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Abstract

Single-step retrosynthesis models are integral to the development of computer-
aided synthesis planning (CASP) tools, leveraging past reaction data to generate
new synthetic pathways. However, it remains unclear how the diversity of reactions
within a training set impacts model performance. Here, we assess how dataset
size and diversity, as defined using automatically extracted reaction templates,
affect accuracy and reaction feasibility of three state-of-the-art architectures —
template-based LocalRetro and template-free MEGAN and RootAligned. We
show that increasing the diversity of the training set (from 1k to 10k templates)
significantly increases top-5 round-trip accuracy while reducing top-10 accuracy,
impacting prediction feasibility and recall, respectively. In contrast, increasing
dataset size without increasing template diversity yields minimal performance gains
for LocalRetro and MEGAN, showing that these architectures are robust even with
smaller datasets. Moreover, reaction templates that are less common in the training
dataset have significantly lower top-k accuracy than more common ones, regardless
of the model architecture. Finally, we use an external data source to validate the
drastic difference between top-k accuracies on seen and unseen templates, showing
that there is limited capability for generalisation to novel disconnections. Our
findings suggest that reaction templates can be used to describe the underlying
diversity of reaction datasets and the scope of trained models, and that the task of
single-step retrosynthesis suffers from a class imbalance problem.

1 Introduction

Retrosynthesis is a key pillar of organic chemistry, requiring expert chemical knowledge to develop
a sequence of reactions that lead to the synthesis of a target product. As research has progressed,
so too has the space of possible transformations, !> yet organic synthesis remains a bottleneck
in drug discovery.® The pioneering work of Corey and Wipke* has since spawned a plethora of
computer-aided synthesis planning programs,>®’ in which a multi-step algorithm recursively calls
on a single-step model to generate potential precursors. These single-step algorithms can be broadly
categorised as template-based, where models learn to identify reaction centres and apply rules from an
explicitly pre-defined library,®%1%!1 or template-free, where models learn reaction patterns implicitly
from reaction SMILES >34 or molecular graphs. '>:1%!7 The latter class of models is unconstrained
by reaction templates and is thus expected to be able to propose novel transformations. '8:13.19:14.12

These methods, as is the case with machine learning algorithms generally,?%?! have previously been
found to be sensitive to imbalanced data, often reinforcing biases rather than identifying important
trends.?>?>2* This is most clearly evidenced by template-based models, where retrosynthesis is
formulated as a multi-class classification task>> and thus model performance is heavily affected by the
underlying distribution of the reaction templates in the training data. Within retrosynthesis, this bias
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manifests as preferential prediction of specific reaction classes, regioselectivities, or stereoselectivities
which are better represented in the training set.?2?*2* The widely used open-source USPTO reaction
dataset,?® derived from US patent data, and its subsets have been extensively used for training and
model comparison,?’?%2? however its underlying biases have been often overlooked during model
evaluation.?* Torren-Peraire et al. train and test multiple models on a variety of datasets, but the
lack of a common test set means that results and biases cannot be directly compared.3® Thakkar et
al. investigate the impact of template library size on the performance of template-based models, but
do not use template-free models and do not discuss the impacts of bias.3! Thus, it is unclear how
training data impacts model predictions, and what future reaction databases should look like in terms
of size and diversity. >*32

Despite many works evaluating and comparing retrosynthesis models, there is little consensus on
the best way to realistically evaluate extrapolation to real world scenarios. 3% Often models are
trained and evaluated on a particular random split of USPTO50k,?” which is itself a cleaned random
subset of the USPTO database 2°, however this relatively small dataset cannot demonstrate how model
performance would scale when trained and tested on much larger and more diverse in-house reaction
libraries.3® Recently, Bradshaw et al. have shown random splits of patent databases yield overly
optimistic results, due to the similarity of reactions within the same patent or published by the same
author.>* Instead, they use patent- and author-based splits to simulate out-of-distribution (OOD)
data and measure generalisation to reactions from unseen patents and authors, respectively. Other
studies instead define generalisation as the ability to predict novel transformations defined by reaction
templates. >>3637-38:3% However, these studies focus on how well different model architectures can
generalise to new templates, but not how the underlying training data impacts generalisation.

