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Abstract

Single-step retrosynthesis models are integral to the development of computer-1

aided synthesis planning (CASP) tools, leveraging past reaction data to generate2

new synthetic pathways. However, it remains unclear how the diversity of reactions3

within a training set impacts model performance. Here, we assess how dataset4

size and diversity, as defined using automatically extracted reaction templates,5

affect accuracy and reaction feasibility of three state-of-the-art architectures –6

template-based LocalRetro and template-free MEGAN and RootAligned. We7

show that increasing the diversity of the training set (from 1k to 10k templates)8

significantly increases top-5 round-trip accuracy while reducing top-10 accuracy,9

impacting prediction feasibility and recall, respectively. In contrast, increasing10

dataset size without increasing template diversity yields minimal performance gains11

for LocalRetro and MEGAN, showing that these architectures are robust even with12

smaller datasets. Moreover, reaction templates that are less common in the training13

dataset have significantly lower top-k accuracy than more common ones, regardless14

of the model architecture. Finally, we use an external data source to validate the15

drastic difference between top-k accuracies on seen and unseen templates, showing16

that there is limited capability for generalisation to novel disconnections. Our17

findings suggest that reaction templates can be used to describe the underlying18

diversity of reaction datasets and the scope of trained models, and that the task of19

single-step retrosynthesis suffers from a class imbalance problem.20

1 Introduction21

Retrosynthesis is a key pillar of organic chemistry, requiring expert chemical knowledge to develop22

a sequence of reactions that lead to the synthesis of a target product. As research has progressed,23

so too has the space of possible transformations,1,2 yet organic synthesis remains a bottleneck24

in drug discovery.3 The pioneering work of Corey and Wipke4 has since spawned a plethora of25

computer-aided synthesis planning programs,5,6,7 in which a multi-step algorithm recursively calls26

on a single-step model to generate potential precursors. These single-step algorithms can be broadly27

categorised as template-based, where models learn to identify reaction centres and apply rules from an28

explicitly pre-defined library,8,9,10,11 or template-free, where models learn reaction patterns implicitly29

from reaction SMILES12,13,14 or molecular graphs.15,16,17 The latter class of models is unconstrained30

by reaction templates and is thus expected to be able to propose novel transformations.18,13,19,14,1231

These methods, as is the case with machine learning algorithms generally,20,21 have previously been32

found to be sensitive to imbalanced data, often reinforcing biases rather than identifying important33

trends.22,23,24 This is most clearly evidenced by template-based models, where retrosynthesis is34

formulated as a multi-class classification task25 and thus model performance is heavily affected by the35

underlying distribution of the reaction templates in the training data. Within retrosynthesis, this bias36
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manifests as preferential prediction of specific reaction classes, regioselectivities, or stereoselectivities37

which are better represented in the training set.22,23,24 The widely used open-source USPTO reaction38

dataset,26 derived from US patent data, and its subsets have been extensively used for training and39

model comparison,27,28,29 however its underlying biases have been often overlooked during model40

evaluation.23 Torren-Peraire et al. train and test multiple models on a variety of datasets, but the41

lack of a common test set means that results and biases cannot be directly compared.30 Thakkar et42

al. investigate the impact of template library size on the performance of template-based models, but43

do not use template-free models and do not discuss the impacts of bias.31 Thus, it is unclear how44

training data impacts model predictions, and what future reaction databases should look like in terms45

of size and diversity.24,3246

Despite many works evaluating and comparing retrosynthesis models, there is little consensus on47

the best way to realistically evaluate extrapolation to real world scenarios.33,30 Often models are48

trained and evaluated on a particular random split of USPTO50k,27 which is itself a cleaned random49

subset of the USPTO database26, however this relatively small dataset cannot demonstrate how model50

performance would scale when trained and tested on much larger and more diverse in-house reaction51

libraries.30 Recently, Bradshaw et al. have shown random splits of patent databases yield overly52

optimistic results, due to the similarity of reactions within the same patent or published by the same53

author.34 Instead, they use patent- and author-based splits to simulate out-of-distribution (OOD)54

data and measure generalisation to reactions from unseen patents and authors, respectively. Other55

studies instead define generalisation as the ability to predict novel transformations defined by reaction56

templates.35,36,37,38,39 However, these studies focus on how well different model architectures can57

generalise to new templates, but not how the underlying training data impacts generalisation.58

