
COUNTGD: Multi-Modal Open-World Counting

Niki Amini-Naieni Tengda Han Andrew Zisserman
Visual Geometry Group (VGG)

University of Oxford
{nikian,htd,az}@robots.ox.ac.uk

Abstract

The goal of this paper is to improve the generality and accuracy of open-vocabulary
object counting in images. To improve the generality, we repurpose an open-
vocabulary detection foundation model (GroundingDINO) for the counting task,
and also extend its capabilities by introducing modules to enable specifying the
target object to count by visual exemplars. In turn, these new capabilities – being
able to specify the target object by multi-modalites (text and exemplars) – lead
to an improvement in counting accuracy. We make three contributions: first, we
introduce the first open-world counting model, COUNTGD, where the prompt
can be specified by a text description or visual exemplars or both; second, we
show that the performance of the model significantly improves the state of the art
on multiple counting benchmarks – when using text only, COUNTGD is compa-
rable to or outperforms all previous text-only works, and when using both text
and visual exemplars, we outperform all previous models; third, we carry out
a preliminary study into different interactions between the text and visual ex-
emplar prompts, including the cases where they reinforce each other and where
one restricts the other. The code and an app to test the model are available at
https://www.robots.ox.ac.uk/vgg/research/countgd/.

(b)

"elephant"

Pred: 20, GT: 20

"apple"

Pred: 174, GT: 174 Pred: 5, GT: 5

"the young
women"

"the cats staring
 at the sign"

Visual
Exemplar only

Exemplar
+ "left"

Exemplar
+ "right"

"strawberry"

Pred: 16,
GT: 16

128

Visual Exemplars & Text Text Only

Pred: 1, GT: 1

Exemplar Only Text Only Visual Exemplar & Text Interactions

Pred: 16,
GT: 16

Pred: 2, GT: 2 Pred: 1, GT: 1

Pred: 3, GT: 3

(a) (c) (d)

Figure 1: COUNTGD is capable of taking both visual exemplars and text prompts to produce highly accurate
object counts (a), but also seamlessly supports counting with only text queries or only visual exemplars (b).
The multi-modal visual exemplar and text queries bring extra flexibility to the open-world counting task, such
as using a short phrase (c), or adding additional constraints (the words ‘left’ or ‘right’) to select a sub-set of
the objects (d). These examples are taken from the FSC-147 [42] and CountBench [39] test sets. The visual
exemplars are shown as yellow boxes. (d) visualizes the predicted confidence map of the model, where a high
color intensity indicates a high level of confidence.

1 Introduction
Open-world object counting methods aim to enumerate all the instances of any category of object in
an image. The ‘open-world’ refers to the model’s ability to count objects beyond the set of categories
seen at training, thus enabling the user to specify categories of interest at inference without the need
for model retraining. Recent techniques allow the user to specify the target object with only visual
exemplars – bounding boxes around a few example objects in the image – [32, 35], or only text

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://www.robots.ox.ac.uk/vgg/research/countgd/

descriptions [1, 22]. By accepting either visual exemplars or text as prompts, open-world object
counting methods can adapt to the specific object at inference time. This enables these techniques to
count arbitrary classes of objects as specified by the user.

Methods that use visual exemplars to specify the object currently significantly outperform text-based
counting methods on multiple benchmarks. This is because visual exemplars provide more detailed
information than text – it can take many words to precisely describe an object; and perhaps more
importantly, they provide intrinsic information on the object’s appearance – because the exemplars are
from the same image they already ‘factor in’ the viewpoint and lighting, variables that significantly
affect the object’s appearance. However, while visual exemplar-based approaches are more accurate,
they limit the capabilities and generality of the counting model.

In this paper we introduce a counting model that is able to specify the target object using visual
exemplars, a text description, or both together. The model, named COUNTGD, has superior accuracy
to previous methods, but is also more general. In addition to the performance boost obtained by
specifying the target object using both visual exemplars and text, the interaction of the exemplars and
text can be used to select a sub-set of those objects in the image. These capabilities are illustrated in
Figure 1. This flexible combination of visual exemplars and text description thus provides the model
with more capabilities and information than prior approaches.

To achieve this multi-modal prompt capability, we follow prior work on open-world text-specified
object counting [1], and build on and extend a pre-trained vision-language foundation model, Ground-
ingDINO [33]. We introduce new modules to embed the visual exemplars, and to enable the model to
count, rather than detect. Within the model we cast the additional visual exemplars as text tokens,
and the model first learns to fuse the visual exemplars with text tokens through self-attention, and
then interacts with the image through cross-attention. Because the text tokens are naturally variable
in length, the number of provided visual exemplars are as well. As a result, the model allows users to
specify the object to count with text only, visual exemplars only, or text and any number of visual
exemplars.

In summary, we make the following three contributions: First, we introduce COUNTGD, the first open-
world object counting model that accepts either text or visual exemplars or both simultaneously, in a
single-stage architecture; Second, we evaluate the model on multiple standard counting benchmarks,
including FSC-147 [42], CARPK [20] and CountBench [39], and show that COUNTGD significantly
improves on the state-of-the-art performance by specifying the target object using both exemplars
and text. It also meets or improves on the state-of-the-art for text-only approaches when trained
and evaluated using text-only; Third, we investigate how the text can be used to refine the visual
information provided by the exemplar, for example by filtering on color or relative position in the
image, to specify a sub-set of the objects to count. In addition we make two minor improvements to
the inference stage: one that addresses the problem of double counting due to self-similarity, and the
other to handle the problem of a very high count.

2 Related Work
Prior work on object counting has developed along three axes: (1) the density map versus detection
axis, (2) the class-specific versus open-world (also referred to as “class-agnostic") axis, and (3) the
visual exemplar versus text axis. The pattern is that detection, open-world, and text-based methods
tend to offer more capabilities and be more general than their analogues along each axis. On the other
hand, density map, class-specific, and visual exemplar-based methods tend to be more accurate at the
counting tasks they apply to. COUNTGD integrates the third axis – the visual exemplar versus text
axis – to achieve more general and accurate counting overall. Below, we discuss where prior work
falls along each axis and where COUNTGD stands.
Density Map versus Detection-based Object Counting (Axis 1). In the past, counting techniques
that regress and sum density maps [3, 4, 7, 28, 29, 36, 46], instead of detecting and enumerating
bounding boxes [6, 9, 20, 38], have proven more accurate in cluttered and dense scenes. For example,
density map-based approaches like CounTX [1], LOCA [11], and CounTR [32] achieve lower
counting errors than detection-based approaches such as Mask-RCNN [17] and RetinaNet [30] on
standard counting benchmarks. Concurrent to our work, DAVE [40], integrates density map regression
with object detection to construct a more accurate and explainable two-stage counting system. Like
DAVE, COUNTGD outputs explicit object locations. However, COUNTGD is a single-stage approach
that achieves better counting accuracy than DAVE and other density map-based techniques. Therefore,
while density map-based approaches tend to be more accurate than detectors in highly populated

2

scenes, recent detection-based techniques, including COUNTGD, are beginning to achieve better
accuracy than density map-based alternatives.

Class-specific versus Open-world Object Counting (Axis 2). Object counting methods first
developed as class-specific techniques [4, 5, 37, 46], solving the counting problem for only one
category of object, but recent methods have generalized these approaches to open-world settings,
where counting arbitrary objects is possible. Class-specific methods have been developed to count
cars [25], humans [5], and cells [14]. In contrast, open-world methods can count instances from
all three categories [35]. Because class-specific techniques are more specialized than open-world
approaches, they tend to be more accurate at counting instances from the class they were designed
for. Recent advancements in Vision-Language Foundation Models (VLMs) such as CLIP [41] and
GroundingDINO [33] trained on web-scale image-text pairs produce semantically rich visual and
textual features. These features generalize to a wide range of open-world downstream tasks. Building
on top of these pre-trained VLMs, recent open-world methods [1, 8, 11, 24, 32, 43, 49] have begun to
surpass class-specific approaches in counting accuracy. COUNTGD, like these recent approaches, is
an open-world object counter that achieves competitive performance in comparison to class-specific
alternatives.