Here, we investigate the effect that dataset size and diversity have on single-step model performance
by training and testing on different subsets of a reaction database. We generate USPTO-retro, a
retrosynthesis-specific dataset derived from USPTO,?° analyse its diversity through local reaction
templates,'! and use it to train and test three state-of-the-art single-step architectures: LocalRetro!!
(template-based), MEGAN!7 (graph-based template-free), and RootAligned'* (SMILES-based
template-free). We show that top-k accuracy is correlated with the popularity of reaction tem-
plates in the training set for all models, regardless of architecture, suggesting that this metric can
serve as a measure of reaction diversity. Finally, we evaluate performance on external test sets
extracted from the Pistachio database*’ to demonstrate a protocol for measuring generalisation to
seen and unseen reaction templates (Figure 1A).

2 Methods

Data Two databases are used in this work: the USPTO reaction database >® for training and testing,
and the commercial Pistachio reaction database*’ as an external test set. We apply a retrosynthesis
preprocessing pipeline to both datasets based on recent efforts towards standardisation and open
science,*!3? and the Pistachio database is further filtered to ensure no overlap with the training data.
This pipeline removes reagents and erroneous reactions to ensure data quality and is applicable to
any reaction database. A detailed description of the data cleaning steps along with the codebase is
provided in SI§S1.

This pipeline was applied to the USPTO reaction database?® to generate USPTO-retro, which
includes 1,103,781 atom-mapped reaction SMILES. Reaction templates were extracted using the
LocalTemplate'! algorithm, generating a total of 10,028 local reaction templates. Two external test
sets were created from Pistachio: Pistachio ID, containing 10k reactions with in-distribution templates
seen in USPTO-retro, and Pistachio OOD, containing 10k reactions with unseen out-of-distribution
templates.

Splitting The USPTO-retro dataset was split into training, validation, and test sets using a random
90:5:5 split, consistent with established practice in retrosynthesis studies.?”2%32% This is referred to
as the full split. To prevent data leakage, all reactions sharing the same product were assigned to the
same subset.

To investigate the effects of dataset size and diversity, the training set was further split into 10%, 25%,
and 50% subsets using two splitting strategies (Figure 1B):
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» Narrow split: This strategy selects a subset of reaction templates and includes all associated
reactions in the training, validation, and test sets, sequentially increasing template diversity
with training dataset size. The validation and test sets are similarly filtered to contain only
templates seen during training. This split aims to measure how many reaction templates
models can learn to predict, and the effect of increasing template diversity on model
performance.

* Broad split: In contrast, this strategy randomly samples a fraction of reactions from all
templates in the full training set. The validation and test sets are not altered. This split
is designed to measure how much data per template is needed to learn these chemical
transformations.
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Figure 1: A) Workflow of data processing, training, and testing. The USPTO-retro dataset (blue)
was randomly split into training, validation, and test sets, and then further split via stratified splitting
by template. Two external test sets were created from Pistachio: Pistachio ID (green), containing 10k
reactions with templates seen in USPTO-retro, and Pistachio OOD (red), containing 10k reactions
with unseen templates. B) Visualisation of the splitting strategies used for training and testing. The
sizes of the coloured bars indicate the number of templates sampled, while the opacity represents the
proportion of reactions sampled.

Models Three model architectures were evaluated, each representing a distinct class of retrosyn-
thesis algorithms. (i)) LocalRetro!!, a template-based algorithm; (ii) MEGAN 7, a semi-template
algorithm, and (iii) RootAligned '%, a template-free algorithm. All models were trained using their
respective repositories and evaluated using the Syntheseus platform,® which automatically removes
duplicate and invalid predictions.

