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ABSTRACT

The use of low-bit quantization has emerged as an indispensable technique for
enabling the efficient training of large-scale models. Despite its widespread em-
pirical success, a rigorous theoretical understanding of its impact on learning per-
formance remains notably absent, even in the simplest linear regression setting.
We present the first systematic theoretical study of this fundamental question, an-
alyzing finite-step stochastic gradient descent (SGD) for high-dimensional lin-
ear regression under a comprehensive range of quantization targets: data, label,
parameter, activation, and gradient. Our novel analytical framework establishes
precise algorithm-dependent and data-dependent excess risk bounds that charac-
terize how different quantization affects learning: parameter, activation, and gra-
dient quantization amplify noise during training; data quantization distorts the
data spectrum and introduces additional approximation error. Crucially, we dis-
tinguish the effects of two quantization schemes: we prove that for additive quan-
tization (with constant quantization steps), the noise amplification benefits from
a suppression effect scaled by the batch size, while multiplicative quantization
(with input-dependent quantization steps) largely preserves the spectral structure,
thereby reducing the spectral distortion. Furthermore, under common polynomial-
decay data spectra, we quantitatively compare the risks of multiplicative and ad-
ditive quantization, drawing a parallel to the comparison between FP and integer
quantization methods. Our theory provides a powerful lens to characterize how
quantization shapes the learning dynamics of optimization algorithms, paving the
way to further explore learning theory under practical hardware constraints.

1 INTRODUCTION

Quantization has garnered widespread attention as an essential technique for deploying large-scale
deep learning models, particularly large language models (LLMs) (Lang et al., 2024; Shen et al.,
2024). In line with this low-precision paradigm, a new frontier of research has emerged: quanti-
zation scaling laws, which seek to formalize the trade-offs between model size, dataset size, and
computational bit-width. Seminal work by Kumar et al. (2024) treated bit-width as a discrete mea-
sure of precision. This was extended by Sun et al. (2025), who established a more comprehensive
scaling law for floating-point (FP) quantization (Kuzmin et al., 2022) by separately accounting for
the distinct roles of exponent and mantissa bits. Going further, Chen et al. (2025) proposed a uni-
fied scaling law that models quantized error as a function of model size, training data volume, and
quantization group size. Collectively, these studies provide rigorous understandings to guide the
joint allocation of fixed compute or memory budgets across data size, model size and precision
(quantization bit-width).
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The empirical understanding of low-precision training has advanced rapidly, yet a significant theory-
practice gap persists. Theoretical research remains predominantly restricted to analyzing conver-
gence guarantees on the training loss for quantized optimizers (Nadiradze et al., 2021; Liu et al.,
2023; Markov et al., 2023; Xin et al., 2025). For example, Markov et al. (2023) derived convergence
guarantee for the communication-efficient variant of Fully-Shared Data-Parallel distributed training
under parameter and gradient quantization. While these studies offer crucial insights into optimiza-
tion, they overlook a more fundamental question: how does quantization affect the model’s learning
performance? Specifically, a rigorous characterization of the interplay between quantization, model
dimension, dataset size, and their joint effect on the population risk remains largely unexplored. A
notable step in this direction is Zhang et al. (2022), which analyzed the generalization of quantized
two-layer networks through the lens of neural tangent kernel (NTK). However, their work is limited
in three key aspects: it only considers parameter quantization; its analysis is confined to the lazy-
training regime; and it fails to provide explicit generalization bounds in terms of core parameters
like sample size, dimension, and quantization error. These limitations restrict its applicability to
modern low-precision training practices.

Motivated by recent theoretical advances in scaling laws (Lin et al., 2024; 2025; Li et al., 2025), we
analyze the learning performance of quantized training using a high-dimensional linear model. This
model serves as a powerful and well-established testbed for isolating phenomena like learning rate
and batch size effects (Kunstner & Bach, 2025; Luo et al., 2025; Zhang et al., 2024b; Xiao, 2024;
Ren et al., 2025; Bordelon et al., 2025). Its simplicity provides the analytical flexibility necessary to
derive precise relationships between generalization error and critical parameters such as dimension,
sample size, and quantization error (or bit-width).

Our setting. In this paper, we consider SGD for linear regression under quantization. We first iterate
the standard linear regression problem as follows:

min
w

L(w), where L(w) =
1

2
Ex,y

[
(y − ⟨w,x⟩)2

]
.

Here x ∈ H is the feature vector, H is some (finite d-dimensional or countably infinite dimensional)
Hilbert space, y ∈ R is the response, D is an unknown distribution over x and y, and w ∈ H is the
weight vector to be optimized. We consider the constant step size SGD under quantization: at each
iteration t, an i.i.d. batch (with batch size B) of examples (Xt,yt) ∈ RB×d × RB is observed, and
the weight wt ∈ Rd is updated according to following quantized SGD algorithm.

wt = wt−1 + γ
1

B
Qd(Xt)

⊤Qo

(
Ql(yt)−Qa

(
Qd(Xt)Qp(wt−1)

))
, t = 1, ..., N,

(quantized SGD)

where γ > 0 is a constant stepsize, N is the number of sample batches observed, the master weights
is initialized at w0, and Qd,Ql,Qp,Qa,Qo are independent general quantization operations for data
feature, label, model parameter, activation and output gradient respectively. Notably, for theoretical
simplicity, we assume all matrix operations (e.g., addition and multiplication) are computed in full
precision, with quantization applied subsequently to obtain low-precision values. Then, we consider
the average iterate as the algorithm output, i.e., wN := 1

N

∑N−1
t=0 wt. Without loss of generality,

we assume the initial parameter is w0 = 0.

The goal of this work is to characterize the learning performance of the quantized SGD via evaluating
the population risk L(wN ), and more importantly, its relationship with the quantization error. Let
w∗ = argminL(w), we define the following excess risk as a surrogate of the population risk:

E(wN ) = L(wN )− L(w∗). (Excess Risk)

Our contributions. We perform a novel theoretical study on the learnability of the quantized SGD
algorithm for high-dimensional linear regression problems. Our contributions are summarized as
follows:

• We perform systematic analysis and establish a theoretical bound for the excess risk of quantized
SGD. This bound is explicitly formulated as a function of the full eigen-spectrum of the quantized
data feature covariance, sample size, and quantization errors (see Theorem 4.1 for details). Our
results precisely reveal how quantization applied to different model components impacts learning
performance: quantization of data distorts the spectrum of effective data covariance and introduces
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an additional approximation error; while the quantization of parameter, activation, and output
gradient amplify noise throughout the training process on the quantized feature space.

• We analyze two standard quantization error models: additive and multiplicative, which conceptu-
ally relate to the integer and FP quantization techniques. For additive quantization, our theoretical
bounds indicate that the noise amplification stemming from activation and output gradient quanti-
zation diminishes as the batch size increases, whereas the spectrum of the effective data covariance
is distorted by a constant noise floor (see Corollary 4.1 for details). Conversely, for multiplicative
quantization, our results demonstrate that data quantization preserves the intrinsic spectral struc-
ture of the effective covariance, thereby reducing spectral distortion; however, the resulting noise
amplification remains independent of the batch size (see Theorem 4.2 for details).

• We further derive the conditions on the quantization errors such that the learning performance of
the full-precision SGD can be maintained (in orders). Our results indicate that compared with
multiplicative quantization, additive quantization necessitates stricter spectral constraints on data
quantization but allows for more relaxed conditions on activation and output gradient quantization,
benefiting from the batch-averaging effect (see Corollary 4.2 for details). By applying our excess
risk bounds to polynomial decay spectrum, we show that multiplicative quantization is applicable
even in high-dimensional settings, whereas additive quantization is not (see Corollary 4.3 for
details). These simplified theoretical results also draw implications for comparing integer and
FP quantization, allowing us to identify the conditions under which each type is likely to yield
superior performance.

Notations. For two positive-valued functions f(x) and g(x), we write f(x) ≲ g(x) or f(x) ≳ g(x)
if f(x) ≤ cg(x) or f(x) ≥ cg(x) holds for some absolute (if not otherwise specified) constant c > 0
respectively. We write f(x) ≂ g(x) if f(x) ≲ g(x) ≲ f(x). For two vectors u and v in a Hilbert
space, we denote their inner product by ⟨u,v⟩ or u⊤v. For two matrices A and B of appropriate
dimensions, we define their inner product by ⟨A,B⟩ := tr

(
A⊤B

)
. We use ∥ · ∥ to denote the

operator norm for matrices and ℓ2-norm for vectors. For a positive semi-definite (PSD) matrix A
and a vector v of appropriate dimension, we write ∥v∥2A = v⊤Av.

2 RELATED WORKS

High-dimensional linear regression via SGD. Theoretical guarantees for the generalization prop-
erty have garnered significant attention in machine learning and deep learning. Seminal work by
Bartlett et al. (2020); Tsigler & Bartlett (2023) derived nearly tight upper and lower excess risk
bounds in linear (ridge) regression for general regularization schemes. With regards to the classi-
cal underparameterized regime, a large number of works studied the learnability of iterate averaged
SGD in linear regression (Polyak & Juditsky, 1992; Défossez & Bach, 2015; Bach & Moulines,
2013; Dieuleveut et al., 2017; Jain et al., 2018; 2017). With regards to modern overparameterized
setting, one-pass SGD in linear regression has also been extensively studied (Dieuleveut & Bach,
2015; Berthier et al., 2020; Varre et al., 2021; Zou et al., 2023; Wu et al., 2022a;b; Zhang et al.,
2024a), providing a framework to characterize how the optimization algorithm affects the general-
ization performance for various data distributions. Another line of work analyzed the behavior of
multi-pass SGD on a high-dimensional ℓ2-regularized least-squares problem, characterizing excess
risk bounds (Lei et al., 2021; Zou et al., 2022) and the exact dynamics of excess risk (Paquette et al.,
2024a). From a technical perspective, our work builds on the sharp finite-sample and dimension-free
analysis of SGD developed by Zou et al. (2023). However, these works did not concern the practical
quantization operations. It remains unclear how quantization error affects the learning behavior of
SGD for linear regression.

Theoretical analysis for quantization. As a powerful technique for deploying large-scale deep
learning models, quantization has attracted significant attention. From the theoretical perspective,
a line of works focus on the convergence guarantee in both quantized training (SGD) algorithms
(De Sa et al., 2015; Alistarh et al., 2017; Faghri et al., 2020; Gorbunov et al., 2020; Gandikota
et al., 2021; Markov et al., 2023; Xin et al., 2025) and post-training quantization methods (Lybrand
& Saab, 2021; Zhang & Saab, 2023; Zhang et al., 2023; 2025). For low-precision training (SGD),
De Sa et al. (2015) was the first to consider the convergence guarantees. Assuming unbiased stochas-
tic quantization, convexity, and gradient sparsity, they gave upper bounds on the error probability
of SGD. Alistarh et al. (2017) refined these results by focusing on the trade-off between commu-
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nication and convergence and proposed Quantized SGD (QSGD). Faghri et al. (2020) extended the
fixed quantization scheme (Alistarh et al., 2017) to two adaptive quantization schemes, providing a
more general convergence guarantee for quantized training. For post-training quantization, Lybrand
& Saab (2021) derived an error bound for ternary weight quantization under independent Gaussian
data distribution. Zhang et al. (2023) extended these results to more general quantization grids and
a wider range of data distributions using a different proof technique. More recently, Zhang et al.
(2025) presented the first quantitative error bounds for OPTQ post-training algorithm framework.
However, no prior work provides explicit generalization bounds.

Linear models for theory of scaling law. Several recent studies have sought to formalize and
explain the empirical scaling laws using conceptually simplified linear models (Bahri et al., 2024;
Atanasov et al., 2024; Paquette et al., 2024b; Bordelon et al., 2024; Lin et al., 2024; 2025). Among
them, Bahri et al. (2024) considered a linear teacher-student model with power-law spectrum and
showed that the test loss of the ordinary least square estimator decreases following a power law in
sample size N (or model size M ) when the other parameter goes to infinity. Bordelon et al. (2024)
analyzed the test error of the solution found by gradient flow in a linear random feature model and
established power-law scaling in one of N , M and training time T while the other two parameters
go to infinity. Building on the technique in Zou et al. (2023), Lin et al. (2024) analyzed the test error
of the last iterate of one-pass SGD in a sketched linear model. They presented the first systematic
study to establish a finite-sample joint scaling law (in M and N ) for linear models that aligns with
empirical observations (Kaplan et al., 2020). More recently, Lin et al. (2025) extended the scaling
law analysis to the setting with data reuse (i.e., multi-pass SGD) in data-constrained regimes.

3 PRELIMINARY

3.1 QUANTIZATION OPERATIONS

For all quantization operations in (quantized SGD), we employ the stochastic quantization method
(Markov et al., 2023), which unbiasedly rounds values using randomly adjusted probabilities. This
stochastic quantization is widely used in both empirical and theoretical analysis of quantization
(Modoranu et al., 2024; Ozkara et al., 2025). We summarize this in the following assumption.

Assumption 3.1. Let Qi, i ∈ {d, l, p, a, o} be the coordinate-wise quantization operation for data
feature, label, model parameter, activation, and output gradient, respectively. We assume that the
quantization operation is unbiased, i.e., for any u,

E [Qi(u)|u] = u.

Furthermore, to better uncover the effect of quantization, we consider the following two types of
quantization error: multiplicative quantization and additive quantization, which are motivated by
abstracting the behavior of prevalent numerical formats used in practice.

Definition 3.1. Let Q be an unbiased quantization operation. We categorize it based on the structure
of its error variance:

• Multiplicative quantization. We call the quantization is ϵ-multiplicative if the conditional second
moment of quantization error is proportional to the outer product of raw data itself, i.e.,

E
[
(Q(x)− x) (Q(x)− x)

⊤
∣∣∣∣x] = ϵxx⊤.

• Additive quantization. We call the quantization is ϵ-additive if the conditional second moment of
quantization error is proportional to identity, i.e.,

E
[
(Q(x)− x) (Q(x)− x)

⊤
∣∣∣∣x] = ϵI.

This theoretical distinction is grounded in practical quantization schemes. For instance, integer
quantization (e.g., INT8, INT16) uses a fixed bin length, resulting in an error that is largely indepen-
dent of the value’s magnitude. This characteristic aligns with our definition of additive quantization,
where the error variance is uniform across coordinates. Conversely, floating-point quantization (e.g.,
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FP8, FP32) employs a value-aware bin length via its exponent and mantissa bits (e.g., the E4M3 for-
mat in FP8). This structure causes the quantization error to scale with the magnitude of the value
itself, corresponding to the model of multiplicative quantization.

To precisely capture the quantization error, we further introduce some relevant notations on quanti-
zation errors during training. Denote the activation and output gradient at time t as

at = Qd(Xt)Qp(wt−1), ot = Ql(yt)−Qa (Qd(Xt)Qp(wt−1)) .

Then we are ready to define quantization errors.

Definition 3.2. The quantization error on data ϵ(d), on label ϵ(l), on parameter ϵ
(p)
t at time t, on

activation ϵ
(a)
t at time t and on output gradient ϵ(o)t at time t are defined as follows.

ϵ(d) := Qd(x)− x, ϵ(l) := Ql(y)− y, ϵ
(p)
t := Qp(wt)−wt,

ϵ
(a)
t := Qa(at)− at, ϵ

(o)
t := Qo(ot)− ot.

3.2 DATA MODEL

We then state the regularity assumptions on the data distribution, which align with those common in
prior works (Zou et al., 2023; Lin et al., 2024). A key distinction in our setting is that the training
process is performed on quantized data, i.e., Qd(x) and Ql(y). Consequently, we formulate these
assumptions directly on the quantized data rather than the full-precision versions.

Assumption 3.2 (Data covariance). Let H = E[xx⊤] be the data covariance matrix and

H(q) := E[Qd(x)Qd(x)
⊤], D := E[(Qd(x)− x)(Qd(x)− x)⊤],

be the covariance matrices of the quantized data feature and quantization error of data covariance,
respectively. Then we assume that tr(H) and tr(H(q)) are finite.

Further let H =
∑

i λiviv
⊤
i be the eigen-decomposition of H, where {λi}∞i=1 are the eigenvalues

of H sorted in non-increasing order and vi are the corresponding eigenvectors. As in Zou et al.
(2023), we denote

H0:k :=

k∑
i=1

λiviv
⊤
i , Hk:∞ :=

∑
i>k

λiviv
⊤
i , I0:k :=

k∑
i=1

viv
⊤
i , Ik:∞ :=

∑
i>k

viv
⊤
i .

Similarly, we denote the eigen-decomposition of H(q) as H(q) =
∑

i λ
(q)
i v

(q)
i v

(q)
i

⊤
and correspond-

ingly obtain H
(q)
0:k,H

(q)
k:∞, I

(q)
0:k, I

(q)
k:∞. We then extend the fourth moment and noise assumptions in

Zou et al. (2023); Lin et al. (2024) to the low-precision setting.

Assumption 3.3 (Fourth-order moment). Let x(q) = Qd(x). Then for any PSD matrix A, there
exists a constant αB > 0 such that

E
[
x(q)x(q)⊤Ax(q)x(q)⊤

]
⪯ αB tr(H(q)A)H(q).

To extend the model noise assumption in Zou et al. (2023) to the low-precision setting, we define
the optimal model weight regarding the quantized data feature and label:

w(q)∗ = argminw E
[
(Ql(y)− ⟨w,Qd(x)⟩)2

]
.

Then we are ready to make the assumption on the model noise ξ := Ql(y)− ⟨w(q)∗,Qd(x)⟩.
Assumption 3.4. Assume there exists a positive constant σ > 0 such that

E
[
ξ2Qd(x)Qd(x)

⊤] ⪯ σ2H(q).

In fact, Assumptions 3.3 and 3.4 can be directly inferred from the standard assumptions on the full-
precision data (Assumptions 2.1 and 2.2 in Zou et al. (2023)) under specific quantization schemes.
We defer the discussion to Section E.
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4 MAIN THEORETICAL RESULTS

We first derive excess risk upper bounds for quantized SGD in Section 4.1, then compare these rates
with the full-precision SGD (in orders) in Section 4.2 and perform specific case study in Section 4.3.

4.1 EXCESS RISK BOUNDS

We now provide excess risk bounds under general quantization, multiplicative quantization and
additive quantization. Denote the effective dimension for H(q): k∗ = max

{
k : λ

(q)
k ≥ 1

Nγ

}
.

Theorem 4.1 (General quantization). Consider general quantization. Denote DH
1 = D(H +

D)−1H(H+D)−1D, DH
2 = H(H(q))−1 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1D(H(q))−1H. Under

Assumption 3.1, 3.2, 3.3 and 3.4, if the stepsize γ < 1
αBtr(H(q))

, then it holds,

E[E(wN )] ≤ 2VarErr + 2BiasErr + ApproxErr,

where

VarErr ≤
2αB

(
∥w(q)∗∥2

I
(q)
0:k∗

Nγ + ∥w(q)∗∥2
H

(q)

k∗:∞

)
+ σ

(q)
G

2

1− γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

BiasErr ≤ 1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

ApproxErr ≤ ∥w∗∥2DH
1
+ ∥w∗∥2DH

2
,

with σ
(q)
G

2
=

σ2+supt

{∥∥∥E[ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at

]∥∥∥}
B + αB supt E

[
tr

(
H(q)ϵ

(p)
t−1ϵ

(p)
t−1

⊤
)]

.

Theorem 4.1 establishes the first excess risk bound for quantized SGD under a general quantiza-
tion paradigm. The excess risk is decomposed into three components: variance error, bias error,
and approximation error. Notably, the variance and bias errors mirror those of full-precision SGD
(Zou et al., 2023) and exact equivalence is recovered when the quantization error vanishes. The
key role that quantization plays is two-fold: data quantization significantly influences the effec-
tive (quantized) data covariance H(q), while activation, output gradient and parameter quantization
amplify the effective noise variance σ(q)

G (which will be further characterized in the subsequent theo-
rems when given specific quantization type). Specifically, the quantized data covariance arises from
performing SGD in quantized data feature space and the quantized noise variance corresponds to
additional quantization error introduced in the parameter update rule. We also note that the addi-
tional approximation error, resulting from quantization of data, can be interpreted as the discrepancy
between the global optimum in full-precision data space and quantized data feature space.

Crucially, in the absence of quantization, our excess risk bound reduces exactly to the standard
results presented in Zou et al. (2023). It is also worth noting that under the unbiased quantization
assumption, the quantization of parameter, output gradient, and activation do not affect bias error 1.

To further elucidate the effects of quantization, we examine two specific schemes: multiplicative
and additive quantization. The result for additive quantization can be derived directly from Theorem
4.1 and is summarized below.
Corollary 4.1 (Additive quantization). Under Assumption 3.1, 3.2, 3.3 and 3.4, if there exist
ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-additive, and the
stepsize satisfies γ < 1

αB [tr(H)+dϵd]
, then

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,

1For theoretical tractability and simplicity, our framework employs the unbiased quantization assumption
(Assumption 3.1). Without this assumption, the conditional expectations of the parameter, output gradient,
and activation quantization errors (i.e., quantization bias) would contribute to the bias error. We believe our
framework is readily extendable to this general biased quantization setting.
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where

ApproxErr ≲
ϵd

λd + ϵd
∥w∗∥2H , BiasErr ≲

1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

VarErr ≲
αB∥w∗∥2H + σ2+ϵo+ϵa

B + αBϵp[tr(H) + dϵd]

1− γαB [tr(H) + dϵd]

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2

)
.

Corollary 4.1 explicitly demonstrates how data quantization distorts effective data covariance spec-
trum and how parameter, activation and output gradient quantization amplify noise during training
under additive quantization scheme. A key observation concerns the scaling with respect to the
batch size B. Consistent with the label noise σ2, the noise amplification from activation and output
gradient quantization (ϵa, ϵo) are scaled by a factor of 1/B. In contrast, the noise amplification from
parameter quantization (ϵp) scales with the trace of the quantized data covariance and is independent
of batch size.

