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Abstract

Recent advances in 3D-aware GAN models have enabled the generation of re-
alistic and controllable human body images. However, existing methods focus
on the control of major body joints, neglecting the manipulation of expressive
attributes, such as facial expressions, jaw poses, hand poses, and so on. In this
work, we present XAGen, the first 3D generative model for human avatars capa-
ble of expressive control over body, face, and hands. To enhance the fidelity of
small-scale regions like face and hands, we devise a multi-scale and multi-part 3D
representation that models fine details. Based on this representation, we propose a
multi-part rendering technique that disentangles the synthesis of body, face, and
hands to ease model training and enhance geometric quality. Furthermore, we
design multi-part discriminators that evaluate the quality of the generated avatars
with respect to their appearance and fine-grained control capabilities. Experiments
show that XAGen surpasses state-of-the-art methods in terms of realism, diver-
sity, and expressive control abilities. Code and data will be made available at
https://showlab.github.io/xagen.

1 Introduction

3D avatars present an opportunity to create experiences that are exceptionally authentic and immersive
in telepresence [10], augmented reality (AR) [22], and virtual reality (VR) [50]. These applications [1,
52, 3, 35] require the capture of human expressiveness, including poses, gestures, expressions, and
others, to enable photo-realistic generation [65, 70], animation [56], and interaction [33] in virtual
environments.

Traditional methods [11, 60, 4, 20, 23] typically create virtual avatars based on template registration or
expensive multi-camera light stages in well-controlled environments. Recent efforts [69, 43, 5, 26, 16]
have explored the use of generative models to produce 3D human bodies and clothing based on input
parameters, such as SMPL [38], without the need of 3D supervision. Despite these advancements,
current approaches are limited in their ability to handle expressive attributes of the human body, such
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Figure 1: XAGen can synthesize realistic 3D avatars with detailed geometry, while providing
disentangled control over expressive attributes, i.e., facial expressions, jaw, body, and hand poses.

as facial expressions and hand poses, as they primarily focus on body pose and shape conditions. Yet,
there exist scenarios where fine-grained control ability is strongly desired, e.g., performing social
interactions with non-verbal body languages in Metaverse, or driving digital characters to talk with
various expressions and gestures, etc. Due to the lack of comprehensive modeling of the full human
body, existing approaches [43, 5, 26] fail to provide control ability beyond the sparse joints of major
body skeleton, leading to simple and unnatural animation.

In this work, our objective is to enhance the fine-grained control capabilities of GAN-based human
avatar generation model. To achieve this, we introduce the first eXpressive 3D human Avatar
Generation model (XAGen) that can (1) synthesize high-quality 3D human avatars with diverse
realistic appearances and detailed geometries; (2) provide independent control capabilities for fine-
grained attributes, including body poses, hand poses, jaw poses, shapes, and facial expressions.

XAGen is built upon recent unconditional 3D-aware generation models for static images [7, 44]. One
straightforward approach to implement fully animatable avatar generation is extending 3D GAN
models to condition on expressive control signals, such as SMPL-X [47]. Though conceptually
simple, such a direct modification of conditioning signal cannot guarantee promising appearance
quality and control ability, particularly for two crucial yet challenging regions, i.e., the face and
hands. This is because (1) Compared with body, face and hands contain similar or even more
articulations. In addition, their scales are much smaller than arms, torso, and legs in a human body
image, which hinders the gradient propagation from supervision. (2) Face and hands are entangled
with the articulated human body and thus will be severely affected by large body pose deformation,
leading to optimization difficulty when training solely on full-body image collections.

To address the above challenges, we decompose the learning process of body, face, and hands by
adopting a multi-scale and multi-part 3D representation and rendering multiple parts independently
using their respective observation viewpoints and control parameters. The rendered images are passed
to multi-part discriminators, which provide multi-scale supervision during the training process.

With these careful designs, XAGen can synthesize photo-realistic 3D human avatars that can be
animated effectively by manipulating the corresponding control parameters for expressions and poses,
as depicted in Figure 1. We conduct extensive experiments on a variety of benchmarks [18, 68, 14, 36],
demonstrating the superiority of XAGen over state-of-the-arts in terms of appearance, geometry, and
controllability. Moreover, XAGen supports various downstream applications such as text-guided
avatar creation and audio-driven animation, expanding its potential for practical scenarios.