Evaluation While there are many evaluation metrics available to evaluate the performance of single-
step models,3**>!13 here we employed top-k accuracy and round-trip accuracy, which respectively
measure recall and chemical feasibility. 334213

Top-k accuracy measures the proportion of test reactions for which the ground truth reactants appear
among the model’s top-k predictions. In this case, the ground truth is the reported reactants from the
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test set. The top-10 accuracy metric is analysed in all experiments to mimic the desired breadth of a
search tree in a multi-step algorithm. 33

Top-k round-trip accuracy evaluates the proportion of top-k predicted reactants that satisfy back-
translation. '* This is done by checking whether they regenerate the original product via a forward
reaction model (here RootAligned trained on the full USPTO-retro training set) to predict the top-1
product from each set of predicted reactants. If the predicted product matches the original target,
the prediction is considered successful. We report top-1 and top-5 round-trip accuracy metrics to
estimate the chemical feasibility of the top predictions. ! It is important to note that the calculation
of round-trip accuracy requires the use of a forward prediction model and is thus not 100% accurate,
and should be interpreted as an approximation rather than an absolute measure of chemical validity.

3 Results and Discussion

3.1 Data analysis

We started our study by analysing the distribution of reaction templates within the newly generated
USPTO-retro dataset, extracted using LocalTemplate.!'! Despite USPTO-retro containing over 1
million atom-mapped reaction SMILES, it shows a significant bias towards a small percentage of
templates. Template frequency is used here to quantify the number of reactions a template describes
in the training set, and, by extension, reaction classes (Figure 2A). The frequency of a template ranges
from 2 to 78,922, with 50% of templates occurring fewer than 12 times. This bias underscores the
inherent nature of open-source reaction databases, where certain reactions dominate. For example,
the top 10 templates account for just 0.1% of all templates and together describe 30% of the training
data.
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Figure 2: A) Histogram of templates (blue) and reactions (red) in the training set grouped by template
frequency (on a log scale and with a box width of 0.3). Template frequency refers to the number of
reactions in the training set described by a specific template. B) Example reactions from the training
set with the template highlighted in blue and the template frequency labelled.

The most common reaction template, an example of which is shown in Figure 2B, corresponds to a
C-N bond-forming Sy2 reaction, which accounts for >78k (8%) of all reactions in the training set.
This template is similar to the next two most popular templates, which differ only in their leaving
groups. Conversely, rarer templates include those with uncommon leaving groups or highly specific
reaction centres. While these reactions are less common in the dataset, they are not necessarily less
effective or harder to apply experimentally. Therefore, understanding the implications of this template
imbalance on model performance is key for formulating better training and data curation strategies.

3.2 TImpact of template distribution on model performance

To evaluate the impact of template distribution on model performance, we employed two splitting
strategies to further partition the training set beyond the initial random split: the narrow and broad
split. Both strategies sequentially increase the size of the training data, but differ in the diversity and
distributions of their templates. The narrow split increases the number of unique reaction templates
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in the training set as its size grows, allowing us to isolate the effect of increasing template diversity.
In contrast, the broad split maintains template diversity while increasing the number of training
examples, allowing us to assess the effect of increasing data volume per template. We analyse the
resulting performances from these two strategies in the following subsections.

3.2.1 Narrow split

The narrow split is designed to evaluate how increasingly template-diverse datasets affect model
performance. As expected,">> models trained on less diverse datasets achieve higher top-k accuracy,
as they have fewer competing reactions to choose from (Figure 3A). Increasing the number of
templates from 1k to 10k results in a decrease in top-10 accuracy of 11.6% for LocalRetro, 14.5% for
MEGAN, and 10.4% for RootAligned.