Counting with Visual Exemplars versus Counting with Text (Axis 3). Most open-world object
counters approach the problem by using visual exemplars to select the objects in the input image [11,
15, 31, 32, 35, 38, 42, 43, 48, 49], but very recent work [1, 8, 22, 24, 47] has attempted to replace
the visual exemplars with text, enabling new capabilities at the cost of reduced accuracy. The state-
of-the-art text-based approaches, such as GroundingREC [8], CounTX [1], CLIP-Count [22], and
VLCounter [24] are built on top of vision-language foundation models pretrained on large quantities
of data to relate images to textual inputs and map them to a joint embedding space. This allows these
foundation models to understand general concepts learned during extensive pretraining and provides
a mechanism for users to specify extrinsic object properties through text. However, text-based
approaches perform significantly worse than state-of-the-art visual exemplar-based approaches such
as LOCA [11], CounTR [32], and few-shot DAVE [40]. For example, while both GroundingREC
and COUNTGD use the pretrained GroundingDINO [33] vision-language foundation model, unlike
GroundingREC, COUNTGD allows the user to input both visual exemplars and text instead of just
text. This enables COUNTGD to achieve superior counting accuracy in comparison to GroundingREC.
Notably, DAVE [40] is a visual exemplar-based approach that also enables textual prompts, but differs
from COUNTGD in three important ways: (1) it does not address the case when both text and visual
exemplars are available while COUNTGD does, (2) its comparison between text features and image
features is not learned as it is by COUNTGD with attention, and (3) it is a two-stage approach, while
COUNTGD solves the problem in a single stage, without relying on another visual exemplar-based
counting model. Very recently, A Blind Counter (ABC) that does not require text or visual exemplars
was introduced in [19]. ABC discovers different objects to count and provides exemplars indicating
what has been counted. While this approach is more efficient, it does not provide the user with precise
control over the object to count, as exemplar and text-based methods do.

Relation of Counting to other areas. Our work is related to few-shot image classification [45]
and image detection [13, 21, 23] methods. These works require a few query images of novel objects,
and then compare the test image with these image examples to determine its semantic content (for
image classification), or to spatially localize instances (for object detection). Like these methods,
COUNTGD enables us to specify the object to count with visual exemplars (i.e., “query images") but
also allows for textual inputs, and then compares the test image with the multi-modal specifications
to get the final count. Furthermore, we focus on the counting problem, a challenging task for object
detectors.

3 Counting with Visual Exemplars & Text
Here, we describe COUNTGD, a single-stage model for open-world object counting that accepts
either visual exemplars or text or both together as prompts to specify the object to count.

3.1 Overview
Given a target object specified by either visual exemplars as bounding boxes B = {b1, · · · , bN}
around example object instances in the image, or a textual description, t, or both, {B, t}, the
counting model, f , counts the number of occurrences of the object in an image X ∈ RH×W×3, as
ŷ = f(X,B, t), where ŷ is the object count estimated by the counting model f .

3

❄

Visual Exemplars

❄
“blueberry .”

Exemplar tokens

Text tokens

...

Fused features

Image features

Select
Top-K

...

Count

image encoder

text encoder

feature
enhancer

cross-
modality
decoder

threshold:
enumerate

Cross-modality
queries

candidate
instances

Similarity matrix

Similarity map Final detections

Image tokens

RoIAlign

Figure 2: The COUNTGD architecture. At inference the object to be counted can be specified by visual
exemplars or text prompts or both. The input image is passed through the image encoder, fθSwinT to obtain spatial
feature maps at different scales. The visual exemplar tokens are cropped out of this feature map using RoIAlign
(as shown in Figure 3). The text is passed through the text encoder, fθTT to obtain text tokens. In the feature
enhancer, fφ, the visual exemplar tokens and text tokens are fused together with self-attention and cross-attend
to the image features, producing the fused visual exemplar and text features, zv,t, and new image features, zI.
The k image features zI that have the highest cosine similarity with the fused features zv,t are passed to the
cross-modality decoder, fψ , as “cross-modality queries". Finally, the similarity matrix, Ŷ between the outputs
of the cross-modality decoder, fψ , and zv,t is calculated, and outputs that achieve a maximum similarity with
the zv,t above a confidence threshold σ are identified as final detections and enumerated to estimate the final
count. Our model is built on top of GroundingDINO [33] architecture with the additional modules indicated by
blue shading.

❄

multi-scale
image tokensimage encoder

❄

image encoder
up-scale, concat.,

& project

visual
exemplars RoIAlign

visual features for
the exemplars

(a) (b)
Figure 3: The visual feature extraction pipeline for images and visual exemplars. (a) For the input image, a
standard Swin Transformer model is used to extract visual feature maps at multiple spatial resolutions. (b) For
the visual exemplars with their corresponding bounding boxes, we first up-scale the multiple visual feature maps
of the input image to the same resolution, then concatenate these feature maps, and project them to 256 channels
with a 1 × 1 convolution. Finally, we apply a RoIAlign with the bounding box coordinates to get the visual
features for the exemplars.

The architecture of the model is illustrated in Figure 2. COUNTGD is built on top of the open-world
object detector GroundingDINO [33] to benefit from its pretrained open-vocabulary grounding
and detection capabilities. In contrast to GroundingDINO, which only uses text queries for object
detection, COUNTGD also includes visual exemplars as inputs, which increases the performance and
flexibility of the model for object counting. In the following, we first describe the modules of the
COUNTGD architecture, and then discuss its relation to GroundingDINO and in particular what is
frozen, what is trained, and what is added to GroundingDINO.

3.2 COUNTGD Architecture Components

Image Encoder (fθSwinT). The image encoder fθSwinT encodes two types of inputs: the input image
X and the visual exemplars B. The image encoder itself is the Swin-B version of the Swin Trans-
former [34]. As shown in Figure 3 (a), for the input image X , it produces spatial feature maps at three
different scales. These spatial feature maps are projected to 256 dimensions with 1x1 convolutions
to produce the image tokens, feature vectors of length 256 corresponding to the image patches at
different scales, which are input to the feature enhancer, fφ. As shown in Figure 3 (b), for the visual
exemplars B, we reuse the spatial feature map fθSwinT(X) for the input image X , and apply aligned
region-of-interest pooling, RoIAlign [16], with the pixel coordinates specified by the visual exemplars
B. The resulting visual exemplar tokens are 256-dimensional feature vectors like the image and text
tokens.

Text Encoder (fθTT). For the text encoder, fθTT , we use the BERT-base [10] text transformer
pretrained on detection and phrase grounding data with the image encoder, fθSwinT . The text encoder

4

maps the input object description t to a sequence of at most 256 tokens. The encoded text tokens are
256-dimensional feature vectors. While the image encoder fθSwinT produces n image patch features
when there are n multi-scale patches extracted from the input image, and the visual exemplar encoder
produces p visual exemplar features when p visual exemplars are available, the text encoder produces
q text features when there are q tokens, as determined by the BERT tokenizer, in the text t. The n
image tokens, p visual exemplar tokens, and q text tokens are then passed to the feature enhancer fφ,
which fuses the three sources of information with attention.

Feature Enhancer (fφ). The feature enhancer, fφ, is composed of 6 blocks that first fuse the visual
exemplar tokens with the text tokens through self-attention and then fuse the combined features with
the image patch tokens with cross-attention. More specifically, each block consists of self-attention
between the concatenated visual exemplar and text tokens, deformable self-attention between the
image patch tokens, and image-to-text cross-attention and text-to-image cross-attention between the
fused visual exemplar and text tokens and the image patch tokens. These modules enable COUNTGD
to learn to relate information from the input image, visual exemplars and text query altogether. The
feature enhancer fφ outputs two sets of features denoted as zv,t and zI as

(zv,t, zI) = fφ (fθSwinT(X),RoIAlign(fθSwinT(X),B), fθTT(t)) (1)

corresponding to the fused visual exemplar and text tokens, and the image patch tokens, respectively.