Our contributions are three-fold: (1) To the best of our knowledge, XAGen is the first 3D GAN model
for fully animatable human avatar generation. (2) We propose a novel framework that incorporates
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multi-scale and multi-part 3D representation together with multi-part rendering technique to enhance
the quality and control ability, particularly for the face and hands. (3) Experiments demonstrate
XAGen surpasses state-of-the-art methods in terms of both quality and controllability, which enables
various downstream applications, including text-guided avatar synthesis and audio-driven animation.

2 Related work

Generative models for avatar creation. Generative models [27, 28, 51] have demonstrated unprece-
dented capability for synthesizing high-resolution photo-realistic images. Building upon these genera-
tive models, follow-up works [7, 44, 55, 59, 63] have focused on extending 2D image generation to the
3D domain by incorporating neural radiance field [42] or differentiable rasterization [29]. Although
enabling 3D-aware generation, these works fail to provide control ability to manipulate the synthe-
sized portrait images. To address this limitation, recent research efforts [64, 26, 43, 69, 57, 16, 71]
have explored animatable 3D avatar generation leveraging parametric models for face [32] and
body [38]. These works employ inverse [31] or forward [9] skinning techniques to control the
facial attributes or body poses of the generated canonical avatars [69, 71]. For human body avatars,
additional challenges arise due to their articulation properties. Consequently, generative models
for human avatars have explored effective 3D representation designs. Among them, ENARF [43]
divides an efficient 3D representation [7] into multiple parts, with each part representing one bone.
EVA3D [26] employs a similar multi-part design by developing a compositional neural radiance field.
Despite enabling body control, such representation fails to generate the details of human faces or
hands since these parts only occupy small regions in the human body images.

Our method differs in two aspects. First, existing works can either control face or body, whereas ours
is the first 3D avatar generation model with simultaneous fine-grained control over the face, body,
and hands. Second, we devise a multi-scale and multi-part 3D representation, allowing for generating
human body with high fidelity even for small regions like face and hands.

Expressive 3D human modeling. Existing 3D human reconstruction approaches can be categorized
into two main categories depending on whether explicit or implicit representations are used. Explicit
representations mainly utilize the pre-defined mesh topology, such as statistical parametric models [38,
62, 45, 2] or personalized mesh registrations [19, 12], to model naked human bodies with various
poses and shapes. To enhance the expressiveness, recent works have developed expressive statistical
models capable of representing details beyond major human body [47, 46, 17] or introduced the
surface deformation to capture fine-grained features [30, 58]. On the other hand, leveraging the
remarkable advances in implicit neural representations [41, 42], another line of research has proposed
to either rely purely on implicit representations [53] or combine it with statistical models [61, 48, 8]
to reconstruct expressive 3D human bodies. The most recent work [15, 54] proposed to learn a
single full-body avatar from multi-part portrait videos or 3D scans. In contrast, our approach focuses
on developing 3D generative model for fully animatable human avatars, which is trainable on only
unstructured 2D image collections.

3 Method

In this section, we introduce XAGen, a 3D generative model for synthesizing photo-realistic human
avatars with expressive and disentangled controllability over facial expression, shape, jaw pose, body
pose, and hand pose. Figure 2 depicts the pipeline of our method.

Given a random noise z sampled from Gaussian distribution, XAGen first synthesizes a human avatar
with canonical body, face, and hand configurations. In this work, we use X-pose [34] and neutral
shape, face, and hand as canonical configurations. We leverage Tri-plane [7] as the fundamental
building block of 3D representation in our canonical generator. To increase the capability of 3D
representation for the smaller-scale face and hands, we introduce multi-part and multi-scale designs
into the canonical Tri-plane (Sec. 3.1). A mapping network first encodes z and the camera viewpoint of
body cb into latent code w. The canonical generator then synthesizes three Tri-planes Fk conditioned
on w, where k ∈ {b, f, h} which stands for {body, face, hand}.

