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ABSTRACT

The use of low-bit quantization has emerged as an indispensable technique for
enabling the efficient training of large-scale models. Despite its widespread em-
pirical success, a rigorous theoretical understanding of its impact on learning per-
formance remains notably absent, even in the simplest linear regression setting.
We present the first systematic theoretical study of this fundamental question, an-
alyzing finite-step stochastic gradient descent (SGD) for high-dimensional lin-
ear regression under a comprehensive range of quantization targets: data, label,
parameter, activation, and gradient. Our novel analytical framework establishes
precise algorithm-dependent and data-dependent excess risk bounds that charac-
terize how different quantization affects learning: parameter, activation, and gra-
dient quantization amplify noise during training; data quantization distorts the
data spectrum and introduces additional approximation error. Crucially, we dis-
tinguish the effects of two quantization schemes: we prove that for additive quan-
tization (with constant quantization steps), the noise amplification benefits from
a suppression effect scaled by the batch size, while multiplicative quantization
(with input-dependent quantization steps) largely preserves the spectral structure,
thereby reducing the spectral distortion. Furthermore, under common polynomial-
decay data spectra, we quantitatively compare the risks of multiplicative and ad-
ditive quantization, drawing a parallel to the comparison between FP and integer
quantization methods. Our theory provides a powerful lens to characterize how
quantization shapes the learning dynamics of optimization algorithms, paving the
way to further explore learning theory under practical hardware constraints.

1 INTRODUCTION

Quantization has garnered widespread attention as an essential technique for deploying large-scale
deep learning models, particularly large language models (LLMs) (Lang et al.| [2024; |[Shen et al.,
2024)). In line with this low-precision paradigm, a new frontier of research has emerged: quanti-
zation scaling laws, which seek to formalize the trade-offs between model size, dataset size, and
computational bit-width. Seminal work by [Kumar et al.| (2024) treated bit-width as a discrete mea-
sure of precision. This was extended by |Sun et al.[(2025), who established a more comprehensive
scaling law for floating-point (FP) quantization (Kuzmin et al., 2022)) by separately accounting for
the distinct roles of exponent and mantissa bits. Going further, |Chen et al.| (2025) proposed a uni-
fied scaling law that models quantized error as a function of model size, training data volume, and
quantization group size. Collectively, these studies provide rigorous understandings to guide the
joint allocation of fixed compute or memory budgets across data size, model size and precision
(quantization bit-width).
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The empirical understanding of low-precision training has advanced rapidly, yet a significant theory-
practice gap persists. Theoretical research remains predominantly restricted to analyzing conver-
gence guarantees on the training loss for quantized optimizers (Nadiradze et al., 2021} [Liu et al.|
2023 Markov et al.,|2023; Xin et al.|[2025)). For example, Markov et al.|(2023) derived convergence
guarantee for the communication-efficient variant of Fully-Shared Data-Parallel distributed training
under parameter and gradient quantization. While these studies offer crucial insights into optimiza-
tion, they overlook a more fundamental question: how does quantization affect the model’s learning
performance? Specifically, a rigorous characterization of the interplay between quantization, model
dimension, dataset size, and their joint effect on the population risk remains largely unexplored. A
notable step in this direction is|Zhang et al.|(2022)), which analyzed the generalization of quantized
two-layer networks through the lens of neural tangent kernel (NTK). However, their work is limited
in three key aspects: it only considers parameter quantization; its analysis is confined to the lazy-
training regime; and it fails to provide explicit generalization bounds in terms of core parameters
like sample size, dimension, and quantization error. These limitations restrict its applicability to
modern low-precision training practices.

Motivated by recent theoretical advances in scaling laws (Lin et al.,|[2024;[2025; [Li et al.| [2025), we
analyze the learning performance of quantized training using a high-dimensional linear model. This
model serves as a powerful and well-established testbed for isolating phenomena like learning rate
and batch size effects (Kunstner & Bachl 2025} [Luo et al., [2025; [Zhang et al., 2024b; Xiao}, 2024}
Ren et al., [2025} Bordelon et al., 2025). Its simplicity provides the analytical flexibility necessary to
derive precise relationships between generalization error and critical parameters such as dimension,
sample size, and quantization error (or bit-width).

Our setting. In this paper, we consider SGD for linear regression under quantization. We first iterate
the standard linear regression problem as follows:

m“i,n L(w), where L(w) = %]Ex,y [(y —(w,x))?|.

Here x € H is the feature vector,  is some (finite d-dimensional or countably infinite dimensional)
Hilbert space, y € R is the response, D is an unknown distribution over x and y, and w € H is the
weight vector to be optimized. We consider the constant step size SGD under quantization: at each
iteration ¢, an i.i.d. batch (with batch size B) of examples (X;,y;) € RB*? x RB is observed, and
the weight w, € R is updated according to following quantized SGD algorithm.

1
Wi = Wit 77 Qa(X0) T Qo (Quye) — Qu(QulX1)Qy(Wi-1)), ¢ =1, N,
(quantized SGD)

where v > 0 is a constant stepsize, N is the number of sample batches observed, the master weights
is initialized at wo, and Qq, Q;, Qp, Qa, Qo are independent general quantization operations for data
feature, label, model parameter, activation and output gradient respectively. Notably, for theoretical
simplicity, we assume all matrix operations (e.g., addition and multiplication) are computed in full
precision, with quantization applied subsequently to obtain low-precision values. Then, we consider
the average iterate as the algorithm output, i.e., Wy := % i\]: Bl w,. Without loss of generality,
we assume the initial parameter is wy = 0.

The goal of this work is to characterize the learning performance of the quantized SGD via evaluating
the population risk L(W ), and more importantly, its relationship with the quantization error. Let
w* = argmin L(w), we define the following excess risk as a surrogate of the population risk:

E(Wn)=L(wWy)— L(w"). (Excess Risk)

Our contributions. We perform a novel theoretical study on the learnability of the quantized SGD
algorithm for high-dimensional linear regression problems. Our contributions are summarized as
follows:

* We perform systematic analysis and establish a theoretical bound for the excess risk of quantized
SGD. This bound is explicitly formulated as a function of the full eigen-spectrum of the quantized
data feature covariance, sample size, and quantization errors (see Theorem @ for details). Our
results precisely reveal how quantization applied to different model components impacts learning
performance: quantization of data distorts the spectrum of effective data covariance and introduces
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an additional approximation error; while the quantization of parameter, activation, and output
gradient amplify noise throughout the training process on the quantized feature space.

* We analyze two standard quantization error models: additive and multiplicative, which conceptu-
ally relate to the integer and FP quantization techniques. For additive quantization, our theoretical
bounds indicate that the noise amplification stemming from activation and output gradient quanti-
zation diminishes as the batch size increases, whereas the spectrum of the effective data covariance
is distorted by a constant noise floor (see Corollary 1] for details). Conversely, for multiplicative
quantization, our results demonstrate that data quantization preserves the intrinsic spectral struc-
ture of the effective covariance, thereby reducing spectral distortion; however, the resulting noise
amplification remains independent of the batch size (see Theorem 4.2 for details).

* We further derive the conditions on the quantization errors such that the learning performance of
the full-precision SGD can be maintained (in orders). Our results indicate that compared with
multiplicative quantization, additive quantization necessitates stricter spectral constraints on data
quantization but allows for more relaxed conditions on activation and output gradient quantization,
benefiting from the batch-averaging effect (see Corollary [4.2] for details). By applying our excess
risk bounds to polynomial decay spectrum, we show that multiplicative quantization is applicable
even in high-dimensional settings, whereas additive quantization is not (see Corollary [4.3| for
details). These simplified theoretical results also draw implications for comparing integer and
FP quantization, allowing us to identify the conditions under which each type is likely to yield
superior performance.

Notations. For two positive-valued functions f(x) and g(z), we write f(z) < g(z) or f(z) = g(x)
if f(x) < cg(x) or f(x) > cg(z) holds for some absolute (if not otherwise specified) constant ¢ > 0
respectively. We write f(x) =~ g(z) if f(z) < g(z) < f(x). For two vectors u and v in a Hilbert
space, we denote their inner product by (u,v) or u' v. For two matrices A and B of appropriate
dimensions, we define their inner product by (A, B) := tr (ATB). We use | - || to denote the
operator norm for matrices and ¢»-norm for vectors. For a positive semi-definite (PSD) matrix A
and a vector v of appropriate dimension, we write ||v||3 = v Av.

2 RELATED WORKS

High-dimensional linear regression via SGD. Theoretical guarantees for the generalization prop-
erty have garnered significant attention in machine learning and deep learning. Seminal work by
Bartlett et al.| (2020); Tsigler & Bartlett| (2023)) derived nearly tight upper and lower excess risk
bounds in linear (ridge) regression for general regularization schemes. With regards to the classi-
cal underparameterized regime, a large number of works studied the learnability of iterate averaged
SGD in linear regression (Polyak & Juditskyl |1992; [Défossez & Bachl 2015; Bach & Moulines,
2013} Dieuleveut et al., 2017 Jain et al.| 2018 2017). With regards to modern overparameterized
setting, one-pass SGD in linear regression has also been extensively studied (Dieuleveut & Bachl
20155 Berthier et al., |2020; |Varre et al.l 2021; Zou et al., 2023} [Wu et al., [2022ajjb; [Zhang et al.,
2024al)), providing a framework to characterize how the optimization algorithm affects the general-
ization performance for various data distributions. Another line of work analyzed the behavior of
multi-pass SGD on a high-dimensional ¢2-regularized least-squares problem, characterizing excess
risk bounds (Lei et al.|[2021;|Zou et al.l|2022) and the exact dynamics of excess risk (Paquette et al.|
2024a). From a technical perspective, our work builds on the sharp finite-sample and dimension-free
analysis of SGD developed by | Zou et al.[(2023). However, these works did not concern the practical
quantization operations. It remains unclear how quantization error affects the learning behavior of
SGD for linear regression.

Theoretical analysis for quantization. As a powerful technique for deploying large-scale deep
learning models, quantization has attracted significant attention. From the theoretical perspective,
a line of works focus on the convergence guarantee in both quantized training (SGD) algorithms
(De Sa et all 2015} |Alistarh et al.l [2017; [Faghri et al.l |2020; |Gorbunov et al., 2020} |Gandikota
et al.| 2021} Markov et al.| 2023} Xin et al.| 2025) and post-training quantization methods (Lybrand
& Saabl 2021} |[Zhang & Saabl 2023} [Zhang et al.| 20235 |2025)). For low-precision training (SGD),
De Sa et al.[(2015) was the first to consider the convergence guarantees. Assuming unbiased stochas-
tic quantization, convexity, and gradient sparsity, they gave upper bounds on the error probability
of SGD. |Alistarh et al.| (2017)) refined these results by focusing on the trade-off between commu-



Published as a conference paper at ICLR 2026

nication and convergence and proposed Quantized SGD (QSGD). |[Faghri et al.| (2020) extended the
fixed quantization scheme (Alistarh et al.,[2017) to two adaptive quantization schemes, providing a
more general convergence guarantee for quantized training. For post-training quantization, |Lybrand
& Saab|(2021)) derived an error bound for ternary weight quantization under independent Gaussian
data distribution. Zhang et al.|(2023) extended these results to more general quantization grids and
a wider range of data distributions using a different proof technique. More recently, |[Zhang et al.
(2025) presented the first quantitative error bounds for OPTQ post-training algorithm framework.
However, no prior work provides explicit generalization bounds.

Linear models for theory of scaling law. Several recent studies have sought to formalize and
explain the empirical scaling laws using conceptually simplified linear models (Bahri et al., 2024;
Atanasov et al., 2024; Paquette et al., [ 2024b; Bordelon et al., 2024; [Lin et al., [2024; 2025)). Among
them, Bahri et al.| (2024) considered a linear teacher-student model with power-law spectrum and
showed that the test loss of the ordinary least square estimator decreases following a power law in
sample size N (or model size M) when the other parameter goes to infinity. [Bordelon et al.[ (2024)
analyzed the test error of the solution found by gradient flow in a linear random feature model and
established power-law scaling in one of N, M and training time 7" while the other two parameters
go to infinity. Building on the technique in|Zou et al.| (2023), |Lin et al.[(2024) analyzed the test error
of the last iterate of one-pass SGD in a sketched linear model. They presented the first systematic
study to establish a finite-sample joint scaling law (in M and N) for linear models that aligns with
empirical observations (Kaplan et al., 2020). More recently, |[Lin et al.| (2025) extended the scaling
law analysis to the setting with data reuse (i.e., multi-pass SGD) in data-constrained regimes.

