approaches have to deal
with the complexity of high-dimensional configuration spaces, e.g., when considering high-degrees
of freedom (DoF) robots, the multi-modality of objectives due to multiple constraints at both con-
figuration and task space, and the requirement for smooth trajectories that low-level controllers can
effectively execute. Sampling-based methods sample the high-dimensional manifold of configurations
and use different search techniques to find a feasible and optimal path [6, 10, 5], but suffer from
the complex sampling process and the need for large computational budgets to provide a solution,
which increases w.r.t. the complexity of the problem (e.g., highly redundant robots and narrow pas-
sages) [11]. Optimization-based approaches work on a trajectory level, optimizing initial trajectory
samples either via covariant gradient descent [7, 12] or through probabilistic inference [9, 8, 13].
Nevertheless, as with every optimization pipeline, trajectory optimization depends on initialization
and can get trapped in bad local minima due to the non-convexity of complex objectives. Moreover,
in some problem settings, objective gradients are unavailable or expensive to compute. Indeed,
trajectory optimization is difficult to tune and is often avoided in favor of sampling-based methods
with probabilistic completeness. We refer to Appendix H for an extensive discussion of related works.
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Figure 1: Example of MPOT in the multimodal planar navigation scenario with three different goals. For
each goal, we sample five initial trajectories from a GP prior. We illustrate four snapshots of our proposed
Sinkhorn Step that updates a batch of waypoints from multiple trajectories over multiple goals. For this example,
the total planning time was 0.12s. More demos can be found on https://sites.google.com/view/
sinkhorn-step/

To address these issues of trajectory optimization, we propose a zero-order, fast, and highly paral-
lelizable update rule—the Sinkhorn Step. We apply this novel update rule in trajectory optimization,
resulting in Motion Planning via Optimal Transport (MPOT) – a gradient-free trajectory optimiza-
tion method optimizing a batch of smooth trajectories. MPOT optimizes trajectories by solving a
sequence of entropic-regularized Optimal Transport (OT) problems, where each OT instance is solved
efficiently with the celebrated Sinkhorn-Knopp algorithm [14]. In particular, MPOT discretizes
the trajectories into waypoints and structurally probes a local neighborhood around each of them,
which effectively exhibits a trust region, where it “transports” local waypoints towards low-cost areas
given the local cost approximated by the probing mechanism. Our method is simple and does not
require computing gradients from cost functions propagating over long kinematics chains. Crucially,
the planning-as-inference perspective [15, 13] allows us to impose constraints related to transition
dynamics as planning costs, additionally imposing smoothness through a Gaussian Process (GP)
prior. Delegating complex constraints to the planning objective allows us to locally resolve trajectory
update as an OT problem at each iteration, updating the trajectory waypoints towards the local optima,
thus effectively optimizing for complex cost functions formulated in configuration and task space. We
also provide a preliminary theoretical analysis of the Sinkhorn Step, highlighting its core properties
that allow optimizing trajectories toward local minima regions.
Further, our empirical evaluations on representative tasks with high-dimensionality and multimodal
planning objectives demonstrate an increased benefit of MPOT, both in terms of planning time
and success rate, compared to notable trajectory optimization methods. Moreover, we empirically
demonstrate the convergence of MPOT in a 7-DoF robotic manipulation setting, showcasing a fast
convergence of MPOT, reflected also in its dramatically reduced planning time w.r.t. baselines. The
latter holds even for 36-dimensional, highly redundant mobile manipulation systems in long-horizon
fetch and place tasks (cf. Fig. 3).
Our contribution is twofold. (i) We propose the Sinkhorn Step - an efficient zero-order update rule
for optimizing a batch of parameters, formulated as a barycentric projection of the current points to
the polytope vertices. (ii) We, then, apply the Sinkhorn Step to motion planning, resulting in a novel
trajectory optimization method that optimizes a batch of trajectories by efficiently solving a sequence
of linear programs. It treats every waypoint across trajectories equally, enabling fast batch updates of
multiple trajectories-waypoints over multiple goals by solving a single OT instance while retaining
smoothness due to integrating the GP prior as cost function.

2 Preliminaries
Entropic-regularized optimal transport. We briefly introduce discrete OT. For a thorough intro-
duction, we refer to [16–18].
Notation. Throughout the paper, we consider the optimization on a d-dimensional Euclidean
space Rd, representing the parameter space (e.g., a system state space). 1d is the vector of
ones in Rd. The scalar product for vectors and matrices is x, y ∈ Rd, ⟨x, y⟩ =

∑d
i=1 xiyi;

and A,B ∈ Rd×d, ⟨A,B⟩ =
∑d

i,j=1 AijBij , respectively. ∥·∥ is the l2-norm, and ∥·∥M de-
notes the Mahalanobis norm w.r.t. some positive definite matrix M ≻ 0. For two histograms
n ∈ Σn and m ∈ Σm in the simplex Σd := {x ∈ Rd

+ : x⊺1d = 1}, we define the set
U(n,m) := {W ∈ Rn×m

+ | W1m = n,W ⊺1n = m} containing n × m matrices with row
and column sums n and m respectively. Correspondingly, the entropy for A ∈ U(n,m) is defined
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as H(A) = −∑n,m
i,j=1 aij log aij .

Let C ∈ Rn×m
+ be the positive cost matrix, the OT between n and m given cost C is

OT(n,m) := minW∈U(n,m)⟨W ,C⟩. Traditionally, OT does not scale well with high dimen-
sions. To address this, Cuturi [19] proposes to regularize its objective with an entropy term, resulting
in the entropic-regularized OT

OTλ(n,m) := minW∈U(n,m)⟨W ,C⟩ − λH(W ). (1)

Solving (1) with Sinkhorn-Knopp [19] has a complexity of Õ(n2/ϵ3) [20], where ϵ is the approxima-
tion error w.r.t. the original OT. Higher λ enables a faster but “blurry” solution, and vice versa.

Trajectory optimization. Given a parameterized trajectory by a discrete set of support states and
control inputs τ = [x0,u0, ...,xT−1,uT−1,xT ]

⊺, trajectory optimization aims to find the optimal
trajectory τ ∗, which minimizes an objective function c(τ ), with x0 being the start state. Standard
motion planning costs, such as goal cost cg defined as the distance to a desired goal-state xg , obstacle
avoidance cost cobs, and smoothness cost csm can be included in the objective. Hence, trajectory
optimization can be expressed as the sum of those costs while obeying the dynamics constraint

τ ∗ =argmin
τ

[cobs(τ ) + cg(τ ,xg) + csm(τ )] s.t. ẋ = f(x,u) and τ (0) = x0. (2)

For many manipulation tasks with high-DoF robots, this optimization problem is typically highly non-
linear due to many complex objectives and constraints. Besides cobs, csm is crucial for finding smooth
trajectories for better tracking control. Covariant Hamiltonian Optimization for Motion Planning
(CHOMP) [7] designs a finite difference matrix M resulting to the smoothness cost csm = τ⊺Mτ .
This smoothness cost can be interpreted as a penalty on trajectory derivative magnitudes. Mukadam
et al. [8] generalizes the smoothness cost by incorporating a GP prior as cost via the planning-as-
inference perspective [15, 21], additionally constraining the trajectories to be dynamically smooth.
Recently, an emergent paradigm of multimodal trajectory optimization [22, 23, 13, 24] is promising
for discovering different modes for non-convex objectives, thereby exhibiting robustness against bad
local minima. Our work contributes to this momentum by proposing an efficient batch update-rule
for vectorizing waypoint updates across timesteps and number of plans.

3 Sinkhorn Step
To address the problem of batch trajectory optimization in a gradient-free setting, we propose Sinkhorn
Step—a zero-order update rule for a batch of optimization variables. Our method draws inspiration
from the free-support barycenter problem [25], where the mean support of a set of empirical measures
is optimized w.r.t. the OT cost. Consider an optimization problem with some objective function
without easy access to function derivatives. This barycenter problem can be utilized as a parameter
update mechanism, i.e., by defining a set of discrete target points (i.e., local search directions) and a
batch of optimizing points as two empirical measures, the barycenter of these empirical measures
acts as the updated optimizing points based on the objective function evaluation at the target points.

With these considerations in mind, we introduce Sinkhorn Step, consisting of two components: a
polytope structure defining the unbiased search-direction bases, and a weighting distribution for eval-
uating the search directions. Particularly, the weighting distribution has row-column unit constraints
and must be efficient to compute. Following the motivation of [25], the entropic-regularized OT
fits nicely into the second component, providing a solution for the weighting distribution as an OT
plan, which is solved extremely fast, and its solution is unique [19]. In this section, we formally
define Sinkhorn Step and perform a preliminary theoretical analysis to shed light on its connection to
directional-direct search methods [26, 27], thereby motivating its algorithmic choices and practical
implementation proposed in this paper.

3.1 Problem formulation
We consider the batch optimization problem

min
X

f(X) = min
X

n∑
i=1

f(xi), (3)

where X = {xi}ni=1 is a set of n optimizing points, f : Rd → R is non-convex, differentiable,
bounded below, and has L-Lipschitz gradients.

3



Assumption 1. The objective f is L-smooth with L > 0

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x,y ∈ Rd

and bounded below by f(x) ≥ f∗ ∈ R, ∀x ∈ Rd.

Throughout the paper, we assume that function evaluation is implemented batch-wise and is cheap to
compute. Function derivatives are either expensive or impossible to compute. At the first iteration,
we sample a set of initial points X0 ∼ D0, with its matrix form X0 ∈ Rn×d, from some prior
distribution D0. The goal is to compute a batch update for the optimizing points, minimizing the
objective function. This problem setting suits trajectory optimization described in Section 4.

3.2 Sinkhorn Step formulation
Similar to directional-direct search, Sinkhorn Step typically evaluates the objective function over a
search-direction-set D, ensuring descent with a sufficiently small stepsize. The search-direction-set
is typically a vector-set requiring to be a positive spanning set [28], i.e., its conic hull is Rd =
{∑i widi, di ∈ D, wi ≥ 0}, ensuring that every point (including the extrema) in Rd is reachable
by a sequence of positive steps from any initial point.

Regular Polytope Search-Directions. Consider a (d − 1)-unit hypersphere Sd−1 = {x ∈ Rd :
∥x∥ = 1} with the center at zero.
Definition 1 (Regular Polytope Search-Directions). Let us denote the regular polytope family
P = {simplex, orthoplex, hypercube}. Consider a d-dimensional polytope P ∈ P with m vertices,
the search-direction set DP = {di | ∥di∥ = 1}mi=1 is constructed from the vertex set of the regular
polytope P inscribing Sd−1.

The d-dimensional regular polytope family P has all of its dihedral angles equal and, hence, is an
unbiased sparse approximation of the circumscribed (d − 1)-sphere, i.e.,

∑
i di = 0, ∥di∥ = 1∀i.