Based on the generated canonical avatar, we deform it from canonical space to observation space
under the guidance of control signal pb parameterized by an expressive statistical full body model, i.e.,
SMPL-X [47]. We adopt volumetric rendering [39] to synthesize the full body image. However, due
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Figure 2: Pipeline of XAGen. Given a random noise z, the canonical generator synthesizes the avatar
in the format of canonical multi-part and multi-scale Tri-planes given the corresponding camera
pose cb. We then deform the canonical avatar under the guidance of control parameters p* to render
multi-part images using respective camera poses c* and upsample the images using a super-resolution
module. Discriminators encode the output images, camera poses, and control parameters into real or
fake probabilities to critique the rendered images. IS represents inverse skinning.

to the scale imbalance between the face/hands and body, rendering only the full body image cannot
guarantee quality for these detailed regions. To address this issue, we propose a multi-part rendering
technique (Sec. 3.2). Specifically, we employ part-aware deformation and rendering based on the
control parameters (pf and ph) and cameras (cf and ch). Accordingly, to ensure the plausibility and
controllability of the generated avatars, we develop multi-part discriminators to critique the rendered
images (Sec. 3.3).

3.1 Multi-scale and Multi-part Representation

XAGen is designed for expressive human avatars with an emphasis on the high-quality face and
hands. However, the scale imbalance between face/hands and body may hamper the fidelity of the
corresponding regions. To address this issue, we propose a simple yet effective multi-scale and
multi-part representation for expressive human avatar generation. Our multi-scale representation
builds upon the efficient 3D representation, i.e., Tri-plane [7], which stores the generated features on
three orthogonal planes. Specifically, we design three Tri-planes for body, face, and hands, denoted
as Fb ∈ RWb×Wb×3C , Ff ∈ RWf×Wf×3C , and Fh ∈ RWh×Wh×3C , respectively. The size of the face
and hand Tri-planes is set to half of the body Tri-plane, with Wf = Wh = Wb/2.

As depicted in Figure 2, our canonical generator first synthesizes a compact feature map F ∈
RWb×Wb×9C/2, where C represents the number of channels. We then separate and reshape F into Fk,
where k ∈ {b, f, h}, representing the canonical space of the generated human avatar. Furthermore, to
save computation cost, we exploit the symmetry property of hands to represent both left and right
hands using one single Fh through a horizontal flip operation (refer to Appendix for details).

3.2 Multi-part Rendering

Our method is trainable on unstructured 2D human images. Although this largely reduces the difficulty
and cost to obtain data, the training is highly under-constrained due to the presence of diverse poses,
faces, and clothes. To facilitate the training process and improve the appearance quality, we propose a
multi-part rendering strategy. This strategy allows XAGen to learn each part based on the independent
camera poses, which further enhances the geometry quality of the face and hands. Specifically, for
each training image, we utilize a pretrained model [17] to estimate SMPL-X parameters {pb, pf, ph}
and camera poses {cb, cf, ch} for body, face, and hands, respectively. In the rendering stage, we shoot
rays using {cb, cf, ch} and sample points {xb

o,x
f
o,x

h
o} along the rays in the observation space. To

compute the feature for each point, we employ inverse linear-blend skinning [31], which finds the
transformation of each point from observation space to canonical space produced by the canonical
generator. Based on the parameter pk, where k ∈ {b, f, h}, SMPL-X yields an expressive human
body model (v,w), where v ∈ RN×3 represents N vertices, and w ∈ RN×J represents the skinning
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weights of each vertex with respect to joint J . For each point xk,io , where i = 1 · · ·Mk and Mk is the
number of sampled points, we find its nearest neighbour n from vertices v. We then compute the
corresponding transformation from observation space to canonical space

T k,i = (
∑
j

wn
j

[
Rj tj
0 1

] [
I ∆n

0 1

]
)−1, (1)

where j = 1 · · · J , Rj and tj are derived from pk with Rodrigues formula [6], and ∆n represents the
offset caused by pose and shape for vertex n, which is calculated by SMPL-X. Based on this inverse
transformation, we can calculate the coordinates for each point in canonical space xk,ic as

xk,ic = T k,ixk,io , (2)

where we apply homogeneous coordinates for the calculation.