Language & Visual Exemplar-guided Query Selection (Select). We select the k image patch
tokens zI that achieve the highest similarity with the fused visual exemplar and text tokens zv,t. This
operation is denoted by Select

(
zI, zIzv,t

T , k
)
, where zIzv,t

T ∈ Rn×(p+q) represents the similarity
scores between the n image patch tokens and the p + q visual exemplar and text tokens. As in
GroundingDINO [33], we set k to 900. These 900 image patch tokens with higher similarity scores
serve as “cross-modality queries" input to the cross-modality decoder fψ .

Cross-modality Decoder (fψ). The cross-modality decoder, fψ , uses self-attention to enhance the
cross-modality queries, image cross-attention to fuse the image patch features zI to the cross-modality
queries, and cross-attention to fuse the visual exemplar and text features zv,t to the cross-modality
queries. In more detail, the cross-modality decoder consists of 6 of these self-attention and cross-
attention blocks. The cross-modality queries are dot-producted with the combined visual exemplar and
text tokens zv,t and passed through an element-wise Sigmoid function to obtain the final confidence
scores as:

Ŷ = Sigmoid
(
fψ

(
zI, zv,t,Select(zI, zIzv,tT , k)

)
zv,t

T
)

(2)

where zv,t are the fused visual exemplar and text features, zI are the image features, k is the number
of queries (i.e., maximum number of detected objects), and Ŷ are the final similarity scores that are
thresholded according to a confidence threshold σ and enumerated to estimate the final object count
ŷ at inference.

Design choices and relation to GroundingDINO. We choose GroundingDINO [33] over other
VLMs due to its pretraining on visual grounding data, providing it with more fine-grained features in
comparison to other VLMs such as CLIP [18].

To extend GroundingDINO to accept visual exemplars, we cast them as text tokens. Because both the
visual exemplars and the text specify the object, we posit that the visual exemplars can be treated
in the same way as the text tokens by GroundingDINO and integrate them into the training and
inference procedures as such. In treating the visual exemplars as additional text tokens within a
phrase, we add self-attention between the phrase corresponding to the visual exemplar and the visual
exemplar rather than keeping them separate. This allows COUNTGD to learn to fuse the visual
exemplar and text tokens to form a more informative specification of the object to count. Similarly,
cross-attention between the image and text features in GroundingDINO’s feature enhancer and cross-
modality decoder becomes cross-attention between the image and the fused visual exemplar and text
features in COUNTGD. Language-guided query selection in GroundingDINO becomes language and
visual exemplar-guided query selection in COUNTGD. In this way, COUNTGD naturally extends
GroundingDINO to input both text and visual exemplars to describe the object.

In GroundingDINO, the image encoder fθSwinT is pre-trained on abundant detection and phrase
grounding data with the text encoder, fθTT , providing it with rich region and text-aware features.
Since we wish to build on this pre-trained joint vision-language embedding, we keep the image
encoder fθSwinT and the text encoder fθTT frozen.

5

3.3 Training
We train the projection layers for extracting the visual exemplar tokens, the feature enhancer, and the
cross-modality decoder of COUNTGD. The trainable parameters are updated according to a loss L,
while the rest of the parameters remain unchanged. This means COUNTGD effectively leverages the
large-scale pre-training of the foundation model it extends.

The training loss L includes a localization term Lloc and a classification term Lcls. For the localization
term Lloc, we regress the object centers from the final cross-modality queries output by the decoder
fψ, and use the L1 loss between the predicted box center ĉ and the ground truth c, similar to [50].
For the classification term Lcls, we compute the similarity matrix Ŷ from Equation 2 and calculate
the focal loss for each score. The final loss is:

L = λlocLloc + λclsLcls = λloc

l∑
i=1

|ĉi − ci|+ λclsFocalLoss(Ŷ, T) (3)

where λloc and λcls are hyperparameters optimized using a grid search on the validation set and
T ∈ {0, 1}k×(l+1) represents an optimal Hungarian matching between the k predicted queries and the
l ground truth object instances, and the label “no object." Refer to the finetuning strategy implemented
in [51] for further details.

3.4 Inference
To predict the object count with COUNTGD, the image X , text t, and visual exemplars B are inputted
to the model, outputting a similarity matrix Ŷ ∈ Rk×(p+q). The maximum score over all p+ q visual
exemplar and text tokens is extracted for each of the k queries. Maximum scores above a confidence
threshold σ are enumerated to estimate the object count.

4 Experiments

COUNTGD is trained on the FSC-147 [42] object counting dataset training set, and then evaluated on
the FSC-147 test set, and two other benchmark datasets (without any fine-tuning). We first describe
the datasets, and then discuss the performance.

4.1 Datasets & Metrics

FSC-147 [42]. FSC-147 contains 6135 images with 89 classes in the training set, 29 classes in the
validation set, and 29 classes in the test set. The classes in the training, validation, and test sets do not
overlap. Each image is annotated with at least three visual exemplars. For text descriptions, we use
the singular forms of the class names in FSC-147-D [1] with any prefixes such as “the" removed. For
example, we change “the donuts in the donut tray" in FSC-147-D to “donut" by removing the prefix
“the," extracting the class name “donuts," and then singularizing it to “donut."

Corrections to FSC-147. We make two corrections to FSC-147 and report results with and without
these corrections. (1) As noted in [32], image 7171.jpg has incorrect visual exemplars labeled.
Since, unlike the model in [32], COUNTGD can input either visual exemplars or text, for this example
we only provide the model with text. (2) Image 7611.jpg has the incorrect text description “lego"
even though the lego studs not the lego bricks should be counted. We change the description to
“yellow lego stud" for this example.

CARPK [20]. CARPK contains images of parking lots captured by overhead drones with a
training set and test set of 989 and 459 images respectively. Each image is annotated with at least two
bounding boxes. We use the same two bounding boxes selected in [32] as the visual exemplars for
each image. We use the class name “car" as the text description.

CountBench [39]. CountBench contains 540 images with 2-10 objects and captions describing
the image as well as the number of objects to count. We create text descriptions for a 504-image
subset of CountBench, removing inappropriate images and images with links that are unavailable.
We give details of how the class names are obtained from the captions accompanying each image in
the Appendix.

Metrics. Following prior work on object counting [1, 11, 32], the Mean Absolute Error (MAE) and
the Root Mean Squared Error (RMSE) are used to measure performance. We define these metrics in
the Appendix.

6

"strawberry"

11 25

"green pea" "hot air balloon""marble"

9 14

"stamp" "deer" "egg"

202 21 10

"lego"

30

"the miniature
roses"

9

"the little girls playing
with bubbles"

"the framed pictures arranged on the wall
depicting nature, animals, and country life"

27 8

"the world’s
greatest magicians"

"the beautiful butterfly
wall stickers"

3

"the tomatoes on the
wooden background"

2

"the blue
peacock birds"

6

FSC-
147

Count
Bench

Figure 4: Qualitative counting results on FSC-147 [42] and CountBench [39] using the multi-modal COUNTGD.
The model is trained and tested on FSC-147 visual exemplars and text. Input text is written above each image,
and visual exemplars are indicated by the red boxes. On CountBench, we test the same model trained on the
FSC-147 in a zero-shot way with only text (there are no visual exemplars for CountBench). Blue words indicate
the subject of each caption input to the model. In both cases, COUNTGD predicts the count in all images shown
with 100% accuracy. Note on the CountBench examples, the model counts the specified objects correctly when
there are multiple types of objects in the image, such as the tomatoes with cucumbers, and the girls with bubbles.
Detected points are filtered with a Gaussian and plotted under the input images for visualization purposes.

4.2 Implementation

Training. The model is trained for 30 epochs on the FSC-147 training dataset using Adam optimizer
and standard augmentations. The image and text encoders, fθSwinT and fθTT , are frozen during training.
Full details are given in the Appendix.

Inference. At inference, each image is resized such that its shortest side length is 800 pixels, and
its aspect ratio is maintained. The image is then normalized and passed to the model. The visual ex-
emplars are passed in as bounding boxes, and the special token “ .” is appended to the text description
before providing it to the model. In the Appendix we give details of two important improvements:
one to avoid double counting given self-similarity of the target object (like a butterfly [32]), and the
other using adaptive cropping to overcome the 900 counting quota of the the model.