The interpretation is that additive quantization imposes a constant bound on the conditional second
moment of the quantization error. Consequently, the underlying data structure inherent within the ac-
tivation quantization error ϵ(a)t and output gradient quantization error ϵ(o)t is effectively neutralized.
Formally, the noise amplification from these terms is characterized as 1

B2E[Xq⊤ϵϵ⊤Xq]. Under ad-
ditive quantization, since the error variance is bounded by a constant, the dependency on data within
ϵ vanishes. However, the noise amplification from parameter quantization, which is characterized
as 1

B2E[Xq⊤Xqϵ(p)ϵ(p)
⊤
Xq⊤Xq], preserves the underlying dependency on data, even if the error

variance itself is constant.

Moreover, a critical consequence of additive quantization is the distortion of the data covariance
spectrum H(q). Specifically, a fixed constant ϵd is added across the entire spectrum, effectively im-
posing a noise floor that prevents the tail eigenvalues from decaying. This spectral flattening severely
impedes learnability, as it leads to substantial risk accumulation within the high-dimensional tail
subspace.

We next examine the multiplicative quantization scheme. Unlike additive quantization, multiplica-
tive quantization exhibits an inherent structural alignment with the full-precision dynamics, as the
error scales relative to the signal magnitude. Exploiting this property allows us to derive a refined ex-
cess risk bound through a direct analysis, rather than relying on a generic application of the general
result in Theorem 4.1. Our theoretical findings are summarized below.
Theorem 4.2 (Multiplicative quantization). Under Assumption 3.1, 3.2, 3.3 and 3.4, if there exist
ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-multiplicative, and the
stepsize satisfies γ < 1

αB(1+ϵo)[1+ϵp+ϵa(1+ϵp)](1+ϵd)tr(H) , then the excess risk can be upper bounded
as follows.

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,

where

ApproxErr ≲
ϵd

1 + ϵd
∥w∗∥2H , BiasErr ≲

1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

VarErr ≲

(
k∗

N
+Nγ2(1 + ϵd)

2
∑
i>k∗

λ2
i

)
(1+ϵo)σ

2

B + αB(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)] ∥w∗∥2H
1− γαB(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)](1 + ϵd)tr (H)

.

Theorem 4.2 characterizes the spectrum distortion and noise amplification effects induced by multi-
plicative quantization. Notably, in stark contrast to additive quantization, which severely flattens the
tail spectrum by imposing a constant floor, multiplicative quantization largely preserves the intrinsic
spectral structure. Specifically, it acts as a linear transformation that scales the entire spectrum by a
factor of (1 + ϵd) without altering the relative distribution of eigenvalues. This preservation of the
spectral decay property ensures superior learnability compared to the additive quantization scheme.

Regarding noise amplification, Theorem 4.2 reveals a critical divergence from the additive quanti-
zation scheme. While the contribution from intrinsic label noise (σ2) is still suppressed by the batch
size factor 1/B, the quantization noise stemming from activation and output gradients (ϵa, ϵo) is
coupled with the model parameter ∥w∗∥2H and does not scale with 1/B. This phenomenon arises
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because multiplicative quantization error (scales proportionally with the signal strength) is inher-
ently signal-dependent and is intrinsically tied to the data structure.

We provide further analysis of quantized SGD with quantized master weights in Section F. Train-
ing with quantized master weights necessitates stricter step size conditions to ensure convergence
and introduces additional error terms into the excess risk bounds, thereby degrading generalization
performance.

4.2 COMPARISONS WITH STANDARD EXCESS RISK BOUND

In this part, we will provide a detailed comparison with standard excess risk bounds and identify
the conditions on the quantization error such that the excess risk bound will not be largely affected.
First, let k∗0 = max{k : λk ≥ 1

Nγ }, we recall the standard excess risk bound (Zou et al., 2023):

R0 =

k∗0
N

+Nγ2 ·
∑
i>k∗

0

λ2
i

 αB

(
1

Nγ ∥w
∗∥2I0:k∗

0

+ ∥w∗∥2Hk∗
0 :∞

)
+ σ2

B

1− γαBtr (H)

+
1

γ2N2
· ∥w∗∥2(H0:k∗

0
)−1 + ∥w∗∥2Hk∗

0 :∞
.

The following corollary derives the conditions on the quantization errors such that the learning
performance of the full-precision SGD can be maintained (in orders).
Corollary 4.2. To ensure that E[E(wN )] ≲ R0, conditions on the quantization error are as follows:

• For multiplicative quantization, under the conditions in Theorem 4.2, we require

ϵd ≲ 1 ∧ R0

∥w∗∥2H
, ϵo, ϵa, ϵp ≲

 σ2

BαB∥w∗∥2H
+

1
Nγ ∥w

∗∥2I0:k∗
0

+ ∥w∗∥2Hk∗
0 :∞

∥w∗∥2H

 ∧ 1.

• For additive quantization, under the conditions in Corollary 4.1, we require

ϵd ≲

√√√√ k∗
0

N +Nγ2 ·
∑

i>k∗
0
λ2
i

Nγ2(d− k∗0)
∧ R0λd

∥w∗∥2H
, ϵa, ϵo ≲ σ2 +BαB

(∥w∗∥2I0:k∗
0

Nγ
+ ∥w∗∥2Hk∗

0 :∞

)
,

ϵp ≲
σ2

BαB [tr(H) + dϵd]
+

∥w∗∥2
I0:k∗

0

Nγ + ∥w∗∥2Hk∗
0 :∞

tr(H) + dϵd
.

Corollary 4.2 identifies the conditions under which the quantized excess risk matches the full-
precision baseline R0. Regarding data quantization (ϵd), the additive scheme imposes stringent
spectrum-dependent constraints compared to the multiplicative quantization scheme. Specifically,
the precision requirements are notably strict to prevent the constant quantization noise floor from
overwhelming weak spectral components. Conversely, for activation and output gradient quantiza-
tion (ϵa, ϵo), the additive scheme exhibits a favorable dependence on the batch size. As indicated
by the scaling with B in the bounds for ϵa and ϵo, larger batch sizes effectively relax the preci-
sion requirements for these components. In contrast, larger batch sizes may essentially tighten the
requirements under the multiplicative quantization scheme.

These findings validate our core insights: (1) multiplicative data quantization is superior in main-
taining the spectral structure of H, thus tolerating larger data quantization errors; (2) additive quan-
tization benefits from the fact that the noise variance in activation and output gradient is independent
of the signal magnitude, allowing these errors to be effectively suppressed by increasing the batch
size.

4.3 CASE STUDY ON DATA DISTRIBUTION WITH POLYNOMIAL-DECAY SPECTRUM

Following Lin et al. (2024; 2025), we study the excess risk bounds assuming optimal parameter
prior and the power-law spectrum for more concise theoretical results. In particular, we make the
following assumption.
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Assumption 4.1. There exists a > 1 such that the eigenvalues of H satisfy λi ≂ i−a, i > 0. We
also assume that E

[
w∗w∗⊤

]
= I and σ2 ≲ 1.

Corollary 4.3. Taking expectation on w∗, under Assumption 4.1, we have:

• For multiplicative quantization, under the conditions in Theorem 4.2,

E [E(wN )] ≲
ϵd

1 + ϵd
+ d1−a +N1/a−1(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)](1 + ϵd)

1/a.

• For additive quantization, under the conditions in Corollary 4.1,

E[E(wN )] ≲

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)(
1 +

(daϵd)
2

1 + daϵd

)
d1−a +

daϵd
1 + daϵd

+

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
(1 + daϵd)

1/aN1/a−1.

Our findings in polynomial-decay data spectrum scenarios reveal distinct scaling behaviors under
multiplicative and additive quantization. Specifically, the excess risk induced by additive data quan-
tization exhibits a detrimental dependency on data dimension d, whereas the risk under multiplica-
tive data quantization remains dimension-independent. This dependence has critical implications
for learnability: in high-dimensional regimes (d → ∞), the risk bound for additive quantization
diverges, rendering the generalization guarantee vacuous. In contrast, the dimension-free nature of
multiplicative quantization ensures its applicability even in infinite-dimensional settings.

Intuitively, this disparity stems from how each scheme interacts with the spectral structure. Mul-
tiplicative quantization preserves the intrinsic spectral decay, thereby retaining the utility of the
effective dimension (k∗) cut-off. This allows the learning complexity to be controlled by the in-
trinsic data properties rather than the data dimension. Conversely, additive quantization employs a
uniform quantization strength across all dimensions. This constant noise floor prevents the tail spec-
trum from decaying effectively and accumulates across the entire high-dimensional tail, rendering
the effective dimension mechanism failed.

Implications for integer and FP quantization. These simplified theoretical results (Corollary 4.3)
draw critical implications for comparing integer and floating-point (FP) quantization, allowing us to
identify the conditions under which each type yields superior performance. Specifically, in practical
integer quantization with bit-width b and FP quantization with mantissa bit-width m, the quantiza-
tion step size for a value x are approximately δ(x) ≂ 2−b and δ(x) = |x|2−m 2, respectively. Since
the conditional second moment of quantization error E[(Q(x) − x)2|x] is roughly proportional to
the square of the quantization step size (δ(x)2), the quantization error parameters in our bounds can
be characterized as ϵadd ≈ 2−2b for the additive (integer) quantization scheme and ϵmul ≈ 2−2m for
the multiplicative (FP) quantization scheme.

Equipped with this mapping, practitioners can directly apply Corollary 4.3 to determine the optimal
quantization scheme for specific scenarios. A notable observation concerns the distinct role of the
dimension d in data quantization. Roughly, FP quantization becomes preferable when md ≥ bd −
a
2 log2 d whereas integer quantization is favored when bd ≥ md + a

2 log2 d
3. This means FP

quantization can outperform integer quantization even when its mantissa bit-width is smaller than
the integer bit-width by a

2 log2 d, highlighting the advantage of FP quantization in high-dimensional
settings.

Numerical experiments. We evaluate constant–stepsize SGD with iterate averaging on a Gaus-
sian least–squares model. The feature distribution has covariance matrix with eigenvalues λi = i−2.
The ground–truth parameter is w∗ with entries w∗[i] = 1, and the observation noise variance is
σ2 = 1. This study answers two questions: Q1: How do additive vs. multiplicative quantization
errors affect learning? Q2: How does dimension d interact with these two quantization types?

2We assume the exponent bits in FP quantization can cover the scaling of x. For integer quantization, we
assume the dynamic range (i.e., xmax − xmin) is normalized to constant level.

3Here bd and md are the bit-width for integer data quantization and the mantissa bit-width for FP data
quantization respectively.
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Figure 1: Generalization under quantization. Population risk (Ex,y[(y− ⟨w,x⟩)2]) for quantized
SGD with iterate averaging under multiplicative (FP-like) vs. additive (INT-like) quantization. (a)
and (b): vary the quantization level at fixed dimension. (c) and (d): vary dimension at fixed quanti-
zation level.

Q1 (Quantization level). We fix d = 200 and B = 1, and vary the quantization error level
ε ∈ {0.001, 0.005, 0.01} for each scheme. Results are shown in Fig. 1(a,b). Under multiplicative
quantization, quantized SGD largely retains the generalization performance of full-precision SGD
across a wide range of quantization levels. Conversely, under additive quantization, performance
degrades as the quantization level increases. These empirical observations validate our theoreti-
cal findings: with a batch size of B = 1, additive quantization requires stricter conditions (lower
quantization level) to match the performance of full-precision SGD.

Q2 (Dimension). We fix the quantization level at ε = 0.01 and B = 1, and vary d ∈
{50, 100, 200, 400}. Results are shown in Fig. 1(c,d). Under multiplicative quantization, gener-
alization performance is preserved even in high-dimensional settings; conversely, under additive
quantization, performance deteriorates as the data dimension increases. These empirical results cor-
roborate our theoretical findings: multiplicative quantization remains effective in high-dimensional
contexts, whereas additive quantization is ill-suited for such scenarios.

Furthermore, we conduct additional experiments on the real-world Communities and Crime
dataset, as well as settings with larger batch sizes and exponential-decay spectra. These results,
presented in Section G, consistently align with our theoretical analysis.

5 CONCLUSION AND LIMITATIONS

In this work, we presented a comprehensive theoretical framework to analyze the excess risk of quan-
tized SGD in high-dimensional linear regression. Our analysis disentangles the distinct impacts of
various quantization targets: while parameter, activation, and gradient quantization primarily serve
as noise amplifiers, data quantization fundamentally distorts the effective feature covariance spec-
trum. Crucially, we show that multiplicative quantization excels at preserving the spectral structure
of the data, thereby maintaining learnability even in high-dimensional settings. In contrast, additive
quantization leverages the independence of noise variance from signal magnitude, allowing activa-
tion and gradient noise to be effectively suppressed by large batch sizes. Furthermore, our theory
establishes the conditions on quantization errors required to maintain full-precision SGD perfor-
mance, and identifies the scenarios under which FP and integer quantization are each likely to yield
superior performance under polynomial decay spectrum.

Future work. Our work lays a solid foundation for several promising research avenues. Firstly, de-
veloping a lower bound analysis for the excess risk of quantized SGD. Secondly, extending single-
pass SGD to more practical training configurations, such as data reuse (i.e., multi-pass SGD), learn-
ing rate scheduling, momentum, and preconditioning. Thirdly, extending training the linear models
to the training of over-parameterized neural networks. Fourthly, deriving scaling laws for low-
precision training.
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quantization for distributed learning with theoretical guarantees. In Proceedings of the 5th Work-
shop on Machine Learning and Systems, pp. 216–229, 2025.

Haihan Zhang, Yuanshi Liu, Qianwen Chen, and Cong Fang. The optimality of (accelerated) sgd
for high-dimensional quadratic optimization. arXiv preprint arXiv:2409.09745, 2024a.

13



Published as a conference paper at ICLR 2026

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Fos-
ter, and Sham Kakade. How does critical batch size scale in pre-training? arXiv preprint
arXiv:2410.21676, 2024b.

Haoyu Zhang, Shihao Zhang, Ian Colbert, and Rayan Saab. Provable post-training quantization:
Theoretical analysis of optq and qronos. arXiv preprint arXiv:2508.04853, 2025.

Jinjie Zhang and Rayan Saab. Spfq: A stochastic algorithm and its error analysis for neural network
quantization. arXiv preprint arXiv:2309.10975, 2023.

Jinjie Zhang, Yixuan Zhou, and Rayan Saab. Post-training quantization for neural networks with
provable guarantees. SIAM journal on mathematics of data science, 5(2):373–399, 2023.

Kaiqi Zhang, Ming Yin, and Yu-Xiang Wang. Why quantization improves generalization: Ntk of
binary weight neural networks. arXiv preprint arXiv:2206.05916, 2022.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Risk bounds
of multi-pass sgd for least squares in the interpolation regime. Advances in Neural Information
Processing Systems, 35:12909–12920, 2022.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Benign over-
fitting of constant-stepsize sgd for linear regression. Journal of Machine Learning Research, 24
(326):1–58, 2023.

14



Published as a conference paper at ICLR 2026

APPENDIX

CONTENTS

A Initial Study 17

A.1 Deviation of the Update Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2 Decomposition of the Excess Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B Analysis of Approximation Error 21

C Analysis of RN 22

C.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.2 Initial Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.3 Bias-Variance Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C.4 Bounding the Bias Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.5 Bounding the Variance Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

D Deferring Proofs 41

D.1 Proof for Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

D.2 Proof for Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

D.3 Proof for Corollary 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

D.4 Proof for the Multiplicative Statement in Corollary 4.2 . . . . . . . . . . . . . . . 43

D.5 Proof for the Additive Statement in Corollary 4.2 . . . . . . . . . . . . . . . . . . 45

D.6 Proof for the Multiplicative Statement in Corollary 4.3 . . . . . . . . . . . . . . . 46

D.7 Proof for the Additive Statement in Corollary 4.3 . . . . . . . . . . . . . . . . . . 48

E Discussion of Assumptions 49

E.1 Discussion of Assumption 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

E.2 Discussion of Assumption 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

F Extension to Quantized Master Weights 53

F.1 General Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

F.2 Additive Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

F.3 Multiplicative Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

F.3.1 Analysis of Variance Error . . . . . . . . . . . . . . . . . . . . . . . . . . 59

F.3.2 Analysis of Bias Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

G Details of Additional Experiments 67

G.1 Additional Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

G.2 Experimental Settings and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 67

H The Use of LLMs 68

15



Published as a conference paper at ICLR 2026

The appendix is organized as follows. In Section A, we begin the analysis of excess risk bounds for
the iteratively averaged quantized SGD by firstly deriving the update rule for the parameter deviation
wt−w(q)∗ (detailed in Section A.1) and secondly performing an excess risk decomposition (detailed
in Section A.2):

E[E(wN )] =
1

2
⟨H,E[ηN ⊗ ηN ]⟩︸ ︷︷ ︸

RN

+ApproxErr.

We then conduct a refined analysis for ApproxErr in Sections B. For RN , we extend techniques
from Zou et al. (2023) in Section C. In particular, we first introduce useful notations in Section
C.1 and then present a comprehensive analysis of the update rule for E[ηtη

⊤
t ] in Section C.2. This

analysis is crucial for adapting previous proof techniques to the quantized SGD setting. Based on
these results, we perform a bias–variance decomposition in Section C.3, and analyze the bias and
variance errors separately in Section C.4 and C.5. In Section F, we include bounds when master
weight is quantized.

The following proof dependency graph visually encapsulates the logical structure and organizational
architecture of the theoretical results in our paper. In particular, the arrow from element X to element
Y means the proof of Y relies on X .

Corollary 4.3

Corollary 4.1Theorem 4.2 Corollary 4.2

Theorem D.1 Corollary D.1

Theorem 4.1

Lemma C.16Lemma C.17 Lemma B.1 Lemma B.2

Lemma A.3

Lemma C.11Lemma C.15 Lemma C.10 Lemma C.14

Lemma C.13 Lemma C.7 Lemma C.9 Lemma C.8 Lemma C.6 Lemma C.12

Lemma C.5 Lemma C.4

Lemma C.1 Lemma C.2Lemma C.3

Lemma A.1
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A INITIAL STUDY

For simplicity, we denote y(q) = Ql(y),w
(q)
t = Qp(wt),x

(q) = Qd(x). For convenience, we
assume that H is strictly positive definite and that L(w) admits a unique global optimum as Zou
et al. (2023). We first recall the definition of the global minima w∗ and w(q)∗:

w∗ = argminw E
[
(y − ⟨w,x⟩)2

]
, w(q)∗ = argminw E

[
(Ql(y)− ⟨w,Qd(x)⟩)2

]
.

The first order optimality shows that

E[(y − ⟨w∗,x⟩)x] = 0, E[(Ql(y)− ⟨w(q)∗,Qd(x)⟩)Qd(x)] = 0, (A.1)

which implies that

w∗ = H−1E(x,y)∼D[yx], w(q)∗ = (H(q))−1E [Ql(y)Qd(x)] = (H(q))−1E(x,y)∼D[yx].

Hence, by denoting H(q) = H+D, we can characterize the difference between w(q)∗ and w∗ as:

w(q)∗ −w∗ =
[
(H(q))−1 −H−1

]
E(x,y)∼D[yx]

=(H(q))−1
(
H−H(q)

)
H−1E(x,y)∼D[yx]

=(H(q))−1
(
H−H(q)

)
w∗

=− (H(q))−1Dw∗

=− (H+D)
−1

Dw∗.

(A.2)

A.1 DEVIATION OF THE UPDATE RULE

In this section, we derive the evolution of parameter deviation ηt := wt −w(q)∗.
Lemma A.1 (Error propagation).

ηt =

(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ηt−1 + γ

1

B
Qd(Xt)

⊤
[
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

]
,

where the quantization errors are

ϵ
(o)
t :=Qo (Ql(yt)−Qa (Qd(Xt)Qp(wt−1)))− [Ql(yt)−Qa (Qd(Xt)Qp(wt−1))] ,

ϵ
(a)
t :=Qa (Qd(Xt)Qp(wt−1))−Qd(Xt)Qp(wt−1),

ϵ
(p)
t−1 :=Qp(wt−1)−wt−1,

ξt :=Ql(yt)−Qd(Xt)w
(q)∗.

Proof. The lemma can be proved directly by the parameter update rule. By definition and the update
rule of wt (quantized SGD),

ηt =wt −w(q)∗

=wt−1 −w(q)∗ + γ
1

B
Qd(Xt)

⊤Qo (Ql(yt)−Qa (Qd(Xt)Qp(wt−1)))

=ηt−1 + γ
1

B
Qd(Xt)

⊤Qo (Ql(yt)−Qa (Qd(Xt)Qp(wt−1))) .

We then introduce quantization errors to better characterize each quantization operation Q(·). In
particular, define quantization erros:

ϵ
(o)
t :=Qo (Ql(yt)−Qa (Qd(Xt)Qp(wt−1)))− [Ql(yt)−Qa (Qd(Xt)Qp(wt−1))] ,

ϵ
(a)
t :=Qa (Qd(Xt)Qp(wt−1))−Qd(Xt)Qp(wt−1),

ϵ
(p)
t−1 :=Qp(wt−1)−wt−1,

ξt :=Ql(yt)−Qd(Xt)w
(q)∗.

17



Published as a conference paper at ICLR 2026

Then the update rule for the parameter deviation can be expressed as:

ηt =ηt−1 + γ
1

B
Qd(Xt)

⊤Qo (Ql(yt)−Qa (Qd(Xt)Qp(wt−1)))

=ηt−1 + γQd(Xt)
⊤ 1

B
[Ql(yt)−Qa (Qd(Xt)Qp(wt−1))] + γ

1

B
Qd(Xt)

⊤ϵ
(o)
t

=ηt−1 + γQd(Xt)
⊤ 1

B
[Ql(yt)−Qd(Xt)Qp(wt−1)] + γ

1

B
Qd(Xt)

⊤(ϵ
(o)
t − ϵ

(a)
t )

=ηt−1 + γ
1

B
Qd(Xt)

⊤(ϵ
(o)
t − ϵ

(a)
t ) + γQd(Xt)

⊤ 1

B[
Ql(yt)−Qd(Xt)w

(q)∗ −Qd(Xt)ηt−1 −Qd(Xt)Qp(wt−1) +Qd(Xt)wt−1

]
=ηt−1 + γQd(Xt)

⊤(ϵ
(o)
t − ϵ

(a)
t ) + γQd(Xt)

⊤ 1

B[
Ql(yt)−Qd(Xt)w

(q)∗ −Qd(Xt)ηt−1 −Qd(Xt)ϵ
(p)
t−1

]
=ηt−1 + γ

1

B
Qd(Xt)

⊤(ϵ
(o)
t − ϵ

(a)
t + ξt)− γQd(Xt)

⊤ 1

B

[
Qd(Xt)ηt−1 +Qd(Xt)ϵ

(p)
t−1

]
=

(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ηt−1 + γ

1

B
Qd(Xt)

⊤
[
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

]
.