There also exist other regular polytope families. However, the regular polytope types in P exist
in every dimension (cf. [29]). Moreover, the algorithmic construction of general polytope is not
trivial [30]. Vertex enumeration for P is straightforward for vectorization and simple to implement,
which we found to work well in our settings–see also Appendix F. We state the connection between
regular polytopes and the positive spanning set in the following proposition.
Proposition 1. ∀P ∈ P, DP forms a positive spanning set.

This property ensures that any point x ∈ Rd, x =
∑

i widi, wi ≥ 0, di ∈ DP can be represented
by a positively weighted sum of the set of directions defined by the polytopes.

Batch Update Rule. At an iteration k, given the current optimizing points Xk and their matrix form
Xk ∈ Rn×d, we first construct the direction set from a chosen polytope P , and denote the direction
set DP ∈ Rm×d in matrix form. Similar to [25], let us define the prior histograms reflecting the
importance of optimizing points n ∈ Σn and the search directions m ∈ Σm, then the constraint
space U(n,m) of OT is defined. With these settings, we define Sinkhorn Step.
Definition 2 (Sinkhorn Step). The batch update rule is the barycentric projection (Remark 4.11,
[17]) that optimizes the free-support barycenter of the optimizing points and the batch polytope
vertices

Xk+1 = Xk + Sk, Sk = αkdiag(n)−1W ∗
λD

P

s.t. W ∗
λ = argminW∈U(n,m)⟨W ,C⟩ − λH(W ),

(4)

with αk > 0 as the stepsize, C ∈ Rn×m, Ci,j = f(xi + αkdj), xi ∈ Xk,dj ∈ DP is the local
objective matrix evaluated at the linear-translated polytope vertices.

Observe that the matrix diag(n)−1W ∗
λ has n row vectors in the simplex Σm. The batch update

transports X to a barycenter shaping by the polytopes with weights defined by the optimal solution
W ∗

λ . However, in contrast with the barycenter problem [25], the target measure supports are
constructed locally at each optimizing point, and, thus, the points are transported in accordance with
their local search directions. By Proposition 1, DP is a positive spanning set, thus, W ∗

λ forms a
generalized barycentric coordinate, defined w.r.t. the finite set of polytope vertices. This property
implies any point in Rd can be reached by a sequence of Sinkhorn Steps. For the d-simplex case, any
point inside the convex hull can be identified with a unique barycentric coordinate [31], which is not
the case for d-orthoplex or d-cube. However, coordinate uniqueness is not required for our analysis
in this paper, given the following assumption.
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Assumption 2. At any iteration k > 0, the prior histogram on the optimizing points and the search-
direction set is uniform n = m = 1n/n, having the same dimension n = m. Additionally, the
entropic scaling approaches zero λ → 0.

Assuming uniform prior importance of the optimizing points and their search directions is natural
since, in many cases, priors for stepping are unavailable. However, our formulation also suggests
a conditional Sinkhorn Step, which is interesting to study in future work. This assumption allows
performing an analysis on Sinkhorn Step on the original OT solution.
With these assumptions, we can state the following theorem for each xk ∈ Xk separately, given that
they follow the Sinkhorn Step rule.
Theorem 1 (Main result). If Assumption 1 and Assumption 2 hold and the stepsize is sufficiently
small αk = α with 0 < α < 2µP ϵ/L, then with a sufficient number of iterations

K ≥ k(ϵ) :=
f(x0)− f∗

(µP ϵ− Lα
2 )α

− 1, (5)

we have min0≤k≤K ∥∇f(xk)∥ ≤ ϵ, ∀xk ∈ Xk.

Note that we do not make any additional assumptions on f besides the smoothness and boundedness,
and the analysis is performed on non-convex settings. Theorem 1 only guarantees that the gradients
of some points in the sequence of Sinkhorn Steps are arbitrarily small, i.e., in the proximity of local
minima. If in practice, we implement the sufficient decreasing condition f(xk)− f(xk+1) ≥ cα2

k,
then f(xK) ≤ f(xi), ∥∇f(xi)∥ ≤ ϵ holds. However, this sufficient decrease check may waste some
iterations and worsen the performance. We show in the experiments that the algorithm empirically
exhibits convergence behavior without this condition checking. If L is known, then we can compute
the optimal stepsize α = µP ϵ/L, leading to the complexity bound k(ϵ) = 2L(f(x0)−f∗)

µ2
P ϵ2

− 1.

Therefore, the complexity bounds for d-simplex, d-orthoplex and d-cube are O(d2/ϵ2), O(d/ϵ2),
and O(1/ϵ2), respectively. The d-cube case shows the same complexity bound O(1/ϵ2) as the well-
known gradient descent complexity bound on the L-smooth function [32]. These results are detailed
in Appendix A. Generally, we perform a preliminary study on Sinkhorn Step with Assumption 1
and Assumption 2 to connect the well-known directional-direct search literature [26, 27], as many
unexplored theoretical properties of Sinkhorn Step remain in practical settings described in Section 4.

4 Motion Planning via Optimal Transport
Here, we introduce MPOT - a method that applies Sinkhorn Step to solve the batch trajectory
optimization problem, where we realize waypoints in a set of trajectories as optimizing points. Due
to Sinkhorn Step’s properties, MPOT does not require gradients propagated from cost functions
over long kinematics chains. It optimizes trajectories by solving a sequence of strictly convex
linear programs with a maximum entropy objective (cf. Definition 2), smoothly transporting the
waypoints according to the local polytope structure. To promote smoothness and dynamically feasible
trajectories, we incorporate the GP prior as a cost via the planning-as-inference perspective.

4.1 Planning As Inference With Empirical Waypoint Distribution
Let us consider general discrete-time dynamics X = F (x0,U), where X = [x0, . . . , xT ] denotes
the states sequence, U = [u0, ...,uT ] is the control sequence, and x0 is the start state. The target
distribution over control trajectories U can be defined as the posterior [33]

q(U) =
1

Z
exp (−ηE(U)) q0(U), (6)

with E(U) the energy function representing control cost, q0(U) = N (0,Σ) a zero-mean normal
prior, η a scaling term (temperature), and Z the normalizing scalar.

Assuming a first-order trajectory optimization1, the control sequence can be defined as a time-
derivative of the states U = [ẋ0, ..., ẋT ]. The target posterior distribution over both state-trajectories
and their derivatives τ = (X,U) = {xt ∈ Rd : xt = [xt, ẋt]}Tt=0 is defined as

q∗(τ ) =
1

Z
exp

(
− ηc(τ )

)
qF (τ ), (7)

1We describe first-order formulation for simplicity. However, this work can be extended to second-order
systems similar to [8].
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which is similar to Eq. (6) with the energy function E = c ◦ F (x0,U) being the composition of the
cost c over τ and the dynamics F . The dynamics F is also now integrated into the prior distribution
qF (τ ). The absorption of the dynamics into the prior becomes evident when we represent the prior
as a zero-mean constant-velocity GP prior qF (τ ) = N (0,K), with a constant time-discretization
∆t and the time-correlated trajectory covariance K, as described in Appendix B.

Now, to apply Sinkhorn Step, consider the trajectory we want to optimize τ = {xt}Tt=1,
we can define the proposal trajectory distribution as a waypoint empirical distribution
p(x; τ ) =

∑T
t=1 p(t)p(x|t) =

∑T
t=1 ntδxt

(x), with the histogram n = [n1, . . . , nT ], p(t) = nt =
1/T , and δxt

the Dirac on waypoints at time steps t. In this case, we consider the model-free setting
for the proposal distribution. Indeed, this form of proposal trajectory distribution typically assumes
no temporal or spatial (i.e., kinematics) correlation between waypoints. This assumption is also
seen in [7, 9] and can be applied in a wide range of robotics applications where the system model is
fully identified. We leverage this property for batch-wise computations and batch updates over all
waypoints. The integration of model constraints in the proposal distribution is indeed interesting but
is deferred for future work.

Following the planning-as-inference perspective, the motion planning problem can be formulated as
the minimization of a Kullback–Leibler (KL) divergence between the proposal trajectory distribution
p(x; τ ) and the target posterior distribution Eq. (7) (i.e., the I-projection)

τ ∗ = argmin
τ

{Ep [log q
∗(τ )]−H(p)} = argmin

τ
Ep

[
ηc(τ ) +

1

2
∥τ∥2K − logZ

]
= argmin

τ

T−1∑
t=0

η c(xt)︸ ︷︷ ︸
state cost

+
1

2
∥Φt,t+1xt − xt+1∥2Q−1

t,t+1︸ ︷︷ ︸
transition model cost

,
(8)

with Φt,t+1 the state transition matrix, and Qt,t+1 the covariance between time steps t and
t + 1 originated from the GP prior (cf. Appendix B), and the normalizing constant of the tar-
get posterior Z is absorbed. Note that the entropy of the empirical distribution is constant
H(p) = −

∫
x∈Rd

1
T

∑T
t=1 δxt(x) log p(x; τ ) = log T . Evidently, KL objective Eq. (8) becomes a

standard motion planning problem Eq. (2) with the defined waypoint empirical distributions. Note
that this objective is not equivalent to Eq. (3) due to the second coupling term. However, we demon-
strate in Section 5.2 that MPOT still exhibits convergence. Indeed, investigating Sinkhorn Step in a
general graphical model objective [34] is vital for future work. We apply Sinkhorn Step to Eq. (8)
by realizing the trajectory as a batch of optimizing points τ ∈ RT×d. This realization also extends
naturally to a batch of trajectories described in the next section. The main goal of this formulation
is to naturally inject the GP dynamics prior to MPOT, benefiting from the GP sparse Markovian
structure resulting in the second term of the objective Eq. (8). This problem formulation differs from
the moment-projection objective [33, 8, 13], which relies on importance sampling from the proposal
distribution to perform parameter updates. Contrarily, we do not encode the model in the proposal
distribution and directly optimize for the trajectory parameters, enforcing the model constraints in the
cost.