Here, we investigate the effect that dataset size and diversity have on single-step model performance59

by training and testing on different subsets of a reaction database. We generate USPTO-retro, a60

retrosynthesis-specific dataset derived from USPTO,26 analyse its diversity through local reaction61

templates,11 and use it to train and test three state-of-the-art single-step architectures: LocalRetro1162

(template-based), MEGAN17 (graph-based template-free), and RootAligned14 (SMILES-based63

template-free). We show that top-k accuracy is correlated with the popularity of reaction tem-64

plates in the training set for all models, regardless of architecture, suggesting that this metric can65

serve as a measure of reaction diversity. Finally, we evaluate performance on external test sets66

extracted from the Pistachio database40 to demonstrate a protocol for measuring generalisation to67

seen and unseen reaction templates (Figure 1A).68

2 Methods69

Data Two databases are used in this work: the USPTO reaction database26 for training and testing,70

and the commercial Pistachio reaction database40 as an external test set. We apply a retrosynthesis71

preprocessing pipeline to both datasets based on recent efforts towards standardisation and open72

science,41,33 and the Pistachio database is further filtered to ensure no overlap with the training data.73

This pipeline removes reagents and erroneous reactions to ensure data quality and is applicable to74

any reaction database. A detailed description of the data cleaning steps along with the codebase is75

provided in SI§S1.76

This pipeline was applied to the USPTO reaction database26 to generate USPTO-retro, which77

includes 1,103,781 atom-mapped reaction SMILES. Reaction templates were extracted using the78

LocalTemplate11 algorithm, generating a total of 10,028 local reaction templates. Two external test79

sets were created from Pistachio: Pistachio ID, containing 10k reactions with in-distribution templates80

seen in USPTO-retro, and Pistachio OOD, containing 10k reactions with unseen out-of-distribution81

templates.82

Splitting The USPTO-retro dataset was split into training, validation, and test sets using a random83

90:5:5 split, consistent with established practice in retrosynthesis studies.27,29,28,26 This is referred to84

as the full split. To prevent data leakage, all reactions sharing the same product were assigned to the85

same subset.86

To investigate the effects of dataset size and diversity, the training set was further split into 10%, 25%,87

and 50% subsets using two splitting strategies (Figure 1B):88
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• Narrow split: This strategy selects a subset of reaction templates and includes all associated89

reactions in the training, validation, and test sets, sequentially increasing template diversity90

with training dataset size. The validation and test sets are similarly filtered to contain only91

templates seen during training. This split aims to measure how many reaction templates92

models can learn to predict, and the effect of increasing template diversity on model93

performance.94

• Broad split: In contrast, this strategy randomly samples a fraction of reactions from all95

templates in the full training set. The validation and test sets are not altered. This split96

is designed to measure how much data per template is needed to learn these chemical97

transformations.98
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Figure 1: A) Workflow of data processing, training, and testing. The USPTO-retro dataset (blue)
was randomly split into training, validation, and test sets, and then further split via stratified splitting
by template. Two external test sets were created from Pistachio: Pistachio ID (green), containing 10k
reactions with templates seen in USPTO-retro, and Pistachio OOD (red), containing 10k reactions
with unseen templates. B) Visualisation of the splitting strategies used for training and testing. The
sizes of the coloured bars indicate the number of templates sampled, while the opacity represents the
proportion of reactions sampled.

Models Three model architectures were evaluated, each representing a distinct class of retrosyn-99

thesis algorithms. (i)) LocalRetro11, a template-based algorithm; (ii) MEGAN17, a semi-template100

algorithm, and (iii) RootAligned14, a template-free algorithm. All models were trained using their101

respective repositories and evaluated using the Syntheseus platform,33 which automatically removes102

duplicate and invalid predictions.103

Evaluation While there are many evaluation metrics available to evaluate the performance of single-104

step models,33,42,13 here we employed top-k accuracy and round-trip accuracy, which respectively105

measure recall and chemical feasibility.33,42,13106

Top-k accuracy measures the proportion of test reactions for which the ground truth reactants appear107