A.2 DECOMPOSITION OF THE EXCESS RISK

In this section, we take the initial step to analyze the excess risk of averaged SGD iterate wN .
In particular, we define the deviation of the averaged SGD iterate as ηN := 1

N

∑N−1
t=0 ηt. We

decompose the excess risk as follows.
Lemma A.2 (Excess risk decomposition). Under Assumption 3.1 and Assumption 3.2,

E[E(wN )] = R1 +R2 +R3 +R4,

where
R1 =− 1

2
E
[
⟨wN ,Qd(x)− x⟩2

]
,

R2 =
1

2
⟨H(q),E[ηN ⊗ ηN ]⟩,

R3 =
1

2
E
[
⟨w(q)∗,Qd(x)− x⟩2

]
,

R4 =
1

2

〈
H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)

〉
.

Proof. By the definition of the excess risk (Excess Risk),

E[E(wN )] =
1

2
E
[
(y − ⟨wN ,x⟩)2

]
− 1

2
E
[
(y − ⟨w∗,x⟩)2

]
=

1

2
E
[
(y − ⟨wN ,x⟩)2

]
− 1

2
E
[
(Ql(y)− ⟨wN ,Qd(x)⟩)2

]
︸ ︷︷ ︸

E1

+
1

2
E
[
(Ql(y)− ⟨wN ,Qd(x)⟩)2

]
− 1

2
E
[
(Ql(y)− ⟨w(q)∗,Qd(x)⟩)2

]
︸ ︷︷ ︸

E2

+
1

2
E
[
(Ql(y)− ⟨w(q)∗,Qd(x)⟩)2

]
− 1

2
E
[(

y − ⟨w(q)∗,x⟩
)2]

︸ ︷︷ ︸
E3

+
1

2
E
[(

y − ⟨w(q)∗,x⟩
)2]

− 1

2
E
[
(y − ⟨w∗,x⟩)2

]
︸ ︷︷ ︸

E4

,

18



Published as a conference paper at ICLR 2026

where E1 captures the gap of the averaged SGD iterate between the full-precision and quantized
domains, E2 characterizes the distance from the averaged SGD iterate to the quantized optimal
solution within the quantized domain, E3 represents the mismatch of the quantized optimal solution
in full-precision data space and quantized data space and E4 defines the discrepancy between the
averaged SGD iterate and the quantized optimal solution in the full-precision domain.

We would like to remark that the quantization operations Ql(y) and Qd(x) introduced in excess risk
decomposition are independent of those quantization operators introduced in the training stage, i.e.,
wN . Next, we analyze E1, E2, E3 and E4 respectively. These computations are mainly based on
the first order optimality condition (A.1) and the unbiased quantization Assumption 3.1. For E4,

E4 =
1

2
E
[(

y − ⟨w(q)∗,x⟩
)2]

− 1

2
E
[
(y − ⟨w∗,x⟩)2

]
=
1

2
E
[
⟨w∗ −w(q)∗,x⟩ ·

(
2y − ⟨w∗ +w(q)∗,x⟩

)]
=
1

2
E
[
⟨w∗ −w(q)∗,x⟩2

]
=
1

2

(
w∗ −w(q)∗

)⊤
H
(
w∗ −w(q)∗

)
=
1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩,

(A.3)

where the third equality uses the first order optimality condition that E(x,y)∼D[(y−⟨w∗,x⟩)x] = 0.

For E2, similarly by the first order optimality condition (A.1) with respect to w(q)∗ , it holds

E2 =
1

2
E
[
(Ql(y)− ⟨wN ,Qd(x)⟩)2

]
− 1

2
E
[
(Ql(y)− ⟨w(q)∗,Qd(x)⟩)2

]
=
1

2
E
[
⟨w(q)∗ −wN ,Qd(x)⟩ ·

(
2Ql(y)− ⟨w(q)∗ +wN ,Qd(x)⟩

)]
=
1

2
E
[
⟨w(q)∗ −wN ,Qd(x)⟩2

]
=
1

2
⟨H(q),E[ηN ⊗ ηN ]⟩.

(A.4)

For E3,

E3 =
1

2
E
[
(Ql(y)− ⟨w(q)∗,Qd(x)⟩)2

]
− 1

2
E
[(

y − ⟨w(q)∗,x⟩
)2]

=
1

2
E
[(

Ql(y)− y − ⟨w(q)∗,Qd(x)− x⟩
)
·
(
Ql(y) + y − ⟨w(q)∗,Qd(x) + x⟩

)]
=
1

2
E
[
Ql(y)

2 − y2 + ⟨w(q)∗,Qd(x)− x⟩⟨w(q)∗,Qd(x) + x⟩
]
,

where the last equality utilizes the unbiased quantization Assumption 3.1.

For E1, similarly by the unbiased quantization Assumption 3.1, it holds

E1 =
1

2
E
[
(y − ⟨wN ,x⟩)2

]
− 1

2
E
[
(Ql(y)− ⟨wN ,Qd(x)⟩)2

]
=
1

2
E [(y −Ql(y)− ⟨wN ,x−Qd(x)⟩) · (y +Ql(y)− ⟨wN ,x+Qd(x)⟩)]

=
1

2
E
[
y2 −Ql(y)

2
]
+

1

2
E [⟨wN ,x−Qd(x)⟩⟨wN ,x+Qd(x)⟩] .

Hence,

E1 + E3 =
1

2
E
[
⟨w(q)∗,Qd(x)− x⟩2

]
− 1

2
E
[
⟨wN ,x−Qd(x)⟩2

]
. (A.5)

Therefore, combining (A.3), (A.4) and (A.5) we have

E[E(wN )] =
1

2
⟨H(q),E[ηN ⊗ ηN ]⟩+ 1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩

+
1

2
E
[
⟨w(q)∗,Qd(x)− x⟩2

]
− 1

2
E
[
⟨wN ,x−Qd(x)⟩2

]
.
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Lemma A.3 (Refine excess risk decomposition). Under Assumption 3.1 and Assumption 3.2, if the
stepsize γ < 1

λ
(q)
1

,

E[E(wN )] =
1

2
⟨H,E[ηN ⊗ ηN ]⟩︸ ︷︷ ︸

RN

+ApproxErr,

where

ApproxErr =
1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩

+
(
w(q)∗

)⊤ 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
w(q)∗.

Proof. By Lemma A.2,

E[E(wN )] =
1

2
⟨H(q),E[ηN ⊗ ηN ]⟩

+
1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩

+
1

2
E
[
⟨w(q)∗,Qd(x)− x⟩2

]
− 1

2
E
[
⟨wN ,x−Qd(x)⟩2

]
.

We then focus on 1
2E
[
⟨wN ,x−Qd(x)⟩2

]
. Recall that

wN = wN −w(q)∗ +w(q)∗ = ηN +w(q)∗,

we have
1

2
E
[
⟨wN ,x−Qd(x)⟩2

]
=
1

2
E
[
w⊤

N

(
H(q) −H

)
wN

]
=
1

2
E
[
η⊤
N

(
H(q) −H

)
ηN

]
+

1

2
E
[(

w(q)∗
)⊤ (

H(q) −H
)
w(q)∗

]
+E

[
η⊤
N

(
H(q) −H

)
w(q)∗

]
.

Hence,

E[E(wN )] =
1

2
⟨H,E[ηN ⊗ ηN ]⟩+ 1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩

−E
[
η⊤
N

(
H(q) −H

)
w(q)∗

]
.

(A.6)

Noticing that by Lemma A.1,

ηt =

(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ηt−1 + γ

1

B
Qd(Xt)

⊤
[
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

]
,

it follows by Assumption 3.1 that

E [ηt] = E [E [ηt|ηt−1]] = E
[(

I− γH(q)
)
ηt−1

]
=
(
I− γH(q)

)
E [ηt−1] =

(
I− γH(q)

)t
η0.

Hence,

−E
[
η⊤
N

(
H(q) −H

)
w(q)∗

]
=− η⊤

0

1

N

N−1∑
t=0

(
I− γH(q)

)t (
H(q) −H

)
w(q)∗

=
(
w(q)∗

)⊤ 1

N

N−1∑
t=0

(
I− γH(q)

)t (
H(q) −H

)
w(q)∗

=
(
w(q)∗

)⊤ 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
w(q)∗.

Combining (A.6) completes the proof.
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B ANALYSIS OF APPROXIMATION ERROR

In this section, we analyze ApproxErr under multiplicative quantization and additive quantization,
respectively. We first apply the definition of w(q)∗:

w(q)∗ = (H(q))−1Hw∗.

We first handle 1
2 ⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩. Recall D = H(q) −H, we have

1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩ =1

2
E
[
tr
(
H(H+D)−1Dw∗w∗⊤D(H+D)−1

)]
=
1

2
E
[
tr
(
w∗⊤D(H+D)−1H(H+D)−1Dw∗

)]
=
1

2
∥w∗∥2D(H+D)−1H(H+D)−1D.

(B.1)

We then handle
(
w(q)∗

)⊤
1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
w(q)∗.(

w(q)∗
)⊤ 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
w(q)∗

=w∗⊤H(H(q))−1 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
(H(q))−1Hw∗.

(B.2)

Lemma B.1 (Approximation error under multiplicative quantization). If there exists ϵd such that
Qd is ϵd-multiplicative, under the assumptions and notations in Lemma A.3,

ApproxErr ≤ ϵ2d
2(1 + ϵd)2

∥w∗∥2H +
ϵd

(1 + ϵd)2
∥w∗∥2H .

Proof. Under multiplicative quantization,

H(q) = (1 + ϵd)H, D = ϵdH.

It follows by (B.1) that

1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩ =1

2
∥w∗∥2D(H+D)−1H(H+D)−1D =

ϵ2d
2(1 + ϵd)2

∥w∗∥2H.

Similarly, by (B.2),(
w(q)∗

)⊤ 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
w(q)∗

=w∗⊤H(H(q))−1 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
(H(q))−1Hw∗

=
ϵd

Nγ(1 + ϵd)
w∗⊤H(H(q))−1

(
I− (I− γH(q))N

)
(H(q))−1Hw∗

≤ ϵd
Nγ(1 + ϵd)2

∥w∗∥2H
∥∥∥(H(q))−1/2

(
I− (I− γH(q))N

)
(H(q))−1/2

∥∥∥
≤ ϵd
Nγ(1 + ϵd)2

∥w∗∥2H max
i

min{1, Nγλ
(q)
i }

λ
(q)
i

≤ ϵd
(1 + ϵd)2

∥w∗∥2H .

Lemma B.2 (Approximation error under additive quantization). If there exists ϵd such that Qd is
ϵd-additive, under the assumptions and notations in Lemma A.3,

ApproxErr ≤ ϵ2d
2(λd + ϵd)2

∥w∗∥2H +
λ1ϵd

(λd + ϵd)(λ1 + ϵd)
∥w∗∥2H .
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Proof. Under additive quantization,

H(q) = H+ ϵdI, D = ϵdI.

It follows by (B.1) that

1

2
⟨H, (w∗ −w(q)∗)⊗ (w∗ −w(q)∗)⟩ =1

2
∥w∗∥2D(H+D)−1H(H+D)−1D ≤ ϵ2d

2(λd + ϵd)2
∥w∗∥2H.

Similarly, by (B.2),(
w(q)∗

)⊤ 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
w(q)∗

=w∗⊤H(H(q))−1 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1

(
H(q) −H

)
(H(q))−1Hw∗

≤ ϵd
Nγ(λd + ϵd)

w∗⊤H(H(q))−1
(
I− (I− γH(q))N

)
(H(q))−1Hw∗

≤ λ1ϵd
Nγ(λd + ϵd)(λ1 + ϵd)

∥w∗∥2H
∥∥∥(H(q))−1/2

(
I− (I− γH(q))N

)
(H(q))−1/2

∥∥∥
≤ λ1ϵd
Nγ(λd + ϵd)(λ1 + ϵd)

∥w∗∥2H max
i

min{1, Nγλ
(q)
i }

λ
(q)
i

≤ λ1ϵd
(λd + ϵd)(λ1 + ϵd)

∥w∗∥2H .

C ANALYSIS OF RN

C.1 PRELIMINARY

We first define the following linear operators as in Zou et al. (2023):

I = I⊗ I, M(q) = E[x(q) ⊗ x(q) ⊗ x(q) ⊗ x(q)], M̃(q) = H(q) ⊗H(q),

T (q) = H(q) ⊗ I+ I⊗H(q) − γM(q), T̃ (q) = H(q) ⊗ I+ I⊗H(q) − γH(q) ⊗H(q).

For a symmetric matrix A, the above definitions result in:

I ◦A = A, M(q) ◦A = E[(x(q)⊤Ax(q))x(q)x(q)⊤], M̃(q) ◦A = H(q)AH(q),

(I − γT (q)) ◦A = E[(I− γx(q)x(q)⊤)A(I− γx(q)x(q)⊤)], (I − γT̃ (q)) ◦A = (I− γH(q))A(I− γH(q)).

Further, we generalize the linear operators from Zou et al. (2023) to account for batch size effects.
For a symmetric matrix A, we define

M(q)
B ◦A =E

[
1

B2
X(q)⊤X(q)AX(q)⊤X(q)

]
,

(I − γT (q)
B ) ◦A =E

[(
I− γ

1

B
X(q)⊤X(q)

)
A

(
I− γ

1

B
X(q)⊤X(q)

)]
.

C.2 INITIAL STUDY

To analyze RN , we firstly utilize the fact that

RN =
1

2
⟨H,E[ηN⊗ηN ]⟩ ≤ µmax

(
H(H(q))−1

) 1

2
⟨H(q),E[ηN⊗ηN ]⟩ ≤ 1

2
⟨H(q),E[ηN ⊗ ηN ]⟩︸ ︷︷ ︸

R
(0)
N

.

(C.1)
We secondly substitute ηN with the summation of ηt. This step mainly based on the propagation
in Lemma A.1, the unbiased quantization Assumption 3.1 and the first order optimality condition
(A.1). We summarize as the following lemma.
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Lemma C.1. Under Assumption 3.1 and Assumption 3.2,

R
(0)
N ≤ 1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),E[ηt ⊗ ηt]

〉
.

Proof. Recall that by (C.1),

R
(0)
N =

1

2
⟨H(q),E[ηN ⊗ ηN ]⟩,

we then focus on E[ηN ⊗ ηN ]. By definition ηN = 1
N

∑N−1
t=0 ηt,

E[ηN ⊗ ηN ] =
1

N2
·

 ∑
0≤k≤t≤N−1

E[ηt ⊗ ηk] +
∑

0≤t<k≤N−1

E[ηt ⊗ ηk]


⪯ 1

N2
·

 ∑
0≤k≤t≤N−1

E [E[ηt ⊗ ηk|ηk]] +
∑

0≤t≤k≤N−1

E [E[ηt ⊗ ηk|ηt]]

 .

(C.2)

Note that by the unbiased Assumption 3.1,

E
[
γQd(Xt)

⊤
(
ϵ
(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

) ∣∣∣∣ηt−1

]
= 0.

Further, by the optimality (A.1),

E
[
γQd(Xt)

⊤
ξt

∣∣∣∣ηt−1

]
= E

[
γQd(Xt)

⊤
[
Ql(yt)−Qd(Xt)w

(q)∗
] ∣∣∣∣ηt−1

]
= 0.

Hence, by Lemma A.1,

E [ηt|ηt−1] =
(
I− γH(q)

)
ηt−1. (C.3)

Therefore, by (C.2) and (C.3),

E[ηN ⊗ ηN ]

⪯ 1

N2
·

 ∑
0≤k≤t≤N−1

E [E[ηt ⊗ ηk|ηk]] +
∑

0≤t≤k≤N−1

E [E[ηt ⊗ ηk|ηt]]


=

1

N2
·

 ∑
0≤k≤t≤N−1

(I− γH(q))t−kE[ηk ⊗ ηk] +
∑

0≤t≤k≤N−1

E[ηt ⊗ ηt](I− γH(q))k−t


=

1

N2
·
N−1∑
t=0

N−1∑
k=t

(
(I− γH(q))k−tE[ηt ⊗ ηt] + E[ηt ⊗ ηt](I− γH(q))k−t

)
.

(C.4)
Applying (C.4) into R

(0)
N , we have

R
(0)
N =

1

2
⟨H(q),E[ηN ⊗ ηN ]⟩

≤ 1

2N2
·
N−1∑
t=0

N−1∑
k=t

〈
H(q), (I− γH(q))k−tE[ηt ⊗ ηt] + E[ηt ⊗ ηt](I− γH(q))k−t

〉
=

1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),E[ηt ⊗ ηt]

〉
,

where the last equality holds since H(q) and (I−γH(q))k−t commute. This completes the proof.
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Lemma C.1 implies that, to bound R
(0)
N , the main goal is to bound E[ηt⊗ηt]. Recall that by Lemma

A.1,

ηt =

(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ηt−1 + γ

1

B
Qd(Xt)

⊤
[
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

]
.

Denote

ηbias
t =

(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ηbias
t−1 , ηbias

0 = η0,

ηvar
t =

(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ηvar
t−1 + γ

1

B
Qd(Xt)

⊤
[
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

]
,

with ηvar
0 = 0. Then

ηt = ηvar
t + ηbias

t ,

and

E [ηt ⊗ ηt] ⪯ 2

E
[
ηbias
t ⊗ ηbias

t

]︸ ︷︷ ︸
Bt

+E [ηvar
t ⊗ ηvar

t ]︸ ︷︷ ︸
Ct

 . (C.5)

Regarding Bt,

Bt = E
[(

I− γ
1

B
Qd(X)

⊤Qd(X)

)
Bt−1

(
I− γ

1

B
Qd(X)

⊤Qd(X)

)]
. (C.6)

Regarding Ct, by the unbiased quantization Assumption 3.1 and ηvar
0 = 0, it holds,

Ct = E
[(

I− γ
1

B
Qd(X)

⊤Qd(X)

)
Ct−1

(
I− γ

1

B
Qd(X)

⊤Qd(X)

)]
+ γ2Σt, (C.7)

where

Σt :=
1

B2
E
[
Qd(Xt)

⊤
[
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

] [
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

]⊤
Qd(Xt)

]
=

1

B2
E
[
Qd(Xt)

⊤
ξtξ

⊤
t Qd(Xt)

]
︸ ︷︷ ︸

Σξ
t

+
1

B2
E
[
Qd(Xt)

⊤
ϵ
(o)
t ϵ

(o)
t

⊤
Qd(Xt)

]
︸ ︷︷ ︸

Σϵ(o)
t

+
1

B2
E
[
Qd(Xt)

⊤
ϵ
(a)
t ϵ

(a)
t

⊤
Qd(Xt)

]
︸ ︷︷ ︸

Σϵ(a)
t

+
1

B2
E
[
Qd(Xt)

⊤Qd(Xt)ϵ
(p)
t−1ϵ

(p)
t−1

⊤
Qd(Xt)

⊤Qd(Xt)

]
︸ ︷︷ ︸

Σϵ(p)
t

.

We then summarize the update rule for E [ηt ⊗ ηt] as follows.
Lemma C.2 (Update rule under general quantization). Under Assumption 3.1, Assumption 3.2,
Assumption 3.3, and Assumption 3.4,

Ct ⪯ E
[(

I− γ
1

B
Qd(X)

⊤Qd(X)

)
Ct−1

(
I− γ

1

B
Qd(X)

⊤Qd(X)

)]
+ γ2σ

(q)
G

2
H(q),

Bt = E
[(

I− γ
1

B
Qd(X)

⊤Qd(X)

)
Bt−1

(
I− γ

1

B
Qd(X)

⊤Qd(X)

)]
,

where

σ
(q)
G

2
=

supt

{∥∥∥∥E [ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥}

B

+αB sup
t

Ewt−1

[
tr

(
H(q)E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤∣∣wt−1

])]
+

σ2

B
,

with at = Qd(Xt)Qp(wt−1), ot = Ql(yt) − Qa (Qd(Xt)Qp(wt−1)) and ∥ · ∥ denoting the
spectral norm.
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Proof. We cope with each term in Σt to provide an upper bound. For Σϵ(p)

t ,

Σϵ(p)

t =
1

B2
E
[
Qd(Xt)

⊤Qd(Xt)ϵ
(p)
t−1ϵ

(p)
t−1

⊤
Qd(Xt)

⊤Qd(Xt)

]
⪯αB sup

t
Ewt−1

[
tr

(
H(q)E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤∣∣wt−1

])]
H(q),

where the inequality holds by Assumption 3.3. For Σξ
t ,

Σξ
t =

1

B2
E
[
Qd(Xt)

⊤
ξtξ

⊤
t Qd(Xt)

]
=

1

B2
E

 B∑
i=1

B∑
j=1

Qd(Xt)
i⊤

ξit

(
Qd(Xt)

j⊤
ξjt

)⊤
=

1

B2

B∑
i=1

E
[
Qd(Xt)

i⊤
ξit

(
Qd(Xt)

i⊤
ξit

)⊤]
=

1

B
· E
[
Qd(x)ξ (Qd(x)ξ)

⊤
]

=
1

B
· E
[
ξ2Qd(x)Qd(x)

⊤]
⪯σ2

B
·H(q),

(C.8)

where the third equality holds as samples are independent and data quantization is applied to each
sample independently, the inequality holds by Assumption 3.4. For Σϵ(o)

t +Σϵ(a)

t ,

Σϵ(o)

t +Σϵ(a)

t =
1

B2
E
[
Qd(Xt)

⊤
(ϵ

(o)
t ϵ

(o)
t

⊤
+ ϵ

(a)
t ϵ

(a)
t

⊤
)Qd(Xt)

]
=

1

B2
E
[
Qd(Xt)

⊤
(
E
[
ϵ
(o)
t ϵ

(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
])

Qd(Xt)

]
⪯ 1

B2
E
[(∥∥∥∥E [ϵ(o)t ϵ

(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥)Qd(Xt)

⊤Qd(Xt)

]
⪯ 1

B2
sup
t

[∥∥∥∥E [ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥]E [Qd(Xt)

⊤Qd(Xt)
]

=
1

B
sup
t

[∥∥∥∥E [ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥]H(q),

where ∥ · ∥ represents the matrix spectral norm.