4.2 Practical considerations for applying Sinkhorn Step

For the practical implementation, we make the following realizations to the Sinkhorn Step imple-
mentation for optimizing a trajectory τ . First, we define a set of probe points for denser function
evaluations (i.e., cost-to-go for each vertex direction). We populate equidistantly probe points along
the directions in DP outwards till reaching a probe radius βk ≥ αk, resulting in the probe set HP

with its matrix form HP ∈ Rm×h×d with h probe points for each direction (cf. Fig. 4). Second, we
add stochasticity in the search directions by applying a random d-dimensional rotation R ∈ SO(d) to
the polytopes to promote local exploration (computation of R ∈ SO(d) is discussed in Appendix G).
Third, to further decouple the correlations between the waypoints updates, we sample the rotation
matrices in batch and then construct the direction sets from the rotated polytopes, resulting in the
tensor DP ∈ RT×m×d. Consequently, the probe set is also constructed in batch for every waypoint
HP ∈ RT×m×h×d. The Sinkhorn Step is computed with the einsum operation along the second
dimension (i.e., the m-dimension) of DP and HP . In intuition, the second and third considerations
facilitate random permutation of the rows of the OT cost matrix.
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With these considerations, the element of the tth-waypoint and ith-search directions in the OT cost
matrix C ∈ RT×m is the mean of probe point evaluation along a search direction (i.e., cost-to-go)

Ct,i =
1

h

∑h
j=1 η c(xt + yt,i,j) +

1
2
∥Φt,t+1xt − (xt+1 + yt+1,i,j)∥2Q−1

t,t+1

, (9)

with the probe point yt,i,j ∈ HP . Then, we ensure the cost matrix positiveness for numerical stability
by subtracting its minimum value. With uniform prior histograms n = 1T /T, m = 1m/m, the
problem W ∗ = argminOTλ(n,m) is instantiated and solved with the log-domain stabilization
version [35, 36] of the Sinkhorn algorithm. By setting a moderately small λ = 0.01 to balance
between performance and blurring bias, the update does not always collapse towards the vertices of the
polytope, but to a conservative one inside the polytope convex hull. In fact, the Sinkhorn Step defines
an explicit trust region, which bounds the update inside the polytope convex hull. More discussions
of log-domain stabilization and trust region properties are in Appendix E and Appendix D. In the
trajectory optimization experiments, we typically do not assume any cost structure (e.g., non-smooth,
non-convex). In MPOT, Assumption 2 is usually violated with T ≫ m, but MPOT still works
well due to the soft assignment of Sinkhorn distances. We observe that finer function evaluations,
randomly rotated polytopes, and moderately small λ increase the algorithm’s robustness against
practical conditions. Note that these implementation technicalities do not incur much overhead due
to the efficient batch computation of modern GPU.

4.3 Batch trajectory optimization
We leverage our Sinkhorn Step to optimize multiple trajectories in parallel, efficiently providing
many feasible solutions for multi-modal planning problems. Specifically, we implement MPOT using
PyTorch [37] for vectorization across different motion plans, randomly rotated polytope constructions,
and probe set cost evaluations. For a problem instance, we consider Np trajectories of horizon T ,
and thus, the trajectory set T = {τ1, . . . , τNp

} is the parameter to be optimized. We can flatten the
trajectories into the set of N = Np × T waypoints. Now, the tensors of search directions and probe
set DP ∈ RN×m×d, HP ∈ RN×m×h×d can be efficiently constructed and evaluated by the state
cost function c(·), provided that the cost function is implemented with batch-wise processing (e.g.,
neural network models in PyTorch). Similarly, the model cost term in Eq. (8) can also be evaluated in
batch by vectorizing the computation of the second term in Eq. (9).
At each iteration, it is optional to anneal the stepsize αk and probe radius βk. Often we do not
know the Lipschitz constant L in practice, so the optimal stepsize cannot be computed. Hence,
the Sinkhorn Step might oscillate around some local minima. It is an approximation artifact that
can be mitigated by reducing the radius of the ball-search over time, gradually changing from an
exploratory to an exploitative behavior. Annealing the ball search radius while keeping the number of
probe points increases the chance of approximating better ill-conditioned cost structure, e.g., large
condition number locally. To initialize the trajectories, we randomly sample from the discretized GP
prior T 0 ∼ N (µ0,K0), where µ0 is a constant-velocity, straight-line trajectory from start-to-goal
state, and K0 ∈ R(T×d)×(T×d) is a large GP covariance matrix for exploratory initialization [38, 39]
(cf. Appendix B). In execution, we select the lowest cost trajectory τ ∗ ∈ T ∗. For collecting a
trajectory dataset, all collision-free trajectories T ∗ are stored along with contextual data, such as
occupancy map, goal state, etc. See Algorithm 1 for an overview of MPOT. Further discussions on
batch trajectory optimization are in Appendix C.

5 Experiments
First, we benchmark our method against strong motion planning baselines in a densely cluttered
2D-point-mass and a 7-DoF robot arm (Panda) environment. Then, we demonstrate the efficacy of
our method on high-dimensional mobile manipulation tasks with TIAGo++.
5.1 Experimental setup
In all experiments, all planners optimize first-order trajectories with positions and velocities in
configuration space. The motion planning costs are the SE(3) goal, obstacle, self-collision, and
joint-limit costs. The state dimension (configuration position and velocity) is d = 4 for the point-mass
experiment, d = 14 for the Panda experiment, and d = 36 (3 dimensions for the base, 1 for the
torso, and 14 for the two arms) for the mobile manipulation experiment. As for polytope settings, we
choose a 4-cube for the point-mass case, a 14-othorplex for Panda, and a 36-othorplex for TIAGo++.
Further experiment details are in Appendix I.
Baselines. We compare MPOT to popular trajectory planners, which are also straightforward to
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Table 1: Trajectory generation benchmarks in densely cluttered environments. The metrics are T[s] - planning
time until convergence; SUC[%] - success rate over tasks in an environment-seed, where success means there is
at least one successful trajectory found each task; GOOD[%] - success percentage of total parallelized plans
in each environment-seed, reflecting the parallelization quality; S - smoothness measured by the norm of the
finite difference of trajectory velocities, averaged over all trajectories and horizons; PL - path length. RRT*

and I-RRT* success and collision-free rates depict the maximum achievable values for all planners. S and PL
statistics are computed on successful trajectories only.

point-mass Experiment Panda Experiment

T[s] SUC[%] GOOD[%] S PL T[s] SUC[%] GOOD[%] S PL

RRT* 43.2 ± 15.2 100 ± 0. 100 ± 0. 0.43 ± 0.12 23.8 ± 4.6 186.9 ± 184.2 100 ± 0. 73.8 ± 26.7 0.17± 0.05 7.8 ± 2.9
I-RRT* 43.6 ± 13.8 100 ± 0. 100 ± 0. 0.43 ± 0.11 23.9 ± 4.8 184.2 ± 166.0 100 ± 0. 74.6 ± 29.0 0.17± 0.05 7.6 ± 3.2

STOMP 2.2 ± 0.1 31.4 ± 13.9 10.5 ± 25.7 0.01 ± 0.01 17.0 ± 1.4 4.3 ± 0.1 50.8 ± 28.3 35.3± 42.0 0.01 ± 0.0 4.5 ± 0.8
SGPMP 6.5 ± 0.9 98.6 ± 4.5 74.9 ± 28.9 0.03 ± 0.01 18.3 ± 2.0 5.0 ± 0.2 67.8 ± 23.5 58.1 ± 45.8 0.01 ± 0.0 4.5 ± 0.9

CHOMP 0.5 ± 0.1 70.9 ± 16.7 38.6 ± 40.7 0.03 ± 0.0 17.7 ± 1.7 3.1 ± 0.3 63.0 ± 25.5 51.6± 46.2 0.02 ± 0.0 4.6 ± 0.8
GPMP2 2.8 ± 0.1 98.3 ± 4.9 74.9 ± 32.1 0.07 ± 0.05 20.3 ± 3.1 3.3 ± 0.2 66.0 ± 25.2 53.2 ± 42.3 0.01 ± 0.0 4.9 ± 0.8

MPOT 0.4 ± 0.0 99.2 ± 3.1 73.6 ± 26.7 0.06 ± 0.03 19.3 ± 2.3 0.8 ± 0.1 71.6 ± 23.2 60.2 ± 44.4 0.01 ± 0.01 4.6± 0.9

0 20 40 60
Sinkhorn Steps

0.0

0.1

0.2

0.3

0.4

Cost

Displacement Norm

2 4 6 8 10
OT Terminated Iterations

0

25

50

75

100

125

150

S
in

k
h

or
n

S
te

p
s

(a)

0 50 100 150 200
Sinkhorn Steps

0.0

0.2

0.4

0.6

0.8
Cost

Displacement Norm

1 2 3 4 5 6 7 8
OT Terminated Iterations

0

50

100

150

200

S
in

k
h

or
n

S
te

p
s

(b)
Figure 2: Convergence analysis of MPOT in Panda benchmark. The plots show the cost convergence when
applying step radius annealing ϵ = 0.035 and without. The plots imply that by following the Sinkhorn Steps,
even without annealing, the cost converges exponentially (w.r.t. the update step size shown by the displacement
norm). Slower convergence is observed without annealing. The right plots depict the number of iterations for
solving the inner OT problem, whose stopping threshold is set at 10−5. The mean and median of the violin
plots are shown in blue and red, respectively. Solving OT is even more rapid at later Sinkhorn Steps; as the
waypoints approach local minima, the OT cost matrix becomes more uniform and can be solved with only one
or two Sinkhorn iterations. This contributes to the efficiency of MPOT.
implement and vectorize in PyTorch for a fair comparison (even if the vectorization is not mentioned
in their original papers). The chosen baselines are gradient-based planners: CHOMP [7] and GPMP2
(no interpolation) [8]; sampling-based planners: RRT* [6, 10] and its informed version I-RRT* [40],
STOMP [9], and the recent work SGPMP [13]. We implemented all baselines in PyTorch except for
RRT* and I-RRT*, which we plan with a loop.

5.2 Benchmarking results
We present the comparative results between MPOT and the baselines in Table 1. While RRT* and
I-RRT* achieve perfect results on success criteria, their planning time is dramatically high, which
reconfirms the issues of RRT* in narrow passages and high-dimensional settings. Moreover, solutions
of RRT* need postprocessing to improve smoothness. For GPMP2, the success rate is comparable but
requires computational effort. CHOMP, known for its limitation in narrow passages [41], requiring a
small stepsize to work. This parallelization setting requires a larger step size for all trajectories to
make meaningful updates, which incurs its inherent instability. With Stochastic Trajectory Optimiza-
tion for Motion Planning (STOMP) and Stochastic Gaussian Process Motion Planning (SGPMP) the
comparison is “fairer,” as they are both gradient-free methods. However, the sampling variance of
STOMP is too restrictive, leading to bad solutions along obstacles near the start and goal configuration.
Only SGPMP is comparable in success rate and parallelization quality. Nevertheless, we observe that
tuning the proposal distribution variances is difficult in dense environments since they do not consider
an obstacle model and cannot sample meaningful “sharp turns”, hence requiring small update step
size, more samples per evaluation, and longer iterations to optimize.
MPOT achieves better planning time, success rate, and parallelization quality, some with large mar-
gins, especially for the Panda experiments, while retaining smoothness due to the GP cost. We observe
that MPOT performs particularly well in narrow passages, since waypoints across all trajectories are
updated independently, thus avoiding the observed diminishing stepsize issue of the gradient-based
planners in parallelization settings. Thanks to the explicit trust region property (cf. Appendix D), it is
easier to tune the stepsize since it ensures that the update bound of each waypoint is the polytope
convex hull. Notably, the MPOT planning time scales well with dimensionality.
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5.3 Mobile manipulation experiment
We design a long-horizon, high-dimensional whole-body mobile manipulation planning task to
stress-test our algorithm. This task requires designing many non-convex costs, e.g., signed-distance
fields for gradient-based planners. Moreover, the task space is huge while the SE(3) goal is lo-
cally small (i.e., the local grasp-pose, while having hyper-redundant mobile robot, meaning the
whole-body IK solution may be unreliable); hence, it typically requires long-horizon configura-
tion trajectories and a small update step-size. Notably, the RRTs fail to find a solution, even
with a very high time budget of 1000 seconds, signifying the environment’s difficulty. These fac-
tors also add to the worst performance of GPMP2 in planning time (Table 2). Notably, CHOMP
performs worse than GPMP2 and takes more iterations in a cluttered environment in Table 1. How-
ever, CHOMP beats GPMP2 in runtime complexity, in this case due to its simpler update rule.
STOMP exploration mechanism is restrictive, and we could not tune it to work in this environment.
MPOT achieves much better planning times by avoiding the propagation of gradients in a long
computational chain while retaining the performance with the efficient Sinkhorn Step, facilitating
individual waypoint exploration. However, due to the sparsity of the 36-othorplex (m = 72) defin-
ing the search direction bases in this high-dimensional case, it becomes hard to balance success
rate and smoothness when tuning the algorithm, resulting in worse smoothness than the baselines.