among the model’s top-k predictions. In this case, the ground truth is the reported reactants from the108
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test set. The top-10 accuracy metric is analysed in all experiments to mimic the desired breadth of a109

search tree in a multi-step algorithm.33110

Top-k round-trip accuracy evaluates the proportion of top-k predicted reactants that satisfy back-111

translation.13 This is done by checking whether they regenerate the original product via a forward112

reaction model (here RootAligned trained on the full USPTO-retro training set) to predict the top-1113

product from each set of predicted reactants. If the predicted product matches the original target,114

the prediction is considered successful. We report top-1 and top-5 round-trip accuracy metrics to115

estimate the chemical feasibility of the top predictions.13 It is important to note that the calculation116

of round-trip accuracy requires the use of a forward prediction model and is thus not 100% accurate,117

and should be interpreted as an approximation rather than an absolute measure of chemical validity.118

3 Results and Discussion119

3.1 Data analysis120

We started our study by analysing the distribution of reaction templates within the newly generated121

USPTO-retro dataset, extracted using LocalTemplate.11 Despite USPTO-retro containing over 1122

million atom-mapped reaction SMILES, it shows a significant bias towards a small percentage of123

templates. Template frequency is used here to quantify the number of reactions a template describes124

in the training set, and, by extension, reaction classes (Figure 2A). The frequency of a template ranges125

from 2 to 78,922, with 50% of templates occurring fewer than 12 times. This bias underscores the126

inherent nature of open-source reaction databases, where certain reactions dominate. For example,127

the top 10 templates account for just 0.1% of all templates and together describe 30% of the training128

data.129
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Figure 2: A) Histogram of templates (blue) and reactions (red) in the training set grouped by template
frequency (on a log scale and with a box width of 0.3). Template frequency refers to the number of
reactions in the training set described by a specific template. B) Example reactions from the training
set with the template highlighted in blue and the template frequency labelled.

The most common reaction template, an example of which is shown in Figure 2B, corresponds to a130

C-N bond-forming SN2 reaction, which accounts for >78k (8%) of all reactions in the training set.131

This template is similar to the next two most popular templates, which differ only in their leaving132

groups. Conversely, rarer templates include those with uncommon leaving groups or highly specific133

reaction centres. While these reactions are less common in the dataset, they are not necessarily less134

effective or harder to apply experimentally. Therefore, understanding the implications of this template135

imbalance on model performance is key for formulating better training and data curation strategies.136

3.2 Impact of template distribution on model performance137

To evaluate the impact of template distribution on model performance, we employed two splitting138

strategies to further partition the training set beyond the initial random split: the narrow and broad139

split. Both strategies sequentially increase the size of the training data, but differ in the diversity and140

distributions of their templates. The narrow split increases the number of unique reaction templates141
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in the training set as its size grows, allowing us to isolate the effect of increasing template diversity.142

In contrast, the broad split maintains template diversity while increasing the number of training143

examples, allowing us to assess the effect of increasing data volume per template. We analyse the144

resulting performances from these two strategies in the following subsections.145

3.2.1 Narrow split146

The narrow split is designed to evaluate how increasingly template-diverse datasets affect model147

performance. As expected,31,25 models trained on less diverse datasets achieve higher top-k accuracy,148

as they have fewer competing reactions to choose from (Figure 3A). Increasing the number of149

templates from 1k to 10k results in a decrease in top-10 accuracy of 11.6% for LocalRetro, 14.5% for150

MEGAN, and 10.4% for RootAligned.151

This decrease in top-k accuracy does not imply lower reaction feasibility; rather, it indicates the152

model’s increased vocabulary of reactivity as a broader set of plausible reactions is suggested. Round-153

trip accuracy is used here to estimate the feasibility of the predicted reactions.13 The top-1 round-trip154

accuracy remains roughly consistent across all splits and models, with over 89% of top predictions155

likely to be feasible reactions. In contrast, the top-5 round-trip accuracy increases by 14-21% across156

all models as template diversity increases, suggesting that lower-ranked predictions become more157

feasible when the model is exposed to more reaction types.158

This behaviour differs from previous studies wherein top-k accuracy improves with additional159

randomly split training data.43,25 In our case, increasing both the volume and diversity of training160

data leads to a decrease in top-k accuracy. This highlights the importance of explicitly reporting and161

accounting for reaction template diversity when comparing model performance across datasets with162

varying levels of diversity.163

3.2.2 Broad split164

The broad split aims to model the effect of increasing training set size while maintaining reaction165

diversity by using all available templates. Our results show that performance slightly improves for166