Combining the upper bounds for Σϵ(p)

t , Σξ
t , Σϵ(o)

t +Σϵ(a)

t , (C.6) and (C.7) immediately completes
the proof.

For multiplicative quantization, the explicit dependence of the conditional expectations on wt ren-
ders Lemma C.2 inapplicable to the update rule for E[ηt ⊗ ηt]. We thus propose the following
alternative update rule.
Lemma C.3 (Update rule under multiplicative quantization). If there exist ϵd, ϵl, ϵp, ϵa and ϵo such
that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-multiplicative, then under Assumption 3.1,
Assumption 3.2, Assumption 3.3, and Assumption 3.4, it holds

Ct ⪯E
[(

I− 1

B
γQd(X)

⊤Qd(X)

)
Ct−1

(
I− 1

B
γQd(X)

⊤Qd(X)

)]
+ϵ̃E

[ γ
B
Qd(X)

⊤Qd(X)(Bt−1 +Ct−1)
γ

B
Qd(X)

⊤Qd(X)
]
+ γ2σ

(q)
M

2
H(q),

Bt =E
[(

I− 1

B
γQd(X)

⊤Qd(X)

)
Bt−1

(
I− 1

B
γQd(X)

⊤Qd(X)

)]
,
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where

ϵ̃ = 8ϵo(1 + ϵp)(1 + ϵa) + 4ϵp + 4ϵa(1 + ϵp),

σ
(q)
M

2
=

(1 + 4ϵo)σ
2

B
+

∥w∗∥2H
1 + ϵd

αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 2ϵp) .

Proof. To complete the proof, we merely need to derive the upper bound for Σt = Σξ
t + Σϵ(a)

t +

Σϵ(o)

t +Σϵ(p)

t . Regarding Σξ
t , by the computation in the proof of Lemma C.2, i.e., (C.8),

Σξ
t ⪯ σ2

B
H(q). (C.9)

Regarding Σϵ(p)

t ,

Σϵ(p)

t =
1

B2
E
[
Qd(Xt)

⊤Qd(Xt)E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤∣∣wt−1

]
Qd(Xt)

⊤Qd(Xt)

]
=

ϵp
B2

E
[
Qd(Xt)

⊤Qd(Xt)wt−1w
⊤
t−1Qd(Xt)

⊤Qd(Xt)
]

⪯2ϵp
B2

E
[
Qd(Xt)

⊤Qd(Xt)ηt−1ηt−1
⊤Qd(Xt)

⊤Qd(Xt)
]

+
2ϵp
B2

E
[
Qd(Xt)

⊤Qd(Xt)w
(q)∗w(q)∗⊤Qd(Xt)

⊤Qd(Xt)

]
.

(C.10)

Regarding Σϵ(a)

t ,

Σϵ(a)

t =
1

B2
E
[
Qd(Xt)

⊤
ϵ
(a)
t ϵ

(a)
t

⊤
Qd(Xt)

]
=

ϵa
B2

E
[
Qd(Xt)

⊤Qd(Xt)w
(q)
t−1w

(q)
t−1

⊤
Qd(Xt)

⊤Qd(Xt)

]
=
(1 + ϵp)ϵa

B2
E
[
Qd(Xt)

⊤Qd(Xt)wt−1wt−1
⊤Qd(Xt)

⊤Qd(Xt)
]

⪯2(1 + ϵp)ϵa
B2

E
[
Qd(Xt)

⊤Qd(Xt)ηt−1ηt−1
⊤Qd(Xt)

⊤Qd(Xt)
]

+
2(1 + ϵp)ϵa

B2
E
[
Qd(Xt)

⊤Qd(Xt)w
(q)∗w(q)∗⊤Qd(Xt)

⊤Qd(Xt)

]
.

(C.11)

Regarding Σϵ(o)

t , similar to Σϵ(a)

t , it holds

Σϵ(o)

t =
1

B2
E
[
Qd(Xt)

⊤
ϵ
(o)
t ϵ

(o)
t

⊤
Qd(Xt)

]
=

ϵo
B2

E
[
Qd(Xt)

⊤
otot

⊤Qd(Xt)
]

⪯2ϵo
B2

E
[
Qd(Xt)

⊤Ql(yt)Ql(yt)
⊤Qd(Xt)

]
+

2ϵo
B2

E
[
Qd(Xt)

⊤Qa(at)Qa(at)
⊤Qd(Xt)

]
.

For the second term,

2ϵo
B2

E
[
Qd(Xt)

⊤Qa(at)Qa(at)
⊤Qd(Xt)

]
⪯2(1 + ϵa)ϵo

B2
E
[
Qd(Xt)

⊤
ata

⊤
t Qd(Xt)

]
⪯4(1 + ϵp)(1 + ϵa)ϵo

B2
E
[
Qd(Xt)

⊤Qd(Xt)ηt−1ηt−1
⊤Qd(Xt)

⊤Qd(Xt)
]

+
4(1 + ϵp)(1 + ϵa)ϵo

B2
E
[
Qd(Xt)

⊤Qd(Xt)w
(q)∗w(q)∗⊤Qd(Xt)

⊤Qd(Xt)

]
.
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For the first term,

2ϵo
B2

E
[
Qd(Xt)

⊤Ql(yt)Ql(yt)
⊤Qd(Xt)

]
⪯4ϵo
B2

E
[
Qd(Xt)

⊤
ξtξ

⊤
t Qd(Xt)

]
+
4ϵo
B2

E
[
Qd(Xt)

⊤Qd(Xt)w
(q)∗w(q)∗⊤Qd(Xt)

⊤Qd(Xt)

]
,

where we use ξt = Ql(yt)−Qd(Xt)w
(q)∗ . Further, by the bound for Σξ

t (C.8), we have

1

B2
E
[
Qd(Xt)

⊤
ξtξt

⊤Qd(Xt)
]
⪯ σ2

B
H(q),

it follows that

Σϵ(o)

t ⪯4ϵoσ
2

B
H(q) +

4(1 + ϵp)(1 + ϵa)ϵo
B2

E
[
Qd(Xt)

⊤Qd(Xt)ηt−1ηt−1
⊤Qd(Xt)

⊤Qd(Xt)
]

+
4ϵo[(1 + ϵp)(1 + ϵa) + 1]

B2
E
[
Qd(Xt)

⊤Qd(Xt)w
(q)∗w(q)∗⊤Qd(Xt)

⊤Qd(Xt)

]
.

(C.12)

Further, by Assumption 3.3, it holds

1

B2
E
[
Qd(Xt)

⊤Qd(Xt)w
(q)∗w(q)∗⊤Qd(Xt)

⊤Qd(Xt)

]
⪯ αBtr

(
H(q)w(q)∗w(q)∗⊤

)
H(q),

then together with (C.9), (C.10), (C.11) and (C.12) it holds

Σt ⪯
(1 + 4ϵo)σ

2

B
H(q) + αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 2ϵp) tr

(
H(q)w(q)∗w(q)∗⊤

)
H(q)

+
4ϵo(1 + ϵp)(1 + ϵa) + 2ϵp + 2ϵa(1 + ϵp)

B2
E
[
Qd(Xt)

⊤Qd(Xt)ηt−1ηt−1
⊤Qd(Xt)

⊤Qd(Xt)
]
.

Note that by the definition of multiplicative quantization,

tr

(
H(q)w(q)∗w(q)∗⊤

)
=

∥w∗∥2H
1 + ϵd

,

then

Σt ⪯
[
(1 + 4ϵo)σ

2

B
+

∥w∗∥2H
1 + ϵd

αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 2ϵp)

]
H(q)

+
4ϵo(1 + ϵp)(1 + ϵa) + 2ϵp + 2ϵa(1 + ϵp)

B2
E
[
Qd(Xt)

⊤Qd(Xt)ηt−1ηt−1
⊤Qd(Xt)

⊤Qd(Xt)
]
.

(C.13)
Hence, by (C.13), (C.7) and E [ηt ⊗ ηt] ⪯ 2(Bt +Ct), we have

Ct ⪯ E
[(

I− 1

B
γQd(X)

⊤Qd(X)

)
Ct−1

(
I− 1

B
γQd(X)

⊤Qd(X)

)]
+ [8ϵo(1 + ϵp)(1 + ϵa) + 4ϵp + 4ϵa(1 + ϵp)]E

[ γ
B
Qd(X)

⊤Qd(X)(Bt−1 +Ct−1)
γ

B
Qd(X)

⊤Qd(X)
]

+γ2

[
(1 + 4ϵo)σ

2

B
+

∥w∗∥2H
1 + ϵd

αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 2ϵp)

]
H(q).

Equipped with Lemma C.1, Lemma C.2 and Lemma C.3, we are ready to derive bounds for R(0)
N .

As shown in Zou et al. (2023), we first perform bias-variance decomposition.

C.3 BIAS-VARIANCE DECOMPOSITION

As in Zou et al. (2023), we perform bias-variance for excess risk, which is summarized as the
following lemma. Here we slightly abuse the notations of Bt and Ct.
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Lemma C.4 (Bias-variance decomposition under general quantization). Under Assumption 3.1, As-
sumption 3.2, Assumption 3.3, and Assumption 3.4,

R
(0)
N /2 ≤ 1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),Bt

〉
︸ ︷︷ ︸

bias

+
1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),Ct

〉
︸ ︷︷ ︸

variance

,

where
Bt := (I − γT (q)

B )t ◦B0, B0 = E [η0 ⊗ η0] .

Ct := (I − γT (q)
B ) ◦Ct−1 + γ2σ

(q)
G

2
H(q), C0 = 0.

Proof. By Lemma C.1,

R
(0)
N ≤ 1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),E[ηt ⊗ ηt]

〉
.

The proof is immediately completed by Lemma C.2 and E[ηt ⊗ ηt] ⪯ 2(Bt +Ct).

For multiplicative quantization, we can directly deduce from Lemma C.4 by the update rule under
multiplicative quantization (Lemma C.3).

Lemma C.5 (Bias-variance decomposition under multiplicative quantization). Under Assumption
3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if there exist ϵd, ϵl, ϵp, ϵa and ϵo such that
for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-multiplicative, then

R
(0)
N /2 ≤ 1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),B

(M)
t

〉
︸ ︷︷ ︸

bias

+
1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),C

(M)
t

〉
︸ ︷︷ ︸

variance

,

where
B

(M)
t := (I − γT (q)

B + ϵ̃γ2M(q)
B )t ◦B(M)

0 , B
(M)
0 = E [η0 ⊗ η0] .

C
(M)
t := (I − γT (q)

B + ϵ̃γ2M(q)
B ) ◦C(M)

t−1 + γ2σ
(q)
M

2
H(q), C

(M)
0 = 0.

Proof. By Lemma C.3,

Ct ⪯E
[(

I− 1

B
γQd(X)

⊤Qd(X)

)
Ct−1

(
I− 1

B
γQd(X)

⊤Qd(X)

)]
+ϵ̃E

[ γ
B
Qd(X)

⊤Qd(X)(Bt−1 +Ct−1)
γ

B
Qd(X)

⊤Qd(X)
]
+ γ2σ

(q)
M

2
H(q),

Bt =E
[(

I− 1

B
γQd(X)

⊤Qd(X)

)
Bt−1

(
I− 1

B
γQd(X)

⊤Qd(X)

)]
.

Hence,

E [ηt ⊗ ηt] ⪯2(Bt +Ct)

⪯2
[
(I − γT (q)

B + ϵ̃γ2M(q)
B ) ◦ (Bt−1 +Ct−1) + γ2σ

(q)
M

2
H(q)

]
⪯2
(
B

(M)
t +C

(M)
t

)
.

Applying Lemma C.1 completes the proof.
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C.4 BOUNDING THE BIAS ERROR

By Lemma C.4,

bias =
1

N2

N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),Bt

〉
=

1

γN2

N−1∑
t=0

〈
I− (I− γH(q))N−t,Bt

〉
≤ 1

γN2
⟨I− (I− γH(q))N ,

N−1∑
t=0

Bt⟩.

(C.14)

For 1 ≤ n ≤ N , let Sn =
∑n−1

t=0 Bt, S
(M)
n =

∑n−1
t=0 B

(M)
t , then we only need to bound SN and

S
(M)
N to bound bias term under general quantization and multiplicative quantization, respectively.

We first derive the update rule for St and S
(M)
t .

Lemma C.6 (Initial study of St). For 1 ≤ t ≤ N ,

St ⪯ (I − γT̃ (q)) ◦ St−1 + γ2M(q)
B ◦ SN +B0.

Proof. By definition,

St =

t−1∑
k=0

(I − γT (q)
B )k ◦B0

=(I − γT (q)
B ) ◦

(
t−1∑
k=1

(I − γT (q)
B )k−1 ◦B0

)
+B0

=(I − γT (q)
B ) ◦ St−1 +B0.

(C.15)

Then we convert T (q)
B to T̃ (q). By (C.15),

St =(I − γT (q)
B ) ◦ St−1 +B0

=(I − γT̃ (q)) ◦ St−1 + γ(T̃ (q) − T (q)
B ) ◦ St−1 +B0

=(I − γT̃ (q)) ◦ St−1 + γ2(M(q)
B − M̃(q)) ◦ St−1 +B0

⪯(I − γT̃ (q)) ◦ St−1 + γ2M(q)
B ◦ SN +B0,

where the third equality holds by the definition of linear operators.

Lemma C.7 (Initial study of S(M)
t ). For 1 ≤ t ≤ N ,

S
(M)
t ⪯ (I − γT̃ (q)) ◦ S(M)

t−1 + (1 + ϵ̃)γ2M(q)
B ◦ S(M)

N +B0.

Proof. The proof is similar to the proof for Lemma C.6.

S
(M)
t =(I − γT (q)

B + ϵ̃γ2M(q)
B ) ◦ S(M)

t−1 +B0

=(I − γT̃ (q)) ◦ S(M)
t−1 + γ(T̃ (q) − T (q)

B ) ◦ S(M)
t−1 + ϵ̃γ2M(q)

B ◦ S(M)
t−1 +B0

=(I − γT̃ (q)) ◦ S(M)
t−1 + γ2((1 + ϵ̃)M(q)

B − M̃(q)) ◦ S(M)
t−1 +B0

⪯(I − γT̃ (q)) ◦ S(M)
t−1 + (1 + ϵ̃)γ2M(q)

B ◦ S(M)
N +B0.

Lemma C.8 (A bound for M(q)
B ◦ St). For 1 ≤ t ≤ N , under Assumption 3.1, Assumption 3.2,

Assumption 3.3, and Assumption 3.4, if γ < 1
αBtr(H(q))

, then

M(q)
B ◦ St ⪯

αB · tr
([

I − (I − γT̃ (q))t
]
◦B0

)
γ(1− γαB tr(H(q)))

·H(q).
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Proof. We prove by deriving a crude bound for St and applying M(q)
B to this crude bound. Take

summation via the update rule, we have

St =

t−1∑
k=0

(I − γT (q)
B )k ◦B0 = γ−1T (q)

B

−1
◦
[
I − (I − γT (q)

B )t
]
◦B0.

Note that

I − γT̃ (q) ⪯ I − γT (q)
B , (I − (I − γT (q)

B )t) ⪯ (I − (I − γT̃ (q))t),

and further note that T (q)
B

−1
is a PSD mapping 4, and [I − (I − γT̃ (q))t] ◦B0 is a PSD matrix, we

obtain
St ⪯ γ−1T (q)

B

−1
◦ (I − (I − γT̃ (q))t) ◦B0.

For simplicity, we denote A := (I−(I−γT̃ (q))t)◦B0. We then tackle T (q)
B

−1
◦A. To be specific,

we apply T̃ (q).

T̃ (q) ◦ T (q)
B

−1
◦A ⪯ γM(q)

B ◦ T (q)
B

−1
◦A+A.

Therefore,
T (q)
B

−1
◦A ⪯ γ(T̃ (q))

−1
◦M(q)

B ◦ T (q)
B

−1
◦A+ (T̃ (q))−1 ◦A.

Then we apply M(q)
B on both sides.

M(q)
B ◦ (T (q)

B

−1
◦A) ⪯ M(q)

B ◦ γ(T̃ (q))
−1

◦M(q)
B ◦ T (q)

B

−1
◦A+M(q)

B ◦ (T̃ (q))−1 ◦A

⪯
∞∑
t=0

(γM(q)
B ◦ (T̃ (q))

−1
)t ◦ (M(q)

B ◦ (T̃ (q))
−1

◦A) (By recursion).

(C.16)
By Assumption 3.3,

M(q)
B ◦ (T̃ (q))

−1
◦A ⪯ αB tr(H(q)(T̃ (q))

−1
◦A)H(q)

= αBγ tr

( ∞∑
t=0

H(q)(I− γH(q))tA(I− γH(q))t

)
H(q)

= αBtr
(
H(q)(2H(q) − γ(H(q))2)−1A

)
H(q)

⪯ αBtr(A)H(q),

where the first equality holds by the definition of T̃ (q) and the last inequality requires the condi-
tion that γ < 1

αBtr(H(q))
. Hence, by (C.16), and further by (T̃ (q))

−1
H(q) ⪯ I and M(q)

B ◦ I ⪯
αB tr(H(q))H(q), we obtain

M(q)
B ◦ (T (q)

B

−1
◦A) ⪯

∞∑
t=0

(γM(q)
B ◦ (T̃ (q))

−1
)t ◦ (M(q)

B ◦ (T̃ (q))
−1

◦A)

⪯ αB tr(A)

∞∑
t=0

(γαB tr(H(q)))tH(q)

⪯ αB tr(A)

1− γαB tr(H(q))
·H(q).

Therefore,

M(q)
B ◦ St ⪯ γ−1 αB tr(A)

1− γαB tr(H(q))
·H(q) =

αB · tr
([

I − (I − γT̃ (q))t
]
◦B0

)
γ(1− γαB tr(H(q)))

·H(q).

4T (q)
B

−1
is a PSD mapping under the condition that γ < 1

αBtr(H(q))
, which can be directly deduced by

Lemma B.1 in Zou et al. (2023). We omit the proof here for simplicity.
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Lemma C.9 (A bound for M(q)
B ◦ S(M)

t ). For 1 ≤ t ≤ N , under Assumption 3.1, Assumption 3.2,
Assumption 3.3, and Assumption 3.4, if γ < 1

(1+ϵ̃)αBtr(H(q))
,

M(q)
B ◦ S(M)

t ⪯
αB · tr

([
I − (I − γT̃ (q))t

]
◦B0

)
γ(1− (1 + ϵ̃)γαB tr(H(q)))

·H(q).

Proof. The first step is to derive a crude bound for S(M)
t . Take summation via the update rule, we

have 5

S
(M)
t =

t−1∑
k=0

(I−γT (q)
B +ϵ̃γ2M(q)

B )k◦B0 = γ−1(T (q)
B −ϵ̃γM(q)

B )−1◦
[
I − (I − γT (q)

B + ϵ̃γ2M(q)
B )t

]
◦B0.

Note that
I − γT̃ (q) ⪯ I − γT (q)

B , (I − (I − γT (q)
B + ϵ̃γ2M(q)

B )t) ⪯ (I − (I − γT̃ (q) + ϵ̃γ2M(q)
B )t),

we obtain
S
(M)
t ⪯ γ−1(T (q)

B − ϵ̃γM(q)
B )−1 ◦ (I − (I − γT̃ (q) + ϵ̃γ2M(q)

B )t) ◦B0.

Denote A := (I − (I − γT̃ (q) + ϵ̃γ2M(q)
B )t) ◦B0, then applying T̃ (q)

T̃ (q) ◦ (T (q)
B − ϵ̃γM(q)

B )−1 ◦A ⪯ (1 + ϵ̃)γM(q)
B ◦ (T (q)

B − ϵ̃γM(q)
B )−1 ◦A+A.

Therefore

(T (q)
B − ϵ̃γM(q)

B )−1 ◦A ⪯ (1 + ϵ̃)γ(T̃ (q))
−1

◦M(q)
B ◦ (T (q)

B − ϵ̃γM(q)
B )−1 ◦A+ (T̃ (q))−1 ◦A.

Then we undertake the second step, applying M(q)
B on both sides.

M(q)
B ◦(T (q)

B − ϵ̃γM(q)
B )−1◦A ⪯

∞∑
t=0

((1+ ϵ̃)γM(q)
B ◦(T̃ (q))

−1
)t◦(M(q)

B ◦(T̃ (q))
−1

◦A). (C.17)

By Assumption 3.3,

M(q)
B ◦ (T̃ (q))

−1
◦A ⪯ αB tr(H(q)(T̃ (q))

−1
◦A)H(q)

= αBγ tr

( ∞∑
t=0

H(q)(I− γH(q))tA(I− γH(q))t

)
H(q)

= αBtr
(
H(q)(2H(q) − γ(H(q))2)−1A

)
H(q)

⪯ αBtr(A)H(q),

(C.18)

where the last inequality requires the condition that γ < 1
αBtr(H(q))

. Hence, by (C.17), (C.18), and

further by (T̃ (q))
−1

H(q) ⪯ I and M(q)
B ◦ I ⪯ αB tr(H(q))H(q), we obtain

M(q)
B ◦ ((T (q)

B − ϵ̃γM(q)
B )−1 ◦A) ⪯

∞∑
t=0

((1 + ϵ̃)γM(q)
B ◦ (T̃ (q))

−1
)t ◦ (M(q)

B ◦ (T̃ (q))
−1

◦A)

⪯ αB tr(A)

∞∑
t=0

((1 + ϵ̃)γαB tr(H(q)))tH(q)

⪯ αB tr(A)

1− (1 + ϵ̃)γαB tr(H(q))
·H(q).