3 PRELIMINARY

3.1 QUANTIZATION OPERATIONS

For all quantization operations in (quantized SGD)), we employ the stochastic quantization method
(Markov et al., [2023)), which unbiasedly rounds values using randomly adjusted probabilities. This

stochastic quantization is widely used in both empirical and theoretical analysis of quantization
(Modoranu et al.,|2024;|Ozkara et al., [2025)). We summarize this in the following assumption.

Assumption 3.1. Let Q;,i € {d,l,p,a,0} be the coordinate-wise quantization operation for data
feature, label, model parameter, activation, and output gradient, respectively. We assume that the
quantization operation is unbiased, i.e., for any u,

E[Q;(u)|u] = u.

Furthermore, to better uncover the effect of quantization, we consider the following two types of
quantization error: multiplicative quantization and additive quantization, which are motivated by
abstracting the behavior of prevalent numerical formats used in practice.

Definition 3.1. Let Q be an unbiased quantization operation. We categorize it based on the structure
of its error variance:

* Multiplicative quantization. We call the quantization is e-multiplicative if the conditional second
moment of quantization error is proportional to the outer product of raw data itself, i.e.,

Ekquxgmxf

X:| = GXXT.

* Additive quantization. We call the quantization is e-additive if the conditional second moment of
quantization error is proportional to identity, i.e.,

thw—m@wwxf

x] = el.

This theoretical distinction is grounded in practical quantization schemes. For instance, integer
quantization (e.g., INT8, INT16) uses a fixed bin length, resulting in an error that is largely indepen-
dent of the value’s magnitude. This characteristic aligns with our definition of additive quantization,
where the error variance is uniform across coordinates. Conversely, floating-point quantization (e.g.,



Published as a conference paper at ICLR 2026

FP8, FP32) employs a value-aware bin length via its exponent and mantissa bits (e.g., the E4M3 for-
mat in FP8). This structure causes the quantization error to scale with the magnitude of the value
itself, corresponding to the model of multiplicative quantization.

To precisely capture the quantization error, we further introduce some relevant notations on quanti-
zation errors during training. Denote the activation and output gradient at time ¢ as

ap = Qd(Xt)Qp(Wt—l), Oy = Ql(Yt) —Q, (Qd(Xt)Qp(Wt—l))~

Then we are ready to define quantization errors.
Definition 3.2. The quantization error on data €D on label €V, on parameter egp )

activation ef;‘) at time t and on output gradient ego) at time t are defined as follows.

at time t, on

€)= Qux) —x, D =Qy)—y, € i=Qy(wi) —w,
eﬁ“) = Qu(ay) — ay, ego) = Qy(0) — 0.

3.2 DATA MODEL

We then state the regularity assumptions on the data distribution, which align with those common in

prior works (Zou et al., 2023; |Lin et al., 2024). A key distinction in our setting is that the training

process is performed on quantized data, i.e., Q4(x) and Q;(y). Consequently, we formulate these

assumptions directly on the quantized data rather than the full-precision versions.

T
]

Assumption 3.2 (Data covariance). Let H = E[xx ' | be the data covariance matrix and

H = E[Qu(x)Qu(x)T], D = E[(Qu(x) — x)(Qu(x) —x) 7],

be the covariance matrices of the quantized data feature and quantization error of data covariance,
respectively. Then we assume that tr(H) and tr(H@) are finite.

Further let H = Y, A\;v; v, be the eigen-decomposition of H, where {);}3°, are the eigenvalues
of H sorted in non-increasing order and v; are the corresponding eigenvectors. As in|[Zou et al.
(2023)), we denote

k

k
._ T ._ T ._ T ._ T
Hy. := E Aivivy, Hpoo = E Aivivy T = E vivy , Ipoeo = E ViV .
im1 i~k =1 i>k

@y @'

Similarly, we denote the eigen-decomposition of H(@) as H(@) = Do )\Z(-q)v

ingly obtain Hé?,l, H;ﬁl@, Ig_],)c, I,(f())o. We then extend the fourth moment and noise assumptions in

Zou et al. (2023); Lin et al. ('2024) to the low-precision setting.

and correspond-

Assumption 3.3 (Fourth-order moment). Let x(9) = Q4(x). Then for any PSD matrix A, there
exists a constant ag > 0 such that

E [x@x@ " Ax<q>x<q>T} < ap tr(HOA)HO.

To extend the model noise assumption in |Zou et al.| (2023) to the low-precision setting, we define
the optimal model weight regarding the quantized data feature and label:

w@" = argmin,, E [(Q(y) — (w, Qu(x)))?] .

Then we are ready to make the assumption on the model noise £ := Q;(y) — (w(@”, Qu(x)).

Assumption 3.4. Assume there exists a positive constant o > 0 such that
E [62Q4(x)Qu(x) "] < 0?H .

In fact, Assumptions[3.3|and [3.4] can be directly inferred from the standard assumptions on the full-
precision data (Assumptions 2.1 and 2.2 in|[Zou et al.|(2023)) under specific quantization schemes.
We defer the discussion to Section[El
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4 MAIN THEORETICAL RESULTS

We first derive excess risk upper bounds for quantized SGD in Section[4.1] then compare these rates
with the full-precision SGD (in orders) in Section[4.2]and perform specific case study in Section[4.3]

4.1 EXCESS RISK BOUNDS

We now provide excess risk bounds under general quantization, multiplicative quantization and
additive quantization. Denote the effective dimension for H(@): k* = max {k: : )\,(Cq) > ﬁ}

Theorem 4.1 (General quantization). Consider general quantization. Denote DY = D(H +
D)"'H(H + D)~'D, D = HHW) "' g (I - (I - yH@)V) (H@)"'D(H@)""H. Under

Assumption and if the stepsize v < m, then it holds,

E[£(Wn)] < 2VarErr + 2BiasErr + ApproxErr,

where
Hw(q)*“f(q) (@) 112 ()2
2ap | — x5 W e ) +oe Iy "
VarErr < — + N~2. A2
A= 1 — yaptr(H@) N N Z>Zk*( i)
BiasErr < T [w(® \\?Hé?z*),l + [wl® ”ili‘i’m’

ApproxErr < [w* [ + [W" s

o2 +4su e(o>e(O)T o e(a)e(a)T a;
withog)Zz roup B[l ]lg]%[ e e[} +aBsuptE[tr (H(Q)eimleim:)]-

Theorem establishes the first excess risk bound for quantized SGD under a general quantiza-
tion paradigm. The excess risk is decomposed into three components: variance error, bias error,
and approximation error. Notably, the variance and bias errors mirror those of full-precision SGD
(Zou et al., |2023) and exact equivalence is recovered when the quantization error vanishes. The
key role that quantization plays is two-fold: data quantization significantly influences the effec-
tive (quantized) data covariance H(9), while activation, output gradient and parameter quantization

amplify the effective noise variance aéq ) (which will be further characterized in the subsequent theo-
rems when given specific quantization type). Specifically, the quantized data covariance arises from
performing SGD in quantized data feature space and the quantized noise variance corresponds to
additional quantization error introduced in the parameter update rule. We also note that the addi-
tional approximation error, resulting from quantization of data, can be interpreted as the discrepancy
between the global optimum in full-precision data space and quantized data feature space.

Crucially, in the absence of quantization, our excess risk bound reduces exactly to the standard
results presented in|Zou et al.| (2023)). It is also worth noting that under the unbiased quantization
assumption, the quantization of parameter, output gradient, and activation do not affect bias error[ﬂ

To further elucidate the effects of quantization, we examine two specific schemes: multiplicative
and additive quantization. The result for additive quantization can be derived directly from Theorem
[ Tland is summarized below.

Corollary 4.1 (Additive quantization). Under Assumption and if there exist
€ds €1, €p; €q and €, such that for any i € {d,l,p,a,0}, quantization Q; is ¢;-additive, and the

stepsize satisfies v < m, then

E[£(Wn)] < ApproxErr + VarErr + BiasErr,

"For theoretical tractability and simplicity, our framework employs the unbiased quantization assumption
(Assumption [3.I). Without this assumption, the conditional expectations of the parameter, output gradient,
and activation quantization errors (i.e., quantization bias) would contribute to the bias error. We believe our
framework is readily extendable to this general biased quantization setting.
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where

ApproxErr < ||w™ HH , BiasErr <

_ . ¥ 12 (0)*)2
)\ _,_6 A2N2 [[w H(Hé?i*)_1+||wq HH;(f*)m’

2
ap|[w i + =g + apey[tr(H) + ded] [k

VarErr <
AT 1 — yap[tr(H) + deg) N

+N’)/2 . Z()\l +6d)2
i>k*

Corollary [4.T|explicitly demonstrates how data quantization distorts effective data covariance spec-
trum and how parameter, activation and output gradient quantization amplify noise during training
under additive quantization scheme. A key observation concerns the scaling with respect to the
batch size B. Consistent with the label noise o2, the noise amplification from activation and output
gradient quantization (¢, €,) are scaled by a factor of 1/B. In contrast, the noise amplification from
parameter quantization (¢,) scales with the trace of the quantized data covariance and is independent
of batch size.

The interpretation is that additive quantization imposes a constant bound on the conditional second
moment of the quantization error. Consequently, the underlying data structure inherent within the ac-
tivation quantization error ega) and output gradient quantization error ego) is effectively neutralized.
Formally, the noise amphﬁcatlon from these terms is characterized as 5= E[XqTeeTXq] Under ad-
ditive quantization, since the error variance is bounded by a constant, the dependency on data within

€ vanishes. However, the noise amplification from parameter quantization, which is characterized

as %E[XqTqu(p)e(p)TXqTXq], preserves the underlying dependency on data, even if the error
variance itself is constant.

Moreover, a critical consequence of additive quantization is the distortion of the data covariance
spectrum H(?) Specifically, a fixed constant e, is added across the entire spectrum, effectively im-
posing a noise floor that prevents the tail eigenvalues from decaying. This spectral flattening severely
impedes learnability, as it leads to substantial risk accumulation within the high-dimensional tail
subspace.

We next examine the multiplicative quantization scheme. Unlike additive quantization, multiplica-
tive quantization exhibits an inherent structural alignment with the full-precision dynamics, as the
error scales relative to the signal magnitude. Exploiting this property allows us to derive a refined ex-
cess risk bound through a direct analysis, rather than relying on a generic application of the general
result in Theorem 4.1} Our theoretical findings are summarized below.

Theorem 4.2 (Multiplicative quantization). Under Assumption[3.1| B.2) B.3|and[B.4 if there exist
€d, €1, €p, € and €, such that for any 1 6 {d,1,p,a, 0}, quantization Q; is e;-multiplicative, and the
stepsize satisfies 7 < then the excess risk can be upper bounded

S5 T e T Tes (e T ey ()

as follows.
E[£(Wn)] < ApproxErr + VarErr + BiasErr,
where
€d * (12 *

ApproxErr £ 5wy WO g+ I Py

VarErr € (5 4 Ny2 (1462 30 A2 M+a3<1+60)[1+€,,+6a(1+6p>] w5
arErr € .

S|y e 1= yap(L+ €)1+ 6+ a(l+ )] (1 + €q)tr (H)

i>k*

Theorem [4.2] characterizes the spectrum distortion and noise amplification effects induced by multi-
plicative quantization. Notably, in stark contrast to additive quantization, which severely flattens the
tail spectrum by imposing a constant floor, multiplicative quantization largely preserves the intrinsic
spectral structure. Specifically, it acts as a linear transformation that scales the entire spectrum by a
factor of (1 + €4) without altering the relative distribution of eigenvalues. This preservation of the
spectral decay property ensures superior learnability compared to the additive quantization scheme.