This decrease in top-k accuracy does not imply lower reaction feasibility; rather, it indicates the
model’s increased vocabulary of reactivity as a broader set of plausible reactions is suggested. Round-
trip accuracy is used here to estimate the feasibility of the predicted reactions. !> The top-1 round-trip
accuracy remains roughly consistent across all splits and models, with over 89% of top predictions
likely to be feasible reactions. In contrast, the top-5 round-trip accuracy increases by 14-21% across
all models as template diversity increases, suggesting that lower-ranked predictions become more
feasible when the model is exposed to more reaction types.

This behaviour differs from previous studies wherein top-k accuracy improves with additional
randomly split training data.*>? In our case, increasing both the volume and diversity of training
data leads to a decrease in top-k accuracy. This highlights the importance of explicitly reporting and
accounting for reaction template diversity when comparing model performance across datasets with
varying levels of diversity.

3.2.2 Broad split

The broad split aims to model the effect of increasing training set size while maintaining reaction
diversity by using all available templates. Our results show that performance slightly improves for
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Figure 3: Top-10 accuracy (left), top-1 round-trip accuracy (middle) and top-5 round-trip accuracy
(right) of models trained on the (A) narrow (increasing template diversity) and (B) broad splits
(increasing data volume).
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Figure 4: Top-10 accuracy of all trained models, as grouped by template frequency in the training set.
The template frequency measures the number of times a particular template appears in the training
set.

LocalRetro and MEGAN, with top-10 accuracy increasing by 3.5% for LocalRetro and 1.8% for
MEGAN with a ninefold increase in training set size (Figure 3B). These results suggest that, with
sufficient reaction diversity, these models are robust against variations in the size of the training set.

In contrast, the RootAligned model exhibits a substantial decrease in performance across the broad
split. Its top-10 accuracy degrades by 15.7% between the 10% to 50% training sets, but recovers to
85.0% with the full training set. The consistent performances of LocalRetro and MEGAN indicate
that the variations observed for RootAligned arise from the underlying transformer architecture rather
than the size or nature of these training sets. This template-free approach attempts to implicitly learn
chemistry directly from SMILES strings, whereas the template-based and semi-template methods
provide a more structured way of learning reactions through predefined templates and graph edits.
Consequently, the learning process of the RootAligned model may require more examples of the
same reactions to fully utilise this chemistry. Models may also be more easily overfit on the smaller
training datasets, leading to memorisation and pattern matching, which cannot generalise to the test
set. Further investigation is needed to determine if this behaviour occurs with other template-free
models.

3.3 Accuracy by template

Next, we investigated how template frequency bias in the training data affects model performance,
focusing on top-10 accuracy across reaction templates (Figure 4). A clear trend emerges: templates
that appear more frequently in the training set are predicted with significantly higher accuracy. The
difference in top-10 accuracy between rare templates (frequency of 1-10) and popular templates (fre-
quency of 10,001+) is at most 88.6% for LocalRetro, 83.5% for MEGAN, and 55.4% for RootAligned.
A similar, though weaker, correlation is observed when considering Tanimoto similarities between
the training and test sets (Figure S3). These trends persist even in models that do not explicitly use
reaction templates, such as MEGAN and RootAligned, implying that template frequency reflects the
underlying class distribution of reaction data.

In both the narrow and broad splits, increasing the training set size amplifies the spread of top-k
accuracies across template frequencies. For the most frequent templates (with frequency > 10,001),
LocalRetro and MEGAN consistently achieve top-10 accuracy above 95%, regardless of training set
sizes. In contrast, rare templates (with frequency 1-10) show a marked drop in accuracy as training
set size increases: top-10 accuracy decreases between the narrow 10% and full 90% training sets
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by 53.9% for LocalRetro, 33.8% for MEGAN, and 22.1% for RootAligned. This behaviour is most
pronounced for LocalRetro, which explicitly considers reaction templates and thus learns to prioritise
more frequent classes during training. RootAligned, which implicitly encodes chemistry through
SMILES strings, is less sensitive to these class imbalances. These results suggest that increasing both
the number and imbalance of reaction templates contributes to performance disparities. To mitigate
this, further work is needed to incorporate class balancing strategies during model training.