Therefore,

M(q)
B ◦ S(M)

t ⪯ γ−1 αB tr(A)

1− (1 + ϵ̃)γαB tr(H(q))
·H(q) ⪯

αB · tr
([

I − (I − γT̃ (q))t
]
◦B0

)
γ(1− (1 + ϵ̃)γαB tr(H(q)))

·H(q).

5(T (q)
B − ϵ̃γM(q)

B )−1 is a PSD mapping under the condition that γ < 1

(1+ϵ̃)αBtr(H(q))
, which can be

directly deduced by Lemma B.1 in Zou et al. (2023). We omit the proof here for simplicity.
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By Lemma C.6, Lemma C.7, Lemma C.8 and Lemma C.9, we can provide a refined bound for St

and S
(M)
t . Then we are ready to bound the bias error.

Lemma C.10 (A bound for bias under general quantization). Under Assumption 3.1, Assumption
3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ < 1

αBtr(H(q))
, then

bias ≤
2αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)

+
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
.

Proof. Recalling Lemma C.6, we can derive a refined upper bound for St by Lemma C.8:

St ⪯(I − γT̃ (q)) ◦ St−1 + γ2M(q)
B ◦ SN +B0

⪯(I − γT̃ (q)) ◦ St−1 +
γαB · tr

([
I − (I − γT̃ (q))N

]
◦B0

)
(1− γαB tr(H(q)))

·H(q) +B0

⪯
t−1∑
k=0

(I − γT̃ (q))k

γαB · tr
([

I − (I − γT̃ (q))N
]
◦B0

)
(1− γαB tr(H(q)))

·H(q) +B0


=

t−1∑
k=0

(I− γH(q))k

(
γαB · tr

(
B0 − (I− γH(q))NB0(I− γH(q))N

)
(1− γαB tr(H(q)))

·H(q) +B0

)
(I− γH(q))k.

(C.19)

Before providing our upper bound for the bias error, we denote

Ba,b := Ba − (I− γH(q))b−aBa(I− γH(q))b−a.

Then by (C.14) and (C.19),

bias ≤ 1

γN2
⟨I− (I− γH(q))N ,

N−1∑
t=0

Bt⟩

≤ 1

γN2

N−1∑
k=0

〈
I− (I− γH(q))N , (I− γH(q))k

(
γαB · tr (B0,N )

1− γαB tr(H(q))
·H(q) +B0

)
(I− γH(q))k

〉

=
1

γN2

N−1∑
k=0

〈
(I− γH(q))2k − (I− γH(q))N+2k,

(
γαB · tr (B0,N )

1− γαB tr(H(q))
·H(q) +B0

)〉
.

Note that

(I− γH(q))2k − (I− γH(q))N+2k =
(
I− γH(q)

)k ((
I− γH(q)

)k
−
(
I− γH(q)

)N+k
)

⪯ (I− γH(q))k − (I− γH(q))N+k,

we obtain

bias ≤ 1

γN2

N−1∑
k=0

〈
(I− γH(q))k − (I− γH(q))N+k,

γαB · tr (B0,N )

1− γαB tr(H(q))
·H(q) +B0

〉
.

Therefore, it suffices to upper bound the following two terms

I1 =
αB tr(B0,N )

N2(1− γα tr(H(q)))

N−1∑
k=0

〈
(I− γH(q))k − (I− γH(q))N+k,H(q)

〉
,

I2 =
1

γN2

N−1∑
k=0

〈
(I− γH(q))k − (I− γH(q))N+k,B0

〉
.
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Regarding I1, since H(q) and I− γH(q) can be diagonalized simultaneously,

I1 =
αB tr(B0,N )

N2(1− γαB tr(H(q)))

N−1∑
k=0

∑
i

[
(1− γλ

(q)
i )k − (1− γλ

(q)
i )N+k

]
λ
(q)
i

=
αB tr(B0,N )

γN2(1− γαB tr(H(q)))

∑
i

[
1− (1− γλ

(q)
i )N

]2
≤ αB tr(B0,N )

γN2(1− γαB tr(H(q)))

∑
i

min
{
1, γ2N2(λ

(q)
i )2

}
≤ αB tr(B0,N )

γ(1− γαB tr(H(q)))
·

(
k∗

N2
+ γ2

∑
i>k∗

(λ
(q)
i )2

)
,

where k∗ = max{k : λ
(q)
k ≥ 1

Nγ }. Then we tackle tr(B0,N ).

tr(B0,N ) = tr
(
B0 − (I− γH(q))NB0(I− γH(q))N

)
=
∑
i

(
1− (1− γλ

(q)
i )2N

)
·
(
⟨w0 −w(q)∗,v

(q)
i ⟩
)2

≤ 2
∑
i

min{1, Nγλ
(q)
i }

(
⟨w0 −w(q)∗,v

(q)
i ⟩
)2

≤ 2
(
∥w0 −w(q)∗∥2I0:k∗ +Nγ∥w0 −w(q)∗∥2Hk∗:∞

)
.

(C.20)

Hence,

I1 ≤
2αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)
.

Regarding I2, decompose H(q) = V(q)Λ(q)V(q)⊤, then

I2 =
1

γN2

N−1∑
k=0

⟨(I− γΛ(q))k − (I− γΛ(q))N+k,V(q)⊤B0V
(q)⟩.

Note that B0 = η0η
⊤
0 , it can be shown that the diagonal entries of V(q)⊤B0V

(q) are ω2
1 , . . . , where

ωi = v
(q)
i

⊤
η0 = v

(q)
i

⊤
(w0 −w(q)∗). Hence,

I2 =
1

γN2

N−1∑
k=0

∑
i

[
(1− γλ

(q)
i )k − (1− γλ

(q)
i )N+k

]
ω2
i

=
1

γ2N2

∑
i

ω2
i

λ
(q)
i

[
1− (1− γλ

(q)
i )N

]2
≤ 1

γ2N2

∑
i

ω2
i

λ
(q)
i

min
{
1, γ2N2(λ

(q)
i )2

}
≤ 1

γ2N2
·
∑
i≤k∗

ω2
i

λ
(q)
i

+
∑
i>k∗

λ
(q)
i ω2

i

=
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
.
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In conclusion, if the stepsize satisfies γ < 1
αBtr(H(q))

,

bias ≤I1 + I2

≤
2αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)

+
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
.

Lemma C.11 (A bound for bias under multiplicative quantization). Under Assumption 3.1, Assump-
tion 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ < 1

(1+ϵ̃)αBtr(H(q))
, if there

exist ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-multiplicative,
then

bias ≤
2(1 + ϵ̃)αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− (1 + ϵ̃)γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)

+
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
.

Proof. Recalling Lemma C.7, we can derive an upper bound for St by Lemma C.9:

St ⪯(I − γT̃ (q)) ◦ St−1 + (1 + ϵ̃)γ2M(q)
B ◦ SN +B0

⪯(I − γT̃ (q)) ◦ St−1 +
(1 + ϵ̃)γαB · tr

([
I − (I − γT̃ (q))N

]
◦B0

)
(1− (1 + ϵ̃)γαB tr(H(q)))

·H(q) +B0

⪯
t−1∑
k=0

(I − γT̃ (q))k

 (1 + ϵ̃)γαB · tr
([

I − (I − γT̃ (q))N
]
◦B0

)
(1− (1 + ϵ̃)γαB tr(H(q)))

·H(q) +B0


=

t−1∑
k=0

(I− γH(q))k

(
(1 + ϵ̃)γαB · tr

(
B0 − (I− γH(q))NB0(I− γH(q))N

)
(1− (1 + ϵ̃)γαB tr(H(q)))

·H(q) +B0

)
(I− γH(q))k.

Repeat the same computation in the proof of Lemma C.10, we obtain

bias ≤ 1

γN2

N−1∑
k=0

〈
(I− γH(q))k − (I− γH(q))N+k,

(1 + ϵ̃)γαB · tr (B0,N )

1− (1 + ϵ̃)γαB tr(H(q))
·H(q) +B0

〉
.

(C.21)
Therefore, it suffices to upper bound the following two terms

I1 =
(1 + ϵ̃)αB tr(B0,N )

N2(1− (1 + ϵ̃)γα tr(H(q)))

N−1∑
k=0

〈
(I− γH(q))k − (I− γH(q))N+k,H(q)

〉
,

I2 =
1

γN2

N−1∑
k=0

〈
(I− γH(q))k − (I− γH(q))N+k,B0

〉
.

Repeating the computation in the proof of Lemma C.10,

I1 ≤
2(1 + ϵ̃)αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− (1 + ϵ̃)γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)
.

I2 ≤ 1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
.
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In conclusion, if the stepsize satisfies γ < 1
(1+ϵ̃)αBtr(H(q))

,

bias ≤
2(1 + ϵ̃)αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− (1 + ϵ̃)γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)

+
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
.

C.5 BOUNDING THE VARIANCE ERROR

Recalling Lemma C.4 and Lemma C.5, the key part of bounding the variance error is to derive an
upper bound for Ct and C

(M)
t , where

Ct := (I − γT (q)
B )Ct−1 + γ2σ

(q)
G

2
H(q), C0 = 0.

C
(M)
t := (I − γT (q)

B + ϵ̃γ2M(q)
B )C

(M)
t−1 + γ2σ

(q)
M

2
H(q), C

(M)
0 = 0.

We first estimate Ct by converting T (q)
B to T̃ (q).

Ct =(I − γT (q)
B ) ◦Ct−1 + γ2σ

(q)
G

2
H(q)

=(I − γT̃ (q)) ◦Ct−1 + γ(T̃ (q) − T (q)
B ) ◦Ct−1 + γ2σ

(q)
G

2
H(q)

=(I − γT̃ (q)) ◦Ct−1 + γ2(M(q)
B − M̃(q)) ◦Ct−1 + γ2σ

(q)
G

2
H(q)

⪯(I − γT̃ (q)) ◦Ct−1 + γ2M(q)
B ◦Ct−1 + γ2σ

(q)
G

2
H(q).

(C.22)

Similarly,

C
(M)
t =(I − γT (q)

B + ϵ̃γ2M(q)
B )C

(M)
t−1 + γ2σ

(q)
M

2
H(q)

=(I − γT̃ (q)) ◦C(M)
t−1 + γ(T̃ (q) − T (q)

B + ϵ̃γM(q)
B ) ◦C(M)

t−1 + γ2σ
(q)
M

2
H(q)

=(I − γT̃ (q)) ◦C(M)
t−1 + γ2(M(q)

B − M̃(q) + ϵ̃γM(q)
B ) ◦C(M)

t−1 + γ2σ
(q)
M

2
H(q)

⪯(I − γT̃ (q)) ◦C(M)
t−1 + γ2(1 + ϵ̃)M(q)

B ◦C(M)
t−1 + γ2σ

(q)
M

2
H(q).

(C.23)

The following two lemmas provide upper bounds for M(q)
B ◦Ct and M(q)

B ◦C(M)
t .

Lemma C.12 (A bound for M(q)
B ◦Ct). For t ≥ 1, under Assumption 3.1, Assumption 3.2, Assump-

tion 3.3, and Assumption 3.4, if the stepsize γ ≤ 1
αBtr(H(q))

, then

M(q)
B ◦Ct ⪯

αBtr(H
(q))γσ

(q)
G

2

1− γαBtr(H(q))
H(q).

Proof. The main goal is to derive a crude upper bound for Ct. Denote Σ = σ
(q)
G

2
H(q).

Step 1: Ct is increasing. By definition,

Ct = (I − γT (q)
B ) ◦Ct−1 + γ2Σ

= γ2
t−1∑
k=0

(I − γT (q)
B )k ◦Σ (solving the recursion)

= Ct−1 + γ2(I − γT (q)
B )t−1 ◦Σ

⪰ Ct−1. (since I − γT (q)
B is a PSD mapping).
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Step 2: C∞ exists. It suffices to show that tr(Ct) is uniformly upper bounded. To be specific, for
any t ≥ 1,

Ct = γ2
t−1∑
k=0

(I − γT (q)
B )k ◦Σ ⪯ γ2

∞∑
t=0

(I − γT (q)
B )t ◦Σ.

Then

tr(Ct) ≤ γ2
∞∑
t=0

tr
(
(I − γT (q)

B )t ◦Σ
)
:= γ2

∞∑
t=0

tr(Et) ≤
γ tr(Σ)

λ
(q)
d

< ∞,

where the second inequality holds by the iteration:

tr(Et) = tr(Et−1)− 2γtr(H(q)Et−1) + γ2tr

(
Et−1E

[
1

B2
X(q)⊤X(q)X(q)⊤X(q)

])
≤ tr(Et−1)− (2γ − γ2αBtr(H

(q))) tr(H(q)Et−1)

≤ tr
(
(I− γH(q))Et−1

)
≤ (1− γλ

(q)
d ) tr(Et−1),

where the first inequality holds by Assumption 3.3 and the second inequality holds if γ ≤
1

αBtr(H(q))
.

Step 3: upper bound C∞. By the update rule for Ct,

C∞ = (I − γT (q)
B ) ◦C∞ + γ2Σ,

which immediately implies

C∞ = γT (q)
B

−1
◦Σ. (C.24)

We provide the upper bound by applying T̃ (q).

T̃ (q) ◦C∞ = T (q)
B ◦C∞ + γM(q)

B ◦C∞ − γM̃(q) ◦C∞

= γΣ+ γM(q)
B ◦C∞ − γM̃(q) ◦C∞

⪯ γΣ+ γM(q)
B ◦C∞,

where the first equality holds by the definition of T (q)
B and T̃ (q) and the second equality holds by

(C.24). Hence,

T̃ (q) ◦C∞ ⪯ γσ
(q)
G

2
H(q) + γM(q)

B ◦C∞.

Therefore, by applying (T̃ (q))−1 we have

C∞ ⪯ γσ
(q)
G

2
· (T̃ (q))−1 ◦H(q) + γ(T̃ (q))−1 ◦M(q)

B ◦C∞

⪯ γσ
(q)
G

2
·

∞∑
t=0

(
γ(T̃ (q))−1 ◦M(q)

B

)t
◦ (T̃ (q))−1 ◦H(q). (solving the recursion)

(C.25)

We first deal with (T̃ (q))−1 ◦H(q).

(T̃ (q))−1 ◦H(q) = γ

∞∑
t=0

(I − γT̃ (q))t ◦H(q)

= γ

∞∑
t=0

(I− γH(q))tH(q)(I− γH(q))t

⪯ γ

∞∑
t=0

(I− γH(q))tH(q)

= I,

(C.26)
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where the second equality uses the definition of T̃ (q). Hence, by (C.25) and (C.26),

C∞ ⪯ γσ
(q)
G

2
·

∞∑
t=0

(γ(T̃ (q))−1 ◦M(q)
B )t ◦ I

= γσ
(q)
G

2
·

∞∑
t=0

(γ(T̃ (q))−1 ◦M(q)
B )t−1γ(T̃ (q))−1 ◦M(q)

B ◦ I

⪯ γσ
(q)
G

2
·

∞∑
t=0

(γ(T̃ (q))−1 ◦M(q)
B )t−1 ◦ γαBtr(H

(q))I

⪯ γσ
(q)
G

2
·

∞∑
t=0

(
γαBtr(H

(q))
)t

I

=
γσ

(q)
G

2

1− γαBtr(H(q))
I,

(C.27)

where the second inequality holds by the fact that M(q)
B ◦ I ⪯ αB tr(H(q))H(q).

Here we complete deriving a crude upper bound for Ct:

Ct ⪯ C∞ ⪯
γσ

(q)
G

2

1− γαBtr(H(q))
I.

Then by M(q)
B ◦ I ⪯ αB tr(H(q))H(q) again,

M(q)
B ◦Ct ⪯

αBtr(H
(q))γσ

(q)
G

2

1− γαBtr(H(q))
H(q).

Lemma C.13 (A bound for M(q)
B ◦ C

(M)
t ). For t ≥ 1, under Assumption 3.1, Assumption 3.2,

Assumption 3.3, and Assumption 3.4, if the stepsize γ ≤ 1
(1+ϵ̃)αBtr(H(q))

, then

M(q)
B ◦C(M)

t ⪯
αBtr(H

(q))γσ
(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))
H(q).

Proof. The proof idea is similar to the proof of Lemma C.12 while the main goal is to derive a crude
upper bound for C(M)

t . We deduce from the proof of Lemma C.12 that 6

C
(M)
t ⪯ C(M)

∞ = γ(T (q)
B − ϵ̃γM(q)

B )−1 ◦ σ(q)
M

2
H(q). (C.28)

We provide the upper bound for C(M)
∞ by applying T̃ (q).

T̃ (q) ◦C(M)
∞ = (T (q)

B − ϵ̃γM(q)
B ) ◦C(M)

∞ + (1 + ϵ̃)γM(q)
B ◦C(M)

∞ − γM̃(q) ◦C(M)
∞

= γσ
(q)
M

2
H(q) + (1 + ϵ̃)γM(q)

B ◦C(M)
∞ − γM̃(q) ◦C(M)

∞

⪯ γσ
(q)
M

2
H(q) + (1 + ϵ̃)γM(q)

B ◦C(M)
∞ ,

where the first equality holds by the definition of T̃ (q) and the second equality holds by the definition
of C(M)

∞ (C.28). Therefore, applying (T̃ (q))−1 we have

C(M)
∞ ⪯ γσ

(q)
M

2
· (T̃ (q))−1 ◦H(q) + (1 + ϵ̃)γ(T̃ (q))−1 ◦M(q)

B ◦C(M)
∞

⪯ γσ
(q)
M

2
·

∞∑
t=0

((1 + ϵ̃)γ(T̃ (q))−1 ◦M(q)
B )t ◦ (T̃ (q))−1 ◦H(q). (solving the recursion)

(C.29)

6(T (q)
B − ϵ̃γM(q)

B )−1 exists under the condition that γ < 1

(1+ϵ̃)αBtr(H(q))
, which can be directly deduced

by Lemma B.1 in Zou et al. (2023). We omit the proof here for simplicity.
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By the computation (C.26) in the proof for Lemma C.12,

(T̃ (q))−1 ◦H(q) ⪯ I. (C.30)

Hence, by (C.29) and (C.30),

C(M)
∞ ⪯ γσ

(q)
M

2
·

∞∑
t=0

((1 + ϵ̃)γ(T̃ (q))−1 ◦M(q)
B )t ◦ I

= γσ
(q)
M

2
·

∞∑
t=0

((1 + ϵ̃)γ(T̃ (q))−1 ◦M(q)
B )t−1(1 + ϵ̃)γ(T̃ (q))−1 ◦M(q)

B ◦ I

⪯ γσ
(q)
M

2
·

∞∑
t=0

((1 + ϵ̃)γ(T̃ (q))−1 ◦M(q)
B )t−1 ◦ (1 + ϵ̃)γαBtr(H

(q))I

⪯ γσ
(q)
M

2
·

∞∑
t=0

(
(1 + ϵ̃)γαBtr(H

(q))
)t

I

=
γσ

(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))
I,

where the second inequality holds by the fact that M(q)
B ◦ I ⪯ αB tr(H(q))H(q).

Therefore, we complete the proof by

M(q)
B ◦C(M)

t ⪯
αBtr(H

(q))γσ
(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))
H(q).

By (C.22), (C.23), Lemma C.12 and Lemma C.13, we can provide a refined bound for Ct and C
(M)
t .

Then we are ready to bound the variance error.
Lemma C.14 (A bound for variance under general quantization). Under Assumption 3.1, Assump-
tion 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ < 1

αBtr(H(q))
, then

variance ≤
σ
(q)
G

2

1− γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
.

Proof. We first provide a refined upper bound for Ct. By (C.22),

Ct ⪯(I − γT̃ (q)) ◦Ct−1 + γ2M(q)
B ◦Ct−1 + γ2σ

(q)
G

2
H(q)

⪯(I − γT̃ (q)) ◦Ct−1 +
γ2αBtr(H

(q))γσ
(q)
G

2

1− γαBtr(H(q))
H(q) + γ2σ

(q)
G

2
H(q)

=(I − γT̃ (q)) ◦Ct−1 +
γ2σ

(q)
G

2

1− γαBtr(H(q))
H(q)

⪯
γ2σ

(q)
G

2

1− γαBtr(H(q))
·
t−1∑
k=0

(I − γT̃ (q))k ◦H(q) (solving the recursion)

=
γ2σ

(q)
G

2

1− γαBtr(H(q))
·
t−1∑
k=0

(I− γH(q))kH(q)(I− γH(q))k

⪯
γ2σ

(q)
G

2

1− γαBtr(H(q))
·
t−1∑
k=0

(I− γH(q))kH(q)

=
γσ

(q)
G

2

1− γαBtr(H(q))
·
(
I− (I− γH(q))t

)
,

(C.31)
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where the second inequality holds by Lemma C.12 and the second equality holds by the definition
of T̃ (q).