Figure 3: A TIAGo++ robot has to fetch a cup
from a table in a room, then put the cup back on the
red shelf while avoiding collisions with the chairs.

Table 2: Mobile fetch & place. TF[s] depicts
the planning time for achieving first successful
solution. The average S and PL are evaluated on
successful trajectories only. RRT* fails to recover
a solution with a very high time budget of 1000
seconds, signifying the environment difficulty.

TF[s] SUC[%] S PL

RRT* 1000 ± 0.00 0 - -
I-RRT* 1000 ± 0.00 0 - -

STOMP - 0 - -
SGPMP 27.75 ± 0.29 25 0.010 ± 0.001 6.69± 0.38

CHOMP 16.74 ± 0.21 40 0.015 ± 0.001 8.60± 0.73
GPMP2 40.11 ± 0.08 40 0.012 ± 0.015 8.63± 0.53
MPOT 1.49 ± 0.02 55 0.022 ± 0.003 10.53± 0.62

Limitations. MPOT is backed by experimental evi-
dence that its planning time scales distinctively with
high-dimensional tasks in the parallelization setting
while optimizing reasonably smooth trajectories. Our
experiment does not imply that MPOT should re-
place prior methods. MPOT has limitations in some
aspects. First, the entropic-regularized OT has nu-
merical instabilities when the cost matrix dimension
is huge (i.e., huge number of waypoints and vertices).
We use log-domain stabilization to mitigate this is-
sue [35, 36]. However, in rare cases, we still observe
that the Sinkhorn scaling factors diverge, and MPOT
would terminate prematurely. Normalizing the cost
matrix, scaling down the cost terms, and slightly in-
creasing the entropy regularization λ helps. Second,
on the theoretical understanding, we only perform
preliminary analysis based on Assumption 2 to con-
nect directional-direct search literature. Analyzing
Sinkhorn Steps in other conditions for better under-
standing, e.g., Sinkhorn Step gradient approximation
analysis with arbitrary λ > 0, Sinkhorn Step on con-
vex functions for sharper complexity bounds, etc., is
desirable. Third, learning motion priors [13, 24] can
naturally complement MPOT to provide even better
initializations, as currently, we only use GP priors to
provide random initial smooth trajectories.

6 Conclusions and Broader Impacts
We presented MPOT—a gradient-free and efficient batch motion planner that optimizes multiple
high-dimensional trajectories over non-convex objectives. In particular, we proposed the Sinkhorn
Step—a zero-order batch update rule parameterized by a local optimal transport plan with a nice
property of cost-agnostic step bound, effectively updating waypoints across trajectories independently.
We demonstrated that in practice, our method converges, scales very well to high-dimensional
tasks, and provides practically smooth plans. This work opens multiple exciting research questions,
such as investigating further polytope families that can be applied for scaling up to even more
high-dimensional settings, conditional batch updates, or different strategies for adapting the step-
size. Furthermore, while classical motion planning considers single planning instance for each task,
which under-utilizes the modern GPU capability, this work encourages future work that benefits
from vectorization in the algorithmic choices, providing multiple plans and covering several modes,
leading to execution robustness or even for dataset collection for downstream learning tasks. At last,
we foresee potential applications of Sinkhorn Step to sampling methods or variational inference.
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A Theoretical Analysis & Proofs

We investigate the proposed Sinkhorn Step (Definition 2 in Section 3.2) properties for a non-convex
and smooth objective function (Assumption 1). Our preliminary analysis performs at arbitrary
iteration k > 0 and depends on Assumption 1 and Assumption 2 stated in Section 3.

First, we state a proof sketch of Proposition 1.

Proposition 1. ∀P ∈ P, DP forms a positive spanning set.

Proof. Observe that by construction of d-dimensional regular polytope P ∈ P , the convex hull of its
vertex set VP

conv(VP ) =

{∑
i

wivi | vi ∈ VP ,
∑
i

wi = 1, wi > 0, ∀i
}

has dim(conv(VP )) = d dimensions. Hence, trivially, the conic hull of DP positively spans Rd.

Now, we can investigate the quality of DP in the following lemma.

Lemma 1. For any a ∈ Rd,a ̸= 0, ∃d ∈ DP such that

⟨a,d⟩ ≥ µP ∥a∥ , 0 ≤ µp ≤ 1

where µP = 1/
√
d(d+ 1) for P = d-simplex, µP = 1/

√
d for P = d-orthoplex, and µP = 1/

√
2

for P = d-cube.

Proof. From Proposition 1, DP is a positive spanning set, then for any a ∈ Rd, ∃d ∈ DP such
that ⟨a,d⟩ > 0 (Theorem 2.6, [28]). This property results in the positive cosine measure of
DP (Proposition 7, [42])

1 ≥ µP := min
0 ̸=a∈Rd

max
d∈DP

⟨a,d⟩
∥a∥ ∥d∥ > 0 (10)

Equivalently, µP is the largest scalar such that ⟨a,d⟩ ≥ µP ∥a∥ ∥d∥ = µP ∥a∥ , d ∈ DP .

Next, due to the symmetry of the regular polytope family P , there exists an inscribing hypersphere
Sd−1
r with radius r for any P ∈ P [29]. For P , the tangent points of the inscribing hypersphere to the

facets are also the centroid of the facets. Then, the centroid vectors pointing from the origin towards
these tangent points form equal angles to all nearby vertex vectors. Thus, the cosine measure attains
its saddle points Eq. (10) at these centroid vectors having the value

µP =
r

R

with R = 1 is the radius of the circumscribed unit hypersphere. The inradius r for d-simplex,
d-orthoplex, and d-cube are 1/

√
d(d+ 1), 1/

√
d, 1/

√
2, respectively [29].

This lemma has a straightforward geometric implication - for every v ̸= 0,v ∈ Rd, there exists a
search direction d ∈ DP such that the cosine angle between these vectors is acute (i.e., µP > 0).
Then, if we consider the negative gradient vector, which is unknown, there exists a direction in DP

that approximates it well with µP being the quality metric (i.e., larger µP is better). The values of
µP for each polytope type also confirm the intuition that, for d-cube with an exponential number
of vertices m = 2d has a constant cosine measure, while the cosine measure of d-simplex having
m = d+ 1 vertices scales O(1/d) with dimension. Now, we state the key lemma used to prove the
main property of Sinkhorn Step.

Lemma 2 (Key lemma). If Assumption 1 and Assumption 2 holds, then ∀xk ∈ Xk, ∀k > 0

f(xk+1) ≤ f(xk)− µPαk ∥∇f(xk)∥+
L

2
α2
k (11)
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Proof. If the Assumption 2 holds, by Proposition 4.1 in [17], the OT solution Wλ → W0 converges
to the optimal solution with maximum entropy in the set of solutions of the original problem

min
W∈U(1n/n,1n/n)

⟨W ,C⟩.

Moreover, Birkhoff doubly stochastic matrix theorem [43] states that the set of extremal points of
U(1n/n,1n/n) is equal to the set of permutation matrices, and the fundamental theorem of linear
programming (Theorem 2.7 in [44]) states that the minimum of a linear objective in a finite non-empty
polytope is reached at a vertex or a face of the polytope (i.e., the feasible space of the linear program),
leading to the following two cases.

• Case 1: Wλ/n → W0/n converges to a permutation matrix representing the bijective
mapping between the optimizing points and the polytope vertices. There exists a vertex
evaluation permutation forming the cost matrix such that, the update step sk is a descending
step for each optimizing point

∀xk ∈ Xk, sk = αk
1

n
w∗

0D
P = argmin

d∈DP

{f(xk + αkd)} (12)

with w∗
0 as a row in W ∗

0 , then w∗
0/n is a one-hot vector. Let a = −∇f(xk), sk is a descend-

ing step f(xk + sk) ≤ f(xk), then, by Lemma 1, ⟨∇f(xk), sk⟩ ≤ −αkµP ∥∇f(xk)∥.

• Case 2: Wλ/n → W0/n converges to a linear interpolation between the permutation
matrices defining the neighboring vertices of the polytope. In this case, there are infinite
solutions as the linear interpolation between the two bijective maps. There still exists a
vertex evaluation permutation forming the cost matrix such that, the update step sk is the
linear interpolation of multiple tied descending steps for each optimizing point, with sk =∑

i bidi,
∑

i bi = 1, bi ≥ 0, di = argmind∈DP {f(xk + αkd)}. Following the argument
of Case 1, since sk is the linear interpolation of descending steps, we also conclude that
⟨∇f(xk), sk⟩ =

∑
i bi⟨∇f(xk),di⟩ ≤ −∑i biαkµP ∥∇f(xk)∥ = −αkµP ∥∇f(xk)∥.

Finally, starting the L-smooth property of f , we can write

∀x ∈ X, ∀k > 0, f(xk+1) = f(xk + sk) ≤ f(xk) + ⟨∇f(xk), sk⟩+
L

2
∥sk∥2

≤ f(xk)− µPαk ∥∇f(xk)∥+
L

2
α2
k

(13)

recalling that ∥d∥ = 1,∀d ∈ DP .