Regarding noise amplification, Theorem [4.2] n reveals a critical divergence from the additive quanti-
zation scheme. While the contribution from intrinsic label noise (c?) is still suppressed by the batch
size factor 1/B, the quantization noise stemming from activation and output gradients (e, €,) is
coupled with the model parameter || w*||3; and does not scale with 1/B. This phenomenon arises
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because multiplicative quantization error (scales proportionally with the signal strength) is inher-
ently signal-dependent and is intrinsically tied to the data structure.

We provide further analysis of quantized SGD with quantized master weights in Section [F] Train-
ing with quantized master weights necessitates stricter step size conditions to ensure convergence
and introduces additional error terms into the excess risk bounds, thereby degrading generalization
performance.

4.2 COMPARISONS WITH STANDARD EXCESS RISK BOUND

In this part, we will provide a detailed comparison with standard excess risk bounds and identify
the conditions on the quantization error such that the excess risk bound will not be largely affected.
First, let k§ = max{k : A\, > Niv}, we recall the standard excess risk bound (Zou et al., [2023)):
1 * |12 * (|2 o?
e az (FIW° IR, + 1w Ik, )+ %
Ry=|-2+Ny > N R 5
N 1 —vaptr (H)

P>k

o I g I

The following corollary derives the conditions on the quantization errors such that the learning
performance of the full-precision SGD can be maintained (in orders).

Corollary 4.2. To ensure that E[E(Wy)] < Ry, conditions on the quantization error are as follows:

* For multiplicative quantization, under the conditions in Theorem[d.2} we require

R o IR I
€0, €a; €p 5

ea S 1A

Wl Bag|lw*|% (w15

* For additive quantization, under the conditions in Corollary|.1} we require

kg 2 2 * (|2
8 N2> A Ro)\ ”W”I*
< N i>kg i A 0Ad < 2 B 0:k 112
I\ NPA-Ry)  Nw @er7 TP Ty IV G )
w2,
_ o2 . —~y >+ lw g, ..
€
P~ Bag[tr(H) + deg] tr(H) + deg

Corollary identifies the conditions under which the quantized excess risk matches the full-
precision baseline Ry. Regarding data quantization (e4), the additive scheme imposes stringent
spectrum-dependent constraints compared to the multiplicative quantization scheme. Specifically,
the precision requirements are notably strict to prevent the constant quantization noise floor from
overwhelming weak spectral components. Conversely, for activation and output gradient quantiza-
tion (eq, €,), the additive scheme exhibits a favorable dependence on the batch size. As indicated
by the scaling with B in the bounds for ¢, and ¢,, larger batch sizes effectively relax the preci-
sion requirements for these components. In contrast, larger batch sizes may essentially tighten the
requirements under the multiplicative quantization scheme.

These findings validate our core insights: (1) multiplicative data quantization is superior in main-
taining the spectral structure of H, thus tolerating larger data quantization errors; (2) additive quan-
tization benefits from the fact that the noise variance in activation and output gradient is independent
of the signal magnitude, allowing these errors to be effectively suppressed by increasing the batch
size.

4.3 CASE STUDY ON DATA DISTRIBUTION WITH POLYNOMIAL-DECAY SPECTRUM

Following |Lin et al.| (2024} [2025)), we study the excess risk bounds assuming optimal parameter
prior and the power-law spectrum for more concise theoretical results. In particular, we make the
following assumption.
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Assumption 4.1. There exists a > 1 such that the eigenvalues of H satisfy \; < i, ¢ > 0. We
also assume that E [W*W*T} =Tando? <1

Corollary 4.3. Tuking expectation on w*, under Assumption 1| we have:

* For multiplicative quantization, under the conditions in Theorem 4.2}

€d
1+eg

EE(wnN)] < +d7TE NY O 1 )1+ €p + ea(l 4+ €)](1 + €q)t/

* For additive quantization, under the conditions in Corollary[d.]

(da€d)2 dl_a + da€d
1+ d%eq 1+ d%eq

€, + €4

E[E(Wn)] S (1 + + (14 dw)) (1 +

n (1 n Eogea +€p(1 +d€d)> (1 +da€d)1/aN1/a_1.

Our findings in polynomial-decay data spectrum scenarios reveal distinct scaling behaviors under
multiplicative and additive quantization. Specifically, the excess risk induced by additive data quan-
tization exhibits a detrimental dependency on data dimension d, whereas the risk under multiplica-
tive data quantization remains dimension-independent. This dependence has critical implications
for learnability: in high-dimensional regimes (d — ©0), the risk bound for additive quantization
diverges, rendering the generalization guarantee vacuous. In contrast, the dimension-free nature of
multiplicative quantization ensures its applicability even in infinite-dimensional settings.

Intuitively, this disparity stems from how each scheme interacts with the spectral structure. Mul-
tiplicative quantization preserves the intrinsic spectral decay, thereby retaining the utility of the
effective dimension (k*) cut-off. This allows the learning complexity to be controlled by the in-
trinsic data properties rather than the data dimension. Conversely, additive quantization employs a
uniform quantization strength across all dimensions. This constant noise floor prevents the tail spec-
trum from decaying effectively and accumulates across the entire high-dimensional tail, rendering
the effective dimension mechanism failed.

Implications for integer and FP quantization. These simplified theoretical results (Corollary
draw critical implications for comparing integer and floating-point (FP) quantization, allowing us to
identify the conditions under which each type yields superior performance. Specifically, in practical
integer quantization with bit-width b and FP quantization with mantissa bit-width m, the quantiza-
tion step size for a value x are approximately §(x) ~ 27° and 6(z) = |z|27™ ['| respectively. Since
the conditional second moment of quantization error E[(Q(z) — x)?|x] is roughly proportional to
the square of the quantization step size (§(x)?), the quantization error parameters in our bounds can
be characterized as €,qq ~ 2 2° for the additive (integer) quantization scheme and €y,;; ~ 272 for
the multiplicative (FP) quantization scheme.

Equipped with this mapping, practitioners can directly apply Corollary 4.3]to determine the optimal
quantization scheme for specific scenarios. A notable observation concerns the distinct role of the
dimension d in data quantization. Roughly, FP quantization becomes preferable when my > by —
5 log, d whereas integer quantization is favored when by > mg + 5 logy d@ This means FP
quantization can outperform integer quantization even when its mantissa bit-width is smaller than
the 'integer bit-width by § log, d, highlighting the advantage of FP quantization in high-dimensional
settings.

Numerical experiments. We evaluate constant—stepsize SGD with iterate averaging on a Gaus-
sian least—squares model. The feature distribution has covariance matrix with eigenvalues \; = i 2.
The ground-truth parameter is w* with entries w*[i] = 1, and the observation noise variance is
02 = 1. This study answers two questions: Q1: How do additive vs. multiplicative quantization

errors affect learning? Q2: How does dimension d interact with these two quantization types?

>We assume the exponent bits in FP quantization can cover the scaling of z. For integer quantization, we
assume the dynamic range (i.e., Tmax — Tmin) 1s normalized to constant level.

3Here by and my are the bit-width for integer data quantization and the mantissa bit-width for FP data
quantization respectively.
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Figure 1: Generalization under quantization. Population risk (Ex ,[(y — (w,x))?]) for quantized
SGD with iterate averaging under multiplicative (FP-like) vs. additive (INT-like) quantization. (a)
and (b): vary the quantization level at fixed dimension. (c) and (d): vary dimension at fixed quanti-
zation level.

Q1 (Quantization level). We fix d = 200 and B = 1, and vary the quantization error level
e € {0.001, 0.005, 0.01} for each scheme. Results are shown in Fig. a,b). Under multiplicative
quantization, quantized SGD largely retains the generalization performance of full-precision SGD
across a wide range of quantization levels. Conversely, under additive quantization, performance
degrades as the quantization level increases. These empirical observations validate our theoreti-
cal findings: with a batch size of B = 1, additive quantization requires stricter conditions (lower
quantization level) to match the performance of full-precision SGD.

Q2 (Dimension). We fix the quantization level at ¢ = 0.01 and B = 1, and vary d €
{50, 100, 200, 400}. Results are shown in Fig. c,d). Under multiplicative quantization, gener-
alization performance is preserved even in high-dimensional settings; conversely, under additive
quantization, performance deteriorates as the data dimension increases. These empirical results cor-
roborate our theoretical findings: multiplicative quantization remains effective in high-dimensional
contexts, whereas additive quantization is ill-suited for such scenarios.

Furthermore, we conduct additional experiments on the real-world Communities and Crime
dataset, as well as settings with larger batch sizes and exponential-decay spectra. These results,
presented in Section[G] consistently align with our theoretical analysis.

5 CONCLUSION AND LIMITATIONS

In this work, we presented a comprehensive theoretical framework to analyze the excess risk of quan-
tized SGD in high-dimensional linear regression. Our analysis disentangles the distinct impacts of
various quantization targets: while parameter, activation, and gradient quantization primarily serve
as noise amplifiers, data quantization fundamentally distorts the effective feature covariance spec-
trum. Crucially, we show that multiplicative quantization excels at preserving the spectral structure
of the data, thereby maintaining learnability even in high-dimensional settings. In contrast, additive
quantization leverages the independence of noise variance from signal magnitude, allowing activa-
tion and gradient noise to be effectively suppressed by large batch sizes. Furthermore, our theory
establishes the conditions on quantization errors required to maintain full-precision SGD perfor-
mance, and identifies the scenarios under which FP and integer quantization are each likely to yield
superior performance under polynomial decay spectrum.

Future work. Our work lays a solid foundation for several promising research avenues. Firstly, de-
veloping a lower bound analysis for the excess risk of quantized SGD. Secondly, extending single-
pass SGD to more practical training configurations, such as data reuse (i.e., multi-pass SGD), learn-
ing rate scheduling, momentum, and preconditioning. Thirdly, extending training the linear models
to the training of over-parameterized neural networks. Fourthly, deriving scaling laws for low-
precision training.
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The appendix is organized as follows. In Section[A] we begin the analysis of excess risk bounds for
the iteratively averaged quantized SGD by firstly deriving the update rule for the parameter deviation

w;—w(®" (detailed in Section i and secondly performing an excess risk decomposition (detailed
in Section[A.2):

1
BIE(Wx)] = 5 (H,Elfly ©y]) +ApproxEir.

RN

We then conduct a refined analysis for ApproxErr in Sections l For Ry, we extend techniques
from [Zou et al.| (2023) in Section |g In particular, we first introduce useful notations in Sectlon
and then present a comprehenswe analysis of the update rule for E[n;n,] in Section|C.2| This
analys1s is crucial for adapting previous proof techniques to the quantized SGD setting. Based on
these results, we perform a bias—variance decomposition in Section [C.3] and analyze the bias and
variance errors separately in Section [C.4] and [C.5] In Section [} we include bounds when master
weight is quantized.

The following proof dependency graph visually encapsulates the logical structure and organizational
architecture of the theoretical results in our paper. In particular, the arrow from element X to element
Y means the proof of Y relies on X.

Corollary

Theorem Corollary

Corollary @]

Theorem [D.d] Corollary[D-]

/ \ ‘ LemmalA3] ‘ Theorem[4.d]

[Lemma[CA7l| | LemmalBdl | | LemmaBZ | | Lemma[Ci8l|
LemmalCi5 | LemmalCTil LemmalCi0l | LemmalCid
e / \ /AN
LemmalCi3 | LemmalCZl | LemmalC3l |  LemmalC8l| | LemmalChl | LemmalCiZ

w ~N /7

Lonmaa| o3

lenma€3|  loomiEd | Lenmad)]

- Lemma[Ad] |
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A INITIAL STUDY

For simplicity, we denote 49 = Q(y), wgq) = Q,(w;),x(? = Qg(x). For convenience, we
assume that H is strictly positive definite and that L(w) admits a unique global optimum as Zou

et al.[(2023). We first recall the definition of the global minima w* and w(@™:
w* = argmin,, E[(y — (w,x))*], w@" = argmin,, E [(Q(y) - (w, Qu(x)))°]
The first order optimality shows that
E(y — (w",x))x] =0, E[(Qu(y) — (w?", Qu(x)))Qu(x)] = 0, (A.1)
which implies that
w' = H B elind, w@' = (HO)TE[Q)(y)Qu(x)] = (H@) " Eqeymn .
Hence, by denoting H(?) = H + D, we can characterize the difference between w(?)™ and w* as:
w@ _wr = [(H(Q))—l _ H‘l} E(x )~ Y]

—(H®) " (H - H ) H "By ) -plyx]
—(H@)~! (H _ H(q)) w* (A2)

=— (H9)"'Dw*

= - (H+D) 'Dw".