After providing a refined bound for Ct, we are ready to bound the variance. By Lemma C.4,

variance =
1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),Ct

〉
=

1

γN2

N−1∑
t=0

〈
I− (I− γH(q))N−t,Ct

〉

≤ 1

γ2N2

γ2σ
(q)
G

2

1− γαBtr(H(q))

N−1∑
t=0

〈
I− (I− γH(q))N−t, I− (I− γH(q))t

〉

=
1

γ2N2

γ2σ
(q)
G

2

1− γαBtr(H(q))

∑
i

N−1∑
t=0

[
1− (1− γλ

(q)
i )N−t

] [
1− (1− γλ

(q)
i )t

]

≤ 1

γ2N2

γ2σ
(q)
G

2

1− γαBtr(H(q))

∑
i

N−1∑
t=0

[
1− (1− γλ

(q)
i )N

] [
1− (1− γλ

(q)
i )N

]

=
1

γ2N

γ2σ
(q)
G

2

1− γαBtr(H(q))

∑
i

[
1− (1− γλ

(q)
i )N

]2
≤ 1

γ2N

γ2σ
(q)
G

2

1− γαBtr(H(q))

∑
i

min
{
1, γ2N2(λ

(q)
i )2

}

≤ 1

γ2N

γ2σ
(q)
G

2

1− γαBtr(H(q))

(
k∗ +N2γ2 ·

∑
i>k∗

(λ
(q)
i )2

)

=
σ
(q)
G

2

1− γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

(C.32)

where the first inequality holds by (C.31) and the last inequality holds by the definition of k∗ =

max
{
k : λ

(q)
k ≥ 1

Nγ

}
. This immediately completes the proof.

Lemma C.15 (A bound for variance under multiplicative quantization). Under Assumption 3.1, As-
sumption 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ < 1

(1+ϵ̃)αBtr(H(q))
,

if there exist ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-
multiplicative, then

variance ≤
σ
(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
.

Proof. Applying (C.23), and repeating the computation in the proof of Lemma C.14,

C
(M)
t ⪯(I − γT̃ (q)) ◦C(M)

t−1 + γ2(1 + ϵ̃)M(q)
B ◦C(M)

t−1 + γ2σ
(q)
M

2
H(q)

⪯(I − γT̃ (q)) ◦C(M)
t−1 + γ2(1 + ϵ̃)

αBtr(H
(q))γσ

(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))
H(q) + γ2σ

(q)
M

2
H(q)

=(I − γT̃ (q)) ◦C(M)
t−1 +

γ2σ
(q)
M

2
H(q)

1− (1 + ϵ̃)γαBtr(H(q))
H(q)

⪯
γσ

(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))
·
(
I− (I− γH(q))t

)
,

where the second inequality holds by Lemma C.13 and the last inequality repeats the proof in (C.31).
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Therefore, repeating the procedure in the proof for Lemma C.14, we directly deduce that

variance ≤
σ
(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

which immediately completes the proof.

Lemma C.16 (A bound for R(0)
N under general quantization). Under Assumption 3.1, Assumption

3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ < 1
αBtr(H(q))

, then

R
(0)
N /2 ≤

2αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)

+
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

+
σ
(q)
G

2

1− γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

where k∗ = max
{
k : λ

(q)
k ≥ 1

Nγ

}
and

σ
(q)
G

2
=

supt

{∥∥∥∥E [ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥}

B

+αB sup
t

Ewt−1

[
tr

(
H(q)E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤∣∣wt−1

])]
+

σ2

B
.

Proof. The proof is immediately completed by Lemma C.4, Lemma C.10 and Lemma C.14.

Lemma C.17 (A bound for R
(0)
N under multiplicative quantization). Under Assumption 3.1, As-

sumption 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ < 1
(1+ϵ̃)αBtr(H(q))

,
if there exist ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-
multiplicative, then

R
(0)
N /2 ≤

2(1 + ϵ̃)αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− (1 + ϵ̃)γαB tr(H(q)))

·

(
k∗

N
+Nγ2

∑
i>k∗

(λ
(q)
i )2

)

+
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

+
σ
(q)
M

2

1− (1 + ϵ̃)γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

where k∗ = max
{
k : λ

(q)
k ≥ 1

Nγ

}
and

ϵ̃ = 8ϵo(1 + ϵp)(1 + ϵa) + 4ϵp + 4ϵa(1 + ϵp),

σ
(q)
M

2
=

(1 + 4ϵo)σ
2

B
+

∥w∗∥2H
1 + ϵd

αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 2ϵp) .

Proof. The proof is immediately completed by Lemma C.5, Lemma C.11 and Lemma C.15.
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D DEFERRING PROOFS

D.1 PROOF FOR THEOREM 4.1

Proof. By Lemma A.3, (B.1), (B.2), (C.1) and Lemma C.16, we have

E[E(wN )] ≤ 2VarErr + 2BiasErr + ApproxErr,

where

VarErr =

2αB

(
∥w0−w(q)∗∥2

I
(q)
0:k∗

Nγ + ∥w0 −w(q)∗∥2
H

(q)

k∗:∞

)
+ σ

(q)
G

2

1− γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

BiasErr =
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
,

ApproxErr = ∥w∗∥2DH
2
+

1

2
∥w∗∥2DH

1
,

with D = H(q) −H, k∗ = max
{
k : λ

(q)
k ≥ 1

Nγ

}
, and

DH
2 = H(H(q))−1 1

Nγ

(
I− (I− γH(q))N

)
(H(q))−1D(H(q))−1H, DH

1 = D(H(q))−1H(H(q))−1D,

σ
(q)
G

2
=

supt

{∥∥∥∥E [ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥}

B

+αB sup
t

Ewt−1

[
tr

(
H(q)E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤∣∣wt−1

])]
+

σ2

B
.

Let the initialization w0 = 0 completes the proof.

D.2 PROOF FOR THEOREM 4.2

We prove a tighter excess risk bound under multiplicative quantization in this subsection:

Theorem D.1 (Multiplicative quantization). Under Assumption 3.1, 3.2, 3.3 and 3.4, if there exist
ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-multiplicative, and the
stepsize satisfies γ < 1

αB(1+ϵo)[1+ϵp+ϵa(1+ϵp)](1+ϵd)tr(H) , then the excess risk can be upper bounded
as follows.

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,

where

ApproxErr ≲
ϵd

1 + ϵd
∥w∗∥2H , BiasErr ≲

1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

VarErr ≲

(
k∗

N
+Nγ2(1 + ϵd)

2
∑
i>k∗

λ2
i

)
(1+ϵo)σ

2

B + αBσ
2
M

1− γαB(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)](1 + ϵd)tr (H)
,

with

σ2
M = [ϵo+(1+ϵo)(ϵp+ϵa(1+ϵp))] ∥w∗∥2H+(1+ϵo)[1+ϵp+ϵa(1+ϵp)]

∥w(q)∗∥2
I
(q)

0:k∗

Nγ
+ ∥w(q)∗∥2

H
(q)

k∗:∞

 .

Proof. By Lemma A.3, Lemma B.1, (C.1) and Lemma C.17, we have

E[E(wN )] ≤ 2VarErr + 2BiasErr + ApproxErr,
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where

VarErr =

σ
(q)
M

2
+ 2(1 + ϵ̃)αB

(
∥w0−w(q)∗∥2

I
(q)
0:k∗

Nγ + ∥w0 −w(q)∗∥2
H

(q)

k∗:∞

)
1− (1 + ϵ̃)γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

BiasErr =
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞
,

ApproxErr =
ϵ2d

2(1 + ϵd)2
∥w∗∥2H +

ϵd
(1 + ϵd)2

∥w∗∥2H ≲
ϵd

1 + ϵd
∥w∗∥2H ,

with k∗ = max
{
k : λ

(q)
k ≥ 1

Nγ

}
and

ϵ̃ = 8ϵo(1 + ϵp)(1 + ϵa) + 4ϵp + 4ϵa(1 + ϵp) ≲ ϵo + (1 + ϵo)(ϵp + ϵa(1 + ϵp)),

σ
(q)
M

2
=

(1 + 4ϵo)σ
2

B
+

∥w∗∥2H
1 + ϵd

αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 2ϵp)

≲
(1 + ϵo)σ

2

B
+ ∥w∗∥2HαB (ϵo + (1 + ϵo)(ϵp + ϵa(1 + ϵp))) .

Let initialization w0 = 0. Regarding VarErr, noticing that 1 + ϵ̃ ≲ (1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)],
we have

σ
(q)
M

2
+ 2(1 + ϵ̃)αB

∥w(q)∗∥2
I
(q)

0:k∗

Nγ
+ ∥w(q)∗∥2

H
(q)

k∗:∞


≲
(1 + ϵo)σ

2

B
+ αB ∥w∗∥2H (ϵo + (1 + ϵo)(ϵp + ϵa(1 + ϵp)))

+αB(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)]

∥w(q)∗∥2
I
(q)

0:k∗

Nγ
+ ∥w(q)∗∥2

H
(q)

k∗:∞

 .

Then the proof is completed by tr(H(q)) = (1 + ϵd)tr(H) and λ
(q)
i = (1 + ϵd)λi.

Theorem 4.2 can be deduced from Theorem D.1 by noticing that

σ2
M ≲ (1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)] ∥w∗∥2H ,

where we use

∥w(q)∗∥2
I
(q)

0:k∗

Nγ
+ ∥w(q)∗∥2

H
(q)

k∗:∞
≤ ∥w(q)∗∥2H(q) =

∥w∗∥2H
1 + ϵd

≤ ∥w∗∥2H.

D.3 PROOF FOR COROLLARY 4.1

We provide a tighter excess risk bound under additive quantization in this subsection:
Corollary D.1 (Additive quantization). Under Assumption 3.1, 3.2, 3.3 and 3.4, if there exist
ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-additive, and the
stepsize satisfies γ < 1

αB [tr(H)+dϵd]
, then

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,

where

ApproxErr ≲
ϵd

λd + ϵd
∥w∗∥2H , BiasErr ≲

1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

VarErr ≲

αB

(
∥w(q)∗∥2

I
(q)
0:k∗

Nγ + ∥w(q)∗∥2
H

(q)

k∗:∞

)
+ σ2+ϵo+ϵa

B + αBϵp[tr(H) + dϵd]

1− γαB [tr(H) + dϵd]

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2

)
.
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Proof. By Theorem 4.1,

E[E(wN )] ≤ 2VarErr + 2BiasErr + ApproxErr,

where

VarErr ≤
2αB

(
∥w(q)∗∥2

I
(q)
0:k∗

Nγ + ∥w(q)∗∥2
H

(q)

k∗:∞

)
+ σ

(q)
G

2

1− γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)
,

BiasErr ≤ 1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

ApproxErr ≤ ∥w∗∥2D(H+D)−1H(H+D)−1D + ∥w∗∥2DH
,

with σ
(q)
G

2
=

σ2+supt

{∥∥∥E[ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at

]∥∥∥}
B + αB supt E

[
tr

(
H(q)ϵ

(p)
t−1ϵ

(p)
t−1

⊤
)]

and

DH = H(H(q))−1 1
Nγ

(
I− (I− γH(q))N

)
(H(q))−1D(H(q))−1H.

Under additive quantization, it holds

tr(H(q)) = tr(H) + dϵd,
∑
i>k∗

(λ
(q)
i )2 =

∑
i>k∗

(λi + ϵd)
2,

and

σ
(q)
G

2
=

σ2 + ϵo + ϵa
B

+ αBϵp[tr(H) + dϵd].

Then we have

VarErr ≲

αB

(
∥w(q)∗∥2

I
(q)
0:k∗

Nγ + ∥w(q)∗∥2
H

(q)

k∗:∞

)
+ σ2+ϵo+ϵa

B + αBϵp[tr(H) + dϵd]

1− γαB [tr(H) + dϵd]

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2

)
.

The proof is completed by Lemma B.2:

ApproxErr ≤ ϵ2d
2(λd + ϵd)2

∥w∗∥2H +
λ1ϵd

(λd + ϵd)(λ1 + ϵd)
∥w∗∥2H ≲

ϵd
λd + ϵd

∥w∗∥2H .

Corollary 4.1 can be deduced from Corollary D.1 by noticing that

∥w(q)∗∥2
I
(q)

0:k∗

Nγ
+ ∥w(q)∗∥2

H
(q)

k∗:∞
≤ ∥w(q)∗∥2H(q) = w∗⊤H(H(q))−1Hw∗ ≤ ∥w∗∥2H.

D.4 PROOF FOR THE MULTIPLICATIVE STATEMENT IN COROLLARY 4.2

Proof. Recall that k∗0 = max{k : λk ≥ 1
Nγ },

R0 =

k∗0
N

+Nγ2 ·
∑
i>k∗

0

λ2
i

 αB

(
1

Nγ ∥w
∗∥2I0:k∗

0

+ ∥w∗∥2Hk∗
0 :∞

)
+ σ2

B

1− γαBtr (H)︸ ︷︷ ︸
EffectiveVar

+
1

γ2N2
· ∥w∗∥2(H0:k∗

0
)−1 + ∥w∗∥2Hk∗

0 :∞︸ ︷︷ ︸
EffectiveBias

,

and by Theorem D.1,

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,
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where

ApproxErr ≲
ϵd
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2
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,
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We then compare the upper bound of E[E(wN )] with R0. Regarding VarErr, we first analyze
k∗

N +Nγ2(1 + ϵd)
2
∑

i>k∗ λ2
i . Note that for k∗0 < i ≤ k∗, 1
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We then analyze
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Nγ
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0 :∞
.

Therefore, the sufficient conditions for VarErr ≲ EffectiveVar are

ϵd ≲ 1, ϵo, ϵa, ϵp ≲

 σ2

BαB∥w∗∥2H
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1
Nγ ∥w
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+ ∥w∗∥2Hk∗
0 :∞

∥w∗∥2H

 ∧ 1,

Secondly, we analyze BiasErr. Similarly,
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(D.1)
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Thirdly, the sufficient condition for ApproxErr ≲ R0 is ϵd ≲ R0

∥w∗∥2
H
. Overall, we require

ϵd ≲ 1 ∧ R0

∥w∗∥2H
, ϵo, ϵa, ϵp ≲
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+

1
Nγ ∥w

∗∥2I0:k∗
0

+ ∥w∗∥2Hk∗
0 :∞

∥w∗∥2H

 ∧ 1.

D.5 PROOF FOR THE ADDITIVE STATEMENT IN COROLLARY 4.2

Proof. Recall that k∗0 = max{k : λk ≥ 1
Nγ },

R0 =

k∗0
N

+Nγ2 ·
∑
i>k∗

0

λ2
i

 αB
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+
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0 :∞︸ ︷︷ ︸
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,

and by Corollary D.1,

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,

where

ApproxErr ≲
ϵd

λd + ϵd
∥w∗∥2H , BiasErr ≲

1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2
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.

We then compare the upper bound of E[E(wN )] with R0. Regarding VarErr, we first analyze
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. (D.2)

Therefore, the sufficient conditions for VarErr ≲ EffectiveVar are

ϵd ≲

√√√√ k∗
0

N +Nγ2 ·
∑

i>k∗
0
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i

Nγ2(d− k∗0)
, ϵp ≲
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0
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0 :∞

)
.
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Secondly, we analyze BiasErr. Similarly,
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+ ∥w(q)∗∥2

H
(q)

k∗:∞

=
1

γ2N2
·
(
∥w(q)∗∥2

(H
(q)

0:k∗
0
)−1

+ ∥w(q)∗∥2
(H

(q)

k∗
0 :k∗ )

−1

)
− ∥w(q)∗∥2

H
(q)

k∗
0 :k∗

+ ∥w(q)∗∥2
H

(q)

k∗
0 :∞

≤ 1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗
0
)−1

+ ∥w(q)∗∥2
H

(q)

k∗
0 :∞
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· ∥w∗∥2(H0:k∗

0
)−1 + ∥w∗∥2Hk∗

0 :∞
= EffectiveBias.

Thirdly, the sufficient condition for ApproxErr ≲ R0 is ϵd ≲ R0

∥w∗∥2
H
λd. Overall, we require

ϵd ≲

√√√√ k∗
0

N +Nγ2 ·
∑

i>k∗
0
λ2
i

Nγ2(d− k∗0)
∧ R0λd

∥w∗∥2H
, ϵa, ϵo ≲ σ2 +BαB

(∥w∗∥2I0:k∗
0

Nγ
+ ∥w∗∥2Hk∗

0 :∞

)
,

ϵp ≲
σ2

BαB [tr(H) + dϵd]
+

∥w∗∥2
I0:k∗

0

Nγ + ∥w∗∥2Hk∗
0 :∞

tr(H) + dϵd
.

D.6 PROOF FOR THE MULTIPLICATIVE STATEMENT IN COROLLARY 4.3

Proof. We prove by applying Theorem 4.2:

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,

where

ApproxErr ≲
ϵd

1 + ϵd
∥w∗∥2H , BiasErr ≲

1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

VarErr ≲

(
k∗

N
+Nγ2(1 + ϵd)

2
∑
i>k∗

λ2
i

)
(1+ϵo)σ

2

B + αB(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)] ∥w∗∥2H
1− γαB(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)](1 + ϵd)tr (H)

.

We first deal with VarErr under power-law spectrum Assumption 4.1. Under multiplicative quanti-
zation, we can estimate k∗ by

(1 + ϵd)k
∗−a ≈ 1

Nγ
,

that is
k∗ ≈ [Nγ(1 + ϵd)]

1
a . (D.3)

Further, the power-law Assumption 4.1 also implies that for any positive k,∑
i>k

i−a ≈ k1−a. (D.4)

By (D.3) and (D.4),

k∗

N
+Nγ2(1 + ϵd)

2
∑
i>k∗

λ2
i ≲

min
{
d, [Nγ(1 + ϵd)]

1
a +Nγ2(1 + ϵd)

2 [Nγ(1 + ϵd)]
1−2a

a

}
N

≲
min

{
d, [Nγ(1 + ϵd)]

1
a

}
N

.

Moreover, under polynomial spectrum Assumption 4.1,

tr(H) ≂ 1, E∥w∗∥2H ≂ 1.
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Therefore, under Assumption 4.1, by applying stepsize γ < 1
2αB(1+ϵo)[1+ϵp+ϵa(1+ϵp)](1+ϵd)tr(H)

and taking expectation on w∗, it holds that

Ew∗VarErr ≲
min

{
d, [Nγ(1 + ϵd)]

1
a

}
N

(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)], (D.5)

where we use σ2 ≲ 1.

We secondly deal with BiasErr. Under Assumption 4.1, using (D.1),

Ew∗BiasErr ≤Ew∗

[
1

γ2N2
· ∥w∗∥2(H0:k∗

0
)−1 + ∥w∗∥2Hk∗

0 :∞

]

=
1

N2γ2

k∗
0∑

i=1

λ−1
i +

d∑
i>k∗

0

λi

≤ k∗0
Nγ

+

d∑
i>k∗

0

λi

≂
k∗0
Nγ

+ (k∗0)
1−a

≲max
{
d1−a, (Nγ)1/a−1

}
.

(D.6)

Therefore, together with (D.5) and (D.6), and taking expectation on w∗, we have

E[E(wN )] ≲
ϵd

1 + ϵd
+max

{
d1−a, (Nγ)1/a−1

}
+

min
{
d, [Nγ(1 + ϵd)]

1
a

}
N

(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)].

Denote R = E[E(wN )]− ϵd
1+ϵd

.

• d > [Nγ(1 + ϵd)]
1
a

In this case,

R ≲(Nγ)1/a−1 +
[Nγ(1 + ϵd)]

1
a

N
(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)]

≲N1/a−1(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)](1 + ϵd)
1/a.

• (Nγ)1/a < d ≤ [Nγ(1 + ϵd)]
1
a

In this case,

R ≲(Nγ)1/a−1 + (1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)]
d

N

≲(Nγ)1/a−1 + (1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)]
[Nγ(1 + ϵd)]

1
a

N

≲N1/a−1(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)](1 + ϵd)
1/a.

• d ≤ (Nγ)1/a

In this case,

R ≲d1−a + (1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)]
d

N

≲d1−a + (1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)]N
1/a−1.

Overall,

E [E(wN )] ≲
ϵd

1 + ϵd
+ d1−a +N1/a−1(1 + ϵo)[1 + ϵp + ϵa(1 + ϵp)](1 + ϵd)

1/a.
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D.7 PROOF FOR THE ADDITIVE STATEMENT IN COROLLARY 4.3

Proof. We prove by applying Corollary 4.1:

E[E(wN )] ≲ ApproxErr + VarErr + BiasErr,

where

ApproxErr ≲
ϵd

λd + ϵd
∥w∗∥2H , BiasErr ≲

1

γ2N2
· ∥w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w(q)∗∥2

H
(q)

k∗:∞
,

VarErr ≲
αB∥w∗∥2H + σ2+ϵo+ϵa

B + αBϵp[tr(H) + pϵd]

1− γαB [tr(H) + pϵd]

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2

)
.

We first deal with BiasErr. Under Assumption 4.1, using (D.2),

Ew∗BiasErr ≤Ew∗

[
1

γ2N2
· ∥w∗∥2(H0:k∗

0
)−1 + ∥w∗∥2Hk∗

0 :∞

]

=
1

N2γ2

k∗
0∑

i=1

λ−1
i +

d∑
i>k∗

0

λi

≤ k∗0
Nγ

+

d∑
i>k∗

0

λi

=
k∗0
Nγ

+ (k∗0)
1−a

≲max
{
d1−a, (Nγ)1/a−1

}
.

(D.7)

We then analyze VarErr. If ϵd + d−a ≥ 1
Nγ , then

k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2 =

d

N
.

Otherwise,
k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2

≲

(
1

Nγ − ϵd

)−1/a

+N2γ2
(

1
Nγ − ϵd

)−(1−2a)/a

+ ϵ2dN
2γ2

[
d−

(
1

Nγ − ϵd

)−1/a
]

N

≲

(
1

Nγ − ϵd

)−1/a

+ ϵ2dN
2γ2

[
d−

(
1

Nγ − ϵd

)−1/a
]

N
.

Denote keff =
[
d−a ∨

(
1

Nγ − ϵd

)]−1/a

, it follows that

k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2 ≲

keff + ϵ2dN
2γ2(d− keff)

N
.

Hence, under Assumption 4.1, taking expectation on w∗ and applying stepsize γ < 1
2αB [tr(H)+pϵd]

,

Ew∗VarErr ≲

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
keff + ϵ2dN

2γ2(d− keff)

N
. (D.8)

Therefore, together with (D.7) and (D.8), and taking expectation on w∗, we have

E[E(wN )] ≲
ϵd

d−a + ϵd
+max

{
d1−a, (Nγ)1/a−1

}
+

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
keff + ϵ2dN

2γ2(d− keff)

N
.