While the top-k accuracy measures how often a reaction template is correctly predicted, it does
not describe how often that type of template is recalled. Thus, it is also important to understand if
the models are oversampling from popular reaction classes as a way of mimicking the training set
distribution. This behaviour is most easily studied in the LocalRetro model, as its algorithm readily
outputs a ranked list of predicted templates. In all splits, the model oversamples the most popular
template classes for its highest ranked prediction (Figure SA). Rarer templates are undersampled
compared to the true test distribution, which contributes to their low top-10 accuracy. These rarer
templates are instead sampled more often at lower ranks as the model is less confident in their
prediction (Figure 5B).
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Figure 5: (A) Kernel density estimations (KDEs) of the training template frequency of the top
prediction from LocalRetro (red) and ground truth (yellow). (B) The KDE distributions of the training
template frequency of the #1, #5, #10, #20, and #50 predictions from the LocalRetro model trained
on the full training set.

3.4 Generalisation to novel reactions

Generalisability in single-step retrosynthesis refers to a model’s predictive capability for novel
reactions. This can be assessed in multiple ways, for example, considering the prediction of previously
unseen target products using known reaction templates or the prediction of novel disconnections
not encountered during training. To systematically evaluate both aspects, we split our external test
set from the Pistachio database into Pistachio ID (In-Distribution), which contains novel products
with seen templates, and Pistachio OOD (Out-Of-Distribution), which contains novel products with
unseen templates (Figure 6A). We use the broad split to evaluate generalisation to novel products
(ID) and the narrow split to evaluate generalisation to novel disconnections (OOD).
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On the Pistachio ID test set (Figure 6B), all models exhibit a moderate decline in top-10 accuracies
when compared to their performance on the USPTO-retro test set (Section 3.3): 7-9% for LocalRetro,
6% for MEGAN, and 5-12% for RootAligned. This indicates that models successfully generalise to
novel products using templates learnt during training, with similar performance trends to previous
results. The slightly reduced performance on this test set is likely due to the lower structural similarity
between Pistachio ID products and those in the USPTO-retro training sets (Figure S4).
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Figure 6: A) Diagrammatic representation of the overlap of templates between the USPTO-retro and
Pistachio datasets. The Pistachio ID test set is selected from in-distribution templates (the intersection
area shown in green), whereas the Pistachio OOD test set is selected from out-of-distribution templates
(the exclusive area shown in red). B) Top-10 accuracy of all models trained on the broad split and
tested on the Pistachio ID test set. C) Top-10 accuracy of all models trained on the narrow split and
tested on the Pistachio OOD test set.

In contrast, performance on the Pistachio OOD test set (Figure 6C) reveals severe limitations in
generalisability to novel disconnections, in agreement with previous findings. 3333738 LocalRetro
exhibits near-zero top-10 accuracy, which is expected given its reliance on predefined templates.
The non-zero accuracy suggests template ambiguity, where different templates from the training
and OOD test sets occasionally yield the same sets of reactants. This occurs due to overlapping
SMARTS patterns or errors in atom mapping. MEGAN and RootAligned models show modest
generalisability, which increases with increased training diversity and peaks at top-10 accuracies of
1% and 2% respectively with the full training sets. Their low but non-zero accuracy implies that
models prioritise recognising and applying patterns seen in the training data over utilising underlying
chemical principles to generate novel, feasible disconnections.

These results highlight the differences in capabilities between ID and OOD generalisation, emphasis-
ing the need for distinct evaluations that distinguish between these two scenarios. Previous studies
showing the traditional learning pattern of increasing top-k accuracy with increasing training data
volume*»?> may, in fact, be misattributing the effect of additional template coverage of the test
set to additional data. This explanation may also apply to studies showing low generalisability to
external datasets 3 or author-/patent-based splits>*, wherein their test sets possibly contain both seen
and unseen templates. Furthermore, the extremely low generalisability of template-free models to
novel templates suggests that these models are not yet sufficiently developed to warrant their use for
predicting new chemistries.