4.3 Comparison to State-of-the-art on Standard Benchmarks

Here we show that COUNTGD achieves comparable or exceeds state-of-the-art performance for
text-only open-world object counting when using only text, and exceeds the performance of all
open-world object counting methods when using both visual exemplars and text on three benchmarks.

FSC-147 [42]. In Table 1, we test COUNTGD under two settings: (1) trained and tested with only
text (denoted as COUNTGDtxt), and (2) trained and tested with both 3 visual exemplars and text
(denoted as COUNTGD). COUNTGD trained and tested with both visual exemplars and text sets
a new state-of-the-art for counting accuracy on FSC-147, achieving significantly lower counting
errors than all prior approaches to open-world object counting. Training with only text achieves
comparable counting accuracy to state-of-the-art text-only open-world object counting methods.
The concurrent method GroundingREC [8] achieves slightly lower mean absolute error values than
COUNTGDtxt, while COUNTGDtxt achieves lower root mean squared error values. The results for
GroundingREC and COUNTGDtxt are likely close to each other since both methods leverage the
pretrained GroundingDINO [33] foundation model. However, unlike GroundingREC, COUNTGD
can fuse information from both text and visual exemplars instead of using only text, enabling a
significant improvement. Similarly, while a pre-trained GroundingDINO performs poorly at counting
(top row of Table 1), a GroundingDINO model fine-tuned on FSC-147 achieves good results [8],
that match the performance of COUNTGDtxt. Adding visual exemplars to COUNTGD significantly
improves its performance over fine-tuned GroundingDINO (Table 1, lowest row shows a test MAE of

7

Table 1: FSC-147 [42] comparison with the state-of-the-art text-only and visual exemplar-only open-world
counting methods. Multi-modal COUNTGD trained and tested with both visual exemplars and text achieves
state-of-the-art counting accuracy for open-world object counting, beating all text-only and visual exemplar-only
approaches. COUNTGDtxt trained and tested with only text achieves comparable performance to state-of-
the-art text-only counting approaches. * = correction of erroneous GT labels, as explained in section 4.1.
GroundingREC [8], DAVEprm, and DAVE [40] are concurrent work. Lower MAE and RMSE values mean more
accurate results.

Method Year Paper Venue How to Specify Validation Test
the Class MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

GroundingDINO [33] 2024 ECCV Text 54.45 137.12 54.16 157.87
Patch-selection [47] 2023 CVPR Text 26.93 88.63 22.09 115.17
CLIP-count [22] 2023 ACMMM Text 18.79 61.18 17.78 106.62
VLCounter [24] 2023 AAAI Text 18.06 65.13 17.05 106.16
CounTX [1] 2023 BMVC Text 17.10 65.61 15.88 106.29
CounTX∗ [1] 2023 BMVC Text 17.10 65.61 15.69 106.06
DAVEprm [40] 2024 CVPR Text 15.48 52.57 14.90 103.42
GroundingREC [8] 2024 CVPR Text 10.06 58.62 10.12 107.19
COUNTGDtxt (ours) 2024 NeurIPS Text 12.14 47.51 14.76 120.42
COUNTGD∗

txt (ours) 2024 NeurIPS Text 12.14 47.51 12.98 98.35
CounTR [32] 2022 BMVC Visual Exemplars 13.13 49.83 11.95 91.23
LOCA [11] 2023 ICCV Visual Exemplars 10.24 32.56 10.79 56.97
DAVE [40] 2024 CVPR Visual Exemplars 8.91 28.08 8.66 32.36
COUNTGD (ours) 2024 NeurIPS Visual Exemplars & Text 7.10 26.08 6.75 43.65
COUNTGD∗ (ours) 2024 NeurIPS Visual Exemplars & Text 7.10 26.08 5.74 24.09

Table 2: Comparison with state-of-the-art open-world counting methods. (top) On CARPK [20], we compare
with text-only and visual exemplar-only methods. COUNTGD, trained with both visual exemplars and text on
FSC-147 [42], achieves lower error values than all text-only and visual exemplar-only methods, without being
trained on any images in CARPK, using either text-only or both text and two visual exemplars at inference.
(bottom) On CountBench [39], we compare with currently the best publicly available text-only open-world
counting method, CounTX [1]. COUNTGD (trained on both visual exemplars and text), given only text and zero-
shot, achieves significantly lower errors than CounTX. Note, CountBench does not provide visual exemplars.

Dataset Method Year Paper Venue How to Specify Fine-tuned Test
the Class MAE ↓ RMSE ↓

CARPK

CLIP-count [22] 2023 ACMM Text ✗ 11.96 16.61
CounTX [1] 2023 BMVC Text ✓ 8.13 10.87
VLCounter [24] 2023 AAAI Text ✗ 6.46 8.68
COUNTGD (ours) 2024 NeurIPS Text ✗ 3.83 5.41
LOCA [11] 2023 ICCV Visual Exemplars ✗ 9.97 12.51
CounTR [32] 2022 BMVC Visual Exemplars ✓ 5.75 7.45
SAFECount [49] 2022 WACV Visual Exemplars ✓ 5.33 7.04
COUNTGD (ours) 2024 NeurIPS Visual Exemplars & Text ✗ 3.68 5.17

CountBench CounTX [1] 2023 BMVC Text ✗ 6.64 15.75
COUNTGD (ours) 2024 NeurIPS Text ✗ 0.86 3.1

5.74 and a test RMSE of 24.09 for COUNTGDcompared to the test MAE of 10.82 and test RMSE
of 104 noted in [8] for fine-tuned GroundingDINO). Unlike COUNTGD, GroundingDINO does not
allow for visual exemplars as additional inputs.

In Figure 4, we give qualitative examples of the detections that COUNTGD outputs given both visual
exemplars and text from the FSC-147 test set. Note how in the first image, COUNTGD only counts
the strawberries and not the white cookies. Prior work has shown that visual exemplar-only methods
struggle to count only one category of object when there are repeating instances from multiple
categories in an image [40]. COUNTGD handles this issue very well in this example by leveraging
the generalization capabilities of the pretrained vision-language model GroundingDINO [33].

CARPK [20]. To test cross-dataset generalization, COUNTGD is trained on FSC-147 [42], and
tested on the CARPK car counting dataset zero-shot, without being trained on any images in CARPK.
In Table 2, COUNTGD is trained on the FSC-147 [42] training set with both visual exemplars and
text, and tested on the CARPK car counting dataset under two settings: (1) using only the text input
“car", and (2) using both the text input “car" and the same two visual exemplars as [32]. Under
both settings, COUNTGD achieves state-of-the-art accuracy on CARPK for all open-world object
counting methods without being trained on any images in CARPK, achieving lower counting errors
than methods like CounTR [32] and SAFECount [49] that were fine-tuned on CARPK.

CountBench [39]. We train COUNTGD on FSC-147, which has at least seven objects in each
training image, and evaluate its generalization to counting low numbers of objects in the CountBench
test set zero-shot. In Table 2, we compare COUNTGD’s performance on counting low numbers

8

Table 3: Ablation study I: COUNTGD trained and tested with text only, visual exemplars only, and text and
visual exemplars together on FSC-147 [42]. Multi-modal COUNTGD trained and tested with both text and visual
exemplars achieves the lowest counting errors.

Training and testing setting Val Test
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

COUNTGD (Text) 12.14 47.51 12.98 98.35
COUNTGD (Visual Exemplars) 7.46 29.54 8.31 91.05
COUNTGD (Text & Visual Exemplars) 7.10 26.08 5.74 24.09

Exemplar

Input Image Only Exemplar Exemplar + “white” Input Image

Exemplar

Only Exemplar Exemplar + “red” Exemplar + “black”

Input Image

Exemplar

Only Exemplar Exemplar + “top row” Exemplar + “bottom row”

(a) (b)

(c)

Figure 5: Studying visual exemplar and text interactions. We plot the confidence scores of the instances for
each image. In (a) and (b) we show we can specify shape with the exemplar and modify color with text. In (c)
we show we can specify spatial location with text, and shape with the exemplar.

of objects (2–10) to CounTX [1], currently the best (according to performance on FSC-147 [42])
publicly available pre-trained open-world text-specified object counting methods. For this experiment,
COUNTGD trained with both visual exemplars and text on FSC-147, is tested on CountBench zero
shot given only text. Because CountBench contains long captions that describe more than the object
to count, we only threshold text token similarity scores corresponding to the subject of each caption.
COUNTGD achieves significantly better performance than CounTX on this dataset. In Figure 4, we
show qualitative examples of the detections output by COUNTGD. The subject of each caption is
shown with yellow text.