Denote R = E[E(wN )]− ϵd
d−a+ϵd

.
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• d−a ≤ 1/(Nγ)− ϵd
In this case, let ϵ′d = daϵd. Then d−a ≤ 1/(Nγ)− d−aϵ′d. That is, d−a ≤ 1

Nγ(1+ϵ′d)
.

R ≲(Nγ)1/a−1 +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

) ( 1
Nγ − ϵd

)−1/a

+ ϵ2dN
2γ2

(
d−

(
1

Nγ − ϵd

)−1/a
)

N

=(Nγ)1/a−1 +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

) ( 1
Nγ − d−aϵ′d

)−1/a

(1− ϵ2dN
2γ2) + ϵ2dN

2γ2d

N

≤(Nγ)1/a−1 +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
(1 + ϵ′d)

1/a(Nγ)1/a(1− ϵ2dN
2γ2) + ϵ2dN

2γ2d

N

≤(Nγ)1/a−1 +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)[
(1 + ϵ′d)

1/a(Nγ)1/a

N
+ ϵ2dNγ2d

]
.

We then focus on ϵ2dNγ2d. By Nγ ≤ da

1+ϵ′d
, we have

ϵ2dNγ2d ≲
ϵ2d

1 + ϵ′d
d1+a =

(ϵ′d)
2

1 + ϵ′d
d1−a.

Therefore,

R ≲ N1/a−1(1 + daϵd)
1/a

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
+

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
(daϵd)

2

1 + daϵd
d1−a.

• 1
Nγ − ϵd < d−a ≤ 1

Nγ

In this case, 1
Nγ − d−aϵ′d < d−a, that is, da < Nγ(1 + ϵ′d). Consequently,

R ≲(Nγ)1/a−1 +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
d

N

≲(Nγ)1/a−1 +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
(1 + ϵ′d)

1/aN1/a−1

≲

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
(1 + daϵd)

1/aN1/a−1.

• d−a > 1
Nγ

In this case,

R ≲d1−a +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
d

N

≲d1−a +

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)
N1/a−1.

Overall,

E[E(wN )] ≲
daϵd

1 + daϵd
+

(
1 +

ϵo + ϵa
B

+ ϵp(1 + dϵd)

)[
N

1
a−1(1 + daϵd)

1
a + d1−a

(
1 +

(daϵd)
2

1 + daϵd

)]
.

E DISCUSSION OF ASSUMPTIONS

In this section, we verify Assumption 3.3 and Assumption 3.4 under the standard fourth moment
and noise assumptions made on the full-precision data (Zou et al., 2023).

Assumption E.1. Assume there exists a positive constant α0 > 0, such that for any PSD matrix A,
it holds that

E
[
xx⊤Axx⊤] ⪯ α0 tr(HA)H.
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Assumption E.2. Assume there exists a constant σ2
0 such that

E
[
(y − ⟨w∗,x⟩)2xx⊤] ⪯ σ2

0H.

We consider specific quantization schemes.

Example E.1 (Strong multiplicative quantization). We consider a strong multiplicative quantiza-
tion. In this case, there exist constants ϵd, ϵ′d such that

E
[
ϵ(d)ϵ(d)

⊤∣∣x] = ϵdxx
⊤, E

[
ϵ(d)ϵ(d)

⊤
Aϵ(d)ϵ(d)

⊤∣∣∣x] ⪯ ϵ′dxx
⊤Axx⊤.

Example E.2 (Strong additive quantization). We consider a strong additive quantization. In this
case, there exist constants ϵd, ϵ′d such that

E
[
ϵ(d)ϵ(d)

⊤∣∣x] = ϵdI, E
[
ϵ(d)ϵ(d)

⊤
Aϵ(d)ϵ(d)

⊤∣∣∣x] ⪯ ϵ′dtr(A)I. (E.1)

E.1 DISCUSSION OF ASSUMPTION 3.3

Under Assumption E.1, we are ready to verify if Assumption 3.3 can be satisfied. We begin by:

E
[
x(q)x(q)⊤Ax(q)x(q)⊤

]
=E

[(
x(q)⊤Ax(q)

)
x(q)x(q)⊤

]
⪯2E

[(
x(q)⊤Ax(q)

)
(xx⊤ + ϵ(d)ϵ(d)

⊤
)
]

⪯4E
[(

x⊤Ax+ ϵ(d)
⊤
Aϵ(d)

)
(xx⊤ + ϵ(d)ϵ(d)

⊤
)
]

=4E
[
xx⊤Axx⊤]+ 4E

[
ϵ(d)ϵ(d)

⊤
Aϵ(d)ϵ(d)

⊤]
+4E

[(
x⊤Ax

)
ϵ(d)ϵ(d)

⊤]
+ 4E

[(
ϵ(d)

⊤
Aϵ(d)

)
xx⊤

]
.

(E.2)

Lemma E.1. Under strong multiplicative quantization E.1 and Assumption E.1,

E
[
x(q)x(q)⊤Ax(q)x(q)⊤

]
≲ α0(1 + ϵd + ϵ′d)tr(H

(q)A)H(q).

Proof. We proof by (E.2). From Assumption E.1,

E
[
xx⊤Axx⊤] ⪯ α0 tr(HA)H. (E.3)

Under strong multiplicative quantization E.1, we have

E
[(

ϵ(d)
⊤
Aϵ(d)

)
xx⊤

]
= ϵdE

[
xx⊤Axx⊤] ⪯ ϵdα0 tr(HA)H, (E.4)

E
[(
x⊤Ax

)
ϵ(d)ϵ(d)

⊤]
= ϵdE

[
xx⊤Axx⊤] ⪯ ϵdα0 tr(HA)H, (E.5)

and
E
[
ϵ(d)ϵ(d)

⊤
Aϵ(d)ϵ(d)

⊤]
⪯ ϵ′dE

[
xx⊤Axx⊤] ⪯ ϵ′dα0 tr(HA)H. (E.6)

Therefore, together with (E.2), (E.3), (E.4), (E.5) and (E.6), we have

E
[
x(q)x(q)⊤Ax(q)x(q)⊤

]
≲ α0(1 + ϵd + ϵ′d)tr(HA)H ≤ α0(1 + ϵd + ϵ′d)tr(H

(q)A)H(q).

That is, under strong multiplicative quantization Example E.1 and fourth moment Assumption E.1
on full-precision data, Assumption 3.3 is verified.

Lemma E.2. Under strong additive quantization E.2 and Assumption E.1,

E
[
x(q)x(q)⊤Ax(q)x(q)⊤

]
≲ (1 + α0)

(
1 +

ϵ′d
ϵ2d

)
tr(H(q)A)H(q).
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Proof. We proof by (E.2). Under strong additive quantization E.2,

E
[(

ϵ(d)
⊤
Aϵ(d)

)
xx⊤

]
⪯ ϵd tr(A)H, (E.7)

E
[(
x⊤Ax

)
ϵ(d)ϵ(d)

⊤]
⪯ ϵd tr(HA)I, (E.8)

and
E
[
ϵ(d)ϵ(d)

⊤
Aϵ(d)ϵ(d)

⊤]
⪯ ϵ′d tr(A)I. (E.9)

Therefore, together with (E.2), (E.7), (E.8) and (E.9), we have

E
[
x(q)x(q)⊤Ax(q)x(q)⊤

]
≲ (1 + α0)

(
1 +

ϵ′d
ϵ2d

)
tr(H(q)A)H(q).

That is, under strong additive quantization Example E.2 and fourth moment Assumption E.1 on
full-precision data, Assumption 3.3 is verified.

E.2 DISCUSSION OF ASSUMPTION 3.4

Under Assumption E.2, we are ready to verify if Assumption 3.4 can be satisfied. We begin by:

E
[
(y(q) − ⟨w(q)∗,x(q)⟩)2x(q)x(q)⊤

]
=E

[
(y(q) − y + y − ⟨w∗,x⟩+ ⟨w∗,x⟩ − ⟨w(q)∗,x(q)⟩)2x(q)x(q)⊤

]
⪯3E

[
(y(q) − y)2x(q)x(q)⊤

]
+ 3E

[
(y − ⟨w∗,x⟩)2x(q)x(q)⊤

]
+3E

[
(⟨w∗,x⟩ − ⟨w(q)∗,x(q)⟩)2x(q)x(q)⊤

]
⪯3E

[
(y(q) − y)2x(q)x(q)⊤

]
+ 3E

[
(y − ⟨w∗,x⟩)2x(q)x(q)⊤

]
+6E

[
⟨w(q)∗ −w∗,x⟩2x(q)x(q)⊤

]
+ 6E

[
⟨w(q)∗, ϵ(d)⟩2x(q)x(q)⊤

]
.

(E.10)

Lemma E.3. Under strong multiplicative quantization E.1, Assumption E.1, and Assumption E.2,

E
[
(y(q) − ⟨w(q)∗,x(q)⟩)2x(q)x(q)⊤

]
≾

(
σ2
0 + ϵl +

1 + ϵd + ϵ′d
1 + ϵd

α0∥w∗∥2H
)
H(q).

Proof. Regarding E
[
(y − ⟨w∗,x⟩)2x(q)x(q)⊤

]
,

E
[
(y − ⟨w∗,x⟩)2x(q)x(q)⊤

]
⪯2E

[
(y − ⟨w∗,x⟩)2xx⊤]+ 2E

[
(y − ⟨w∗,x⟩)2ϵ(d)ϵ(d)

⊤]
⪯2(1 + ϵd)E

[
(y − ⟨w∗,x⟩)2xx⊤]

⪯2(1 + ϵd)σ
2
0H,

(E.11)
where the second inequality holds by the definition of Example E.1 and the last inequality holds by
Assumption E.2. Regarding E

[
⟨w(q)∗, ϵ(d)⟩2x(q)x(q)⊤

]
,

E
[
⟨w(q)∗, ϵ(d)⟩2x(q)x(q)⊤

]
=E

[
ϵ(d)

⊤
w(q)∗w(q)∗⊤ϵ(d)x(q)x(q)⊤

]
⪯2E

[
ϵ(d)

⊤
w(q)∗w(q)∗⊤ϵ(d)xx⊤

]
+ 2E

[
ϵ(d)

⊤
w(q)∗w(q)∗⊤ϵ(d)ϵ(d)ϵ(d)

⊤
]

⪯2ϵdα0tr(w
(q)∗w(q)∗⊤H)H+ 2ϵ′dα0tr(w

(q)∗w(q)∗⊤H)H,

(E.12)

51



Published as a conference paper at ICLR 2026

where the last inequality holds by the definition of Example E.1 and Assumption E.1. Regarding the
term

E
[
⟨w(q)∗ −w∗,x⟩2x(q)x(q)⊤

]
⪯2E

[
⟨w(q)∗ −w∗,x⟩2xx⊤

]
+ 2E

[
⟨w(q)∗ −w∗,x⟩2ϵ(d)ϵ(d)

⊤]
⪯2(1 + ϵd)α0tr

(
(w(q)∗ −w∗)(w(q)∗ −w∗)⊤H

)
H,

(E.13)
where the last inequality holds by the definition of Example E.1 and Assumption E.1. Re-
garding E

[
(y(q) − y)2x(q)x(q)⊤

]
, if we further assume that there exists a constant C such that

E
[
y2xx⊤] ⪯ CH, then

E
[
(y(q) − y)2x(q)x(q)⊤

]
⪯2E

[
(y(q) − y)2xx⊤

]
+ 2E

[
(y(q) − y)2ϵ(d)ϵ(d)

⊤]
⪯2(1 + ϵd)E

[
(y(q) − y)2xx⊤

]
=2(1 + ϵd)ϵlE[y2xx⊤]

⪯2(1 + ϵd)ϵlCH.

(E.14)

Therefore, together with (E.10), (E.11), (E.12), (E.13) and (E.14), we have

E
[
(y(q) − ⟨w(q)∗,x(q)⟩)2x(q)x(q)⊤

]
≾(1 + ϵd)σ

2
0H+ (ϵd + ϵ′d)α0

∥∥∥w(q)∗
∥∥∥2
H
H+ (1 + ϵd)α0

∥∥∥w(q)∗ −w∗
∥∥∥2
H
H+ (1 + ϵd)ϵlH

≾
[
(1 + ϵd)(σ

2
0 + ϵl) + (1 + ϵd + ϵ′d)α0∥w∗∥2H

]
H

=

(
σ2
0 + ϵl +

1 + ϵd + ϵ′d
1 + ϵd

α0∥w∗∥2H
)
H(q).

That is, under strong multiplicative quantization Example E.1 and fourth moment Assumption E.2
on full-precision data, Assumption 3.4 is verified.

Lemma E.4. Under strong additive quantization E.2, Assumption E.1 and Assumption E.2,

E
[
(y(q) − ⟨w(q)∗,x(q)⟩)2x(q)x(q)⊤

]
≾

[
σ2
0 + ϵl + ϵd(1 +

ϵ′d
ϵ2d
) ∥w∗∥2 + (1 + α0) ∥w∗∥2H

]
H(q).

Proof. Regarding E
[
(y − ⟨w∗,x⟩)2x(q)x(q)⊤

]
, if we further assume that E

[
(y − ⟨w∗,x⟩)2

]
≤

σ2
0 , then

E
[
(y − ⟨w∗,x⟩)2x(q)x(q)⊤

]
⪯2E

[
(y − ⟨w∗,x⟩)2xx⊤]+ 2E

[
(y − ⟨w∗,x⟩)2ϵ(d)ϵ(d)

⊤]
⪯2σ2

0H+ 2ϵdσ
2
0I.

(E.15)
Regarding E

[
(y(q) − y)2x(q)x(q)⊤

]
,

E
[
(y(q) − y)2x(q)x(q)⊤

]
≤ ϵdϵlI. (E.16)

Regarding E
[
⟨w(q)∗, ϵ(d)⟩2x(q)x(q)⊤

]
,

E
[
⟨w(q)∗, ϵ(d)⟩2x(q)x(q)⊤

]
=E

[
ϵ(d)

⊤
w(q)∗w(q)∗⊤ϵ(d)x(q)x(q)⊤

]
⪯2E

[
ϵ(d)

⊤
w(q)∗w(q)∗⊤ϵ(d)xx⊤

]
+ 2E

[
ϵ(d)

⊤
w(q)∗w(q)∗⊤ϵ(d)ϵ(d)ϵ(d)

⊤
]

⪯2ϵdtr(w
(q)∗w(q)∗⊤)H+ 2ϵ′dtr(w

(q)∗w(q)∗⊤)I.

(E.17)
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Regarding E
[
⟨w(q)∗ −w∗,x⟩2x(q)x(q)⊤

]
,

E
[
⟨w(q)∗ −w∗,x⟩2x(q)x(q)⊤

]
=E

[
x⊤(w(q)∗ −w∗)(w(q)∗ −w∗)⊤xx(q)x(q)⊤

]
⪯2E

[
x⊤(w(q)∗ −w∗)(w(q)∗ −w∗)⊤xxx⊤

]
+ 2E

[
x⊤(w(q)∗ −w∗)(w(q)∗ −w∗)⊤xϵ(d)ϵ(d)

⊤]
⪯2α0tr

(
(w(q)∗ −w∗)(w(q)∗ −w∗)⊤H

)
H+ 2ϵdtr

(
(w(q)∗ −w∗)(w(q)∗ −w∗)⊤H

)
I.

(E.18)

Therefore, together with (E.10), (E.15), (E.16), (E.17) and (E.18), we have

E
[
(y(q) − ⟨w(q)∗,x(q)⟩)2x(q)x(q)⊤

]
≾(σ2

0 + ϵl)H
(q) + ϵd(1 +

ϵ′d
ϵ2d
)
∥∥∥w(q)∗

∥∥∥2 H(q) + (1 + α0)
∥∥∥w(q)∗ −w∗

∥∥∥2
H
H(q)

≤
[
σ2
0 + ϵl + ϵd(1 +

ϵ′d
ϵ2d
) ∥w∗∥2 + (1 + α0) ∥w∗∥2H

]
H(q).

That is, under strong additive quantization Example E.2 and noise Assumption E.2 on full-precision
data, Assumption 3.4 is verified.

F EXTENSION TO QUANTIZED MASTER WEIGHTS

In the quantized SGD algorithm (quantized SGD), the master weight maintains full precision. In this
section, we demonstrate that our theoretical framework can naturally extend to the setting where the
master weight is also quantized. For simplicity, we only discuss the bounds for R(0)

N . The theoret-
ical bounds are presented in Theorem F.1, Theorem F.2 and Theorem F.3 for general quantization,
additive quantization and multiplicative quantization, respectively. These results demonstrate that
when the master weights are quantized, quantized SGD requires stricter conditions on the step size
to ensure convergence. Furthermore, the final excess risk bounds incorporate additional error terms,
which degrades generalization performance.

We first present the algorithm and the propagation of E
[
ηtη

⊤
t

]
. Specifically, we consider

wt = Qp(wt−1) + γ
1

B
Qd(Xt)

⊤Qo

(
Ql(yt)−Qa

(
Qd(Xt)Qp(wt−1)

))
, t = 1, ..., N. (F.1)

When master weight is quantized, Lemma A.1 changes to

ηt =

(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ηt−1+γ

1

B
Qd(Xt)

⊤
[
ξt + ϵ

(o)
t − ϵ

(a)
t −Qd(Xt)ϵ

(p)
t−1

]
+ϵ

(p)
t−1.

(F.2)
In particular, the coefficient for parameter quantization error ϵ

(p)
t−1 changes from

− 1
BγQd(Xt)

⊤Qd(Xt) to I − 1
BγQd(Xt)

⊤Qd(Xt). Therefore, we can rewrite Lemma C.2
and Lemma C.3 as follows.

Lemma F.1 (Update rule under general quantization with quantized master weight). Under Assump-
tion 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4,

E
[
ηtη

⊤
t

]
⪯ 2(Bt +Ct),

where

Ct ⪯ E
[(

I− γ
1

B
Qd(X)

⊤Qd(X)

)
Ct−1

(
I− γ

1

B
Qd(X)

⊤Qd(X)

)]
+ γ2σ

(q)
G

2
H(q) + 2E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
,

Bt = E
[(

I− γ
1

B
Qd(X)

⊤Qd(X)

)
Bt−1

(
I− γ

1

B
Qd(X)

⊤Qd(X)

)]
,
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with C0 = 0, B0 = E
[
η0η

⊤
0

]
and

σ
(q)
G

2
=

supt

{∥∥∥∥E [ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥}

B

+2αB sup
t

Ewt−1

[
tr

(
H(q)E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤∣∣wt−1

])]
+

σ2

B
,

Proof. Noticing that

E
[(

I− 1

B
γQd(Xt)

⊤Qd(Xt)

)
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
(
I− 1

B
γQd(Xt)

⊤Qd(Xt)

)]
⪯2

γ2

B2
E
[
Qd(Xt)

⊤Qd(Xt)ϵ
(p)
t−1ϵ

(p)
t−1

⊤
Qd(Xt)

⊤Qd(Xt)

]
+ 2E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
,

(F.3)

together with (F.2) and Lemma C.2, we complete the proof.

Lemma F.2 (Update rule under multiplicative quantization with quantized master weight). If there
exist ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-multiplicative,
then under Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, it holds

E
[
ηtη

⊤
t

]
⪯ 2(Bt +Ct),

where

Ct ⪯E
[(

I− 1

B
γQd(X)

⊤Qd(X)

)
Ct−1

(
I− 1

B
γQd(X)

⊤Qd(X)

)]
+ 8ϵp (Ct−1 +Bt−1)

+ϵ̃E
[ γ
B
Qd(X)

⊤Qd(X)(Bt−1 +Ct−1)
γ

B
Qd(X)

⊤Qd(X)
]
+ γ2σ

(q)
M

2
H(q) + 4ϵpw

(q)∗(w(q)∗)⊤,

Bt =E
[(

I− 1

B
γQd(X)

⊤Qd(X)

)
Bt−1

(
I− 1

B
γQd(X)

⊤Qd(X)

)]
,

with

ϵ̃ = 8ϵo(1 + ϵp)(1 + ϵa) + 8ϵp + 4ϵa(1 + ϵp),

σ
(q)
M

2
=

(1 + 4ϵo)σ
2

B
+

∥w∗∥2H
1 + ϵd

αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 4ϵp) .

Proof. Under multiplicative quantization,

E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
= ϵpE

[
wt−1w

⊤
t−1

]
⪯ 2ϵpE

[
ηt−1η

⊤
t−1

]
+ 2ϵpw

(q)∗(w(q)∗)⊤. (F.4)

By (F.2), (F.3), (F.4) and Lemma C.3, the proof is immediately completed.

F.1 GENERAL QUANTIZATION

In this section, we derive upper bounds for R(0)
N under general quantization. We first perform bias-

variance decomposition under general quantization. By Lemma F.1, we have

E
[
ηtη

⊤
t

]
⪯ 2 (Bt +Ct) ,

where
Bt := (I − γT (q)

B )t ◦B0, B0 = E
[
η0η

⊤
0

]
,

and

Ct := (I − γT (q)
B ) ◦Ct−1 + γ2σ

(q)
G

2
H(q) + 2E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
, C0 = 0.
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Then by Lemma C.1,

R
(0)
N /2 ≤ 1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),Bt

〉
︸ ︷︷ ︸

bias

+
1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),Ct

〉
︸ ︷︷ ︸

variance

.

(F.5)
Noticing that the bias error when master weight is quantized is the same as the bias error when master
weight maintains full precision, we then only need to derive bounds for variance error. Similar to
(C.22),

Ct ⪯ (I − γT̃ (q)) ◦Ct−1 + γ2M(q)
B ◦Ct−1 + γ2σ

(q)
G

2
H(q) + 2E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
. (F.6)

Lemma F.3 (A bound for M(q)
B ◦Ct with quantized master weight). For t ≥ 1, under Assumption

3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize γ ≤ 1
αBtr(H(q))

, then

M(q)
B ◦Ct ⪯

αBtr(H
(q))

(
γσ

(q)
G

2
+ 2dµ

γtr(H(q))

)
1− γαBtr(H(q))

H(q).