4 Conclusion and future work

In this study, we presented a comprehensive assessment of the accuracy and feasibility of three
state-of-the-art single-step retrosynthesis models — template-based LocalRetro and template-free
MEGAN and RootAligned — exploring how dataset size and diversity, defined in terms of local
reaction templates, affect performance.

Our results have highlighted the critical role of training set diversity in model performance. Increasing
the diversity of the training set significantly increases top-5 round-trip accuracy, an indicator of
prediction feasibility, while reducing top-10 accuracy, reflecting the ability of the model to recover
the ground truth. This trade-off suggests that more diverse datasets enable the prediction of a broader
range of plausible reactions, even if they differ from the ground truth. Interestingly, increasing dataset
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size without increasing template diversity yields minimal performance gains for LocalRetro and
MEGAN models, suggesting that template diversity has a greater impact on model performance than
volume.

We also examined the impact of template frequency on model performance. All three models,
regardless of whether they explicitly use templates, show a strong correlation between a template’s
frequency in the training set and the model’s ability to predict it correctly. This indicates that all
models implicitly rely on the distribution of reaction templates learnt during training, with rare
templates consistently underperforming compared to more frequent ones.

Finally, to assess real-world applicability, we evaluated model performance on two external test sets
derived from the Pistachio database: one containing novel products with known templates (Pistachio
ID) and another with novel products and unseen templates (Pistachio OOD). While all models
generalised reasonably well to new molecules involving known templates, their ability to predict
novel disconnections was limited. These results highlight the differences in capabilities between ID
and OOD generalisation. LocalRetro failed almost entirely on OOD reactions due to its reliance on
predefined templates, while MEGAN and RootAligned achieved only 1-2% top-10 accuracy. These
results highlight the need for evaluation protocols that clearly distinguish between in-distribution (ID)
and out-of-distribution (OOD) generalisation.

These results also offer a new perspective on recent advances in transfer learning for retrosynthesis
prediction, wherein fine-tuning effectively modifies the training template distribution. For instance,
the mixed fine-tuning approach to bias predictions towards heterocyclic ring disconnections reported
by Wieczorek et al. can be viewed as addressing the underlying class imbalance issues present in
the initial training set.** Our results suggest that similar systematic approaches to class imbalance
during training could improve representation across reaction classes. Similar challenges have been
addressed in other domains, such as computer vision, through pre-training, data augmentation, and
re-weighting strategies. >

The performance trends across the narrow and broad splits raise questions about what data should be
used to train retrosynthesis models. Ideally, models would learn underlying physical principles to
propose feasible reactions; however, evaluation shows that they are more likely to learn to mimic
the template distribution of the training set. Furthermore, models do not necessarily exhibit worse
accuracy when trained on less data; therefore, data curation efforts should prioritise quality and
diversity over quantity. As such, it is clear that as chemists we cannot blindly train models with all
available data and not consider the types of chemistry that data represents, and whether that chemistry
suits our synthetic goals and targets.

Availability of data and materials

The code used to preprocess and split the datasets, as well as the model training configurations, are
available at (attached zip).
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S1 Data preprocessing

The USPTO database was downloaded from https:/figshare.com/s/5¢57a3399¢52701cbc15.4! The
2023Q1 version of the commercial Pistachio database*’ was used, and reactions were deduplicated
and mapped with RXNMapper.’

The preprocessing pipeline includes the following steps:

* Remove multi-product reactions by either filtering out small side products (<6 atoms) or
removing reactions with large side products.

* Remove reactions with purely inorganic products.
* Remove reactions where the product is present as a reactant.

* Remove "stereoalchemy" by removing any stereochemistry tokens if present in the product
but not in the reactants.

* Remove reagents (precursor species which do not contribute to the atom mapping).

* Remove reactions with >4 reactants.