For the face and hands rendering, i.e., k ∈ {f, h}, we directly interpolate their corresponding Tri-
plane Ff and Fh to compute the feature f f,i

c and f h,i
c . Regarding the body rendering, we first define

three bounding boxes Bf,Blh,Brh for face, left and right hands in canonical body space. Then, we
query canonical body points that are outside these bounding boxes from body Tri-plane Fb, while
the canonical points inside these boxes from Ff and Fh. The query process for body point xb,i

c is
mathematically formulated as

f b,i
c =


Q(xb,i

c ,Ff), if xb,i
c ∈ Bf,

Q(xb,i
c ,Fh), if xb,i

c ∈ {Brh,Blh},
Q(xb,i

c ,Fb), if xb,i
c /∈ {Bf,Blh,Brh},

(3)

where Q denotes querying the feature for the given point from the corresponding Tri-planes.

Once the features fk,ic are obtained, they are encoded into color c and geometry d via two lightweight
multi-layer perceptrons (MLP), where c = MLPc(f

k,i
c ). Inspired by prior works [44, 26, 69], we

employ signed distance field (SDF) as a proxy to model geometry. Additionally, following [26, 69],
we also query a base SDF dc in the canonical space, and predict delta SDF, such that d = dc +
MLPd(fk,ic , dc). We then convert the SDF value into density σ = 1

αSigmoid(−dα ) for volume
rendering, where α is a learnable parameter.

To handle the body features queried from multiple Tri-planes, we apply feature composition on RGB
and density using a window function [37] for smoothness transition. Specifically, if point xk,ic,b is
located in the overlapping region between the body and other parts (face, right hand, and left hand),
their features are sampled from both Tri-planes and linearly blended together. More details on the
feature composition can be found in the Appendix. Finally, volume rendering is applied to synthesize
raw images for body, face, and hands, denoted as {I raw

b , I raw
f , I raw

h }. These raw images are then
upsampled into high-resolution images {Ib, If, Ih} by a super-resolution module.

3.3 Multi-part Discriminators

Based on the images synthesized by XAGen generator, we design a discriminator module to critique
the generation results. To ensure both the fine-grained fidelity of appearance and geometry as
well as disentangled control over the full body, including face and hands, we introduce multi-part
discriminators to encode images {Ib, If, Ih} into real-fake scores for adversarial training. As depicted
in Figure 2, these discriminators are conditioned on the respective camera poses to encode 3D priors,
resulting in improved geometries as demonstrated in our experiments. To enhance the control ability
of the face and hands, we further condition face discriminator on expression and shape parameters
[pψf , p

β
f ], and condition hand discriminator on hand pose pθh . We encode the camera pose and condition

parameters into intermediate embeddings by two separate MLPs and pass them to the discriminators.
The multi-part discriminator is formulated as

sk = Dk(Ik,MLPck(ck) + MLPpk(p
′
k)),where p′k =


∅, if k = b
[pψf , p

β
f ], if k = f

pθh , if k = h
. (4)

Here sk denotes the probability of each image Ik being sampled from real data, and Dk refers to the
discriminator corresponding to the specific body part k. For body part, no conditioning parameters
are used because we empirically find that the condition for body hinders the learning of appearance.
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3.4 Training Losses

The non-saturating GAN loss [21] is computed for each discriminator, resulting in Lb, Lf, and Lh. We
also regularize these discriminators using R1 regularization loss [40] LR1. To improve the plausibility
and smoothness of geometry, we compute minimal surface loss LMinsurf, Eikonal loss LEik, and human
prior regularization loss LPrior as suggested in previous works [44, 69].

Due to the occlusion in the full body images, some training samples may not contain visible faces or
hands. Thus, we balance the loss terms for both generator and discriminator based on the visibility of
face Mf and hands Mh, which denote whether face and hands are detected or not. The overall loss
term of XAGen is formulated as

LG = LG
b + λfMf ⊙ LG

f + λhMG
h ⊙ Lh + λMinsurfLMinsurf + λEikLEik + λPriorLPrior,

LD = LD
b + Lb

R1 + λfMf ⊙ (LD
f + Lf

R1) + λhMh ⊙ (LD
h + Lh

R1),
(5)

where ⊙ means instance-wise multiplication, and λ∗ are the weighting factors for each term.