4.4 Ablation Study

Uni-Modal vs. Multi-Modal Training. In Table 3, we compare COUNTGD’s performance using
different training and inference procedures on FSC-147 [42]. Training on text only and testing
with text only achieves performance comparable to state-of-the-art counting accuracy for text-only
approaches, demonstrating the superiority of the GroundingDINO [33] architecture that we leverage.
Training with visual exemplars only and testing with visual exemplars only results in state-of-the-art
performance on two out of four of the metrics (mean absolute errors on both the validation and
test sets) for visual exemplar-only approaches. This is surprising given that GroundingDINO was
pretrained to relate text to images not visual exemplars to images. Despite this, COUNTGD performs
remarkably well in this setting. Multi-modal training and testing with both visual exemplars and text
beats both uni-modal approaches and sets a new state-of-the-art for open-world object counting. This
ablation study shows that the visual exemplars provide more information than the text in FSC-147
as the performance with visual exemplars only is significantly better than the performance with text
only. It also demonstrates that multi-modal training and inference is the superior strategy as it allows
COUNTGD to take advantage of two sources of information about the object instead of one. In Table
5 in the Appendix, we additionally include an ablation study showing the influence of our proposed
SAM Test-time normalization and adaptive cropping strategies.

4.5 Language and Exemplar Interactions
Up to this point we have used the text and visual exemplar prompts to specify the target object
in a complementary manner; for example giving a visual exemplar of a ‘strawberry’ with the text
‘strawberry’. It has been seen that the counting performance with prompts in both modalities is, in
general, equal or superior to text alone. In this section we investigate qualitatively the case where the
text refines or filters the visual information provided by the exemplars. For example, where the visual
exemplar is car, but the text specifies the color, and only cars of that color are counted.

9

In this study, unlike before, we freeze the feature enhancer in addition to the image and text encoders
and finetune the rest of the model on FSC-147 [42]. We find that freezing the feature enhancer is
necessary for many of these interactions to emerge. Once trained, the new model can use the text to
filter instances picked out by the exemplar, and the exemplar can increase the confidence when it
reinforces the text. In Figure 5 we show several examples of the interactions observed.

5 Conclusion & Future Work
We have extended the generality of open-world counting by introducing a model that can accept
visual exemplars or text descriptions or both as prompts to specify the target object to count. The
complementarity of these prompts in turn leads to improved counting performance. There are three
research directions that naturally follow on from this work: (i) the performance could probably be
further improved by training on larger scale datasets, for example using synthetic data as demonstrated
recently for counting [27]; (ii) a larger training set would enable a thorough investigation of freezing
more of the GroundingDINO model when adding our new visual exemplar modules; and finally, (iii)
the model does not currently predict the errors of its estimates like other computer vision models
do [2, 44].

Acknowledgement

The authors would like to thank Shilong Liu for his extensive support of GroundingDINO [33],
Zechen Bai for his extensive support of Patch CLIP introduced in [12], and Kiana Amini-Naieni for
her help in labeling the CountBench [39] images. We would also like to thank Oishi Deb, Abhishek
Dutta, Horace Lee, Orest Kupyn, Vladimir Iashin, and Paul Engstler for providing detailed feedback
on the CountGD app. We would further like to thank Ahsen Khaliq, Toshihiro Hayashi, Jean-Benoit
Delbrouck, Luc Georges, Michelle Habonneau, and Yuvraj Sharma for their help in deploying the
app on Hugging Face. The app is supported by a Hugging Face Community GPU grant. This
research is funded by an AWS Studentship, the Reuben Foundation, the AIMS CDT program at
the University of Oxford, EPSRC Programme Grant VisualAI EP/T028572/1, and a Royal Society
Research Professorship RP\R1\191132.

10

References
[1] N. Amini-Naieni, K. Amini-Naieni, T. Han, and A. Zisserman. Open-world text-specified object

counting. In Proceedings of the British Machine Vision Conference, 2023.

[2] N. Amini-Naieni, T. Jakab, A. Vedaldi, and R. Clark. Instant uncertainty calibration of NeRFs
using a meta-calibrator. In Proceedings of the European Conference on Computer Vision, 2024.

[3] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman. Interactive object counting. In
Proceedings of the European Conference on Computer Vision, 2014.

[4] C. Arteta, V. Lempitsky, and A. Zisserman. Counting in the wild. In Proceedings of the
European Conference on Computer Vision, 2016.

[5] D. Babu Sam, A. Agarwalla, J. Joseph, V. A. Sindagi, R. V. Babu, and V. M. Patel. Completely
self-supervised crowd counting via distribution matching. In Proceedings of the European
Conference on Computer Vision, 2022.

[6] O. Barinova, V. S. Lempitsky, and P. Kohli. On detection of multiple object instances using
hough transforms. In IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2010.

[7] S.-Y. Cho, T. W. S. Chow, and C.-T. Leung. A neural-based crowd estimation by hybrid
global learning algorithm. In IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 1999.

[8] S. Dai, J. Liu, and N.-M. Cheung. Referring expression counting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2024.

[9] C. Desai, D. Ramanan, and C. C. Fowlkes. Discriminative models for multi-class object layout.
In IJCV. Kluwer Academic Publishers, 2011.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, 2018.

[11] N. Djukic, A. Lukezic, V. Zavrtanik, and M. Kristan. A low-shot object counting network with
iterative prototype adaptation. In Proceedings of the International Conference on Computer
Vision, 2023.

[12] K. Fan, Z. Bai, T. Xiao, D. Zietlow, M. Horn, Z. Zhao, C.-J. Simon-Gabriel, M. Z. Shou,
F. Locatello, B. Schiele, T. Brox, Z. Zhang, Y. Fu, and T. He. Unsupervised open-vocabulary
object localization in videos. In Proceedings of the International Conference on Computer
Vision, 2023.

[13] Q. Fan, W. Zhuo, C.-K. Tang, and Y.-W. Tai. Few-shot object detection with attention-rpn and
multi-relation detector. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4013–4022, 2020.

[14] G. Flaccavento, V. Lempitsky, I. Pope, P. R. Barber, A. Zisserman, J. A. Noble, and B. Vojnovic.
Learning to count cells: applications to lens-free imaging of large fields. In Microscopic Image
Analysis with Applications in Biology, 2011.

[15] S. Gong, S. Zhang, J. Yang, D. Dai, and B. Schiele. Class-agnostic object counting robust to
intraclass diversity. In Proceedings of the European Conference on Computer Vision, 2022.

[16] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In Proceedings of the Interna-
tional Conference on Computer Vision, pages 2961–2969, 2017.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2020.

[18] M. A. Hobley and V. A. Prisacariu. Learning to count anything: Reference-less class-agnostic
counting with weak supervision. arXiv preprint arXiv:2205.10203, 2022.

[19] M. A. Hobley and V. A. Prisacariu. Abc easy as 123: A blind counter for exemplar-free
multi-class class-agnostic counting. In Proceedings of the European Conference on Computer
Vision, 2024.

[20] M.-R. Hsieh, Y.-L. Lin, and W. H. Hsu. Drone-based object counting by spatially regularized
regional proposal network. In Proceedings of the International Conference on Computer Vision,
2017.

11

[21] Q. Jiang, F. Li, Z. Zeng, T. Ren, S. Liu, and L. Zhang. T-rex2: Towards generic object detection
via text-visual prompt synergy. In Proceedings of the European Conference on Computer Vision,
2024.

[22] R. Jiang, L. Liu, and C. Chen. Clip-count: Towards text-guided zero-shot object counting. In
Proceedings of the ACM Multimedia Conference, 2023.

[23] B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell. Few-shot object detection via
feature reweighting. In Proceedings of the International Conference on Computer Vision, pages
8420–8429, 2019.