A)

B)

Narrow
split

Broad
split

Top-10 accuracy Top-1 round-trip accuracy Top-5 round-trip accuracy

Figure 3: Top-10 accuracy (left), top-1 round-trip accuracy (middle) and top-5 round-trip accuracy
(right) of models trained on the (A) narrow (increasing template diversity) and (B) broad splits
(increasing data volume).
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Figure 4: Top-10 accuracy of all trained models, as grouped by template frequency in the training set.
The template frequency measures the number of times a particular template appears in the training
set.

LocalRetro and MEGAN, with top-10 accuracy increasing by 3.5% for LocalRetro and 1.8% for167

MEGAN with a ninefold increase in training set size (Figure 3B). These results suggest that, with168

sufficient reaction diversity, these models are robust against variations in the size of the training set.169

In contrast, the RootAligned model exhibits a substantial decrease in performance across the broad170

split. Its top-10 accuracy degrades by 15.7% between the 10% to 50% training sets, but recovers to171

85.0% with the full training set. The consistent performances of LocalRetro and MEGAN indicate172

that the variations observed for RootAligned arise from the underlying transformer architecture rather173

than the size or nature of these training sets. This template-free approach attempts to implicitly learn174

chemistry directly from SMILES strings, whereas the template-based and semi-template methods175

provide a more structured way of learning reactions through predefined templates and graph edits.176

Consequently, the learning process of the RootAligned model may require more examples of the177

same reactions to fully utilise this chemistry. Models may also be more easily overfit on the smaller178

training datasets, leading to memorisation and pattern matching, which cannot generalise to the test179

set. Further investigation is needed to determine if this behaviour occurs with other template-free180

models.181

3.3 Accuracy by template182

Next, we investigated how template frequency bias in the training data affects model performance,183

focusing on top-10 accuracy across reaction templates (Figure 4). A clear trend emerges: templates184

that appear more frequently in the training set are predicted with significantly higher accuracy. The185

difference in top-10 accuracy between rare templates (frequency of 1-10) and popular templates (fre-186

quency of 10,001+) is at most 88.6% for LocalRetro, 83.5% for MEGAN, and 55.4% for RootAligned.187

A similar, though weaker, correlation is observed when considering Tanimoto similarities between188

the training and test sets (Figure S3). These trends persist even in models that do not explicitly use189

reaction templates, such as MEGAN and RootAligned, implying that template frequency reflects the190

underlying class distribution of reaction data.191

In both the narrow and broad splits, increasing the training set size amplifies the spread of top-k192

accuracies across template frequencies. For the most frequent templates (with frequency > 10,001),193

LocalRetro and MEGAN consistently achieve top-10 accuracy above 95%, regardless of training set194

sizes. In contrast, rare templates (with frequency 1-10) show a marked drop in accuracy as training195

set size increases: top-10 accuracy decreases between the narrow 10% and full 90% training sets196
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by 53.9% for LocalRetro, 33.8% for MEGAN, and 22.1% for RootAligned. This behaviour is most197

pronounced for LocalRetro, which explicitly considers reaction templates and thus learns to prioritise198

more frequent classes during training. RootAligned, which implicitly encodes chemistry through199

SMILES strings, is less sensitive to these class imbalances. These results suggest that increasing both200

the number and imbalance of reaction templates contributes to performance disparities. To mitigate201

this, further work is needed to incorporate class balancing strategies during model training.202

While the top-k accuracy measures how often a reaction template is correctly predicted, it does203

not describe how often that type of template is recalled. Thus, it is also important to understand if204

the models are oversampling from popular reaction classes as a way of mimicking the training set205

distribution. This behaviour is most easily studied in the LocalRetro model, as its algorithm readily206

outputs a ranked list of predicted templates. In all splits, the model oversamples the most popular207

template classes for its highest ranked prediction (Figure 5A). Rarer templates are undersampled208

compared to the true test distribution, which contributes to their low top-10 accuracy. These rarer209

templates are instead sampled more often at lower ranks as the model is less confident in their210

prediction (Figure 5B).211

#k predictions

A)

B)

Figure 5: (A) Kernel density estimations (KDEs) of the training template frequency of the top
prediction from LocalRetro (red) and ground truth (yellow). (B) The KDE distributions of the training
template frequency of the #1, #5, #10, #20, and #50 predictions from the LocalRetro model trained
on the full training set.