4 Experiments

We evaluate the performance of XAGen on four datasets, i.e., DeepFashion [36], MPV [68], UBC [14],
and SHHQ [18]. These datasets contain diverse full body images of clothed individuals. For each
image in the dataset, we process it to obtain aligned body, face and hand crops, and their corresponding
camera poses and SMPL-X parameters. Please refer to Appendix for more details.

4.1 Comparisons

Baselines. We compare XAGen with four state-of-the-art 3D GAN models for animatable human
image generation: ENARF [43], EVA3D [26], AvatarGen [69], and AG3D [16]. All these methods
utilize 3D human priors to enable the controllability of body pose. ENARF conditions on sparse
skeletons, while others condition on SMPL [38] model. Additionally, AvatarGen and AG3D incorpo-
rate an extra face discriminator to enhance face quality. We adopt the official implementations of
ENARF and EVA3D, and cite results from AG3D directly. As for AvatarGen, it is reproduced and
conditioned on SMPL-X to align with the setup of our model.

Quantitative comparisons. The fidelity of synthesized image is measured by Frechet Inception
Distance (FID) [24] computed between 50K generated images and all the available real images in
each dataset. To study the appearance quality for face and hands, we further crop face (resolution
642) and hands (resolution 482) regions from the generated and real images to compute FIDf and
FIDh. To evaluate pose control ability, we compute Percentage of Correct Keypoints (PCK) between
5K real images and images generated using the same pose condition parameters of real images under
a distance threshold of 0.1. To evaluate this ability in face and hand regions, we also report PCKf
and PCKh. Another critical evaluation for a fully controllable generative model is the disentangled
control of fine-grained attributes. Inspired by previous works [13, 64], we select one attribute from
{expression, shape, jaw pose, body pose, hand pose}, and modify the selected attribute while keeping
others fixed for each synthesis. We then estimate the SMPL-X parameters for 1K generated images
using a pre-trained 3D human reconstruction model [17] and compute the Mean Square Error (MSE)
for the selected attribute between the input and estimated parameters.

Table 1 summarizes the results for appearance quality and pose control ability for body, face, and
hands. It demonstrates that XAGen outperforms existing methods w.r.t. all the evaluation metrics,
indicating its superior performance in generating controllable photo-realistic human images with
high-quality face and hands. Notably, XAGen shows significant improvements over the most recent
method AG3D, achieving more than 20% improvement in FID and FIDf on both DeepFashion and
UBC datasets. Additionally, XAGen achieves state-of-the-art pose control ability, with substantial
performance boost in PCKf, e.g., a relative improvement of 40.90% on MPV dataset against baseline.

Table 2 presents the results for the disentangled control ability of XAGen compared to the baseline
methods. It is worth noting that ENARF and EVA3D are not fully controllable, but we still report
all the evaluation metrics for these two methods to show the controllability lower bound. Notably,
the generated images of ENARF are blurry. Thus, our pose estimator cannot estimate precise jaw
poses, which leads to an outlier on UBC jaw pose. In general, XAGen demonstrates state-of-the-art
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Table 1: Quantitative comparisons with baselines in terms of appearance and overall control ability,
with best results in bold. F.Ctl. indicates whether the approach generates fully controllable human
body or not. ∗We implement AvatarGen by conditioning it on SMPL-X.