[24] S. Kang, W. Moon, E. Kim, and J.-P. Heo. Vlcounter: Text-aware visual representation for
zero-shot object counting. In Proceedings of the AAAI Conference on Artificial Intelligence,
2024.

[25] E. Kiliç and S. Ozturk. An accurate car counting in aerial images based on convolutional neural
networks. In Journal of Ambient Intelligence and Humanized Computing, 2021.

[26] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollár, and R. B. Girshick. Segment anything. Proceedings of the
International Conference on Computer Vision, 2023.

[27] L. Knobel, T. Han, and Y. M. Asano. Semantic counting from self-collages. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2024.

[28] D. Kong, D. Gray, and H. Tao. A viewpoint invariant approach for crowd counting. In 18th
International Conference on Pattern Recognition (ICPR), 2006.

[29] V. Lempitsky and A. Zisserman. Learning to count objects in images. In Advances in Neural
Information Processing Systems, 2010.

[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
Proceedings of the International Conference on Computer Vision, 2017.

[31] W. Lin, K. Yang, X. Ma, J. Gao, L. Liu, S. Liu, J. Hou, S. Yi, and A. Chan. Scale-prior
deformable convolution for exemplar-guided class-agnostic counting. In Proceedings of the
British Machine Vision Conference, 2022.

[32] C. Liu, Y. Zhong, A. Zisserman, and W. Xie. Countr: Transformer-based generalised visual
counting. In Proceedings of the British Machine Vision Conference, 2022.

[33] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
DINO: Marrying dino with grounded pre-training for open-set object detection. In Proceedings
of the European Conference on Computer Vision, 2024.

[34] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. Proceedings of the International
Conference on Computer Vision, 2021.

[35] E. Lu, W. Xie, and A. Zisserman. Class-agnostic counting. In Proceedings of the Asian
Conference on Computer Vision, 2018.

[36] A. N. Marana, S. A. Velastín, L. da Fontoura Costa, and R. Lotufo. Estimation of crowd density
using image processing. In IEE Colloquium on Image Processing for Security Applications,
1997.

[37] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye. A large contextual dataset for
classification, detection and counting of cars with deep learning. In Proceedings of the European
Conference on Computer Vision, 2016.

[38] T. Nguyen, C. Pham, K. Nguyen, and M. Hoai. Few-shot object counting and detection. In
Proceedings of the European Conference on Computer Vision, 2022.

[39] R. Paiss, A. Ephrat, O. Tov, S. Zada, I. Mosseri, M. Irani, and T. Dekel. Teaching clip to count
to ten. arXiv preprint arXiv:2302.12066, 2023.

[40] J. Pelhan, A. Lukežič, V. Zavrtanik, and M. Kristan. Dave – a detect-and-verify paradigm for
low-shot counting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2024.

[41] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In Proceedings of the International Conference on Machine
Learning, 2021.

12

[42] V. Ranjan, U. Sharma, T. Nguyen, and M. Hoai. Learning to count everything. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.

[43] M. Shi, H. Lu, C. Feng, C. Liu, and Z. CAO. Represent, compare, and learn: A similarity-aware
framework for class-agnostic counting. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2022.

[44] N. Sünderhauf, J. Abou-Chakra, and D. Miller. Density-aware nerf ensembles: Quantifying
predictive uncertainty in neural radiance fields. In ICRA, 2023.

[45] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning.
Advances in neural information processing systems, 29, 2016.

[46] W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell counting and detection with fully
convolutional regression networks. Computer Methods in Biomechanics and Biomedical
Engineering: Imaging & Visualization, 6(3):283–292, 2016.

[47] J. Xu, H. Le, V. Nguyen, V. Ranjan, and D. Samaras. Zero-shot object counting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2023.

[48] S.-D. Yang, H.-T. Su, W. H. Hsu, and W.-C. Chen. Class-agnostic few-shot object counting. In
Proceedings of the IEEE Workshop on Applications of Computer Vision, 2021.

[49] Z. You, K. Yang, W. Luo, X. Lu, L. Cui, and X. Le. Few-shot object counting with similarity-
aware feature enhancement. In Proceedings of the IEEE Workshop on Applications of Computer
Vision, 2023.

[50] X. Zhou, D. Wang, and P. Krähenbühl. Objects as points. arXiv preprint arXiv:1904.07850,
2019.

[51] W. L. Zuwei Long. Open grounding dino:the third party implementation of the paper grounding
dino. https://github.com/longzw1997/Open-GroundingDino, 2023.

13

https://github.com/longzw1997/Open-GroundingDino

Appendix

A Definition of Metrics

We use the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) to measure
performance. They are defined as:

MAE =
1

N

N∑
i=1

|ŷi − yi|, RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (4)

where N is the number of test images, ŷi is the predicted count, and yi is the ground truth count for
image Xi. For both MAE and RMSE, a lower value indicates a better performance.

B Additional Dataset Details

CountBench [39] Here we explain how the descriptions and keywords for CountBench were
constructed. Unlike the original CountBench captions, our text descriptions include the object to
count without revealing the number of objects. For example, the caption “background photo of three
light bulbs" in CountBench is replaced with “the light bulbs," which describes the object to count (the
light bulbs) without giving away that there are three in the image. Because some descriptions include
information about other objects in the image, we add keywords that indicate the subject in the caption.
For example, the caption “the children standing on a bench at an outdoors party" includes the keyword
“children" to indicate that the children, not the bench, should be counted. Providing keywords is
necessary since COUNTGD has been pretrained on visual grounding data and will count both the
children and the bench they are sitting on as a result. To ensure only the children are counted, text
token similarity scores from the keyword “children" are thresholded to estimate the count. Because
CountBench contains very few objects, we do not use visual exemplars and provide COUNTGD with
just the text description.

C Additional Implementation Details

Architecture. We provide additional architectural details here. The image encoder, fθSwinT , is a
Swin-B transformer with corresponding patch sizes 8× 8, 16× 16, and 32× 32 and final embedding
dimensions of 192, 384, and 768 respectively. To get the visual exemplar tokens, the spatial feature
maps from fθSwinT(X) are first upsampled to the same height and width as the largest one with patch
size 8× 8. The upsampled feature maps are concatenated along the channel dimension and projected
to 256 dimensions with a separate 1× 1 convolution. RoIAlign is then applied to extract features
corresponding to the exemplar regions,

Table 4: Sensitivity of CountGD’s counting accuracy to λloc : λcls on FSC-147 given both text and exemplars.
Decreasing λloc/λcls improves the val. errors more than increasing it does. Deviating λloc/λcls from one
worsens the test errors with increasing it harming the test accuracy the most. We choose λloc : λcls = 1 : 5 as
this achieves the lowest validation set MAE.

λloc λcls
Val. Test

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
1 1 8.64 44.71 5.62 21.58
5 1 8.55 35.65 8.01 82.55
1 5 7.10 26.08 5.74 24.09

Training. Each training image is first horizontally flipped with a probability of 50%. Next, with
a probability of 50%, either the minimum side length of the image is resized to a side length
in {480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800} such that the aspect ratio of the image is
maintained or the image is first randomly cropped such that the minimum side length is in the range
[384, 600] and then resized as mentioned before. After this, the image is normalized and passed
through the model. Following [33], all the classes in the FSC-147 training set are concatenated into a
single caption with “ .” separating each class name. Visual exemplar tokens are appended to the end
of the text tokens associated with their class name. Self-attention masks are constructed such that the

14

(a) CounTR [32] incorrectly detects
self-similarity.

(b) SAM TT-Norm correctly detects
self-similarity.