3.4 Generalisation to novel reactions212

Generalisability in single-step retrosynthesis refers to a model’s predictive capability for novel213

reactions. This can be assessed in multiple ways, for example, considering the prediction of previously214

unseen target products using known reaction templates or the prediction of novel disconnections215

not encountered during training. To systematically evaluate both aspects, we split our external test216

set from the Pistachio database into Pistachio ID (In-Distribution), which contains novel products217

with seen templates, and Pistachio OOD (Out-Of-Distribution), which contains novel products with218

unseen templates (Figure 6A). We use the broad split to evaluate generalisation to novel products219

(ID) and the narrow split to evaluate generalisation to novel disconnections (OOD).220
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On the Pistachio ID test set (Figure 6B), all models exhibit a moderate decline in top-10 accuracies221

when compared to their performance on the USPTO-retro test set (Section 3.3): 7-9% for LocalRetro,222

6% for MEGAN, and 5-12% for RootAligned. This indicates that models successfully generalise to223

novel products using templates learnt during training, with similar performance trends to previous224

results. The slightly reduced performance on this test set is likely due to the lower structural similarity225

between Pistachio ID products and those in the USPTO-retro training sets (Figure S4).226

B) Pistachio ID C) Pistachio OODA) Test set selection

USPTO-retro
Pistachio

ID
OOD

Figure 6: A) Diagrammatic representation of the overlap of templates between the USPTO-retro and
Pistachio datasets. The Pistachio ID test set is selected from in-distribution templates (the intersection
area shown in green), whereas the Pistachio OOD test set is selected from out-of-distribution templates
(the exclusive area shown in red). B) Top-10 accuracy of all models trained on the broad split and
tested on the Pistachio ID test set. C) Top-10 accuracy of all models trained on the narrow split and
tested on the Pistachio OOD test set.

In contrast, performance on the Pistachio OOD test set (Figure 6C) reveals severe limitations in227

generalisability to novel disconnections, in agreement with previous findings.35,36,37,38 LocalRetro228

exhibits near-zero top-10 accuracy, which is expected given its reliance on predefined templates.229

The non-zero accuracy suggests template ambiguity, where different templates from the training230

and OOD test sets occasionally yield the same sets of reactants. This occurs due to overlapping231

SMARTS patterns or errors in atom mapping. MEGAN and RootAligned models show modest232

generalisability, which increases with increased training diversity and peaks at top-10 accuracies of233

1% and 2% respectively with the full training sets. Their low but non-zero accuracy implies that234

models prioritise recognising and applying patterns seen in the training data over utilising underlying235

chemical principles to generate novel, feasible disconnections.236

These results highlight the differences in capabilities between ID and OOD generalisation, emphasis-237

ing the need for distinct evaluations that distinguish between these two scenarios. Previous studies238

showing the traditional learning pattern of increasing top-k accuracy with increasing training data239

volume43,25 may, in fact, be misattributing the effect of additional template coverage of the test240

set to additional data. This explanation may also apply to studies showing low generalisability to241

external datasets33 or author-/patent-based splits34, wherein their test sets possibly contain both seen242

and unseen templates. Furthermore, the extremely low generalisability of template-free models to243

novel templates suggests that these models are not yet sufficiently developed to warrant their use for244

predicting new chemistries.245

4 Conclusion and future work246

In this study, we presented a comprehensive assessment of the accuracy and feasibility of three247

state-of-the-art single-step retrosynthesis models – template-based LocalRetro and template-free248