DeepFashion [36] MPV [14]

F.Ctl. FID↓ FIDf↓ FIDh↓ PCK↑ PCKf↑ PCKh↑ FID↓ FIDf↓ FIDh↓ PCK↑ PCKf↑ PCKh↑
ENARF [43] ✗ 68.62 52.17 46.86 3.54 3.79 1.34 65.97 47.71 37.08 3.06 3.55 0.67
EVA3D [26] ✗ 15.91 14.63 48.10 56.36 75.43 23.14 14.98 27.48 32.54 33.00 42.47 19.24
AG3D [16] ✗ 10.93 14.79 - - - - - - - - - -
AvatarGen [69]∗ ✓ 9.53 13.96 27.68 60.12 73.38 46.50 10.06 13.08 19.75 38.32 45.26 30.75
XAGen (Ours) ✓ 8.55 10.69 24.26 66.04 87.06 47.56 7.94 12.07 17.35 48.84 63.77 32.01

UBC [68] SHHQ [18]

F.Ctl. FID↓ FIDf↓ FIDh↓ PCK↑ PCKf↑ PCKh↑ FID↓ FIDf↓ FIDh↓ PCK↑ PCKf↑ PCKh↑
ENARF [43] ✗ 36.39 34.27 32.72 6.90 7.44 6.37 79.29 50.19 46.97 4.43 4.62 2.71
EVA3D [26] ✗ 12.61 36.87 45.66 36.31 55.31 8.38 11.99 20.04 39.83 31.24 37.60 18.38
AG3D [16] ✗ 11.04 15.83 - - - - - - - - - -
AvatarGen [69]∗ ✓ 9.75 13.23 18.09 65.31 77.09 55.09 10.52 12.57 28.21 59.18 78.71 36.29
XAGen (Ours) ✓ 8.80 9.82 16.72 69.18 84.18 55.17 5.88 10.06 19.23 65.14 91.44 38.53

performance for fine-grained controls, particularly in expression, jaw, and hand pose, improving upon
baseline by 38.29%, 25.93%, and 33.87% respectively on SHHQ dataset which contains diverse
facial expressions and hand gestures. These results highlight the effectiveness of XAGen in enabling
disentangled control over specific attributes of the generated human avatar images.

Table 2: Quantitative comparisons with baselines in terms of disentangled control ability measured
by MSE. We report Jaw×10−4 and others ×10−2 for simplicity, with best results in bold. ∗We
implement AvatarGen by conditioning it on SMPL-X.

DeepFashion [36] MPV [14]

Exp↓ Shape↓ Jaw↓ Body↓ Hand↓ Exp↓ Shape↓ Jaw↓ Body↓ Hand↓
ENARF [43] 13.47 6.30 5.79 3.14 9.87 11.21 4.91 8.36 2.75 12.90
EVA3D [26] 6.03 2.87 5.11 1.78 3.68 9.97 4.14 13.83 1.80 4.65
AvatarGen [69]∗ 4.92 3.06 5.05 1.23 3.17 8.98 3.88 15.22 1.11 3.47
XAGen (Ours) 4.46 2.77 3.67 1.26 2.95 6.31 3.88 7.43 0.94 2.23

UBC [68] SHHQ [18]

Exp↓ Shape↓ Jaw↓ Body↓ Hand↓ Exp↓ Shape↓ Jaw↓ Body↓ Hand↓
ENARF [43] 10.70 6.11 3.62 1.07 8.19 14.51 6.43 8.16 3.27 9.83
EVA3D [26] 7.00 2.98 5.36 1.00 2.78 7.43 4.15 9.26 1.93 5.15
AvatarGen [69]∗ 9.59 4.50 9.34 1.22 3.01 9.01 3.99 8.87 1.52 4.99
XAGen (Ours) 5.35 2.57 4.76 0.73 1.63 5.56 3.66 6.57 1.24 3.30

Qualitative comparisons. Figure 3 provides qualitative comparisons between XAGen and baselines.
From the results, we observe that ENARF struggles to produce reasonable geometry or realistic
images due to the limitations of low training resolution. While EVA3D and AvatarGen achieve higher
quality, they still fail to synthesize high-fidelity appearance and geometry for the face and hands. In
contrast, XAGen demonstrates superior performance with detailed geometries for face and hands
regions, resulting in more visually appealing human avatar images. The improvement of XAGen
against baseline models is also confirmed by the perceptual user study, which is summarized in
Table 3. Notably, XAGen achieves the best perceptual preference scores for both image appearance
(≥ 57.2%) and geometry (≥ 48.3%) on all the benchmark datasets.