Figure 6: In example (a), the TT-Norm presented in [32] would incorrectly detect self-similarity since
multiple correctly detected instances, denoted by red ‘×’s, fall within the exemplar regions, indicated
by the red boxes. However, the blue segmentation masks output by SAM only contain one detected
instance per mask, so the SAM TT-Norm correctly does not detect self-similarity. (b) shows a case
where the SAM TT-Norm correctly detects self-similarity and divides the estimated count by 2.

text tokens attend to each other as well as to the visual exemplars that are associated with their class
name. Self-attention is not applied between unrelated class names and visual exemplars. The model
is optimized with the Adam Optimizer with a weight decay set to 10−4 and an initial learning rate set
to 1 × 10−4 that reduces by a factor of ten every ten epochs. λloc is set to 1 and λcls is set to 5 in
Equation 3. These scale factors are also used in the Hungarian Matching Cost for matching ground
truth points to predicted points. The confidence threshold σ is set to 0.23. Hyperparameters are set
using default values provided by [51] with the exception of selecting λloc, λcls, and the confidence
threshold σ using a sparse grid search optimizing the mean absolute counting error on the validation
set. Specifically (λloc, λcls) ∈ {1, 2.5, 5} × {1, 2.5, 5} and σ ∈ {0.14, 0.17, 0.2, 0.23} are tested. In
Table 4, we conduct a sensitivity test showing that our choice of (λloc, λcls) = (1, 5) achieves the
best results for the validation set. Given these parameters, our choice of σ = 0.23 achieves the best
validation set MAE of 7.1, while σ = 0.14 achieves the worst validation set MAE of 9.5. The model
is trained for 30 epochs with early stopping with respect to the mean absolute counting error on the
validation set with no SAM TT-Norm or adaptive cropping applied. We train the multi-modal model
that beats all prior methods for open-world object counting using both visual exemplars and text. We
train the text-only model that beats all text-only approaches to open-world object counting on only
text. Finally, we additionally freeze the feature enhancer for the exemplar and text interaction study.

Training Resources. Our model is trained on 1 Nvidia A6000 GPU with 48GB of graphic memory.
A full training takes about 1 day.

D Additional Inference Details

Avoiding double counting. One of the common problems for counting models is handling self-
similarity, when an object is intrinsically repetitive. For example, sunglasses and butterflies exhibit
self-similarity. In these cases, counting methods tend to double count, detecting each self-similar
component. CounTR [32] has tried to address this by dividing the estimated count by the average
count in the visual exemplar regions. We observe that this approach (referred to as the “TT-Norm”)
fails in cluttered scenes, where visual exemplar bounding boxes encapsulate more than just one
instance of the object. This causes the counting model to detect self-similarities when they are not
present. We show an example of this in Figure 6 (a).

To address this, we propose to use segmentation masks instead of bounding boxes to more accurately
check if the counting model detects more than one instance on an object inside a visual exemplar. To
obtain the segmentation masks we use the visual exemplars as box prompts to the Segment Anything
Model (SAM) [26]. This approach avoids the issue faced by CounTR’s TT-Norm since we do not
check instances outside the object’s boundary, even if these instances fall within the visual exemplar
regions. Figure 6 shows how our approach compares to CounTR’s TT-Norm in such cases.

Adaptive Cropping. We address the problem that COUNTGD can only output at most 900 queries
at a time through adaptive cropping. If COUNTGD detects 900 objects, we crop the input image into

15

Table 5: Ablation study II: COUNTGD is tested with different inference procedures on FSC-147 [42]. TT-Norm
refers to test-time normalization. Correction (1) refers to using only text for image 7171.jpg, and Correction
(2) refers to correcting the incorrect text description for image 7611.jpg from “lego” to “yellow lego stud.”

SAM TT-Norm Adaptive Cropping Correction (1) Correction (2) Val Test
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

✗ ✗ ✗ ✗ 8.69 43.89 10.92 99.58
✓ ✗ ✗ ✗ 7.99 42.23 9.62 98.90
✓ ✓ ✗ ✗ 7.10 26.08 6.75 43.65
✓ ✓ ✓ ✗ 7.10 26.08 5.70 24.04
✓ ✓ ✓ ✓ 7.10 26.08 5.74 24.09

Table 6: Ablation Study III: The SAM TT-Norm provides a small improvement to the counting accuracy.
Adaptive cropping is applied here. Note: COUNTGD still achieves state-of-the-art accuracy without the SAM
TT-Norm.

SAM TT-Norm Val Test
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

✗ 7.79 28.70 7.03 26.74
✓ 7.10 26.08 5.74 24.09

multiple overlapping pieces and pass each cropped piece back to the model. The crop width and
height are calculated as 4 times the average exemplar width and height. This approximately upper
bounds the number of objects that can appear inside the crop window. The overlap width and height
are determined to be 1.25 times the average exemplar width and height to approximately ensure each
object instance appears fully in at least one crop. If visual exemplars are not provided, the image is
cropped into four equal pieces. To obtain the final count, the number of detected instances in each
crop window are added together while averaging the predicted count in overlapping regions.

Ablation Study. In Table 5, we test the influence of the SAM TT-Norm, Adaptive Cropping, and
our two corrections to the FSC-147 annotations on the multi-modal COUNTGD model. The SAM
TT-Norm provides minor improvements. This is because only a small number of classes in FSC-147
exhibit self-similarity. The adaptive cropping provides significant improvements with respect to the
RMSE and minor improvements with respect to the MAE. This is because the adaptive cropping is
specifically for handling high counts of objects (≥ 900), and the RMSE is particularly sensitive to
errors from these outliers. Correction (1), only using text for image 7171.jpg, has a significant
influence on the RMSE as using the incorrectly annotated visual exemplars for this example causes
COUNTGD to correctly count the lego studs identified by the exemplars, not the lego bricks, and
there are a high number of studs and a small number of bricks. Providing only the text “lego"
and discarding the erroneous visual exemplars fixes this issue. Correction (2), correcting the text
description for 7611.jpg, has no significant influence on the multi-modal model.

In Table 6, we show that by adding adaptive cropping back in (unlike in Table 5, rows 1-2),
COUNTGD still achieves state-of-the-art counting accuracy even without the test-time normalization.

To further investigate the effectiveness of the adaptive cropping, we split images into different groups
according to the number of objects they contain, and report the percent error for each group. We find
that for FSC-147 test images with more than 900 objects, the mean percent error (|gt−pred|

gt × 100%)
is 10%, and for images with at most 900 objects, it is 8%. This shows that COUNTGD works well,
even for images with greater than 900 objects.

E One-Shot Counting

Table 7: CountGD’s performance on 1-shot versus few-shot counting on FSC-147. Providing more exemplars
in the prompt increases the accuracy of CountGD.

Inference Setting Val Test
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

1 exemplar + text 8.00 30.29 8.7 83.21
3 exemplars + text 7.10 26.08 5.74 24.09

16

In Table 7, we consider how well COUNTGD performs given text and only one visual exemplar,
instead of text and three visual exemplars as in the last row of Table 1. As expected, increasing the
number of visual exemplars improves the accuracy of the estimated count.

F Training With Different Ratios of Text and Visual Exemplars

Table 8: CountGD’s performance on FSC-147 using different ratios of text versus exemplar training data.
Providing more exemplar training data results in better performance overall, when given text only, exemplars
only, or both at inference.

Training Data Distribution Test MAE ↓
Text only 3 Exemplars Only Text + 3 Exemplars

80 % Text-only, 20 % Exemplar-only 16.98 7.66 8.14
20 % Text-only, 80 % Exemplar-only 12.67 6.28 5.51

Although we train multi-modal COUNTGD jointly on both text and exemplars (it is given one
text description and 3 exemplars for each training image simultaneously), for this experiment we
consider how training with different ratios of exemplar-only and text-only data affects the counting
performance. Specifically, we train COUNTGD in two settings. For the first setting (first row of
Table 8), we drop the exemplars 80% of the time and train with only text. For the remaining 20%
of the time, we train with only exemplars and drop the text. For the second setting (second row of
Table 8), we drop the text 80% of the time and train with only exemplars, training with only text for
the remaining 20% of the time.

As shown in Table 8, training with more exemplar-only data improves performance, even when
testing with text only. We hypothesize this may be because training on more exemplar-only data
regularizes COUNTGD’s text-only performance. COUNTGD is initialized with the pretrained Ground-
ingDINO [33] weights, so it already starts with a strong understanding of how text and images relate
to each other. Perhaps limiting the amount of text-only training data preserves this understanding
obtained through large-scale pretraining. On the other hand, GroundingDINO has not been pretrained
to relate the exemplars to the image, and, thus, benefits from having more exemplar-only training
data to learn this capability.