* Canonicalise reaction SMILES.

* Remove reactions with over 512 tokens.

* Remove duplicate reactions.

» Extract templates using LocalTemplate ! and filter out templates with under 6 occurrences.

The pipeline was applied to the USPTO and Pistachio databases, yielding 1,103,781 and 3,720,288
reactions, respectively.

The Pistachio database was further filtered by patent number to exclude all US patents and avoid
overlap with the USPTO. Templates with fewer than 20 occurrences were removed, and the database
was divided into two sets: one containing templates also present in USPTO-retro, and the other
containing new templates. A subset of 10,000 reactions was randomly sampled from both sets to
generate Pistachio ID and Pistachio OOD, respectively.

The code used for cleaning and splitting both datasets can be found in the Github repository: (attached
zZip).
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Figure S1: Histograms of sample counts in the training set by template frequency in the training set
(on a log scale) across (A) the narrow split and (B) the broad split. Template frequency refers to the
number of samples in the training set containing a specific template, while the sample count refers to
the number of reactions with that template frequency.

S3 Training hyperparameters

The configuration files used to train the models can be found in the Github repository: (attached zip).
Each model was trained using its respective repository.

The LocalRetro models were trained using default hyperparameters, and an early stopping patience
of 5 epochs was implemented. The MEGAN models were trained with default hyperparameters.
The RootAligned models trained on the narrow and full splits used the default hyperparameters;
however, those trained on the broad split have a separate optimised set of hyperparameters. This
optimisation was done to improve the suboptimal performance observed when training with the
default hyperparameters.
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S4 Evaluation metrics

The retrosynthesis platform Syntheseus>* was used for evaluating all trained models. This involves
automatically filtering out predictions which are invalid or duplicated, as shown in Figure S2. The
evaluation metrics used include:

» Top-k accuracy: the proportion of test reactions with an exact ground truth match (i.e. the
expected reactants from the test set) in the top-k predicted reactants.

* Top-k round-trip accuracy: the proportion of top-k predicted reactants which satisfy
back-translation. '3 This is calculated by using a forward reaction model to predict the top-1
product of each set of predicted reactants, and this product is compared to the original target
product.

A RootAligned forward prediction model is trained on the full USPTO-retro dataset for the purpose
of back-translation and calculating top-k round-trip accuracy.
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reaction
o
I model
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Round-trip
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o model o
|/\N/©/ ﬂ “,
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Figure S2: Visualisation of the retrosynthesis evaluation pipeline. Given a target product, the
retrosynthesis model produces n = 50 sets of reactants, which are then filtered to contain only valid
and unique predictions. The rank of the ground truth match determines the top-k accuracy. A forward
reaction model is used to predict the product of each set of predicted reactants and this is compared
to the target product to determine the top-k round-trip accuracy.



22 S5 Narrow split results

Table S1: Top-k accuracy and round-trip (RT) accuracy of models trained and tested on the narrow
split.
Top-k RT

Top-k accuracy (%) accuracy (%)

Model Training set (%) k=1 5 10 20 50 1 5
10 77.6 93.1 947 956 959 924 63.8
25 742 916 934 946 951 932 70.3
LocalRetro 50 602 834 87.6 90.1 913 905 732
90 505 77.4 83.1 867 885 908 78.0
10 769 918 933 946 951 918 58.6
25 717 902 929 944 953 926 68.2
MEGAN 50 532 78.0 83.6 87.1 89.6 83.6 61.2
90 42.1 712 788 83.8 875 899 77.8
10 798 941 954 96.1 962 93.7 54.3
. 25 762 928 945 954 955 945 63.1
RootAligned 50 609 855 894 912 914 923 704
90 49.1 788 850 87.6 87.8 92.1 75.2

223 S6 Broad split results

Table S2: Top-k accuracy and round-trip (RT) accuracy of models trained and tested on the broad
split.
Top-k RT

Top-k accuracy (%) accuracy (%)