Figure 4 showcases qualitative results for fine-grained control ability. We first observe that ENARF
fails to generate a correct arm for the given body pose. Although EVA3D demonstrates a better
pose condition ability, its shape conditioning ability is limited and the generated face suffers from
unrealistic scaling. On the other hand, AvatarGen shows comparable results for pose and shape
control. However, when it comes to expression, jaw pose, and hand pose controls, ours significantly
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ENARF EVA3D AvatarGen Ours

Figure 3: Comparisons against baselines in terms of appearance and 3D geometry. Our method
produces photo-realistic human images with superior detailed geometries.

Table 3: We conduct a perceptual human study and report participants’ preferences on images and
geometries generated by our method and baselines. It is measured by preference rate (%), with best
results in bold. RGB represents image, and Geo represents geometry. ∗We implement AvatarGen by
conditioning it on SMPL-X.

DeepFashion [36] MPV [14] UBC [68] SHHQ [18]

RGB↑ Geo↑ RGB↑ Geo↑ RGB↑ Geo↑ RGB↑ Geo↑
ENARF [43] 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
EVA3D [26] 17.3 35.6 15.0 17.2 7.8 34.4 11.3 15.5
AvatarGen [69]∗ 15.4 16.1 17.2 18.9 34.4 3.9 28.2 28.6
XAGen (Ours) 67.3 48.3 67.8 63.9 57.2 61.7 60.5 55.9

outperforms AvatarGen, e.g., AvatarGen produces distortion in mouth region and blurred fingers
while XAGen demonstrates natural faces and correct hand poses.

4.2 Ablation studies

To verify the design choices in our method, we conduct ablation studies on SHHQ dataset, which
contains diverse appearances, i.e., various human body, face, and hand poses as well as clothes.

Representation. XAGen adopts a multi-scale and multi-part representation to improve the quality
for face and hands regions. We study the necessity of this design by removing Tri-planes for face and
hands. Table 4a provides the results, indicating that using only a single full-body Tri-plane (without
any specific Tri-planes for face or hands) results in a significant degradation in appearance quality.
Adding either face or hand Tri-plane can alleviate this issue and all the FID metrics drop slightly.
The best results are achieved when both face and hand Tri-planes are enabled, demonstrating the
importance of our multi-scale and multi-part representation.

Multi-part rendering. In our model, we render multiple parts independently in the forward process
to disentangle the learning of body, face, and hands. Table 4b demonstrates that independent rendering
for face is crucial, as it significantly improves both fidelity (FIDf: 20.63 vs. 10.06) and control ability
(Exp: 6.58 vs. 5.56, Jaw: 7.26 vs. 6.57) for face. Similarly, without rendering for hand, FIDh increases
from 18.85 to 25.94, and MSE increases from 3.28 to 4.55 (Table 4c). The effectiveness of multi-part
rendering is further supported by the qualitative results shown in Figure 5. Without independent
rendering, the geometry quality degrades. For example, the eyes and mouth are collapsed without
face rendering, and the model also fails to synthesize geometric details for hand when hand rendering
is disabled. These highlight the importance of multi-part rendering in facilitating the learning of 3D
geometries for different body parts.

Discriminators. To study the effect of multi-part discriminators, we disable each of them during
training. As shown in Table 4b, without face discriminator, the overall appearance quality deteriorates.
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Figure 4: Qualitative comparisons in terms of disentangled control ability. Our method exhibits
state-of-the-art control abilities for body pose, shape, expression, jaw pose, and hand pose.

Table 4: Ablations of our method on SHHQ dataset. We vary our representation, rendering method,
and discriminators to investigate their effectiveness.

Repr. FID↓ FIDf↓ FIDh↓
w/o both 11.50 12.57 20.97
w/ face 11.27 11.95 20.10
w/ hand 9.64 11.61 19.92
w/ both 5.88 10.06 19.23

(a) The effect of multi-scale and
multi-part representations.

Face FID↓ FIDf↓ Exp↓ Jaw↓
w/o Rend 14.53 20.63 6.58 7.26
w/o Disc 7.40 9.20 6.27 6.58
w/ both 5.88 10.06 5.56 6.57

(b) The effect of face rendering and face
discriminator.