MEGAN and RootAligned – exploring how dataset size and diversity, defined in terms of local249

reaction templates, affect performance.250

Our results have highlighted the critical role of training set diversity in model performance. Increasing251

the diversity of the training set significantly increases top-5 round-trip accuracy, an indicator of252

prediction feasibility, while reducing top-10 accuracy, reflecting the ability of the model to recover253

the ground truth. This trade-off suggests that more diverse datasets enable the prediction of a broader254

range of plausible reactions, even if they differ from the ground truth. Interestingly, increasing dataset255
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size without increasing template diversity yields minimal performance gains for LocalRetro and256

MEGAN models, suggesting that template diversity has a greater impact on model performance than257

volume.258

We also examined the impact of template frequency on model performance. All three models,259

regardless of whether they explicitly use templates, show a strong correlation between a template’s260

frequency in the training set and the model’s ability to predict it correctly. This indicates that all261

models implicitly rely on the distribution of reaction templates learnt during training, with rare262

templates consistently underperforming compared to more frequent ones.263

Finally, to assess real-world applicability, we evaluated model performance on two external test sets264

derived from the Pistachio database: one containing novel products with known templates (Pistachio265

ID) and another with novel products and unseen templates (Pistachio OOD). While all models266

generalised reasonably well to new molecules involving known templates, their ability to predict267

novel disconnections was limited. These results highlight the differences in capabilities between ID268

and OOD generalisation. LocalRetro failed almost entirely on OOD reactions due to its reliance on269

predefined templates, while MEGAN and RootAligned achieved only 1–2% top-10 accuracy. These270

results highlight the need for evaluation protocols that clearly distinguish between in-distribution (ID)271

and out-of-distribution (OOD) generalisation.272

These results also offer a new perspective on recent advances in transfer learning for retrosynthesis273

prediction, wherein fine-tuning effectively modifies the training template distribution. For instance,274

the mixed fine-tuning approach to bias predictions towards heterocyclic ring disconnections reported275

by Wieczorek et al. can be viewed as addressing the underlying class imbalance issues present in276

the initial training set.44 Our results suggest that similar systematic approaches to class imbalance277

during training could improve representation across reaction classes. Similar challenges have been278

addressed in other domains, such as computer vision, through pre-training, data augmentation, and279

re-weighting strategies.45280

The performance trends across the narrow and broad splits raise questions about what data should be281

used to train retrosynthesis models. Ideally, models would learn underlying physical principles to282

propose feasible reactions; however, evaluation shows that they are more likely to learn to mimic283

the template distribution of the training set. Furthermore, models do not necessarily exhibit worse284

accuracy when trained on less data; therefore, data curation efforts should prioritise quality and285

diversity over quantity. As such, it is clear that as chemists we cannot blindly train models with all286

available data and not consider the types of chemistry that data represents, and whether that chemistry287

suits our synthetic goals and targets.288
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S1 Data preprocessing374

The USPTO database was downloaded from https://figshare.com/s/5e57a3399c52701cbc15.41 The375

2023Q1 version of the commercial Pistachio database40 was used, and reactions were deduplicated376

and mapped with RXNMapper.?377

The preprocessing pipeline includes the following steps:378

• Remove multi-product reactions by either filtering out small side products (<6 atoms) or379

removing reactions with large side products.380

• Remove reactions with purely inorganic products.381

• Remove reactions where the product is present as a reactant.382

• Remove "stereoalchemy" by removing any stereochemistry tokens if present in the product383

but not in the reactants.384

• Remove reagents (precursor species which do not contribute to the atom mapping).385

• Remove reactions with >4 reactants.386

• Canonicalise reaction SMILES.387

• Remove reactions with over 512 tokens.388

• Remove duplicate reactions.389

• Extract templates using LocalTemplate11 and filter out templates with under 6 occurrences.390

The pipeline was applied to the USPTO and Pistachio databases, yielding 1,103,781 and 3,720,288391

reactions, respectively.392

The Pistachio database was further filtered by patent number to exclude all US patents and avoid393

overlap with the USPTO. Templates with fewer than 20 occurrences were removed, and the database394

was divided into two sets: one containing templates also present in USPTO-retro, and the other395

containing new templates. A subset of 10,000 reactions was randomly sampled from both sets to396

generate Pistachio ID and Pistachio OOD, respectively.397

The code used for cleaning and splitting both datasets can be found in the Github repository: (attached398

zip).399

1



S2 Splitting distributions400

A) B)

Figure S1: Histograms of sample counts in the training set by template frequency in the training set
(on a log scale) across (A) the narrow split and (B) the broad split. Template frequency refers to the
number of samples in the training set containing a specific template, while the sample count refers to
the number of reactions with that template frequency.