Model Training set (%) k=1 5 10 20 50 1 5
10 421 718 796 848 874 883 754
25 453 740 81.0 855 879 900  78.0
LocalRetro 50 483 759 82.1 863 883 905 782
90 505 774 831 867 885 908  78.0
10 405 695 773 826 863 885 750
25 402 692 77.0 825 863 884 750
MEGAN 50 413 707 783 835 872 899 77.8
90 421 712 788 838 875 899 778
10 298 589 705 777 791 717 623
, 25 235 494 615 702 719 715 637
RootAligned 50 183 43.1 548 626 639 670  59.1
90 49.1 78.8 850 87.6 87.8 921 752
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S7 Tanimoto similarity between training and test sets

Tanimoto similarity was used to calculate the similarity between product molecules present in
the USPTO-retro training and test sets. Morgan fingerprints with default RDKit parameters were
calculated for all product molecules using RDKit, and Tanimoto similarity was calculated between
all pairs of fingerprints from the training and test sets. Molecules were deemed to be similar if the
Tanimoto similarity score was over 0.4, and the total count of similar molecules in the training set for
a given test set product molecule was collected. The counts were then divided by the total number of
reactions in the training set to get the percentage similarity (Figure S3).
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Figure S3: Top-10 accuracy of models trained and tested on splits of USPTO-retro, with test set
reactions binned by their percentage similarity to the training set product molecules. Similarities are
calculated as the proportion of pairwise Tanimoto similarities over a threshold score of 0.4.
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S8 ID results

Tanimoto similarity was used to calculate the similarity between product molecules present in the full
USPTO-retro training and the USPTO-retro test set and Pistachio ID test set, using the same method
as discussed in Section S7. Figure S4 shows that Pistachio ID has a high proportion of products with
0% similarity to the training set, and is overall less similar to the training set than the USPTO-retro
test set. Figure S5 shows the resulting top-10 accuracy of models tested on Pistachio ID, which
suggests that the lowered accuracy of these models is due to the increased proportion of dissimilar
test products.
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Figure S4: Similarity of the USPTO-retro (blue) and Pistachio ID (green) test sets to the USPTO-retro
full training set. Similarities are calculated as the proportion of pairwise Tanimoto similarities over a
threshold score of 0.4.
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Figure S5: Top-10 accuracy of models trained on the broad splits of USPTO-retro and tested on
Pistachio ID, with test set reactions binned by their percentage similarity to the training set product
molecules. Similarities are calculated by the proportion of pairwise Tanimoto similarities over a
threshold score of 0.4.



Table S3: Top-k accuracy of models trained on the broad split and tested on the Pistachio ID test set.
Top-k accuracy (%)

Model Training set (%) k=1 5 10 20 50

10 356 629 714 770 804

25 381 66.1 742 79.1 822

LocalRetro 50 387 670 747 799 829
90 395 67.5 745 797 828

10 354 629 710 762 798

25 355 627 704 759 799

MEGAN 50 374 647 725 779 815
90 376 651 729 781 822

10 216 476 589 662 677

, 25 20.1 430 540 624 64.0
RootAligned 50 172 39.1 495 569 58.1
90 388 665 732 765 768

4S9 OO0D results

Table S4: Top-k accuracy of models trained on the narrow split and tested on the Pistachio OOD test
set.
Top-k accuracy (%)

Model Training set (%) k=1 5 10 20 50

10 008 020 020 022 023
25 002 008 010 0.13 020

LocalRetro 50 005 0.10 0.2 0.18 0.20
90 0.03 007 007 0.15 020

10 003 027 045 071 1.03

25 0.03 022 048 093 1.40

MEGAN 50 0.04 040 083 132 222
90 002 059 101 153 228

10 005 022 051 079 0.99

, 25 021 069 107 143 1.62
RootAligned 50 0.10 1.14 1.84 251 271
90 028 1.08 1.89 297 323
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