Hand FID↓ FIDh↓ Hand↓
w/o Rend 14.28 26.66 4.51
w/o Disc 7.78 16.74 4.46
w/ both 5.88 19.23 3.33

(c) The effect of hand rendering
and hand discriminator.

Despite the slight improvement in face appearance, there is a drop in the control ability, as evidenced
by the increase in the MSE values for expression and jaw pose. A similar observation can be made
for hand discriminator in Table 4c. Furthermore, the qualitative results shown in Figure 5 provide
visual evidence of the impact of the face and hand discriminators on the 3D geometries. When they
are removed, the geometries for face and hand collapse.

4.3 Applications

Text-guided avatar synthesis. Inspired by recent works [25, 69, 67] on text-guided avatar generation,
we leverage a pretrained vision-language encoder CLIP [49] to guide the generation process using
the given text prompt. The text-guided avatar generation process involves randomly sampling a
latent code z and a control parameter pb from the dataset, and optimizing z by maximizing the CLIP
similarities between the synthesized image and text prompt. As shown in Figure 6a, the generated
human avatars exhibit the text-specified attributes, i.e., hair and clothes adhere to the given text
prompt (e.g., brown hair and red T-shirt). The generated avatar can be re-targeted by novel SMPL-X
parameters, allowing for additional control and customization of the synthesis.

Audio-driven animation. The ability of XAGen to generate fully animatable human avatars with
fine-grained control (Figure 1) opens up possibilities for audio-driven animation. The 3D avatars
can be driven by arbitrary SMPL-X motion sequences generated by recent works such as [66] given
audio inputs. Specifically, we sample an audio stream and SMPL-X sequence from TalkSHOW [66]
and use it to animate the generated avatars. As shown in Figure 6b, XAGen is able to synthesize
temporally consistent video animations where the jaw poses of the avatars are synchronized with the
audio stream (highlighted in red box). Additionally, the generated avatars are generalizable given
novel body poses and hand gestures, allowing diverse and expressive animations.

5 Limitations

Although XAGen is able to synthesize photo-realistic and fully animatable human avatars, there are
still areas where improvements can be made: (1) XAGen relies on pre-estimated SMPL-X parameters,
the inaccurate SMPL-X may introduce potential errors into our model, which can lead to artifacts
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Figure 5: Qualitative results for the ablations on multi-part rendering and discriminators.

brown hair woman, red T-shirt, blue jeans

blonde hair woman, pink T-shirt, black trousers

(a) Text-guided avatar synthesis.

… Saudi Arabia’s first female athlete …

t

(b) Audio-driven avatar animation.

Figure 6: Downstream applications of our method.

and degraded body images. Please refer to Sup. Mat. for the experimental analysis of this issue.
We believe our method can benefit from a more accurate SMPL-X estimation method or corrective
operations. (2) SMPL-X only represents naked body. Thus, methods built upon SMPL-X could
struggle with modeling loose clothing, which is a long-standing challenge for 3D human modeling.
We believe an advanced human body prior or independent clothing modeling approach is helpful
to alleviate this issue. (3) Face and hand images in existing human body datasets lack diversity
and sharpness, which affects the fidelity of our generation results, particularly for the novel hand
poses that are out-of-distribution. A more diverse dataset with high-quality face and hand images
could help tackle this problem. (4) XAGen utilizes inverse blend skinning to deform the points from
canonical space to the observation space. However, this process could introduce errors, particularly
when computing nearest neighbors for query points located in the connection or interaction regions.
Thus, exploring more robust and accurate techniques, such as forward skinning [9], could open up
new directions for future work.

6 Conclusion

This work introduces XAGen, a novel 3D avatar generation framework that offers expressive control
over facial expression, shape, body pose, jaw pose, and hand pose. Through the use of multi-scale and
multi-part representation, XAGen can model details for small-scale regions like faces and hands. By
adopting multi-part rendering, XAGen disentangles the learning process and produces realistic details
for appearance and geometry. With multi-part discriminators, our model is capable of synthesizing
high-quality human avatars with disentangled fine-grained control ability. The capabilities of XAGen
open up a range of possibilities for downstream applications, such as text-guided avatar synthesis and
audio-driven animation.
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