A.1 DEVIATION OF THE UPDATE RULE

In this section, we derive the evolution of parameter deviation 7; := w; — w(@”,

Lemma A.1 (Error propagation).

1 1 o a
= (I - ngd(xtf@d(xo) o195 QX)) [&+ el — ) - Qu(Xn)el?) ]
where the quantization errors are

eff’ =Q, (Qi(yt) — Qa (Qa(Xy)Qp(wi—1))) — [Qi(y:) — Qa (Qa(Xy) Qp(Wi—1))],
e i=0Q0 (Qu(X1) Qp(Wi-1)) — Qu(Xi) Qp(Wi-1),
6,@1 =0p(Wi1) — Wi,
& =Qulyr) — QX)W
Proof. The lemma can be proved directly by the parameter update rule. By definition and the update

rule of w; (quantized SGD),

N =Wt — w(®”
* 1
=W¢_1 — W(Q) + ’YE Qd(Xt)TQo (Ql(}’t) -9, (Qd(Xt)Qp(Wtfl)))

=1 475 Qa(X0)T Qo (Qilye) — Qu (QulX)Qyp(wi 1))

We then introduce quantization errors to better characterize each quantization operation Q(-). In
particular, define quantization erros:

el =0, (Q(y1) = Qa (Qu(X1)Qp(Wi-1))) — [Qu(ys) — Qu (Qu(X1)Qp(wi1))],
e§“> =Q, (Qu(X4) Qp(wi—1)) — Qu(Xt) Qp(Wi—1),
€ =Qp(Wi—1) — Wi_1,

& =Qi(ye) — Qd(Xt)W(q)*.
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Then the update rule for the parameter deviation can be expressed as:

=1+ 75 Qa(X0) T Qo (Qi(ye) — Qu (QulX)Qp(we 1)
s+ QulX0) 5 [Qilye) — Qu (QulX)Qplwern))] 475 QulX) el

-1 9 Qu(X)T 5 [Qi(3) — QulX) QW) +755 QX)) (e — ef”)
=1+ Qa(X) (6 — ) +1Qu(X) T

[Qiye) = Qu(X)W®” — Qu(X)mi—1 = QulX)Qpl(Wi-1) + Qu(Xi)wi-1]
=1 +7Qu(X) (e — ) +7Qu(X) T

[Ql(}’t) — Qu(X)W D" — Qu(Xy)m—1 — Qd(Xt)eﬁ’i)l}
1 o " 1
=1+ 75 QX)) T (el = € + &) = 7Qu(X))T 5 | Qu(Xe)mi—1 + Qu(X)e”) |

]. ]- o a
= (I - B'YQd(Xt)TQd(Xt)> n-1+7g5 Qu(Xy)" |:£t +el?) — e — Qd(Xt)ei@l} :
O

A.2 DECOMPOSITION OF THE EXCESS RISK

In this section, we take the initial step to analyze the excess risk of averaged SGD iterate Wy .

In particular, we define the deviation of the averaged SGD iterate as 17 := % Zé\gl 7:. We

decompose the excess risk as follows.

Lemma A.2 (Excess risk decomposition). Under Assumption[3.1|and Assumption
E[E(WnN)] = R1 + R + Rs + Ry,

where

1
Ry =~ SE [(Wy, Qa(x) —x)7]
1
Rs :§<H(q)7E[ﬁN ®ﬁN]>7

Rs :%E [(w(q)*, Qu(x) — X>2} )

R, :% <H, (W —w@) @ (w* — W(Q)*)> .
Proof. By the definition of the excess risk (Excess Risk)),
ElE(Wx) =5 [(v — (e, x))?] — 2B [t — (w*, x))?]
= SB[~ (x| - JE[(Qily) ~ (W, Qu(9))?)
Eq
+ 3B [(Quy) — (W, Qu(x0)?] — 5E [(Qu(y) ~ (w®”, 0u(x))Y]
E,
+5E [ - " Q"] - 5 | (3 - w0 0) ]
+ %E {(y ~ <w<4>*,x>)1 - %]E [y = (w,x))?]
E4
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where F; captures the gap of the averaged SGD iterate between the full-precision and quantized
domains, F» characterizes the distance from the averaged SGD iterate to the quantized optimal
solution within the quantized domain, E'3 represents the mismatch of the quantized optimal solution
in full-precision data space and quantized data space and E defines the discrepancy between the
averaged SGD iterate and the quantized optimal solution in the full-precision domain.

We would like to remark that the quantization operations Q,(y) and Q4(x) introduced in excess risk
decomposition are independent of those quantization operators introduced in the training stage, i.e.,
wy. Next, we analyze 1, F», F5 and F, respectively. These computations are mainly based on
the first order optimality condition (A.T)) and the unbiased quantization Assumption 3.1} For E,,

By =3E {(y - <W<q>*,x>)1 5 [ w07

:%E [(w* — w(q)*,x> . <2y —(w* + W(q)*,x>)]

:%E [<W* _ W@ Xﬂ (A3)
:% (W* — W(q)*)T H (w* _ w(q)*>

= {HL (v = w @) & (w* = wl))),

where the third equality uses the first order optimality condition that E(y ,)~p[(y — (W*,x))x] = 0.
For E,, similarly by the first order optimality condition (A.1)) with respect to w(@)" | it holds

E :%E [(Qu(y) — (Wi, Qu(x)))?] - %E [(Quly) — (W, Qu(x)))?]
=58 [~ Qu) - (22u(0) — (W + . Q)

1

) (A4)
:51[5 [<W(q) — W, Qd(x)ﬂ

1 _ _
=§<H(Q),E[?7N 27y])-

For E3,
-] o
Z%E (2 =y = (w9, Qux) =) - (@) +y — (w0, Qulex) + %)) |
:% [Ql(y)2 — 2+ (w7, Qu(x) — x)(w", Q(x) + X>} ;

where the last equality utilizes the unbiased quantization Assumption 3.}
For E, similarly by the unbiased quantization Assumption [3.1] it holds
1 _ 1 _
By =3E [(y - (Wn,%))°| = SE[(Qi(y) — (W, Qu(x)))?]

1

=5E[(y = Quly) — (W, x = Qa(x))) - (y + Qi(y) — (Wwv, x + Qa(x)))]

1 1
LB [1 — Quw)?] + SE[(Wx X~ Q) (W x + Q)]
Hence, ) .
Ey+ By = 3E [<W<Q>*, Qu(x) — xﬂ — SE[(Wx,x — Qa(x))?]. (A.5)
Therefore, combining (A.3), and (A.5) we have

E[E(Wn)] :%<H(q),E[ﬁN RMN]) + %(H, (w* —w@") @ (w* — w®"))

+%]E [<w(q)*, Qu(x) — xﬂ - %IE (W, x — Qu(x))?] .
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O

Lemma A.3 (Reﬁne excess risk decomposition). Under Assumption 3.1 and Assumption[3.2} if the

stepsize v < /\(q),

1
E[€(Wn)] = §<H>E[ﬁN ® M y]) +ApproxErr,

RNy
where

1 * *
ApproxErr :§<H7 (w* —w@) @ (w" —wl@7)
A\ T 1 *
(2) — (1=(1= (@\N (@))—1 (@) _ (2)
+(w ) NW(I (I-~H ))(H ) (H H)w .
Proof. By Lemmal|A.2]

Bl (Wx)] =5 (H Bliy © 7))

S UH (- w0 ) o (w - @)

1 * 1
+3E [<W<Q> , Qul(x) — x>2} ~ SE [(Ww,x - Qu(x))?].
We then focus on 3E [(Wy,x — Q4(x))?]. Recall that

WN =Wpx — W(fl)* + W((I)* — ﬁN +W((I)*,

we have
LE [(Wx - Qulx ;E W] (1O~ ) wa
QE [ (H —H) 7y | + %E [(w@)*)T (5 - H) W(q)*}
+E 718 (H(q) _ H) W(q)*} .
Hence,

E[E(Wn)] =%<H,E[ﬁN QAN + %(H, (w* —w@) @ (w* — w@™))
(A.6)

_E [ﬁva (H(cn _ H) W(‘”*} .
Noticing that by Lemma[A.T]
1 T 1 T (0) _ (@) ()
m=(I- E’YQd(Xt) Qa(Xy) ) M1 +7§Qd(Xt) [ft te6 —€ — Qd(Xt)Et_l} )
it follows by Assumption [3.1]that

E[n] =E[E[n:n:-1]] = E KI - yH(Q)) m_l} = (I - »yH(q)) E[n_1] = (I _ VH(q))tno.

Hence,
N-1

_E [ﬁ} (H(q) ) (Q):| 77% (I 'yH(q)) (H(Q)—H) w@*
t=0

— (w@* _a@Y (H@ _ (@)*

( a tZ:(I qu) (Hq H)wq

)
( )T - (1 (I— yH@O)N )(H(‘I))—l (H(q) —H) W@

Combining completes the proof. O

T N-1

— 2=
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B ANALYSIS OF APPROXIMATION ERROR

In this section, we analyze ApproxErr under multiplicative quantization and additive quantization,
respectively. We first apply the definition of w(®)":

w(@ = (H@) "Hw*.

We first handle §(H, (w* — w(@) @ (w* — w@")), Recall D = H@ — H, we have
1 * * 1
S (H (w' = W) @ (w' —wl0)")) = E [tr (H(H + D) 'Dw*w* D(H + D)*l)]

Z%E [tr (w*TD(H +D)"'H(H + D>‘1DW*)]

1 * (12
:§||W ||D(H+D)*1H(H+D)*1D'

(B.1)
-
We then handle (W(q)*> NL,Y (I-(I-yH@D)N)HD)" (H@D - H) w(D™,
AT 1 *
(a) — (1= (1 = vyHN (-1 (g0 _ (a)
() (0 ()
:W*TH(H(Q))*lNL’V (I - ’YH(q))N> (H@)~1 (H(Q) _ H) (HD)THw*.

Lemma B.1 (Approximation error under multiplicative quantization). If there exists eq such that
Qg is eq-multiplicative, under the assumptions and notations in Lemma @]

2

€
o W™l +

ApproxErr < ——&
pp ~ 2(1+eq)

€d 2
m [w HH'

Proof. Under multiplicative quantization,

H? = (1+¢)H, D =¢H.

It follows by (B.I)) that

1 * * 1 €

Z(H * _ wi@ * _ (@) — T lw*|2 ~ S WA
2< (W w) @ (w wi)) 2||W ||D(H+D) 1H(H+D)-!'D 2(1+ed)2HW I

Similarly, by (B.2),
(W(Q)*)T Nify (I —(1- ’yH(q))N) (H®)~1 (H(q) _ H) w@*

1
Y @Oy-1_= (1_(1— (9N ()1 (9) _ (9)y—1 *
w TH(H) (1 (- vH®) )(H ) (H H) (H?) 'Hw
G T (9))-1 (DN CONR Y =
- HH?) (1-1-~H H@)~'Hw
o THE) (1 (- HO)Y) ()
4 wrl? (a))—1/2 @\NY (H@ —1/2”
< w H I-(I-~H H
SN+ eq)? | ||H H( ) ( ( Y ) ) ( )

€d min{1, N7A\”}

<—%  _|w*|? max

_N’y(1+€d)2 H™ )\EQ)
€d )

< — .