G Diving Deeper Into Language and Exemplar Interactions

In Section 4.5 we discuss a preliminary study on the interactions that emerge between the exemplars
and the text. In this study, we plot the average confidence score over both the exemplar and the text
tokens. When the exemplar and the text reinforce each other, the average confidence tends to increase
overall.

Differently, here, we carry out a preliminary investigation into what happens when the exemplar and
the text conflict with each other. We define the desired behavior to be an AND operation between the
exemplar and text tokens, where correctly counted objects should match both the exemplar and the
text. Since this is not possible when the two conflict with each other, we expect an ideal count to be
zero. We investigate to what extent this holds in practice by defining three levels of conflict.

1. super-class conflict – the super class of the exemplar and the text don’t match e.g., the
exemplar is a tiger and the text=‘chair’;

2. sub-class conflict – the sub-class of the exemplar and text don’t match e.g., the exemplar is
a man and the text=‘woman’, both of which are humans;

3. attribute conflict – the exemplar and text match in terms of class but don’t match in terms of
attribute, e.g., the exemplar is a blue circle but the text=‘red’

For case (1) we use an image of the butterflies from CountBench [39]. By providing visual exemplars
of the butterflies and the text ‘white plant pot,’ we get a count of 0 as expected. For case (2) we use
an image of the strawberries and blueberries from FSC-147 [42]. By providing one exemplar of a
blueberry and the text ‘strawberry’, we obtain a count of 0. For case (3), we consider colored roses
in an image from CountBench. In this case, when providing an exemplar of a red rose and the text
‘yellow,’ the output is (incorrectly) 9, the number of red and yellow roses. We speculate that we are

17

limited by image-text capabilities of the original GroundingDINO [33] model (as illustrated in the
fine-grained limitation example provided in Appendix I). We include qualitative results from this
experiment in Figure 7.

“white plant pot”
“strawberry” “yellow”

Figure 7: Visualizing CountGD’s output when the exemplar and text conflict. In the top row we show
the input image, text input, and visual exemplars provided to COUNTGD. In the bottom row, we
visualize COUNTGD’s output. For the butterflies (leftmost example) and the fruit (example in the
middle), COUNTGD correctly outputs a count of 0. For the flowers (rightmost example), COUNTGD
incorrectly outputs a count of 9.

H Additional Qualitative results

In Figures 8 and 9 we include additional qualitative results from the CountBench [39] and FSC-
147 [42] test sets respectively.

I Limitations

Text is sometimes not enough to specify the object to count. Sometimes, the object to count looks
uncommon and is so unique that text alone does not provide enough information to specify the object
to count. For example, in Fig. 10 (b), providing the text “crystals" results in CountGD estimating an
incorrect count of 2, while providing the text “crystals" together with one visual exemplar results in
CountGD estimating a more accurate count in Fig. 10 (c). This happens because the crystals in the
X-ray image in Fig. 10 (b) and (c) do not look like regular crystals such as those in Fig. 10 (a), so it
is hard for CountGD to pick them out given only text. Providing the exemplar alleviates the issue,
allowing CountGD to match the crystals in the X-ray image visually instead of relying on text alone.

Very fine-grained counting can be challenging. CountGD sometimes struggles to count different
categories of objects with text if the categories are very similar. For example, in Fig. 11, CountGD
cannot pick out the baby penguins from the adult penguins. This is because the baby penguins and
adult penguins look very similar in terms of color and shape.

J Broader Impacts

In general, object counting is an important task with many real-world applications. A strong counting
model has positive impacts on various domains such as agriculture, satellite images, microscopy and
medical images. However, there are also possible negative impacts, like violating privacy in human
counting for surveillance cameras, or being used for military applications. This paper focuses on

18

2 3 7 8

"the tomatoes on the
wooden background” “the windows”

“the little girls
playing with
bubbles” "the men in suits”

"the framed pictures
arranged on the wall

depicting nature, animals,
and country life”

6 7 8 10

"the black
silhouettes of

pigeons"

"the world’s
greatest
magicians”

"the beautiful
butterfly wall

stickers”

9 3 2 2

"the wine glasses"
"the blue

peacock birds""the candles"
"the miniature

roses"

5 10 2 9

"the young women"

"the cats
staring at the

sign"
"the Christmas
Poinsettias"

“the fairly
circular small

oranges"

Figure 8: CountBench [39] counting examples using the multi-modal COUNTGD. The model is
trained on visual exemplars and text from FSC-147 [42] and tested zero-shot with text only on
CountBench. Blue letters indicate the subject of each caption input to the model. Detected points
are filtered with a Gaussian and plotted under input images for visualization purposes. COUNTGD
predicts the count in all the images shown with 100% accuracy. Note how in the top row COUNTGD
correctly only counts the women, not the men, in “the young women" example, and only the alive
cats (not the one painted on the wall) in “the cats starting at a wall". In the bottom row, the model
also correctly does not count the repeated bubbles near the little girls or the multiple balloons.

“egg" “apple"

35 9

“deer" “nail polish"

20 114

Figure 9: Additional qualitative examples showing CountGD’s performance on the FSC-147 test set.
In these examples, CountGD predicts the count with 100 % accuracy.

building a more accurate and flexible counting model. The broader impacts in real-world scenarios
should be considered carefully before deploying the model.

19

Input Text: “crystals”
Pred Count: 4, GT Count: 4

Input Text: “crystals”
Pred Count: 2, GT Count: 13

Input Text: “crystals”
Pred Count: 14, GT Count: 13

(a) (b) (c)

Visual
exemplar

Figure 10: Text is sometimes not enough to specify the object to count. In (a), given only text,
CountGD accurately estimates the number of crystals. In (b), CountGD cannot accurately estimate the
number of crystals in the X-ray image using text alone, since they look unfamiliar. In (c), providing
an additional visual exemplar alleviates the issue. Input images are in the top row. Detected instances
from CountGD are shown in the bottom row.

20

Input Text: “baby penguin”
Pred Count: 40, GT Count: 20

Figure 11: Very fine-grained counting can be challenging. CountGD cannot distinguish between
the baby penguins (pointed to with red arrows in the top image) and the adult penguins. Given the
text “baby penguin," CountGD counts all of the penguins in the input image. The adult and baby
penguins look very similar. They have similar colors (mostly black) and shapes. The input image is
in the top row. Detected instances from CountGD are shown in the bottom row.

21

K NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: we claim that (i) we extend the capabilities of open-world object counting
by introducing a model that accepts prompts from either text or visual exemplars or both
simultaneously; and (ii) that the model’s performance exceeds the state-of-the-art. We
demonstrate these contributions quantitatively by evaluations on three different counting
benchmark datasets, as well as multiple examples in the paper figures.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

22

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the datasets used for evaluations in this paper are publicly available. The
model is also trained on one of these datasets. In terms of the code, we start from the
open source GroundingDINO code base, and give full details of the extensions we make
to incorporate visual exemplars. The implementation details including hyper-parameter
settings are described in the Experiment section and the Appendix, which are sufficient for
reproducing our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

23

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As noted above, all datasets used are publicly available. All the training/testing
code and the pre-trained model weights will be released after the paper’s acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and testing details are described in the Experiment Section and the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We discuss in the limitation section that our work and recent works in the
counting domain do not report error bars. This is an important research problem to be
addressed in the near future.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources (including the GPUs and training
time) is provided in the Experiment Section and the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper does not violate the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

25

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]
Justification: Broader impacts are discussed in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited the creators or original owners of datasets and methods
used in this paper. We can also confirm that our usage in this research project and for open
sourcing does not violate their licenses or terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

26

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

27

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Work
	Counting with Visual Exemplars & Text
	Overview
	CountGD Architecture Components
	Training
	Inference

	Experiments
	Datasets & Metrics
	Implementation
	Comparison to State-of-the-art on Standard Benchmarks
	Ablation Study
	Language and Exemplar Interactions

	Conclusion & Future Work
	Definition of Metrics
	Additional Dataset Details
	Additional Implementation Details
	Additional Inference Details
	One-Shot Counting
	Training With Different Ratios of Text and Visual Exemplars
	Diving Deeper Into Language and Exemplar Interactions
	Additional Qualitative results
	Limitations
	Broader Impacts
	NeurIPS Paper Checklist