If the sufficient decrease condition does not hold f(xk)− f(xk+1) < cα2
k with some c > 0, then

the iteration is deemed unsuccessful. In fact, Lemma 2 is similar to (Lemma 10, [42]), which states
that the gradients for these unsuccessful iterations are bounded above by a scalar multiplied with the
stepsize. We can see this by rewriting Eq. (11) as

∥∇f(xk)∥ ≤ 1

µP

(
f(xk)− f(xk+1)

αk
+

L

2
αk

)
<

1

µP

(
c+

L

2

)
αk.

We can implement a check if the sufficient decrease condition holds for ensuring monotonicity in
each iteration, as a variant of the Sinkhorn Step.

Lemma 2 also enables analyzing each optimizing point separately, and hence we can state the
following main theorem separately for each xk ∈ Xk.
Theorem 1 (Main result). If Assumption 1 and Assumption 2 holds at each iteration and the stepsize
is sufficiently small αk = α with 0 < α < 2µP ϵ/L, then with a sufficient number of iteration

K ≥ k(ϵ) :=
f(x0)− f∗

(µP ϵ− Lα
2 )α

− 1,

we have min0≤k≤K ∥∇f(xk)∥ ≤ ϵ, ∀xk ∈ Xk.
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Proof. We attempt the proof by contradiction, thus we assume ∥∇f(xk)∥ > ϵ for all k ≤ k(ϵ).
From Lemma 2, we have ∀xk ∈ Xk, ∀k > 0

f(xk+1) ≤ f(xk)− µPα ∥∇f(xk)∥+
L

2
α2.

From Assumption 1, the objective is bounded below f∗ ≤ f(x). Hence, we can write

f∗ ≤ f(xK+1) < f(xK)− µPα ∥∇f(xK)∥+ L

2
α2

≤ f(xK−1)− µPα(∥∇f(xK)∥+ ∥∇f(xK−1)∥) + 2
L

2
α2

≤ f(x0)− µPα

K∑
k=0

∥∇f(xk)∥+ (K + 1)
L

2
α2

≤ f(x0)− (K + 1)µPαϵ+ (K + 1)
L

2
α2

≤ f(x0)− (K + 1)(µPαϵ−
L

2
α2)

≤ f(x0)− (f(x0)− f∗)

= f∗

(14)

by applying recursively Lemma 2 and the iteration lower bound at the second last line, which is a
contradiction f∗ ≤ f∗. Hence, ∥∇f(xk)∥ ≤ ϵ for some k ≤ k(ϵ).

If L is known, we can compute the optimal stepsize α = µP ϵ/L. Then, the complexity bound
is k(ϵ) = 2L(f(x0)−f∗)

µ2
P ϵ2

− 1. Note that Theorem 1 only guarantees the gradient of some points
in the sequence of Sinkhorn Steps will be arbitrarily small. If in practice, we implement the
sufficient decreasing condition f(xk) − f(xk+1) ≥ cα2

k, then f(xK) ≤ f(xi), ∥∇f(xi)∥ ≤ ϵ
holds. However, this sufficient decrease check may waste some iterations and worsen the performance.
We show in the experiments that the algorithm exhibits convergence behavior without this condition
checking. Finally, we remark on the complexity bounds when using different polytope types for
Sinkhorn Step under Assumption 1 and Assumption 2, by substituting µP according to Lemma 1.

Remark 1. By Theorem 1, with the optimal stepsize α = µP ϵ/L, the complexity bounds for d-simplex,
d-orthoplex and d-cube are O(d2/ϵ2), O(d/ϵ2), and O(1/ϵ2), respectively.

The optimal stepsize with d-simplex reports the same complexity O(d2/ϵ2) as the best-known bound
for directional-direct search [45]. Within the directional-direct search scope, d-cube reports the new
best-known complexity bound O(1/ϵ2), which is independent of dimension d since the number of
search directions is also increased exponentially with dimension. However, in practice, solving a
batch update with d-cube for each iteration is expensive since now the column-size of the cost matrix
is 2d.

B Gaussian Process Trajectory Prior

To provide a trajectory prior with tunable time-correlated covariance for trajectory optimization,
either as initialization prior or as cost, we introduce a prior for continuous-time trajectories using
a GP [46, 47, 8]: τ ∼ GP(µ(t), K(t, t′)), with mean function µ and covariance function K.
As described in [47, 48, 13], a GP prior can be constructed from a linear time-varying stochastic
differential equation

ẋ = A(t)x(t) + u(t) + F (t)w(t) (15)

with u(t) the control input, A(t) and F (t) the time-varying system matrices, and w(t) a disturbance
following the white-noise process w(t) ∼ GP(0,Qcδ(t− t′)), where Qc ≻ 0 is the power-spectral
density matrix. With a chosen discretization time ∆t, the continuous-time GP can be parameter-
ized by a mean vector of Markovian support states µ = [µ(0), ...,µ(T )]⊺ and covariance matrix
K = [K(i, j)]ij,0≤i,j≤T , K(i, j) ∈ Rd×d, resulting in a multivariate Gaussian q(τ ) = N (µ,K).
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The inverse of the covariance matrix has a sparse structure K−1 = D⊺Q−1D (Theorem 1 in [47])
with

D =


I

−Φ1,0 I
. . .

I 0
−ΦT,T−1 I

0 I

 , (16)

and the block diagonal time-correlated noise matrix Q−1 = diag(Σ−1
s ,Q−1

0,1, . . . ,Q
−1
T−1,T ,Σ

−1
g ).

Here, Φt,t+1 is the state transition matrix, Qt,t+1 the covariance between time step t and t +
1, and Σs,Σg are the chosen covariance of the start and goal states. In this work, we mainly
consider the constant-velocity prior (i.e., white-noise-on-acceleration model ẍ(t) = w(t)), which can
approximately represent a wide range of systems such as point-mass dynamics, gravity-compensated
robotics arms [8], differential drive [47], etc., while enjoying its sparse structure for computation
efficiency. As used in our paper, this constant-velocity prior can be constructed from Eq. (15) with
the Markovian state representation x = [x, ẋ] ∈ Rd and

A(t) =

[
0 Id/2
0 0

]
, u = 0, F (t) =

[
0

Id/2

]
(17)

Then, following [47, 8], the state transition and covariance matrix are

Φt,t+1 =

[
Id/2 ∆tId/2
0 Id/2

]
, Qt,t+1 =

[
1
3∆t3Qc

1
2∆t2Qc

1
2∆t2Qc ∆tQc

]
(18)

with the inverse

Q−1
t,t+1 =

[
12∆t−3∆t3Q−1

c −6∆t−2∆t3Q−1
c

−6∆t−2∆t3Q−1
c 4∆t−1Q−1

c

]
, (19)

which are used to compute K.

Consider priors on start state qs(x) = N (µs,Σs) and goal state qg(x) = N (µg,Σg), the GP prior
for discretized trajectory can be factored as follows [47, 8]

qF (τ ) ∝ exp
(
− 1

2
∥τ − µ∥2K−1

)
∝ qs(x0) qg(xT )

T−1∏
t=0

qt(xt,xt+1),
(20)

where each binary GP-factor is defined

qt(xt,xt+1) = exp
{
− 1

2
∥Φt,t+1(xt − µt)− (xt+1 − µt+1)∥2Q−1

t,t+1

}
. (21)

In the main paper, we use this constant-velocity GP formulation to sample initial trajectories. The
initialization GP is parameterized by the constant-velocity straight line µ0 connecting a start config-
uration µs to a goal configuration µg, having moderately high covariance K0. For using this GP
as the cost, we set the zero-mean µ = 0 to describe the uncontrolled trajectory distribution. The
conditioning qg(xT ) of the final waypoint to the goal configuration µg is optional (e.g., when the
goal configuration solution from inverse kinematics is sub-optimal), and we typically use the SE(3)
goal cost.

C Additional Discussions Of Batch Trajectory Optimization

Direct implications of batch trajectory optimization. MPOT can be used as a strong oracle for
collecting datasets due to the solution diversity covering various modes, capturing homotopy classes
of the tasks and their associated contexts. For direct execution, with high variance initialization, an
abundance of solutions vastly increases the probability of discovering good local minima, which we
can select the best solution according to some criteria, e.g., collision avoidance, smoothness, model
consistency, etc.

Solution diversity of MPOT. Batch trajectory optimization can serve as a strong oracle for collecting
datasets or striving to discover a global optimal trajectory for execution. Three main interplaying
factors contribute to the solution diversity, hence discovering better solution modes. They are
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Figure 4: Graphical illustration of Sinkhorn Step with practical considerations. In this point-mass
example, we zoom in on a part of the discretized trajectory. The search direction sets are constructed
from randomly rotated 2-cube vertices at each iteration, depicted by the gray arrows and the green
points. The numbers depict the averaged cost over the (red) probe points in each vertex direction. Note
that for clarity, we only visualize occupancy obstacle cost. The red arrows describe the updates that
transport the waypoints gradually out of the obstacles, depending on the (inner) polytope circumcircle
αk and (outer) probe circle βk.

Algorithm 1: Motion Planning via Optimal Transport

T 0 ∼ N (µ0,K0) and n = 1N/N, m = 1m/m
while termination criteria not met do

(Optional) α← (1− ϵ)α, β ← (1− ϵ)β // Epsilon Annealing for Sinkhorn Step
Construct randomly rotated DP , HP and compute the cost matrix C as in Eq. (9)
Perform Sinkhorn Step T ← T + S

end

• the step radius αk annealing scheme,

• the variances of GP prior initialization,

• the number of plans in a batch.

Additional sampling mechanism that promotes diversity, such as Stein Variational Gradient Descent
(SVGD) [49] can be straightforwardly integrated into the trajectory optimization problem [23]. This
is considered in the future version of this paper to integrate the SVGD update rule with the Sinkhorn
Step (i.e., using the Sinkhorn Step to approximate the score function) for even more diverse trajectory
planning.

Extension to optimizing batch of different trajectory horizons. Currently, for vectorizing the
update of all waypoints across the batch of trajectories, we flatten the batch and horizon dimensions
and apply the Sinkhorn Step. After optimization, we reshape the tensor to the original shape. Notice
that what glues the waypoints in the same trajectory together after optimization is the log of the
Gaussian Process as the model cost, which promotes smoothness and model consistency. Given this
pretext, in case of a batch of different horizon trajectories, we address this case by setting maximum
horizon Tmax and padding with zeros for those trajectories having T < Tmax. Then, we also set zeros
for all rows corresponding to these padded points in the cost matrix CTmax×m. The padded points
are ignored after the barycentric projection. Another way is to maintain an index list of start and
end indices of trajectories after flattening, then the cost computation also depends on this index list.
Finally, the trajectories with different horizons can be extracted based on the index list. Intuitively,
we just need to manipulate cost entries to dictate the behavior of waypoints.
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D Explicit Trust Region Of The Sinkhorn Step

In trajectory optimization, it is crucial to bound the trajectory update at every iteration to be close
to the previous one for stability, and so that the updated parameter remains within the region where
the linear approximations are valid. Given F(·) : RT×d → R to be the planning cost functional,
prior works [7, 50, 8] apply a first-order Taylor expansion at the current parameter τk, while adding a
regularization norm

∆τ ∗ = argmin

{
F(τk) +∇F(τk)∆τ +

β

2
∥∆τk∥M

}
, (22)

resulting in the following update rule by differentiating the right-hand side w.r.t. ∆τ and setting it to
zero

τk+1 = τk +∆τ ∗ = τk − 1

β
M−1∇F(τk). (23)

The metric M depends on the conditioning prior. Ratliff et al. [7] propose M to be the finite
difference matrix, constraining the update to stay in the region of smooth trajectories (i.e., low-
magnitude trajectory derivatives). Mukadam et al. [8] use the metric M = K derived from a GP
prior, also enforcing the dynamics constraint. It is well-known that solving for ∆τ in Eq. (22) is
equivalent to minimizing the linear approximation within the ball of radius defined by the third term
(i.e., the regularization norm) [51]. Hence, these mechanisms can be interpreted as implicitly shaping
the trust region - biasing perturbation region by the prior, connecting the prior to the weighting matrix
M in the update rule.