_(1 + ed)Q ||W ||H

O

Lemma B.2 (Approximation error under additive quantization). If there exists €4 such that Qg is
€q-additive, under the assumptions and notations in Lemma @]
2

€d *1(|2
w +
2()\d+€d)2H HH

A1€q

*[12
W .
()\d + €d)()\1 + €d) ” ”H

ApproxErr <
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Proof. Under additive quantization,

HY =H+ eI, D=e¢,l

It follows by (B.1) that
L w - w0y @ (W — w@")) =1 w2 < w2
9 ; 9 D(H+D)-'H(H+D)"'D = 2(/\d+€d)2 H-

Similarly, by (B.2),
(W(q)*)T Nify (I - 7H(q))N) (H@)~! (H(Q) _ H) w@*
:W*TH(H(q))—lNL’y
Smw*TH(H("))*l (I —(1- 7H(q))N) (H@) T Hw*

(I —(I- ’YH(q))N> (H(Q))—l (H(Q) _ H) (H(q))_le*

0 1 )
< A1€q lw* |2, max min{1, NyA"}
NAy(Ag + €1) (A1 + €q) H /\Z(_Q)
A1€q %12
w5 -

S ate)On + o)

C ANALYSIS OF Ry

C.1 PRELIMINARY
We first define the following linear operators as in|Zou et al.| (2023)):
IT=1xI, M9 = ]E[x(‘I) @ x g x@ g x(tz)]’ M@ = gH@ g H,
T@W =HD @I+ I H?Y — y M@, T@ -_H® I+IoH® — YH@ @ H@,

For a symmetric matrix A, the above definitions result in:
ToA=A, M9DoA=E[x? Ax@)x@x@ ] M@ oA=HDAHD,
(T —~4T@)o A =E[(I - yx@x@ YA —1x@x@ )], (Z-7T@)0A = (I - yH@)A(I - yHD).

Further, we generalize the linear operators from Zou et al.| (2023) to account for batch size effects.
For a symmetric matrix A, we define

Mg) oA =FE {;X(q)Tx(q)Ax(Q)Tx(q)} ,
(Z-~AT ) oA =E KI _ V;X(q)TX(4)> A <1 _ V;X@TX@))} _

C.2 INITIAL STUDY
To analyze Ry, we firstly utilize the fact that

Ry = 5(FL By &Ty]) < fas (HH®) ) (HO. Effy @ 7x]).

DN | =

HD Efyeny]) <

DO =

R
(C.1DH
We secondly substitute 77, with the summation of 7,. This step mainly based on the propagation
in Lemma [A.]] the unbiased quantization Assumption [3.1] and the first order optimality condition
(A.1). We summarize as the following lemma.
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Lemma C.1. Under Assumption[3.1land Assumption

N-1N-1
1 _
RE\?) < N2 E , <(I —yHD)FH E[n, ®77t]>'
t=0 k=t

Proof. Recall that by (C-I)),
1
O - —
Rﬁv) = §<H(q)7E[77N ®@Nn])s

we then focus on E[fy ® 9y]. By definition ny = & Et o "0,

1
Effy ©7in) =5 | D Em@ml+ Y, Emn o
0<k<t<N-—1 0<t<k<N-—1 €2

s | X EEmewmmd+ Y EEmsmm)

0<k<t<N-—1 0<t<k<N-1

Note that by the unbiased Assumption[3.1]

E {’YQd(Xt)T (EE o et Qd(Xt)eE )1>

77t—1] =0.

Further, by the optimality (AT),

E [wgdoctfst

ntl] =E [vgd(xtf Q) ~ Qu(X)w®”]

"7t1:| =0.
Hence, by Lemma([A.T]
E[n¢|n:—1] = (I - WH(q)> M1 (C3)
Therefore, by (C.2) and (C.3),
Eny ©ny]

| X EEmemml+ Y EEmommn)

0<k<t<N-1 0<t<k<N—1

1 _ _
| X A EO Emen] - S B @] HO)
0<k<t<N-1 0<t<k<N-—1

1N-1

—1N—

1
=5z 2 2 (XA HO) Bl © 0] + Ef @ (1 - 7HD) )
t=0 k=t

Applying lb into R(O), we have

1 _ —
Ry :§<H<q>, Effjy © 7))

Z
IA

(C4)

N—-1N-1
Sz Do O (HO, (1 HOYElp, & ] + Eln © n(1-HO) )
t=0 k=t
N—-1N-1
—yr 2 2 (A H) T HO Bl o),
t=0 k=t

where the last equality holds since H(?) and (I—yH(®)*~* commute. This completes the proof. []
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Lemmaimplies that, to bound RE\(,)), the main goal is to bound E[n; ® 73;]. Recall that by Lemma
A1}

1 1 o a
= (I - ngd(xtf@d(xo) Mot +95Qa(X0) " [&+ef” — ) - Qu(Xn)el?) ] -

Denote 1
ias T ias ias
Ny = (I - E’YQd(Xt) Qd(Xt)> N, me™ = o,

1 1 o a
e = (I - B’YQd(Xt)TQd(Xt)) e+ ’YEQd(Xt)T [ﬁt + e§ - eg ) Qd(Xt)eﬁ’i)l] ,

with 3" = 0. Then

me=m + 0,
and
E[n: @mi] <2 | E [0 @™ +E g™ o qy™] | - (C.5)
B Cy
Regarding By,
1 - 1 .
B, =E [(I - ’YEQd(X) Qd(X)> B <I - ’YEQd(X) Qd(X))] . (C.6)

Regarding C;, by the unbiased quantization Assumption [3.T]and n§*" = 0, it holds,

C,=E [(I - 7;Qd(X)TQd(X)> Ci <I = 7;Qd(X>TQd(X)>:| +9°%,  (C)

where

1 o a o a T
b3 iiﬁE {Qd(xt)T {St + EE ) EE ) Qd(Xt)Eili)l] {St + €§ ) EE ) Qd(Xt)Egli)l} Qd(Xt)}

~ e [0 e 0u(X0)] +

1 o o T
7 ok [Qd(xt)TEE el Qd(Xt)]

=¢ (@)

1 — 1 T
+ B | QX el Qu(X0)] + B | QuX0) T QuK)elh e 0ulX) QulX)

¢l 5@

We then summarize the update rule for E [, ® ;] as follows.

Lemma C.2 (Update rule under general quantization). Under Assumption 3.1} Assumption [3.2]
Assumption [3.3] and Assumption

Ci<E [(I - w;Qdoc)TQd(X)) Ciy (I - w;Qdm)TQd(X)ﬂ 426D HO),

B = | (1- 150007 X)) B (1-9 5,047 2% ).

where
T T
sup, {HE [ego)ego) Ot:| +E [eﬁ")eg“) |at} H}
@7
¢ B

T 2

+apsupEy, [tr (H(Q)E {e,@legf)l |wt_1} )} + %,
¢

with a; = Qu(X,)Qp(wi_1), 0 = Qu(yr) — Qo (Qu(Xy)Qp(Wi_1)) and || - || denoting the

spectral norm.
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Proof. We cope with each term in 3; to provide an upper bound. For 2;“’),

» 1
%" ==5E [QAXNQd(xt)e,if’)leip)fQd<xt>TQd(Xt>]

-
<apsupEyw,_, [tr (H(Q)E [egmlegp)l |Wt1:|>:| H(q)7
t

where the inequality holds by Assumption For Ef,

1
B2

1 B B T T AT
:ﬁE ZZQd(Xt)l & (Qd(xt)] ’$§>

i=1 j=1

5 = [Qu(X0) TE] Qu(Xy)]

M=

T TN T
E {Qd(Xt)ZTﬁi (Qux) &) } C8)

.
Il

E Q)€ (Qu(x)9)] |
‘B [6%Qu(x)Qu(x) "]

%] %, @l = ol = g~

<— H@,

where the third equality holds as samples are independent and data quantization is applied to each
sample independently, the inequality holds by AssumptionM For ¢ 4 =6,

° a ]- o) 0—r a (LT
557 1 3¢ = LB [0u(X,) T (e + el >Qd<xt>]

[ o o T a a T
:ﬁE Qd(Xt)T <E {65 )GE ) |0t} +E [65 )Ei ) |at]> Qd(Xt)}

[ o (o] T a a T
<5 E (‘]E [eg el |ot} —HE{e,E el at] D Qd(Xt)TQd(Xt)]
o o T a a T
S [HE e o] +E [ a H] £ [0u(X0)T Qu(Xy)]
1 o o T a a T
-5 sgp H E [eg )eg ) |ot] +E {eg )eg ) |at}

where || - || represents the matrix spectral norm.

H@,

[E—)

Combining the upper bounds for E,f(p) , Ef, EE(O) + 2§<a), 1| and 1i immediately completes
the proof. O

For multiplicative quantization, the explicit dependence of the conditional expectations on w; ren-

ders Lemma inapplicable to the update rule for E[n; ® 7;]. We thus propose the following
alternative update rule.

Lemma C.3 (Update rule under multiplicative quantization). If there exist €4, €], €, €, and €, such
that for any i € {d,l,p,a,o}, quantization Q; is €;-multiplicative, then under Assumption
Assumption [3-2) Assumption[3.3] and Assumption it holds

C, <E (I - ;de(X)TQd(X)) Ci1 (I - ;”Qd(xfgd(x)):

+8 [ 2 (%) T Qu(X)(By1 + Ci1) 20u(X)TQu(X)] + 20 H®,

B, =E (I - ;VQd(X)TQd(X)) B; <I - ;VQd(X)TQd(X)> ;
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where
E=8¢c(1+¢p)(1+€q) +4e, +4e,(1+¢p),
2 1+ 4e,)0? w*||2
o(0* _ Bo) + ”1 +|lHaB (deo[(1+ €p) (1 + €0) + 1] + 260 (1 + ) + 2¢,) .
d

Proof. To complete the proof, we merely need to derive the upper bound for ¥; = = 4 Ei(a) +
2;“’ + 25@. Regarding =¢, by the computation in the proof of Lemma ie., l)

»¢ < o’ (2)

H@, C9
‘=B €9
Regarding E;“”) ,

p 1 T
s _ L [Qdoctfgd(xtm [eﬁﬂei@l |wt_1} Qd(xt)TQd(Xo}

2
:%E [Qd(Xt)TQd(Xt)Wt—1W:_1 Qd(Xt)TQd(Xt)} C.10
j?g%]E [Qd(Xt)TQd(Xt)ntflntflTQd(Xt)TQd(Xt)} o
+23%E {Qd(Xt)TQd(Xt)W(q)*W(q)*TQd(xt)TQd(Xt)} '
Regarding "',
=5 :éE {Qd(Xt)Tega)ega)TQd(Xt)
— o | QuX) Qu(Xw(?, Wit 0,(X0) T Qulx,)|
:(H;B%E [Qd(Xt)TQd(Xt)Wt—lwt—lTQd(xt)TQd(Xt)} (1
52(1—;72%)%]E [Qd(Xt)TQd(Xt)ntflntflTQd(Xt)TQd(Xt)}
+2(1‘;7§P)6‘1E {Qd(Xt)TQd(Xt)W(q)*W(q)*TQd(Xt)TQd(Xt)} :
Regarding ', similar to 3¢*’, it holds
=" = gE [%(X»Te?)ef’“@d("”]
:%}E [Qd(Xt)TOtOtTQd(Xt)}
j%E 04X T @iy @iy Qu(X0)] + %E [Qu(X1)T Qular) Qular) " Qu(Xy)] -
For the second term,
25;E [Qd(Xt)TQa(at)Qa(at)TQd(Xt)}
52(1;726“)60]}3 [Qd(Xt)TatatT Qd(Xt)]
A+ e,,§3(21 +ea)éo [Qd(xtfQd(xt)nt_mt_JQd(xt)TQd(Xt)}
+4(1 - epg(; +€a)Cor |:Qd(Xt)T Qd(Xt)W(Q)*W(Q)*TQd(Xt)TQd(Xt)} :
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For the first term,

2o [QuX) T Q) Qulve) T QuX)] < o [Qu(X) TEk] QulXy)]

4 o * *
—&-éE {Qd(xt) Qu(X )W w@ TQd(Xt)TQd(Xt) ,

where we use & = Q;(y:) — Qa(X;)w®". Further, by the bound for =% (C.8), we have

BL]E{ Qu(Xy) &t Qd(xt)] %H(q),

it follows that

4 a o
EE( °) 60 H(q) 40+ 61’])5521 e E {Qd(Xt)TQd(Xt)ntflntflTQd(Xt)TQd(Xt)}
Jr450[(1 + epg; +€q) + 1] E |:Qd(Xt)T Qd(Xt)W(q)*w(q)*TQd(Xt)T Qd(Xt):|

(C.12)
Further, by Assumption it holds

1
B

then together with (C.9)), (C.10), (C.11) and (C.12) it holds
1+ 4e,)0?
B

* * 1 * * 1
L g [04(X0) T Qu(X)w® W@ Qd(Xt)TQd(Xt):| < agte <H<q>w<q> w(@ )Hm)’

* * 1
>, 5( HY + ap (4e,[(1 4 €)(1 + €a) + 1] + 2ea(1 + ) + 2¢,) tr <H<q>w<q> w(®) ) H@

4 o(1 1 o) +2 2¢,(1
ol )t 126 226002 0) g [9,,) T QuXemormes Qu(X0) Qu(X)].