Proof. We first derive a crude bound for Ct. Denote Σ = σ
(q)
G

2
H(q)+ 2

γ2 supt E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]

. By

(C.24),

Ct ⪯ C∞ = γT (q)
B

−1
◦Σ.

Applying T̃ (q), we have

T̃ (q) ◦C∞ = T (q)
B ◦C∞ + γM(q)

B ◦C∞ − γM̃(q) ◦C∞

= γΣ+ γM(q)
B ◦C∞ − γM̃(q) ◦C∞

⪯ γΣ+ γM(q)
B ◦C∞

= γσ
(q)
G

2
H(q) +

2

γ
sup
t

E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
+ γM(q)

B ◦C∞.

Applying (T̃ (q))−1 and by solving recursion, we have

C∞ ⪯ γσ
(q)
G

2
(T̃ (q))−1 ◦H(q) +

2

γ
(T̃ (q))−1 ◦ sup

t
E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
+ γ(T̃ (q))−1 ◦M(q)

B ◦C∞

⪯
∞∑
t=0

(
γ(T̃ (q))−1 ◦M(q)

B

)t
◦
(
γσ

(q)
G

2
(T̃ (q))−1 ◦H(q) +

2

γ
(T̃ (q))−1 ◦ sup

t
E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
])

.

(F.7)
By (C.27),

∞∑
t=0

(
γ(T̃ (q))−1 ◦M(q)

B

)t
◦ γσ(q)

G

2
(T̃ (q))−1 ◦H(q) ⪯

γσ
(q)
G

2

1− γαBtr(H(q))
I. (F.8)

Noticing that

(T̃ (q))−1 ◦ sup
t

E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
=γ

∞∑
t=0

(I − γT̃ (q))t ◦ sup
t

E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]

=γ

∞∑
t=0

(I− γH(q))t sup
t

E
[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤
]
(I− γH(q))t

⪯ sup
t

∥∥∥∥E [ϵ(p)t−1ϵ
(p)
t−1

⊤
]∥∥∥∥ (H(q))−1 := µ · (H(q))−1,
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we have

∞∑
t=0

(
γ(T̃ (q))−1 ◦M(q)

B

)t
◦ 2

γ
(T̃ (q))−1 ◦ E
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(p)
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(p)
t−1

⊤
]

=

∞∑
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(
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B
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◦ 2µ
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=

∞∑
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B

)t−1
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B ◦ 2µ

γ
(H(q))−1

⪯
∞∑
t=0

(
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B
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2µ

γ
H(q)

⪯
∞∑
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(
γ(T̃ (q))−1 ◦M(q)

B

)t−1

2µαBd · I

⪯2dµαB ·
∞∑
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(q))
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I

=
2dµ

γtr(H(q))
·

∞∑
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(
γαBtr(H

(q))
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I

=
2dµ

γtr(H(q))

1

1− γαBtr
(
H(q)

)I.

(F.9)

Therefore, together with (F.7), (F.8) and (F.9), we have

Ct ⪯ C∞ ⪯
γσ

(q)
G

2
+ 2dµ

γtr(H(q))

1− γαBtr(H(q))
I.

It follows that

M(q)
B ◦Ct ⪯

αBtr(H
(q))

(
γσ

(q)
G

2
+ 2dµ

γtr(H(q))

)
1− γαBtr(H(q))

H(q).

Together with (F.6), we can provide a refined bound for Ct and we are now ready to bound the
variance error.

Lemma F.4 (A bound for variance under general quantization with quantized master weight). Under
Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ <

1
αBtr(H(q))

, then

variance ≤
σ
(q)
G

2
+ 2αBdµ

γ

1− γαBtr(H(q))
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i
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∑
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λ
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i

 ,

where µ = supt

∥∥∥∥E [ϵ(p)t−1ϵ
(p)
t−1

⊤
]∥∥∥∥.
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Proof. We first provide a refined upper bound for Ct. By (F.6) and Lemma F.3,

Ct ⪯(I − γT̃ (q)) ◦Ct−1 + γ2M(q)
B ◦Ct−1 + γ2σ
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By (C.32),

1

N2
·
N−1∑
t=0

N−1∑
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(F.10)
Regarding V2,
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∑
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(F.11)

Together with (F.5), (F.10) and (F.11), we have
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where µ = supt

∥∥∥∥E [ϵ(p)t−1ϵ
(p)
t−1

⊤
]∥∥∥∥.

Theorem F.1 (A bound for R(0)
N under general quantization with quantized master weight). Under

Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies γ <
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1
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(q)
i

+Nγ
∑
i>k∗

λ
(q)
i

 ,

where k∗ = max
{
k : λ

(q)
k ≥ 1

Nγ

}
, µ = supt

∥∥∥∥E [ϵ(p)t−1ϵ
(p)
t−1

⊤
]∥∥∥∥ and

σ
(q)
G

2
=

supt

{∥∥∥∥E [ϵ(o)t ϵ
(o)
t

⊤
|ot

]
+ E

[
ϵ
(a)
t ϵ

(a)
t

⊤
|at
]∥∥∥∥}

B

+2αB sup
t

Ewt−1

[
tr

(
H(q)E

[
ϵ
(p)
t−1ϵ

(p)
t−1

⊤∣∣wt−1

])]
+

σ2

B
.

Proof. The proof is completed by (F.5), Lemma C.10 and Lemma F.4.

Next, we deduce an upper bound for R(0)
N under additive quantization from Theorem F.1.

F.2 ADDITIVE QUANTIZATION

Theorem F.2 (A bound for R(0)
N under additive quantization with quantized master weight). Under

Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if there exist ϵd, ϵl, ϵp, ϵa
and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-additive, if the stepsize satisfies
γ < 1

αB [tr(H)+dϵd]
, then

R
(0)
N /2 ≤

2αB

(
∥w0 −w(q)∗∥2

I
(q)

0:k∗
+Nγ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

)
Nγ(1− γαB [tr(H) + dϵd])

·

(
k∗

N
+Nγ2

∑
i>k∗

(λi + ϵd)
2

)

+
1

γ2N2
· ∥w0 −w(q)∗∥2

(H
(q)

0:k∗ )−1
+ ∥w0 −w(q)∗∥2

H
(q)

k∗:∞

+

σ2+ϵo+ϵa
B + 2ϵpαB

(
d
γ + tr(H) + dϵd

)
1− γαB [tr(H) + dϵd]

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λi + ϵd)
2

)

+
2ϵp
γ

∑
i≤k∗

1

Nγ(λi + ϵd)
+Nγ

∑
i>k∗

(λi + ϵd)

 .

Proof. The proof is completed by Theorem F.1.

F.3 MULTIPLICATIVE QUANTIZATION

In this section, we derive upper bounds for R(0)
N under multiplicative quantization, i.e., there exist

ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-multiplicative. We first
perform bias-variance decomposition under multiplicative quantization. Denote

B
(M)
t := ((1 + 8ϵp)I − γT (q)

B + ϵ̃γ2M(q)
B )t ◦B(M)

0 , B
(M)
0 = E

[
η0η

⊤
0

]
.

C
(M)
t := ((1+8ϵp)I−γT (q)

B + ϵ̃γ2M(q)
B )◦C(M)

t−1 +γ2σ
(q)
M

2
H(q)+4ϵpw

(q)∗(w(q)∗)⊤, C
(M)
0 = 0.
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By Lemma F.2, we have
E
[
ηtη

⊤
t

]
⪯ 2

(
B

(M)
t +C

(M)
t

)
.

Then by Lemma C.1,

R
(0)
N /2 ≤ 1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),B

(M)
t

〉
︸ ︷︷ ︸

bias

+
1

N2
·
N−1∑
t=0

N−1∑
k=t

〈
(I− γH(q))k−tH(q),C

(M)
t

〉
︸ ︷︷ ︸

variance

.

(F.12)

F.3.1 ANALYSIS OF VARIANCE ERROR

Similar to (C.23),

C
(M)
t =((1 + 8ϵp)I − γT (q)

B + ϵ̃γ2M(q)
B )C

(M)
t−1 + γ2σ

(q)
M

2
H(q) + 4ϵpw

(q)∗(w(q)∗)⊤

⪯((1 + 8ϵp)I − γT̃ (q)) ◦C(M)
t−1 + γ2(1 + ϵ̃)M(q)

B ◦C(M)
t−1

+γ2σ
(q)
M

2
H(q) + 4ϵpw

(q)∗(w(q)∗)⊤.

Recall that T̃ (q) = H(q) ⊗ I + I ⊗ H(q) − γH(q) ⊗ H(q). Denote T̃ (q)
2 = H(q) ⊗ I + I ⊗

H(q) − γ/2H(q) ⊗ H(q). Before proceeding, we find conditions for step size such that 8ϵpI ⪯
γT̃ (q) − γ

2 T̃
(q)
2 . It suffices to restrict:

γ <
2

3λ
(q)
1

, 8ϵp ≤ γλ
(q)
d − 3

4
γ2λ

(q)
d

2
. (F.13)

Equipped with (F.13),

C
(M)
t ⪯ (I − γ

2
T̃ (q)
2 ) ◦C(M)

t−1 + γ2(1 + ϵ̃)M(q)
B ◦C(M)

t−1 + γ2σ
(q)
M

2
H(q) + 4ϵpw

(q)∗(w(q)∗)⊤.

We would like to remark that, in the analysis of variance, to simplify w(q)∗(w(q)∗)⊤, we assume
the parameter prior

E
[
w∗w∗⊤

]
= I,

and take expectation over w∗ on variance error. It follows that 7

C
(M)
t ⪯ (I − γ

2
T̃ (q)
2 ) ◦C(M)

t−1 + γ2(1 + ϵ̃)M(q)
B ◦C(M)

t−1 + γ2σ
(q)
M

2
H(q) + 4ϵpI. (F.14)

In subsequent analysis, we first derive a crude bound for C(M)
t , then establish a refined bound for

C
(M)
t via (F.14).

Lemma F.5 (A bound for M(q)
B ◦C(M)

t with quantized master weight). For t ≥ 1, under Assumption
3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the step size satisfies

1 > 2(1 + ϵ̃)γαBtr(H
(q)), 8ϵp ≤ γλ

(q)
d − 3

4
γ2λ

(q)
d

2
,

then

M(q)
B ◦C(M)

t ⪯
2γσ

(q)
M

2
+

8dϵp
γtr(H(q))

1− 2(1 + ϵ̃)γαBtr(H(q))
αBtr(H

(q))H(q).

Proof. By (F.14),

C
(M)
t ⪯ C(M)

∞ ⪯ γ

(
1

2
T̃ (q)
2 − γ(1 + ϵ̃)M(q)

B

)−1

◦
(
σ
(q)
M

2
H(q) + 4

ϵp
γ2

I

)
︸ ︷︷ ︸

Σ

.

7Actually, (F.14) holds under the expectation of w∗. Slightly abusing notations, we omit Ew∗ .
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Applying T̃ (q)
2 ,

T̃ (q)
2 ◦C(M)

∞ = (T̃ (q)
2 − 2(1 + ϵ̃)γM(q)

B ) ◦C(M)
∞ + 2(1 + ϵ̃)γM(q)

B ◦C(M)
∞

⪯ 2γΣ+ 2(1 + ϵ̃)γM(q)
B ◦C(M)

∞ .

Applying (T̃ (q)
2 )−1 we have

C(M)
∞ ⪯2γσ

(q)
M

2
· (T̃ (q)

2 )−1 ◦H(q) +
8ϵp
γ

(T̃ (q)
2 )−1 ◦ I+ 2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B ◦C(M)

∞

⪯
∞∑
t=0

(
2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B

)t
◦ (T̃ (q)

2 )−1 ◦
(
2γσ

(q)
M

2
H(q) +

8ϵp
γ

I

)
.

Noticing that (T̃ (q)
2 )−1 ◦H(q) ⪯ I and (T̃ (q)

2 )−1 ◦ I ⪯ (H(q))−1, we have

C(M)
∞ ⪯

∞∑
t=0

(
2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B

)t
◦ (T̃ (q)

2 )−1 ◦
(
2γσ

(q)
M

2
H(q) +

8ϵp
γ

I

)

⪯
∞∑
t=0

(
2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B

)t
◦
(
2γσ

(q)
M

2
I+

8ϵp
γ

(H(q))−1

)
.

(F.15)

Firstly,
2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B ◦ I ⪯2(1 + ϵ̃)γαBtr(H

(q))I. (F.16)

Secondly,
2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B ◦ (H(q))−1 ⪯2(1 + ϵ̃)γαBtr(I)I. (F.17)

Therefore, together with (F.15), (F.16) and (F.17), we have

C(M)
∞ ⪯

∞∑
t=0

(
2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B

)t−1

◦ I ·
[
4(1 + ϵ̃)γ2σ

(q)
M

2
αBtr(H

(q)) + 16(1 + ϵ̃)αBdϵp

]
=

(
2γσ

(q)
M

2
+

8dϵp
γtr(H(q))

) ∞∑
t=0

(
2(1 + ϵ̃)γ(T̃ (q)

2 )−1 ◦M(q)
B

)t−1

◦ I · 2(1 + ϵ̃)γαBtr(H
(q))

⪯
(
2γσ

(q)
M

2
+

8dϵp
γtr(H(q))

) ∞∑
t=0

[
2(1 + ϵ̃)γαBtr(H

(q))
]t
I

=
2γσ

(q)
M

2
+

8dϵp
γtr(H(q))

1− 2(1 + ϵ̃)γαBtr(H(q))
I,

where the second inequality uses (F.16). At last,

M(q)
B ◦C(M)

t ⪯
2γσ

(q)
M

2
+

8dϵp
γtr(H(q))

1− 2(1 + ϵ̃)γαBtr(H(q))
αBtr(H

(q))H(q).

Lemma F.6 (A bound for variance under multiplicative quantization with quantized master weight).
Under Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the step size satisfies

1 > 2(1 + ϵ̃)γαBtr(H
(q)), 8ϵp ≤ γλ

(q)
d − 3

4
γ2λ

(q)
d

2
,

then

Ew∗variance ≤
4σ

(q)
M

2
+ 32(1 + ϵ̃)dϵpαB/γ

1− 2(1 + ϵ̃)γαBtr(H(q))

(
k∗

N
+Nγ2 ·

∑
i>k∗

(λ
(q)
i )2

)

+
16ϵp
γ

∑
i≤k∗

1

Nγλ
(q)
i

+Nγ
∑
i>k∗

λ
(q)
i

 .
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Proof. We first provide a refined upper bound for Ct. By (F.14) and Lemma F.5,

C
(M)
t ⪯(I − γ

2
T̃ (q)
2 ) ◦C(M)

t−1 + γ2(1 + ϵ̃)M(q)
B ◦C(M)
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2
H(q) + 4ϵpI
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(F.18)

Recall (F.12),

Ew∗variance ≤ 1

N2
·
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N−1∑
k=t

〈
(I− γH(q))k−tH(q),V1 +V2

〉
.
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〉
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〉
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(F.19)
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Regarding V2,
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(F.20)

Together with (F.12), (F.18), (F.19) and (F.20),

Ew∗variance ≤
4σ

(q)
M

2
+ 32(1 + ϵ̃)dϵpαB/γ
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F.3.2 ANALYSIS OF BIAS ERROR

Recall that

B
(M)
t := ((1 + 8ϵp)I − γT (q)

B + ϵ̃γ2M(q)
B )t ◦B(M)

0 , B
(M)
0 = B0 = E

[
η0η

⊤
0

]
,

From (C.14) we deduce that

bias ≤ 1

γN2

〈
I− (I− γH(q))N ,

N−1∑
t=0

B
(M)
t

〉
. (F.21)

Denote S
(M)
n =

∑n−1
t=0 B

(M)
t . Motivated by Lemma C.7,

S
(M)
t =((1 + 8ϵp)I − γT (q)

B + ϵ̃γ2M(q)
B ) ◦ S(M)

t−1 +B0

=((1 + 8ϵp)I − γT̃ (q)) ◦ S(M)
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B − M̃(q)) ◦ S(M)
t−1 +B0
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Similar to the analysis of variance error, we consider

γ <
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3λ
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, 8ϵp ≤ γλ
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d − 3

4
γ2λ

(q)
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It follows that 8ϵpI ⪯ γT̃ (q) − γ
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2 and hence
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2
T̃ (q)
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t−1 +B0. (F.22)
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Lemma F.7 (A bound for M(q)
B ◦ S

(M)
t with quantized master weight). For 1 ≤ t ≤ N , under

Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the step size satisfies

1 > 2(1 + ϵ̃)γαBtr(H
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Proof. From (F.22),
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B , we have
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It follows that
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(F.23)

By Assumption 3.3,
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together with (F.23), (T̃ (q)
2 )−1 ◦H(q) ⪯ I and M(q)

B ◦ I ⪯ αB tr(H(q))H(q), we have
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Therefore, recall that
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we have
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Together with (F.22) and Lemma F.7, we are now ready to bound the bias error with quantized
master weight.

Lemma F.8 (A bound for bias under multiplicative quantization with quantized master weight).
Under Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the stepsize satisfies

1 > 2(1 + ϵ̃)γαBtr(H
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Proof. By (F.22) and Lemma F.7,
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Before providing our upper bound for the bias error, we denote

Ba,b := Ba − (I− γ

2
H(q))b−aBa(I−

γ

2
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Recall from (F.21) that
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Then we tackle tr(B0,N ).
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Therefore,
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Overall,
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Based on the analysis for bias and variance error, we are ready to present the bounds for R(0)
N under

multiplicative quantization with quantized master weight.

Theorem F.3 (A bound for R(0)
N under multiplicative quantization with quantized master weight).

Suppose there exist ϵd, ϵl, ϵp, ϵa and ϵo such that for any i ∈ {d, l, p, a, o}, quantization Qi is ϵi-
multiplicative. Under Assumption 3.1, Assumption 3.2, Assumption 3.3, and Assumption 3.4, if the
step size satisfies

1 > 2(1 + ϵ̃)γαBtr(H
(q)), 8ϵp ≤ γλ
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,
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then taking expectation over w∗ on variance 8,
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where
ϵ̃ = 8ϵo(1 + ϵp)(1 + ϵa) + 8ϵp + 4ϵa(1 + ϵp),
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Ew∗∥w∗∥2H
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αB (4ϵo[(1 + ϵp)(1 + ϵa) + 1] + 2ϵa(1 + ϵp) + 4ϵp) .

Proof. The proof is completed by (F.12), Lemma F.6 and Lemma F.8.

G DETAILS OF ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL DATASETS

For the supplementary experiments, we consider both synthetic and real-world datasets.

Synthetic dataset. We construct a synthetic regression dataset whose covariance spectrum follows
an exponential decay. Specifically, the eigenvalues are given by

λi = e−i, i = 1, 2, . . . , d.

This allows us to examine the behavior of our method under rapidly decaying spectral structures,
complementing the polynomial-decay setting used in the main paper.

Real-world dataset: Communities and Crime. We additionally evaluate on the publicly
available Communities and Crime dataset, which contains community-level statistics from
across the United States. The features integrate socio-economic indicators from the 1990 U.S. Cen-
sus, law-enforcement statistics from the 1990 LEMAS survey, and crime records from the 1995 FBI
Uniform Crime Reporting (UCR) program. The task is a standard regression problem: predicting the
per-capita violent crime rate from community attributes. The dataset contains about 2000 instances
with 122 features.

G.2 EXPERIMENTAL SETTINGS AND RESULTS

We describe below the protocol for each additional experiment and corresponding results. In both
real-world dataset and synthetic datasets, we examine how do additive vs. multiplicative quantiza-
tion affect learning (generalization) performance.

• Real-world regression (Communities and Crime). We apply both additive and multiplicative
quantization schemes (with fixed quantization error level ε = 0.01) to the regression task on
Communities and Crime dataset. For each quantization method, we evaluate the resulting
population risk Ex,y

[
(y − ⟨w,x⟩)2

]
. As illustrated in Figure 2(a), the results demonstrate that,

unlike additive quantization, the multiplicative scheme successfully maintains the performance
of full-precision SGD. This aligns with our theoretical finding that multiplicative quantization
exhibits greater tolerance to quantization error level.

8Here we assume that Ew∗w∗⊤ = I.
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Figure 2: Comparison between multiplicative quantization and additive quantization. (a):
Real-world regression (Communities and Crime). (b): Effect of quantization on data spectrum.
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Figure 3: Generalization under quantization. Test risk for SGD with iterate averaging under
multiplicative (FP-like) vs. additive (INT-like) quantization. (a) and (b): vary the quantization level
at fixed B = 10. (c) and (d): vary the quantization level under exponential decay.

• Effect of quantization on data spectrum. Using the same settings on Communities and
Crime dataset, we record the resulting empirical covariance spectra to study how each quanti-
zation type perturbs the underlying eigenvalue structure. Results are shown in Figure 2(b). It is
shown that additive errors errors dramatically distort the spectrum of effective data covariance
while multiplicative quantization errors largely preserve the spectral structure. This visualization
corroborates the specific mechanism by which additive and multiplicative quantization lead to
distinct generalization behaviors.

• Sensitivity analysis on batch size and spectral decay. To demonstrate the robustness of our
findings, we conduct additional experiments varying the batch size and data spectrum. First,
we extend the batch size to B = 10 (with d = 200) and vary the quantization error level ε ∈
{0.001, 0.005, 0.01}. Second, we replace the polynomial-decay spectrum with an exponential-
decay synthetic dataset while keeping other settings identical. The results, shown in Figures 3(a)–
3(b) (batch size) and Figures 3(c)–3(d) (spectral decay), consistently mirror the findings in the
main paper: multiplicative quantization preserves the generalization performance of full-precision
SGD across various quantization error levels, whereas additive quantization suffers from perfor-
mance degradation as the error level increases.

H THE USE OF LLMS

The use of large language models (LLMs) in this work was limited to linguistic polishing of the
text (e.g., grammar, clarity, and readability) and was not involved in any research phases, from
conceptualization and proofing to experimentation and interpretation.
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