In contrast, the Sinkhorn Step approaches the trust region problem with a gradient-free perspective
and provides a novel way to explicitly constrain the parameter updates inside a trust region defined by
the regular polytope, without relying on Taylor expansions, where cost functional derivatives are not
always available in practice (e.g., planning with only occupancy maps, planning through contacts). In
this work, the bound on the trajectory update by the Sinkhorn Step is straightforward

∥τk+1 − τk∥ =
∥∥αkdiag(n)−1W ∗

λD
P
∥∥

≤
T∑

t=1

∥∥∥∥αk
1

n
w∗

λD
P

∥∥∥∥
≤

T∑
t=1

∥αkd
∗∥ ≤ Tαk

(24)

resulting from DP being a regular polytope inscribing the (d− 1)-unit hypersphere. In practice, one
could scale the polytope in different directions by multiplying with M induced by priors, and, hence,
shape the trust region in a similar fashion. Note that the bound in Eq. (24) does not depend on the
local cost information.

For completeness of discussion, in sampling-based trajectory optimization, the regularization norm is
related to the variance of the proposal distribution. The trajectory candidates are sampled from the
proposal distribution and evaluated using the Model-Predictive Path Integral (MPPI) update rule [52].
For example, Kalakrishnan et al. [9] construct the variance matrix similarly to the finite difference
matrix, resulting in a sampling distribution with low variance at the tails and high variance at the
center. Recently, Urain et al. [13] propose using the same GP prior variance as in [8] to sample
trajectory candidates for updates, leveraging them for tuning variance across timesteps.

E The Log-Domain Stabilization Sinkhorn Algorithm

Following Proposition 4.1 in [17], for sufficiently small regularization λ, the approximate solution
from the entropic-regularized OT problem

W ∗
λ = argminOTλ(n,m)

approaches the true optimal plan

W ∗ = argmin
W∈U(n,m)

⟨C,W ⟩.
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Algorithm 2: Stabilized Sinkhorn Algorithm

(a0, b0)← (0T ,0m), (ũ0, ṽ0)← (1T ,1m), M = 103.
Compute stabilized kernel P 0 using Eq. (28).
while termination criteria not met do

// Sinkhorn iteration
ũi+1 = n/(P iṽi), ṽi+1 = m/(P i⊺ũi+1).
// Check for numerical instabilities
if
∥∥ũi

∥∥
∞ < M ∨

∥∥ṽi
∥∥
∞ < M then

// Absorption.
(ai, bi)←

(
ai + λ log(ũi), bi + λ log(ṽi)

)
.

Compute stabilized kernel P i using Eq. (28).
(ũi, ṽi)← (1T ,1m).

end
end
Return W ∗

λ = diag(ũ∗)P ∗diag(ṽ∗).

However, small λ incurs numerical instability for a high-dimensional cost matrix, which is usually
the case for our case of batch trajectory optimization. Too high λ, which leads to “blurry” plans,
also harms the MPOT performance. Hence, we utilize the log-domain stabilization for the Sinkhorn
algorithm.

We provide a brief discussion of this log-domain stabilization. For a full treatment of the theoretical
derivations, we refer to [35, 36]. First, with the marginals n ∈ ΣT , m ∈ Σm and the exponentiated
kernel matrix P = exp(−C/λ), the Sinkhorn algorithm aims to find a pair of scaling factors
u ∈ RT

+, v ∈ Rm
+ such that

u⊙ Pv = n, v ⊙ P ⊺u = m, (25)
where ⊙ is the element-wise multiplication (i.e., the Hadamard product). From a typical one vector
initialization v0 = 1m, the Sinkhorn algorithm performs a sequence of (primal) update rules

ui+1 =
n

Pvi
, vi+1 =

m

P ⊺ui+1
, (26)

leading to convergence of the scaling factors u∗,v∗ [53]. Then, the optimal transport plan can be
computed by W ∗

λ = diag(u∗)P diag(v∗).

For small values of λ, the entries of P ,u,v become either very small or very large, thus being
susceptible to numerical problems (e.g., floating point underflow and overflow). To mitigate this
issue, at an iteration i, Chizat et al. [35] suggests a redundant parameterization of the scaling factors
as

ui = ũi ⊙ exp(ai/λ), vi = ṽi ⊙ exp(bi/λ), (27)
with the purpose of keeping ũ, ṽ bounded, while absorbing extreme values of u,v into the log-
domain via redundant vectors a, b. The kernel matrix P i is also stabilized, having elements being
modified as

P i
tj = exp

(
(ai

t + bij −Ctj)/λ
)
, (28)

such that large values in a, b and C cancel out before the exponentiation, which is crucial for small
λ. With these ingredients, we state the log-domain stabilization Sinkhorn algorithm in Algorithm 2.
Note that Algorithm 2 is mathematically equivalent to the original Sinkhorn algorithm, but the
improvement in the numerical stability is significant.

Nevertheless, in practice, the extreme-value issues are still not resolved completely by Algorithm 2
due to the exponentiation of the kernel matrix P i. Moreover, we only check for numerical issues
once per iteration for efficiency. Note that multiple numerical issue checks can be done in an iteration
as a trade-off between computational overhead and stability. Hence, tuning for the cost matrix C
magnitudes and λ, for the values inside the exp function to not become too extreme, is still required
for numerical stability.

F Uniform And Regular Polytopes

We provide a brief discussion on the d-dimensional uniform and regular polytope families used
in the paper (cf. Section 3). For a comprehensive introduction, we refer to [29, 54]. In geometry,
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Table 3: Regular and uniform polytope families.
Dimension Simplices Orthoplexes Hypercubes

d = 2 regular trigon {3} square {4} square {4}
d = 3 regular tetrahedron {3, 3} regular octahedron {3, 4} cube {4, 3}
Any d d-simplex {3d−1} d-orthoplex {3d−2, 4} d-cube {4d−2, 3}

regular polytopes are the generalization in any dimensions of regular polygons (e.g., square, hexagon)
and regular polyhedra (e.g., simplex, cube). The regular polytopes have their elements as j-facets
(0 ≤ j ≤ d) - also called cells, faces, edges, and vertices - being transitive and also regular sub-
polytopes of dimension ≤ d [29]. Specifically, the polytope’s facets are pairwise congruent: there
exists an isometry that maps any facet to any other facet.

To compactly identify regular polytopes, a Schläfli symbol is defined as the form {a, b, c, ..., y, z},
with regular facets as {a, b, c, ..., y}, and regular vertex figures as {b, c, ..., y, z}. For example,

• a polygon having n edges is denoted as {n} (e.g., a square is denoted as {4}),

• a regular polyhedron having {n} faces with p faces joining around a vertex is denoted as
{n, p} (e.g., a cube is denoted as {4, 3}) and {p} is its vertex figure (i.e., a figure of an
exposed polytope when one vertex is "sliced off"),

• a regular 4-polytope having cells {n, p} with q cells joining around an edge is denoted as
{n, p, q} having vertex figure {p, q}, and so on.

A d-dimensional uniform polytope is a generalization of a regular polytope - only retaining the vertex-
transitiveness (i.e., only vertices are pairwise congruent), and is bounded by its uniform facets. In fact,
nearly every uniform polytope can be constructed by Wythoff constructions, such as rectification,
truncation, and alternation from either regular polytopes or other uniform polytopes [54]. This
implies a vast number of possible choices of vertex-transitive uniform polytopes that can be applied
to the Sinkhorn Step. Further research in this direction is interesting.

We present three families of regular and uniform polytopes in Table 3, which are used in this work
due to their construction simplicity (see Fig. 5), and their existence for any dimension. Note that
there are regular and uniform polytope families that do not exist in any dimension [29]. The number
of vertices is n = d+ 1 for a d-simplex, n = 2d for a d-orthoplex, and n = 2d for a d-cube.

Construction. We briefly discuss the vertex coordinate construction of d-regular polytopes P
inscribing a (d− 1)-unit hypersphere with its centroid at the origin. Note that these constructions are
GPU vectorizable. First, we denote the standard basis vectors e1, . . . , ed for Rd.

For a regular d-simplex, we begin the construction with the standard (d − 1)-simplex, which is
the convex hull of the standard basis vectors ∆d−1 = {∑d

i=1 wiei ∈ Rd | ∑d
i=1 wi = 1, wi >

0, for i = 1, . . . , d}. Now, we already got d vertices with the pairwise distance of
√
2. Next, the

final vertex lies on the line perpendicular to the barycenter of the standard simplex, so it has the form
(a/d, . . . , a/d) ∈ Rd for some scalar a. For the final vertex to form regular d-simplex, its distances
to any other vertices have to be

√
2. Hence, we arrive at two choices of the final vertex coordinate

1
d (1±

√
1 + d)1d. Finally, we shift the regular d-simplex centroid to zero and rescale the coordinate

Figure 5: Examples of (left to right) 3-simplex, 3-orthorplex, 3-cube.
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such that its circumradius is 1, resulting in two sets of d+ 1 coordinates(√
1 +

1

d
ei −

1

d
√
d
(1±

√
d+ 1)1d

)
for 1 ≤ i ≤ d, and

1√
d
1d. (29)

Note that we either choose two coordinate sets by choosing + or − in the computation.

For a regular d-orthoplex, the construction is trivial. The vertex coordinates are the positive-negative
pair of the standard basis vectors, resulting in 2d coordinates

e1, −e1, . . . , ed, −ed (30)

For a regular d-cube, the construction is also trivial. The vertex coordinates are constructed by
choosing each entry of the coordinate 1/2 or −1/2, resulting in 2d vertex coordinates.