Note that by the definition of multiplicative quantization,

* (|2
i (HOw@ w@* T = W llE
1 + €d ’

then

(1 +4e)o? | [[w™|[
¥ =
b= [ B * 1+eq

deo(1+€,)(1 + €q) + 2€p + 2€4(1 + ;)
+ JiE

Hence, by , and E [n; @ ;] < 2(B; + C;), we have
1 1
C, <E KI - Bde(X)TQdoQ) Ciy (1 - Bde(X)TQd(XN

- [8eo(1 + ) (1 + ca) + dep + dea(1 + )] E | £ Qu(X) T Qu(X) (Bi-1 + Cr1) 2 Qu(X) T Qu(X)

o [(L+4e)o” | [[w|lfy
B 1+eg

ap (4eo[(1+ €p)(1+ €q) + 1] + 2e4(1 +¢) + 2%)] H@

E|Qu(X)" Qu(Xoym-1m-1" Qa(X1)" Qu(Xy)] .
(C.13)

ap (4e,[(1+ €) (1 + €a) + 1] + 2ea(1 + €,) + 26,0)] H.
O

Equipped with Lemma , Lemma and Lemma we are ready to derive bounds for Rg\?).
As shown in|Zou et al.| (2023)), we first perform bias-variance decomposition.

C.3 BIAS-VARIANCE DECOMPOSITION

As in Zou et al.| (2023), we perform bias-variance for excess risk, which is summarized as the
following lemma. Here we slightly abuse the notations of B; and C,;.
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Lemma C.4 (Bias-variance decomposition under general quantization). Under Assumption[3.1} As-
sumption[3.2} Assumption[3.3] and Assumption

N—-1N-1 N—-1N-1
RE\(;)/Q < % . <(I — 'yH(Q))k_tH(q),Bt> + % : < I— WH(‘I) k—tgy(9) Ct>7
t=0 k=t t=0 k=t
bias variance
where

B, := (I —~T5") o Bo, Bo=Emo @ mo].

Cri= (T —7Ti") 0 Ciot +7%0@ HOW, ¢y =o0.

Proof. By Lemma|C.]]

N-1N-1
(1 —yH@ )T H Eln, @ my])
t=0 k=t
The proof is immediately completed by Lemma|[C.2Jand E[n; @ ;] < 2(B; + Cy). O

For multiplicative quantization, we can directly deduce from Lemma [C.4] by the update rule under
multiplicative quantization (Lemma|C.3).

Lemma C.5 (Bias-variance decomposition under multiplicative quantization). Under Assumption
B Assumptlon@ Assumpnon@ and Assumptlon- 5.4] if there exist €4, €, €y, € and €, such that
foranyi € {d,l,p,a,0}, quantization Q; is €;-multiplicative, then

| NoIN-d | NoIN-1
Rg\?)/2 < R Z <(I _ 'yH(Q))k_tH(Q),BEM)> + e < ,yH(fI) k— *H(q) C(M >
t=0 k=t t=0 k=t

,_.

bias variance

where
Bi") = (T — T + & M) 0BG, BGY =E [mo @ mo].

2
C(M) (I ,}/T(‘Z) + 6’)/2./\/[((1)) Cgiwl) +720§\Z) H(q)’ CéM) —=0.

Proof. By Lemma|C.3|
o 1 _
Ci =8| (1= 5104007 QX)) €t (1= 770uX) 04(%))
+8 [ 2 ()T Qu(X)(By1 + €y 1) 20u(X) T Qu(X)] + %) H®,

B =2 | (1= 57040007 QX)) By (1- 770u(X) 04(%))

Hence,
E[n: ® n <2(B; + Cy)
<2 [(T 7T + &2 MP) 0 By +Cor) + 7205\})2H<Q)}
<2 (BEM) + C,EM)) .
Applying Lemma completes the proof. O
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C.4 BOUNDING THE BIAS ERROR

By Lemma[C.4}
] NoIN-d
bias =— 3 <(1 — AH@ )t @) Bt>
t=0 k=t
1 N
_ I—(I—~HYWV-t B > C.14
7 2 (T - HO)V B, €14
t=0
1 N-1
I-(I-~yHD)N N " By).
<l HO)Y. 3 B)
For1 <n < N,letS, = ;‘:_01 B,, S{) = ;‘:_01 BEM), then we only need to bound S and
s;?”) to bound bias term under general quantization and multiplicative quantization, respectively.

We first derive the update rule for S; and SEM
Lemma C.6 (Initial study of S;). For1 <t < N,

S; 2 (T—7T'9)o0S; 1+ WQM%I) oSy + Byg.

Proof. By definition,

t—1
St = Z(I — ’YTB(q))k [e] BO
k=0
t—1
(C.15)
=(Z—Tg")o (Z( VTR0 )E Bo) + By
k=1
=(T - WTB@) 0 8S;-1 + Bo.
Then we convert TEQ) to 7@, By (C.15)),
S =(Z - ’YT(q)) 0S;_1+ By
=(Z—ATD) oS, 1 + (T~ T{")08,_1 + By
—(T - fr N oS+ (MY — M@)oS, 1 + Bo
<(Z—=ATW)0S 1 +7* My oSy + By,
where the third equality holds by the definition of linear operators. O
Lemma C.7 (Initial study of S{*"). For1 <t < N,
S (T —T@) o 81 + (1497’ M oS + By,
Proof. The proof is similar to the proof for Lemma[C.6]
S( ) =(T - 'y'T +€72M5§1 )OS(M + By
Z(I 'VT )O S(M) + (T(Q) 7"1)) o S(IW) +éE 2M(‘1) o S(]\l) +BO
—(T = ATD) o SM +2((1 + MY — M@)o ™) + B,
(T —~ATD) o 8M) 4 (1+8)72M P 08 4 B,
O

Lemma C.8 (A bound for ./\/lg) 08Sy). For1 <t < N, under Assumption Assumption
Assumption and Assumption ify < m then

ap - tr ([I (- »ﬁ@))t} o BO)
¥(1 = yap tr(H®)) '

M(Bg) o St j H(q)
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Proof. We prove by deriving a crude bound for S; and applying Mg) to this crude bound. Take
summation via the update rule, we have

t—1
-1
Se= 3 (T —ATE") 0By =77 T o [T (T —~T{")] o By,
k=0
Note that

LT ST T8, (Z— (T —+TE")") = (T — (T —+TD)",

—1 -
and further note that Téq) isa PSD mappingH and [Z — (Z — 4T @)!] o By is a PSD matrix, we
obtain

-1 -
S, v T o (T — (T —~+T@)")oBy.
~ -1
For simplicity, we denote A := (T — (Z—~7(©)*)oBy. We then tackle 7, o A.. To be specific,
we apply 7).
F(a) o 7@ ! (@) @t
TYoTy 0A XYMy oTg oA+ A.

Therefore, . )
— ~ —1 —_ ~
T 0 A= A(T@) oMW 0T oA+ (T@) oA,
Then we apply M%’) on both sides.

-1 ~ — —1 ~
ME o (TE 0 A) M 0y(TD) o MP o T ™ 0 A+ MP o (TW) 1o A

-1

= (WM%I) o (7~'(‘Z))_1)t o (Mg) o (T@) " o A) (By recursion).
=0
' (C.16)

By Assumption[3.3]
M@ o (T@) ™ 0 A < ap tr(HO(T@) ™ 0 AYH®

o
= apytr (Z HO (I — yHO) A - ’YH(q))t> H@
t=0

— aptr <H<q)(2H<q> o (H@)2)! A) H©@
< aptr(A)H@
where the first equality holds by the definition of 7(@ and the last inequality requires the condi-

tion that v < m Hence, by (C.16), and further by (%(Q))ilH(q) < I and Mg) ol =<
ap tr(H@)YH@, we obtain

-1

MP o (T4 0 ) <M o (D))o (M o (T0) 0 A)

t=0
[ee]
< aptr(A)Y (yaptr(H?))'H?
t=0

< ap tr(A) H(q)
1 —yaptr(H@)

Therefore,
) (T — ~T (@)t
M(q)os o aBtr(A) HO — ap tr([I (Z—~T )} oBo) @
B t 27 - .
1 —yaptr(H@) (1 — yap tr(H@))

O

4’7}(;1)_1 is a PSD mapping under the condition that v < which can be directly deduced by

1
aptr(H@)’
Lemma B.1 inZou et al.|(2023)). We omit the proof here for simplicity.
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Lemma C.9 (A bound for Mg) o SIEM)). For1 <t < N, under Assumption Assumption
Assumption and Assumption ify < Wltr(}l(q))’

. — (T — ~T @)yt
M(Bf])oSEM)jaB tr([I (% ~T )i|OB()).
(= (1% s a(ED))

H@.

Proof. The first step is to derive a crude bound for SEM). Take summation via the update rule, we
haveFl
t—1

S0 = S @-ATE e MY roBy = 4TS~y M) o[ T (T~ AT + &2 M) 0By,
k=0
Note that

T—ATD T —T, (T =T =T + MDY = (T — (T —1T@ + e’ M),
we obtain
SM < T — ey MDY o (T — (T — 4T + &2 M9)) 0 By,
Denote A := (Z — (Z — 77’((1) + g,yQM(Bg))t) o By, then applying Fa)
T@ o (TE(}q) _ gryMg))—l oA =<(1+ €)7M§§) o (TB(q) _ €’y/\/lg))_1 oA+ A.
Therefore

(T2 —eyM) Lo A < (14 &)y (T@)

-1

o M o (TE — M) Lo A+ (TW) Lo A.

g) on both sides.

Then we undertake the second step, applying M

Mo (TS ey M) o A < 3 (1Y M o (T@) o (MIPo(TW) 0 A). €17)
t=0
By Assumption[3.3]

M o (TO) " 0 A < ap tr(H@(T@) " 0 A)H®
= aptr (Z H©@ (I ’yH(Q))tA(I _ VH(q))t> H@
vy (C.18)
= aptr (HO (H® — (H)?)~1A) HO
= aBtr(A)H(q),

where the last inequality requires the condition that vy < m Hence, by li l) and
~ -1
further by (T(‘I)) H@ < Tand Mg) ol <ap tr(H(q))H(Q), we obtain

o0

~ -1 ~ —1
Mo (T = ey M) ™ o A) 2 D21+ My o (T) ) o (M) o (T) 0 A)
=0
< aptr(A) ) ((1+&yap tr(H))HY
t=0

= ap tr(A) ) H(q)

T 1—(1+é&)yaptr(H@)
Therefore,

: — (T = A T@)yt
./\/l(q) . S(]w) < 7_1 aptr(A) CH@ < ap - tr ([I (Z —~T') ] o BO) H®
B -7 = 1— (14 é)yaptr(HW@) A1 =1+ é)yaptr(HW@)) '
O

S(Té‘ﬂ — 57,/\/123))71 is a PSD mapping under the condition that v < m, which can be

directly deduced by Lemma B.1 in Zou et al.|(2023)). We omit the proof here for simplicity.
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By Lemma [C.6] Lemma [C.7} Lemma [C.§] and Lemma [C.9] we can provide a refined bound for S,
and S(M) Then we are ready to bound the bias error.