S3 Training hyperparameters401

The configuration files used to train the models can be found in the Github repository: (attached zip).402

Each model was trained using its respective repository.403

The LocalRetro models were trained using default hyperparameters, and an early stopping patience404

of 5 epochs was implemented. The MEGAN models were trained with default hyperparameters.405

The RootAligned models trained on the narrow and full splits used the default hyperparameters;406

however, those trained on the broad split have a separate optimised set of hyperparameters. This407

optimisation was done to improve the suboptimal performance observed when training with the408

default hyperparameters.409
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S4 Evaluation metrics410

The retrosynthesis platform Syntheseus33 was used for evaluating all trained models. This involves411

automatically filtering out predictions which are invalid or duplicated, as shown in Figure S2. The412

evaluation metrics used include:413

• Top-k accuracy: the proportion of test reactions with an exact ground truth match (i.e. the414

expected reactants from the test set) in the top-k predicted reactants.415

• Top-k round-trip accuracy: the proportion of top-k predicted reactants which satisfy416

back-translation.13 This is calculated by using a forward reaction model to predict the top-1417

product of each set of predicted reactants, and this product is compared to the original target418

product.419

A RootAligned forward prediction model is trained on the full USPTO-retro dataset for the purpose420

of back-translation and calculating top-k round-trip accuracy.421
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Figure S2: Visualisation of the retrosynthesis evaluation pipeline. Given a target product, the
retrosynthesis model produces n = 50 sets of reactants, which are then filtered to contain only valid
and unique predictions. The rank of the ground truth match determines the top-k accuracy. A forward
reaction model is used to predict the product of each set of predicted reactants and this is compared
to the target product to determine the top-k round-trip accuracy.
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S5 Narrow split results422

Table S1: Top-k accuracy and round-trip (RT) accuracy of models trained and tested on the narrow
split.

Top-k accuracy (%) Top-k RT
accuracy (%)

Model Training set (%) k=1 5 10 20 50 1 5

LocalRetro

10 77.6 93.1 94.7 95.6 95.9 92.4 63.8
25 74.2 91.6 93.4 94.6 95.1 93.2 70.3
50 60.2 83.4 87.6 90.1 91.3 90.5 73.2
90 50.5 77.4 83.1 86.7 88.5 90.8 78.0

MEGAN

10 76.9 91.8 93.3 94.6 95.1 91.8 58.6
25 71.7 90.2 92.9 94.4 95.3 92.6 68.2
50 53.2 78.0 83.6 87.1 89.6 83.6 61.2
90 42.1 71.2 78.8 83.8 87.5 89.9 77.8

RootAligned

10 79.8 94.1 95.4 96.1 96.2 93.7 54.3
25 76.2 92.8 94.5 95.4 95.5 94.5 63.1
50 60.9 85.5 89.4 91.2 91.4 92.3 70.4
90 49.1 78.8 85.0 87.6 87.8 92.1 75.2

S6 Broad split results423

Table S2: Top-k accuracy and round-trip (RT) accuracy of models trained and tested on the broad
split.

Top-k accuracy (%) Top-k RT
accuracy (%)

Model Training set (%) k=1 5 10 20 50 1 5

LocalRetro

10 42.1 71.8 79.6 84.8 87.4 88.3 75.4
25 45.3 74.0 81.0 85.5 87.9 90.0 78.0
50 48.3 75.9 82.1 86.3 88.3 90.5 78.2
90 50.5 77.4 83.1 86.7 88.5 90.8 78.0

MEGAN

10 40.5 69.5 77.3 82.6 86.3 88.5 75.0
25 40.2 69.2 77.0 82.5 86.3 88.4 75.0
50 41.3 70.7 78.3 83.5 87.2 89.9 77.8
90 42.1 71.2 78.8 83.8 87.5 89.9 77.8