G d-Dimensional Random Rotation Operator

We describe the random d-dimensional rotation operator applied on polytopes mentioned in Section 4.
Focusing on the computational perspective, we describe the rotation in any dimension through the
lens of matrix eigenvalues. For any d-dimensional rotation, a (proper) rotation matrix R ∈ Rd×d

acting on Rd is an orthogonal matrix R⊺ = R−1, leading to det(R) = 1. Roughly speaking, R does
not apply contraction or expansion to the polytope convex hull vol(DP ) = vol(DPR).

For even dimension d = 2m, there exist d eigenvalues having unit magnitudes φ = e±iθl , l =
1, . . . ,m. There is no dedicated fixed eigenvalue φ = 1 depicting the axis of rotation, and thus no
axis of rotation exists for even-dimensional spaces. For odd dimensions d = 2m+ 1, there exists at
least one fixed eigenvalue φ = 1, and the axis of rotation is an odd-dimensional subspace. To see
this, set φ = 1 in det(R− φI) as follows

det(R− I) = det(R⊺)det(R− I) = det(R⊺R−R⊺)

= det(I −R) = (−1)ddet(R− I) = −det(R− I),
(31)

with (−1)d = −1 for odd dimensions. Hence, det(R− I) = 0. This implies that the corresponding
eigenvector r of φ = 1 is a fixed axis of rotation Rr = r. When there are some null rotations
in the even-dimensional subspace orthogonal to r, i.e., when fixing some θl = 0, an even number
of real unit eigenvalues appears, and thus the total dimension of rotation axis is odd. In general,
the odd-dimensional d = 2m + 1 rotation is parameterized by the same number m of rotation
angles as in the 2m-dimensional rotation. As a remark, in d ≥ 4, there exist pairwise orthogonal
planes of rotations, each parameterized by a rotation angle θ. Interestingly, if we smoothly rotate a
4-dimensional object from a starting orientation and choose rotation angle rates such that θ1 = wθ2
with w is an irrational number, the object will never return to its starting orientation.

Construction. We only present random rotation operator constructions that are straightforward to
vectorize. More methods on any dimensional rotation construction are presented in [55]. For an
even-dimensional space d = 2m, by observing the complex conjugate eigenvalue pairs, the rotation
matrix can be constructed as a block diagonal of 2× 2 matrices

Rl =

[
cos(θl) −sin(θl)
sin(θl) cos(θl)

]
, (32)

describing a rotation associated with the rotation angle θl and the pairs of eigenvalues e±iθl , l =
1, . . . ,m. In fact, this construction constitutes a maximal torus in the special orthogonal group
SO(2m) represented as T (m) = {diag(eiθ1 , . . . , eiθm), ∀l, θl ∈ R}, describing the set of all
simultaneous component rotations in any fixed choice of m pairwise orthogonal rotation planes [56].
This is also a maximal torus for odd-dimensional rotations SO(2m + 1), where the group action
fixes the remaining direction. For instance, the maximal tori in SO(3) are given by rotations about a
fixed axis of rotation, parameterized by a single rotation angle. Hence, we construct a random d× d
rotation matrix by first uniformly sampling the angle vector θ ∈ [0, 2π]m, then computing in batch
the 2× 2 matrices Eq. (32), and finally arranging them as block diagonal matrix.

Fortunately, in this paper, planning in first-order trajectories always results in an even-dimensional
state space. Hence, we do not need to specify the axis of rotation. For general construction
of a uniformly random rotation matrix in any dimension d ≥ 2, readers can refer to the Stewart
method [57] and our implementation of Steward method at https://github.com/anindex/ssax/
blob/main/ssax/ss/rotation.py#L38.
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Figure 6: (Left) An example of the Panda arm plan execution for three simulation frames. The green
line denotes a SE(3) goal. (Right) An example of red collision spheres attached to TIAGo++ mesh
at a configuration. The collision spheres are transformed with the robot links via forward kinematics.

H Related Works

Motion optimization. While sampling-based motion planning algorithms have gained significant
traction [5, 6], they are typically computationally expensive, hindering their application in real-
world problems. Moreover, these methods cannot guarantee smoothness in the trajectory execution,
resulting in jerky robot motions that must be post-processed before executing them on a robot [11]. To
address the need for smooth trajectories, a family of gradient-based methods was proposed [7, 21, 8]
for finding locally optimal solutions. These methods require differentiable cost functions, effectively
requiring crafting or learning signed-distance fields of obstacles. CHOMP [7] and its variants
[58, 59, 50] optimize a cost function using covariant gradient descent over an initially suboptimal
trajectory that connects the start and goal configuration. However, such approaches can easily get
trapped in local minima, usually due to bad initializations. Stochastic trajectory optimizers, e.g.,
STOMP [9] sample candidate trajectories from proposal distributions, evaluate their cost, and weigh
them for performing updates [52, 13]. Although gradient-free methods can handle discontinuous
costs (e.g., planning with surface contact), they may cause oscillatory behavior or failure to converge,
requiring additional heuristics for acquiring better performance [60]. Schulman et al. [61] addresses
the computational complexity of CHOMP and STOMP, which require fine trajectory discretization
for collision checking, proposing a sequential quadratic program with continuous time collision
checking. Gaussian Process Motion Planning (GPMP) [8] casts motion optimization as a probabilistic
inference problem. A trajectory is parameterized as a function of continuous-time that maps to robot
states, while a GP is used as a prior distribution to encourage trajectory smoothness, and a likelihood
function encodes feasibility. The trajectory is inferred via maximum a Posteriori (MAP) estimation
from the posterior distribution of trajectories, constructed out of the GP prior and the likelihood
function. In this work, we perform updates on waypoints across multiple trajectories concurrently.
This view is also considered in methods that resolve trajectory optimization via collocation [62].

Optimal transport in robot planning. While OT has several practical applications in problems of
resource assignment and machine learning [17], its application to robotics is scarce. Most applications
consider swarm and multi-robot coordination [63–67], while OT can be used for exploration during
planning [68] and for curriculum learning [69]. A comprehensive review of OT in control is available
in [70]. Recently, Le et al. [71] proposed a method for re-weighting Riemannian motion policies [72]
using an unbalanced OT at the high level, leading to fast reactive robot motion generation that
effectively escapes local minima.

I Additional Experimental Details

We elaborate on all additional experimental details omitted in the main paper. All experiments are
executed in a single RTX3080Ti GPU and a single AMD Ryzen 5900X CPU. Note that due to the
fact that all codebases are implemented in PyTorch (e.g., forward kinematics, planning objectives,
collision checkings, environments, etc.), hence due to conformity reasons, we also implement RRT*/I-
RRT* in PyTorch. However, we set using CPU when running RRT*/I-RRT* experiments and set
using GPU for MPOT and the other baselines. An example of Panda execution for collision checking
in PyBullet is shown in Fig. 6.
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Table 4: Experiment hyperparameters of MPOT. α0, β0 are the initial stepsize and probe radius. h is
the number of probe points per search direction. eps is the annealing rate. P is the polytope type,
and λ is the entropic scaling of OT problem.

Point-mass Panda TIAGo++

α0 0.38 0.03 0.03
β0 0.5 0.15 0.1
h 10 3 3
ϵ 0.032 0.035 0.05
P d-cube d-orthoplex d-orthoplex
λ 0.01 0.01 0.01

For a fair comparison, we construct the initialization GP prior N (µ0,K0) with a constant-velocity
straight line connecting the start and goal configurations, and sample initial trajectories for all
trajectory optimization algorithms. We use the constant-velocity GP prior Eq. (18), both in the
cost term and for the initial trajectory samples. To the best of our knowledge, the baselines are not
explicitly designed for batch trajectory optimization. Striving for a unifying experiment pipeline and
fair comparison, we reimplement all baselines in PyTorch with vectorization design (beside RRT*)
and fine-tune them with the parallelization setting, which is unavailable in the original codebases.

Notably, we use RRT*/I-RRT* as a feasibility indicator of the environments since they enjoy
probabilistic completeness, i.e., at an infinite time budget if a solution exists these search-based
methods will find the plan. Optimization-based motion planners, like MPOT, GPMP2, CHOMP, and
STOMP are only local optimizers. Therefore, if a solution cannot be found by RRT*/I-RRT*, then it
is not possible that optimization-based approaches can recover a solution.

I.1 MPOT experiment settings

For MPOT, we apply ϵ-annealing, normalize the configuration space limits (e.g., position limits,
joint limits) into the [−1, 1] range, and do the Sinkhorn Step in the normalized space. MPOT is cost-
sensitive due to exponential terms inside the Sinkhorn algorithm, hence, in practice, we normalize
the cost matrix to the range [0, 1]. The MPOT hyperparameters used in the experiments are presented
in Table 4.

I.2 Environments

For the point-mass environment, we populate 15 square and circle obstacles randomly and uniformly
inside x-y limits of [−10, 10], with each obstacle having a radius or width of 2 (cf. Fig. 1). We
generate 100 environment-seeds, and for each environment-seed, we randomly sample 10 collision-
free pairs of start and goal states, resulting in 1000 planning tasks. We plan each task in parallel 100
trajectories of horizon 64. A trajectory is considered successful if collision-free.

For the Panda environment, we also generate 100 environment-seeds. Each environment-seed
contains randomly sampled 15 obstacle-spheres having a radius of 10cm inside the x-y-z limits of
[[−0.7, 0.7], [−0.7, 0.7], [0.1, 1.]] (cf. Fig. 6), ensuring that the Panda’s initial configuration has no
collisions. Then, we sample 5 random collision-free (including self-collision-free) configurations,
we check with RRT* the feasibility of solutions connecting initial and goal configurations, and then
compute the SE(3) pose of the end-effector as a possible goal. Thus, we create a total of 500 planning
tasks and plan in parallel 10 trajectories containing 64 timesteps. To construct the GP prior, we first
solve inverse kinematics (IK) for the SE(3) goal in PyBullet, and then create a constant-velocity
straight line to that goal. A trajectory is considered successful when the robot reaches the SE(3)
goal within a distance threshold with no collisions.

In the TIAGo++ environment, we design a realistic high-dimensional mobile manipulation task in
PyBullet (cf. Fig. 3). The task comprises two parts: the fetch part and place part; thus, it requires
solving two planning problems. Each plan contains 128 timesteps, and we plan a single trajectory
for each planner due to the high computational and memory demands. We generate 20 seeds by
randomly spawning the robot in the room, resulting in 20 tasks in total. To sample initial trajectories
with the GP, we randomly place the robot’s base at the front side of the table or the shelf and solve
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IK using PyBullet. We designed a holonomic base for this experiment. A successful trajectory finds
collision-free plans, successfully grasping the cup and placing it on the shelf.

I.3 Metrics

Comparing various aspects among different types of motion planners is challenging. We aim to
benchmark the capability of planners to parallelize trajectory optimization under dense environment
settings. We tune all baselines to the best performance possible for the respective experimental
settings and then set the convergence threshold and a maximum number of iterations for each planner.