Lemma C.10 (A bound for bias under general quantization). Under Assumptwn B.1} Assumption
Assumptton and Assumption|3.4| if the stepsize satisfies 7 < then

2ap (|W0 - W(q)*Hf(qz + Ny|lwo — W(q)*H?{;q) ) E* ) (2
: 0:k* ¢ * 100 q
bias < v + N~ E NY)

Ny(1 — yap tr(H@))

aB tr(H(‘I))’

i>k*

+ [lwo — w'®) ||3H372*)_1 +[lwo — w@ HiI( )

o

~2ZN2

Proof. Recalling Lemmal|C.6| we can derive a refined upper bound for S; by Lemma [C.8}

S, (T —7TW) oSy +72MW oSy + By

yap - tr ([I - (- 'y7~'(‘1))N} o BO)
(1 yap w(HD))

yag - tr ([I - (- 7'7'(‘1))]\’} o Bo)
(1 yap u(HD))

j(z—vf(Q))OStq + "HY + B,

t

I
-

(T — T D)* -HY + B,

o
Y

= (I—yHW)
k=0

"H@ + By | I— VH(Q))k.

vag - tr (Bg — (I — yH@)VBy(I — yH@D)N)
(1 —yaptr(H@))

(C.19)
Before providing our upper bound for the bias error, we denote
B, =B, — (I-yH?)" "B, (I - yH@)"~

Then by (C.14) and (C.19),
N—

1
bias <W<I — (I —yH)N N7 B,
t=

1 ~vyag - tr (Bo n)
<— I— (I—yHD)N (I-H@)k L H@ 4+ By ) (I — yH@)F
—= < ( 0 ) a( Y ) 1 — yag tI‘(H(q)) + By ( Y )

=

1 ~yagp - tr (Bon)
= I — ~H@)2F _ (T — vH(D)N+2k ’ .HY + B .
(1 - o qpopves, (200 00 g L g,

Note that
(I— ’yH(q))% —(I- pyH(q))NHk — (I _ ,YH(q)>k ((I _ ,YH(q)>k _ (I _ ,YH(LJ)>N+k)

< (I—yH@)F — (1 - yH@)NTE,

we obtain
N-1

. 1 vag - tr (Bo n)
bias < —— > ( (T—yHD)F — (T — yH@)NTF 2 H@ + B ).
1= N2 P <( 7 o= A 1 —yap tr(H@) 5o

Therefore, it suffices to upper bound the following two terms

N-1
I - ap tr(By, N < (I — yH@)F — (T — AH@ )N+, H(q)> ’
N2(1 —~yatr(H —

N7
1
= _ (@VE _ (71— (0)\N+k
L= k§_0<(1 AFH@YE (T~ yH@) ,B0>.
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Regarding I, since H(@ and I — vH(9 can be diagonalized simultaneously,

ap tr BO N e .
1 N(l—'yaBtrH(q) ZZ[ YA; ( A ) ¢
on tBo.) (@\N
B : 1—(1— !
YN2(1 — yap tr(H@)) Z [ (1 —=9N") }
oz 1 Boy) 2 \2()(9))2
= YN2(1 —yagp tr(HW®)) me{ VNN }

ap tl"(BO N) k* 2 (q)
< : (A
= 71 = yap tr(H@)) Z

i>k*
where k* = max{k : )\551) > ﬁ} Then we tackle tr(Bg ).
tr(Bo,v) = tr (Bo — (- 7H®)VBo(1 - yH®)")

=2 (1 - (1= v/\g‘”)?N) : (<wO _ W<q>*’v§q>>)

2

) (C.20)
< QZmin{l, N'y)\g‘”} ((wo —w@ ,VEQ)>)
<2 (Jlwo — w2, .+ Nyllwo — w3, ).
Hence,
2ap (HWO —wl@” ||2<q> + Nollwo — wi” ||H<q> ) E*
n< =S| TN )
= Ny(1 = yap tr(H@)) N e
Regarding I, decompose H(®) = V(q)A(Q)V(Q)T, then
R (@))k @)+ v g v
I2=Wz<(I—WA )T = (I = AyA)TTE VI By VIY),
k=0
Note that By = g7, , it can be shown that the diagonal entries of V(@) TBOV(Q) are w?, ..., where

T T .
w; = vgq) no = VEQ) (wo — w(®7). Hence,

2

1 N-1
I, = ’7N2 ICE::O ; [(1 — ’Y)\z(q))k _ (1 _ ,\/)\EQ))N—H@} wg

1 w? 2
- v2N?2 Z )\(Q) {1 - (1= vqu))N]

1

< e Z {1,72N2()\1(.Q))2}

,y 7
< X 4 3 A
~ 42N? @

i<k ’L i>k*

b w@”

~ J2N? [[wo — H(Hm -+ [[wo — ||H<q)
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. . . . 1
In conclusion, if the stepsize satisfies v < T (E@Y

bias <I; + I

2a (w0 w2+ Nallwo — wlo

H(‘I) ) k*
< 0:k* k*:o00 . v N 2 )\(Q) 2
- N~(1 — yap tr(H@)) (N TN ng:*( i)
1 ‘g
+,Y2N2 ) ||WO - W(Q) ||(H(()(:IIZ*)71 + HWO - (q) HH(q)

Lemma C.11 (A bound for bias under multi 1 cative quantization). Under Assumptton@ Assump-
tion Assumption 3.3} and Assumption (3.4} if the stepsize satisfies v < W if there

exist €4, €], €p, €q and €, such that for any i € {d,l,p,a,o}, quantization Q; is e;-multiplicative,
then

2(1-+ 9o (o = w2+ Ny —w 2 )

bias < B AT ¢ NG
N0 (17 &yap G(ED)) N Z( -
1 ‘g ‘i
+72N2 “flwo — w(® ”(Hfffxi*)’l + [lwo — w? ||H§€%‘>:oo
Proof. Recalling Lemmal|C.7] we can derive an upper bound for S; by Lemma[C.9
S, (T —1T@)oS, 1+ (1+87° MW oSy + By
X (1+€)7a3-tr([I—(I—'y7' )N} oB0>
<(Z - T D) oS4+ "HY + B,

(1= (1 + &)yap tr(H))
(1+ é)yap - tr ({I— (Z —AT@)N } o B0>
(1 -1+ &)vyaptr(H®))

t

|
-

(T - 77‘(«1)) -HY + B,

o+
Y

(1 -1+ é&)yaptr(H®))

¢ . — (I — vH@)N — ~vH@)N
(I_,VH(Q))k ((lJrE)’YOéB tr (Bo — (I — yH@)N B (I — yH@)N) CH@ —|—B0> (I — yH@),

Repeat the same computation in the proof of Lemma[C.10} we obtain

. . (14 é&)vyap -tr (Bon)
b < I— H(’I) I — ~H@)N+E ( : .HD + B, ).
ias N2 < 8l —(I—~ ) "T— (14 &)yag r(H) + By

(C21)
Therefore, it suffices to upper bound the following two terms

- N-1
(1+é&aptr(Bon) (N
I, = : I— ~HV _ (T — ~HOVN+E 1@
' N2(1 - (1 + é)yatr(H@)) kzzo <( v ) =T ) ) >’

N-1
1
= S @ H@) — (1 AH@)NE B
IQ ’YNQ — <(I Y ) (I Y ) ’ O>'

Repeating the computation in the proof of Lemma[C.10]

2(1-+ 9 (Iwo — w0 [y +Nalwa w0, ) (k )

I < v N 2 )\(q) 2
= NA(l— (1 1 &yap (D)) N2 )
IS W — W 2+ wo — w2
> 72N2 (H(q) )1 H(q)
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. . . . 1
In conclusion, if the stepsize satisfies v < (THapt@@)

2(1+4 €)agp (HWO ||I<q) + Nvllwo —w HH(‘” > k* 2 (@)y2
oo =N YN
ins < Ny(1— (1 + Orap a(HD)) v
1 . *
L wo — W@ —wl||?
e o =W g ¥ o = g

C.5 BOUNDING THE VARIANCE ERROR

Recalling Lemma [C.4 and Lemma [C.3] the key part of bounding the variance error is to derive an

M)

upper bound for C; and c§ , where

2
Ci:= (I -1T")Ci1 +12%0 HW, Cy=o0.

2
C(M) (I ,_YT(Q) + e’sz(q))C(M) + O.](VQ) H(q)’ C(()M) =0.

We first estimate C; by converting TB to 7@,

C,=(T - )OCt1+72 (0)? H®
=(T - ’yT(q )o Cry +~4(T@ T(q)) 0Ci1+7 a( 2 () €2)
=(Z 7T D)o Cy_y +72(M(q) —MDYoCyy + a(é]) H@
- T(‘J))oC . —1—72/\/1(‘7) 0 Cy +72 ()2 H@
Similarly,
Cz(SM) :(I ,77'((1) + E’}/QM(Q))C(M) +,.y20(‘1) H(q)
(T —4T@) o €M) 4 (@ — T £ ey MmD) 0 M) 4 426D H@
(C.23)
2
=(Z=T®) o M) + M = M@ + ey MP) 0 1) + 42010 H
LT = AT®) 0 M) 421+ OME 0 CM) + 4260 H®,

The following two lemmas provide upper bounds for Mg) o C; and Mg) o cﬁM).

Lemma C.12 (A bound for Mg) 0Cy,). Fort > 1, under Assumption Assumption Assump-
tion and Assumption if the stepsize v < m then

L apt(EHO)0”

(9) C
Mp oG = l—vaBtr(H( )

2
Proof. The main goal is to derive a crude upper bound for C;. Denote 3 = ag) H@,
Step 1: C; is increasing. By definition,
Ci= (T —7T{") 0 Croy +4°S
t—1

=7 Z(I - VTéq))k o3 (solving the recursion)
k=0

= Cot +72(T =T oS
= Cy_q1. (sinceZ — VTB(q) is a PSD mapping).
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Step 2: C exists. It suffices to show that tr(C;) is uniformly upper bounded. To be specific, for
any t > 1,

t—1 o
Ci=7"Y (T-TE" ) 0B =2 Y (T -7T5") o 5.
k=0 t=0
Then
S - tr(S
tr(Cy) < ’)/2 Ztr ((I — VTéQ))t o 2) = 72 tr(E,) < vt () < o0,
t=0 t—0 Afiq

where the second inequality holds by the iteration:
tr(Ey) = tr(Ei—q1) — 2’ytr(H(q)Et_1) +~2tr (Et_lE {BEX(‘I)TX(‘J)X(‘])TX(‘I)]>
< tr(Bi1) — (27 — 7 aptr(HY)) tr(HYE, 1)
<tr((1-yHD)E, )
< (1= AP tr(By_y),

wherle the first inequality holds by Assumption [3.3] and the second inequality holds if v <
aptr(EH@)
Step 3: upper bound C.. By the update rule for C;,
Coo = (T =T") 0 Coo +7°%,
which immediately implies
Co = qurl ) (C.24)
We provide the upper bound by applying T@,

T(@ o Co = Téq) 0Cy + 'YM(Bg) 0Cy — ,YMV(Q) 0Cqs
=1E + M 0 Coo =MD 0 C
<78+ MW o C,

where the first equality holds by the definition of Téq) and 7@ and the second equality holds by

(C.24). Hence,
F(a) (@) 2 15(a) ()
' oCyx 2yos” HYW 4y My 0 Cy.