RootAligned

10 29.8 58.9 70.5 77.7 79.1 77.7 62.3
25 23.5 49.4 61.5 70.2 71.9 77.5 63.7
50 18.3 43.1 54.8 62.6 63.9 67.0 59.1
90 49.1 78.8 85.0 87.6 87.8 92.1 75.2
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S7 Tanimoto similarity between training and test sets424

Tanimoto similarity was used to calculate the similarity between product molecules present in425

the USPTO-retro training and test sets. Morgan fingerprints with default RDKit parameters were426

calculated for all product molecules using RDKit, and Tanimoto similarity was calculated between427

all pairs of fingerprints from the training and test sets. Molecules were deemed to be similar if the428

Tanimoto similarity score was over 0.4, and the total count of similar molecules in the training set for429

a given test set product molecule was collected. The counts were then divided by the total number of430

reactions in the training set to get the percentage similarity (Figure S3).431

Narrow
split

Broad
split

LocalRetro MEGAN RootAligned

Figure S3: Top-10 accuracy of models trained and tested on splits of USPTO-retro, with test set
reactions binned by their percentage similarity to the training set product molecules. Similarities are
calculated as the proportion of pairwise Tanimoto similarities over a threshold score of 0.4.
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S8 ID results432

Tanimoto similarity was used to calculate the similarity between product molecules present in the full433

USPTO-retro training and the USPTO-retro test set and Pistachio ID test set, using the same method434

as discussed in Section S7. Figure S4 shows that Pistachio ID has a high proportion of products with435

0% similarity to the training set, and is overall less similar to the training set than the USPTO-retro436

test set. Figure S5 shows the resulting top-10 accuracy of models tested on Pistachio ID, which437

suggests that the lowered accuracy of these models is due to the increased proportion of dissimilar438

test products.439

Figure S4: Similarity of the USPTO-retro (blue) and Pistachio ID (green) test sets to the USPTO-retro
full training set. Similarities are calculated as the proportion of pairwise Tanimoto similarities over a
threshold score of 0.4.

LocalRetro MEGAN RootAligned

Figure S5: Top-10 accuracy of models trained on the broad splits of USPTO-retro and tested on
Pistachio ID, with test set reactions binned by their percentage similarity to the training set product
molecules. Similarities are calculated by the proportion of pairwise Tanimoto similarities over a
threshold score of 0.4.
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Table S3: Top-k accuracy of models trained on the broad split and tested on the Pistachio ID test set.
Top-k accuracy (%)

Model Training set (%) k=1 5 10 20 50

LocalRetro

10 35.6 62.9 71.4 77.0 80.4
25 38.1 66.1 74.2 79.1 82.2
50 38.7 67.0 74.7 79.9 82.9
90 39.5 67.5 74.5 79.7 82.8

MEGAN

10 35.4 62.9 71.0 76.2 79.8
25 35.5 62.7 70.4 75.9 79.9
50 37.4 64.7 72.5 77.9 81.5
90 37.6 65.1 72.9 78.1 82.2

RootAligned

10 21.6 47.6 58.9 66.2 67.7
25 20.1 43.0 54.0 62.4 64.0
50 17.2 39.1 49.5 56.9 58.1
90 38.8 66.5 73.2 76.5 76.8

S9 OOD results440

Table S4: Top-k accuracy of models trained on the narrow split and tested on the Pistachio OOD test
set.

Top-k accuracy (%)

Model Training set (%) k=1 5 10 20 50

LocalRetro

10 0.08 0.20 0.20 0.22 0.23
25 0.02 0.08 0.10 0.13 0.20
50 0.05 0.10 0.12 0.18 0.20
90 0.03 0.07 0.07 0.15 0.20

MEGAN

10 0.03 0.27 0.45 0.71 1.03
25 0.03 0.22 0.48 0.93 1.40
50 0.04 0.40 0.83 1.32 2.22
90 0.02 0.59 1.01 1.53 2.28

RootAligned

10 0.05 0.22 0.51 0.79 0.99
25 0.21 0.69 1.07 1.43 1.62
50 0.10 1.14 1.84 2.51 2.71
90 0.28 1.08 1.89 2.97 3.23
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