In all experiments, we consider Ns environment-seeds and Nt tasks for each environment-seed. For
each task, we optimize Np plans having T horizon.

Planning Time. We aim to benchmark not only the success rate but also the parallelization quality
of planners. Hence, we tune all baselines for each experiment, and then measure the planning time
T[s] of trajectory optimizers until convergence or till maximum iteration is reached. T[s] is averaged
over Ns ×Nt tasks.

Success Rate. We measure the success rate of task executions over environment-seeds. Specifically,
SUC[%] = Nst/Nt × 100 with Nst being the number of successful task executions (i.e., having at
least a successful trajectory in a batch). The success rate is averaged over Ns environment-seeds.

Parallelization Quality. We measure the parallelization quality, reflecting the success rate of
trajectories in a single task. Specifically, GOOD[%] = Nsp/Np × 100 with Nsp being the number of
successful trajectories in a task, and it is averaged over Ns ×Nt tasks.

Smoothness. We measure changing magnitudes of the optimized velocities as smoothness criteria,
reflecting energy efficiency. This measure can be interpreted as accelerations multiplied by the time
discretization. Specifically, S = 1

T

∑T−1
t=0 ∥ẋt+1 − ẋt∥. S is averaged over successful trajectories in

Ns ×Nt tasks.

Path Length. We measure the trajectory length, reflecting natural execution and also smoothness.
Specifically, PL =

∑T−1
t=0 ∥xt+1 − xt∥. PL is averaged over successful trajectories in Ns ×Nt tasks.

I.4 Motion planning costs

For the obstacle costs, we use an occupancy map having binary values for gradient-free planners
(including MPOT) while we implement signed distance fields (SDFs) of obstacles for the gradient-
based planners. For self-collision costs, we use the common practice of populating with spheres
the robot mesh and transforming them with forward kinematics onto the task space [7, 8]. To be
consistent for all planners, joint limits are enforced as an L2 cost for joint violations. Besides the
point-mass experiment, all collisions are checked by PyBullet. The differentiable forward kinematics
implemented in PyTorch is used for all planners.

Goal Costs. For the SE(3) goal cost, given two points T1 = [R1,p1] and T2 = [R2,p2] in
SE(3), we decompose a translational and rotational part, and choose the following distance as cost
dSE(3)(T1,T2) = ∥p1 − p2∥+ ∥(LogMap(R⊺

1R2))∥ , where LogMap(·) is the operator that maps
an element of SO(3) to its tangent space [73].

Collision Costs. Similar to CHOMP and GPMP2, we populate K collision spheres on the robot body
(shown in Fig. 6). Given differentiable forward kinematics implemented in PyTorch (for propagating
gradients back to configuration space), the obstacle cost for any configuration q is

Cobs(q) =
1

K

K∑
j=1

c(x(q, Sj)) (33)

with x(q, Sj) is the forward kinematics position of the jth-collision sphere, which is computed in
batch. For gradient-based motion optimizers, we design the cost using the signed-distance function
d(·) from the sphere center to the closest obstacle surface (plus the sphere radius) in the task space
with a ϵ > 0 margin

c(x) =

{
d(x) + ϵ if d(x) ≥ −ϵ

0 if d(x) < −ϵ
. (34)
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For gradient-free planners, we discretize the collision spheres into fixed probe points, check them in
batch with the occupancy map, and then average the obstacle cost over probe points.

Self-collision Costs. We group the collision spheres that belong to the same robot links. Then, we
compute the pair-wise link sphere distances. The self-collision cost is the average of the computed
pair-wise distances.

Joint Limits Cost. We also construct a soft constraint on joint limits (and velocity limits) by
computing the L2 norm violation as cost, with a ϵ > 0 margin on each dimension i

Climits(qi) =


∥qmin + ϵ− qi∥ if qi < qmin + ϵ

0 if qmin + ϵ ≤ qi ≤ qmax − ϵ

∥qmax − ϵ− qi∥ else
. (35)

J Ablation Study

In this section, we study different algorithmic aspects, horizons and number of paralleled plans, and
also provide an ablation on polytope choices.

J.1 Algorithmic ablations

We study the empirical convergence and the parallelization quality over Sinkhorn Steps between the
main algorithm MPOT and its variants: MPOT-NoRot - no random rotation applied on the polytopes,
and MPOT-NoAnnealing - annealing option is disabled. This ablation study is conducted on the
point-mass experiment due to the extremely narrow passages and non-smooth, non-convex objective
function, contrasting the performance difference between algorithmic options.

The performance gap between MPOT-NoRot and the others in Fig. 7 is significant. The absence of
random rotation on waypoint polytopes leads to biases in the planning cost approximation due to the
fixed probe set HP . This approximation bias from non-random rotation becomes more prominent in
higher-dimensional tasks due to the sparse search direction set. This experiment result confirms the
robustness gained from the random rotation for arbitrary objective function conditions.

Between MPOT and MPOT-NoAnnealing, the performance gap depends on the context. MPOT
has a faster convergence rate due to annealing the step and probe radius, which leads to a better
approximation of local minima. However, it requires careful tuning of the annealing rate to avoid
premature convergence and missing better local minima. MPOT-NoAnnealing converges slower
and thus takes more time, but eventually discovers more successful local minima (nearly 80%) than
MPOT with annealing (cf. Table 1). This is a trade-off between planning efficiency and parallelization
quality with the annealing option.

J.2 Flattening ablations

In both the point-mass and the Panda environments, we experiment with different horizons T and the
number of parallel plans Np. For each (T,Np) combination, we tune MPOT to achieve a satisfactory
success rate and then measure the planning time until convergence, as shown in Fig. 8. The planning
time heatmap highlights the batch computation property of MPOT, resulting in a nearly symmetric
pattern. Despite long horizons and large batch trajectories, the planning time remains reasonable
(under a minute) and can be run efficiently on a single GPU without excessive memory usage, making
it suitable, for example, for collecting datasets for learning neural network models.

J.3 Polytope ablations

In Table 5, we compare the performance of MPOT-Orthoplex (i.e., MPOT in the Panda experiments)
with its variants: MPOT-Simplex using the d-simplex vertices as search direction set DP , and MPOT-
Random, i.e., not using any polytope structure. For MPOT-Random, we generate 100 points on
the 13-sphere (d = 14 for the Panda environment) as the search direction set D for each waypoint
at each Sinkhorn Step, using the Marsaglia method [74]. As expected, since the d-simplex has
fewer vertices than the d-orthoplex, MPOT-Simplex has better planning time but sacrifices some
success rate due to a more sparse approximation. MPOT-Random, while achieving a comparable
success rate, performs even worse in both planning time and smoothness criteria. We also observe
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Figure 7: Ablation study on algorithmic choices in the point-mass environment. All planners are
terminated at 100 Sinkhorn Steps. All statistics are evaluated on 1000 tasks as described in Section 5.2.
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Figure 8: Planning time heatmap in seconds while varying the horizons and number of paralleled
trajectories on both the point-mass (left) and the Panda (right) environments.

that increasing the number of sampled points on the sphere improves the smoothness marginally.
However, increasing the sample points worsens the planning time in general, inducing more matrix
columns and instabilities in the already large dimension cost matrix (cf. Appendix E) of the OT
problem. This ablation study highlights the significance of the polytope structure for the Sinkhorn
Step in high-dimensional settings.

J.4 Smooth gradient approximation ablations

We conduct an ablation on the gradient approximation of Sinkhorn Step w.r.t. different important hy-
perparameter settings for sanity check of Sinkhorn Step’s optimization behavior on a smooth objective
function. We choose the Styblinski-Tang function (cf. Fig. 9) in 10D as the smooth objective function
due to its variable dimension and multi-modality for non-convex optimization benchmark [75]. We
target the most important hyperparameters of polytope type P , and entropic regularization scalar λ.
These parameters sensitively affect the Sinkhorn Step’s optimization performance. We set the other
important hyperparameters of step size and probe size α = β = 0.1 to be constant, the number of
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Table 5: Polytope ablation study on the Panda environment. All statistics are evaluated on 500 tasks
as described in Section 5.2.

T[s] SUC[%] GOOD[%] S PL

MPOT-Random 2.5 ± 0.0 70.1 ± 23.7 58.3 ± 44.3 0.03 ± 0.01 4.7± 1.2
MPOT-Simplex 0.5 ± 0.0 65.8 ± 24.5 52.1 ± 45.3 0.01 ± 0.01 4.6± 1.1
MPOT-Orthoplex 0.8 ± 0.1 71.6 ± 23.2 60.2 ± 44.4 0.01 ± 0.01 4.6± 0.9

Figure 9: An example optimization run of 1000 points on the Styblinski-Tang function with Sinkhorn
Step. The points are uniformly sampled at the start of optimization. This plot shows the projected
optimization run in the first two dimensions.

probing points per vertices to be 5 and turn off the annealing option for all optimization runs. The
cosine similarity is defined for each particle xi ∈ X as follows:

CSi =
s(xi) · (−∇f(xi))

∥s(xi)∥ ∥−∇f(xi)∥
(36)

Regarding this smooth objective, we observe the gradient approximation quality is consistent
with Lemma 1, with increasing cosine similarities for all curves from left to right column (cf. Fig. 10).
However, regarding entropic regularization scalar λ, we observe higher cosine similarity and lower
curve variance for larger λ. Interestingly, this means higher λ induces both computational benefit
solving entropic OT [19] and higher entropic smoothing bias [76], where the latter regularizes the
gradient approximation directions, while it contrarily blurs the result barycenters in the barycenter
problem. Notably, this Sinkhorn Step smoothing effect is more necessary in the case of P = cube
toward the end of optimization (i.e., near the local minima/fixed points), where the gradients have
small magnitudes and may be noisy while the Sinkhorn Step size is constant. High λ = 0.5 (red
curve) keeps high cosine similarity toward fixed points (cf. Fig. 10), while the lower/sharper λ
exhibits degradation due to noisy random rotated 10-cube with constant-size having 210 vertices.
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Figure 10: Ablation study on gradient approximation with cosine similarity between Sinkhorn Step
directions and true gradients. We choose the Styblinski-Tang function as the test objective function.
Each curve represents an optimization run of 1000 points w.r.t to entropic regularization scalar λ and
polytope choice (corresponding to each column), where each iteration shows the mean and variance
of cosine similarity of points w.r.t their true gradients. We conduct 50 seeds for each curve, where
for all seeds we concatenate the cosine similarities of all optimizing points across the seeds at each
iteration.

Note that the conclusion drawn from this ablation may not apply to the motion planning application
in the main paper since we are evaluating the Sinkhorn Step on smooth objective functions, while the
motion planning costs may have an ill-formed cost landscape. Further investigation of (sub)-gradient
approximation in various objective function conditions is very interesting for future work.
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