Therefore, by applying (7~'(‘1))’1 we have

2 ~ ~
Cw =X "yo'gl) . (T(Q))fl o H@ +,Y(7-(q))71 OMSE?) o Coy

2 & ~ t - (C.25)
= ’yogf) : Z (W(T(q))_l o M%’)) o (TW)"1 o H@. (solving the recursion)
t=0
We first deal with (7(@)~1 o H(@,
(7-(q))—1 oH@ =~ Z(I _ ,Y%(Q))t o H@®
t=0
(o)
— I — vHOVYH@O (T — yH@)?
7;( yH@)'H@(I - yH?) ©26)
<~y (I- ,YH(Q))tH(Q)
=0

=1

3
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where the second equality uses the definition of 7(@. Hence, by 1i and 1i

2 X -
Coo 270" 3 (UTW) Lo MP) 01

t=0

= 0@ ST o MY (TD) o MY 0T
t=0

<o i(v(ﬁq))‘l o M)t o yaptr(H)I (C.27)
t=0

= 7081)2 . i (’yaBtr(H(Q)))t I

= ¢ 7
1 —~yaptr(H@)™
where the second inequality holds by the fact that /\/lg) oI < aptr(HW)HW,
Here we complete deriving a crude upper bound for C;:
(0)?
Y]

C,2Cpo X ——&—— 1.
b= ~ 1 —~vaptr(H@)
Then by Mg) oI <ap tr(H(Q))H(‘Z) again,

(@) aptr(H®)y0 @ (a)
C, < a
Mp 0 = 1 — yaptr(H@)

O
Lemma C.13 (A bound for ./\/l() o CiM)). For t > 1, under Assumption Assumption
Assumption and Assumption if the stepsize v < m, then

2
M (M) aBtr(H(q))’YO'gq/[)

5 oG = _

1—(1+ é)yaptr(H@)

(q)

Proof. The proof idea is similar to the proof of Lemma[C.12] while the main goal is to derive a crude
upper bound for CEM). We deduce from the proof of Lemma thatﬁ

2

We provide the upper bound for C(ojow ) by applying T@.
T 0 OUD = (740 ~ M) o O 4 (14 2y M 0 G — A 0 L1
= 70D HD 4 (14 7ML 0 CM) — A M@ 6 0D
<40\ HO 4 (14 7MY o cOD,

where the first equality holds by the definition of 7 (@ and the second equality holds by the definition
of ng ) |i Therefore, applying (7(?)~! we have

O < 4ol (FO) 7 o HO 4 (14 9(TD)~ o MY o CLY

2 ~ -
<70 D" ST+ OYT@) Lo MWP) o (T@)"1 o H@,  (solving the recursion)

t=0
(C.29)

6 (Tqu> — &yM g))*l exists under the condition that v < m,
by Lemma B.1 in[Zou et al.| (2023). We omit the proof here for simplicity.

which can be directly deduced
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By the computation (C.26)) in the proof for Lemmal[C.12]

(TW)y" o H® < L. (C.30)
Hence, by (C.29) and (C.30),
2 X ~
CLY <903 D (14 UTW) o M) o
t=0
2 & ~ ~
=105 3 (A +9UT@) ™ o M) 1+ y(T@) o M o1
t=0
2 X ~
<70 ST+ UTD) o MY o (14 Oyapte(HO)I
t=0
2 X t
<y0\)" 3 ((1 n €)'ya3tr(H(q))) I
t=0
(@?

- RibYi I
1—(1+é&yaptr(H®)

where the second inequality holds by the fact that Mg) ol < aptr(HW)HW,

Therefore, we complete the proof by

M aBtr(H(Q))’ya(q)2
M o o) < st HY)o)
1= (1+ rapte(HD)

(q)

O

By lb (C.23), Lemma|C.12|and Lemma , we can provide a refined bound for C; and CgM).
Then we are ready to bound the variance error.

Lemma C.14 (A bound for variance undeneral quantization). Under Assumption[3.1} Assump-

tion Assumption and Assumption |3.4| if the stepsize satisfies 7 < m, then

U(C?)z k 2 (@9)\2
variance S W N +N’y . Z(/\'L ) .

Proof. We first provide a refined upper bound for C;. By (C.22),

~ 2
Cy =T —~TD)o Cy_y + 72/\/1%1) 0Cy 1 + 72‘781) H@

2 (q) (¢)? 9
_~T@ vapttM)y06" ) L 2 @@
2(Z —AT) o Cyq + = roaptr(H@) H'Y 4+ v70’ H
2 (q)?
(T —~TDYoC,_ 1% H(@
(Z=7T")oCr1 + 1~ yaptr(H®)
2 _(q)? —1
o ~
j—G() (T - 4T o H@  (solving the recursion)
1 —vyaptr(H@) = (C.31)
o S (@) k(@) (@)
= I-~yHY)"H'Y(I — yHY
Q= ) kZ:O( yHO)FHO(T - H9)
2 (a)? i1
<— 1% N1 yH@)PH@
“1l—qaptr(HW)
()2
- % (I— I_~H® t)
1 — yaptr(H@) (L= ~HEY),
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where the second inequality holds by Lemma [C.12]and the second equality holds by the definition
of T,

After providing a refined bound for C;, we are ready to bound the variance. By Lemma[C.4]

N-1N-1
variance =¥z Z <(I — yH@)E—t (0 Ct>
t=0 k=t
1 N1
—— > (T- A= HD)N " o))
L
2 N-1
1 72081) <
I—(I—yH)YNt 1 (1 H(q)>
“42N21— yagtr(H t:O Y ) (I—~ )
1 i Ug)Q ZNzl () \N—t (@)t
T2N2 [ VAi)i}[lf(lf’Y)‘i)}
¥2N? 1 —yaptr(H —~ =
= [ =AY 1= =AY e32)
— ~2 N2 ) 2
¥2N? 1 —yaptr(H —

1 o (@]
(1= )]
Y2N 1 — yaptr(H@) Z [ )

1 Wza(q)
S’ylef*yothr( @ me{ 1, 2N (A2 }

1 2 (q)2

de * 2 2 (@)y2
< k N . A;
2N 1 — yaptr(H@) < T lgk:( i) )

(Q)Q *
de k 2 (@)\2
= & | — N~~ - by
o tr(H@) (N +NY YN,

i>k*

where the first inequality holds by (C.31)) and the last inequality holds by the definition of k* =
max {kz )\( ) } This 1mmed1ately completes the proof. O

Lemma C.15 (A bound for variance under multi llcatlve quantization). Under Assumption[3.1} As-
sumption Assumption and Assumptzon if the stepsize satisfies v < m

if there exist €q, €1, €p,€q and €0 such that for any i € {d,l,p,a,o}, quantization Q; is €;-
multiplicative, then

(‘I) k*
: < N )\(Q) 2 .
variance 1_ (1+€)’Y@Btr(H(q)) ( + Ny Z;( i)

Proof. Applying (C.23), and repeating the computation in the proof of Lemma[C.14]
C§M) =(Z - AT@) o ngl) + 4231+ 'é)./\/l o C; M) + U(Q) H©@

2
~ _ tr(H(Q))fya( 9 2
(T — ATy o ™M) 4 121 @B M H@ 4 250 7@
ST =T o Gl +7*(1+ 81— 07 Dy pt(HD) + 720y
205\3)2H(q)

=(T — 4T D)o C(M

H'\Y
— (14 &)yaptr(HW)
1048 (a)yt
< A(T—(1—~H
~1—(1+ eyaptr(H®) ( T ))’

where the second inequality holds by Lemma|C.13]and the last inequality repeats the proof in (C.31).
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Therefore, repeating the procedure in the proof for Lemma[C.14] we directly deduce that

()2

o k*
i < M N~2 § : A (@)y2
variance 1= (15 Dant( (q)) ( + N7y Dk*( PO I8

which immediately completes the proof. O

Lemma C.16 (A bound for Rg\?) under general quantization). Under Assumption Assumption
Assumption and Assumption if the stepsize satisfies v < m, then

0) 20 (||W0 - w(@ ||2<q> + Nyllwo — (q)*”;ﬁ? ) k* 2 (a)\2
RY /2 < vty A
N/2< Ny(1 —~yap tr(H@)) NN

i>k*
1 -
+’72N2 ”WO w ) ||(H(()L;Ili*)7l + HWO - (q) ”H(Q)
(Q)2 *
9¢ k 2 (@)\2
— + N A
1 — yaptr(H@) (N + Z>Zk( ")
x (@)
where k max{k )\kq 21\%, and
-
ow {7l +2 |47
U(q)2 _
¢ B

2

+apsupEy,_, [tr (H(q)E[ (p) ( |Wt 1})] + %.
t

Proof. The proof is immediately completed by Lemma[C.4] Lemma [C.10]and Lemma|[C.14] O

Lemma C.17 (A bound for RE\?) under multiplicative quantization). Under Assumption m As-
sumption Assumption and Assumption if the stepsize satisfies v < m
if there exist €4, €1, €p,€q and €, such that for any i € {d,l,p,a,o0}, quantization Q; is ¢;-
multiplicative, then

o 2(1+&)ap <||wO III@ + Nyljwo — w(@” 2o > - 2 N
Ry /2 < (L "
N /2 < N~y(1 = (1 + é)yap tr(H@)) N + N~y Dzk*( @y

1 - .

+72N2 lwo — w@ ||(Hé?;*)_1 + [lwo — w@ HH@Z{W
(a)? .
o i 2 (9)\2
~ tNVN- AL

where k* = max {k : )\Ecq) > 1\%} and

E=8e(1+€p)(1+€,)+4e, +4e,(1+¢p),
S@? _ (L+de)o? | Wl
M B 1+e4

ap (de[(1+€p) (14 €q) + 1] + 2e4(1 + €) + 2¢;) .

Proof. The proof is immediately completed by Lemma|[C.5] Lemma[C.11|and Lemma[C.15] [
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D DEFERRING PROOFS

D.1 PROOF FOR THEOREM [4.1]

Proof. By Lemma[A.3] (B-1), (B:2), (C.I) and Lemma|C.16] we have

E[E(Wy)] < 2VarErr + 2BiasErr + ApproxErr,
where
Iwo—w(@ ",

* 2
k* 00 *
Err = v N 2, )\(Q) 2
VarErr 1= optr(H®) <N+ v Z(z )7

i>k*

2

*
5 w0 =W g

1
BiasErr = 5

—_ w@™)2
72N o =W o -

*1(12 1 *
ApproxErr = [|w*|[py + 5 |[w (e
withD = H@ — H, k* = max{k AW > %}» and
vy
1
Djl = H(H(q))_le (I -(I- WH(Q))N) (HY)"'DHY)"'H, D{' = DHY)'HH)"'D,
g
T T
,  Sup {HE {eg")eﬁ") |ot] +E {ei‘”ei“) |at} H}
- B
T 2
+apsupEy,_, [tr <H(‘Z)E [eﬁ”)leﬁp’l |Wt1:|):| + %~
t

o0

Let the initialization wy = 0 completes the proof. O

D.2 PROOF FOR THEOREM [4.2]

We prove a tighter excess risk bound under multiplicative quantization in this subsection:

Theorem D.1 (Multiplicative quantization). Under Assumption [3.1} 3.2} 3.3| and if there exist
€ds €1, €p, € and €, such that for any i € {d,l, p, a, 0}, quantization Q; is ¢;-multiplicative, and the
stepsize satisfies 7 < a5t then the excess risk can be upper bounded

1
1+4e€,)[14€p+ea(l4ep)](1+eq)tr(H)’

as follows.
E[£(Wn)] < ApproxErr + VarErr + BiasErr,
where
€d %112 . * *
ApproxErr < T+ |w*|lfz, BiasErr S e [[w(® H?Hfff,l*)‘l + ||w(@ Hfi,(fi)m’
2
k* (1+€o)0' + aB(T2
VarErr < | == + N2 (1 4 ¢4)? A B M )
(N l;; )1 —vap(l+e)[l+ €+ ea(l+€)](1+ eqg)tr (H)

with

, ) ||W(q) Hz(@* (@)*12
o = [eot+(14€0) (eptea(l4ep))] [|W [+ (1+€o) [1+€p+ea(l+6)] Ny = W e

Proof. By Lemma[A3] Lemma|[B.I] (C:I) and Lemma|[C.17] we have
E[€(Wn)] < 2VarErr + 2BiasErr + ApproxErr,
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where

lwo—w @2,

2 *
o)y +2<1+e>a3< — s+ [fwo — w2

chq*)-oc> *
VarErr = i > N 2 )\(Q) 2
arrgrr 1— (1 + g)"}/OéBtI'(H(q)) (N + Y ng:*( i ) )

2
(Hgh) ™!

2

1
BiasErr = ——— - [|lwo — W(Q)*H + [|wo — W(q)*HH(q) )
k*:00

v:N
€d
1+ €4

€d

* (12
(1+€d)2 ||W ||H7

2
€
ApproxErr = 7d||w*||%1 + ||W*||¥{ N

2(1 4 €q)?
with £* = max {k : )\Ef) > Ni,y} and

E=8c(1+¢,)(1+e€) +4e,+4e(1+¢p) Seo+ (1+6)(ep + €a(l+¢p)),

2 1 4 o 2 * (|2
ag\q/[) = ( +B€ Jo + ||1W+ |lH ap (46[(1+ €,)(1 + €4) + 1] + 2¢4(1 + €,) + 2¢,)
d

2
< (1+e,)0
~ B
Let initialization wy = 0. Regarding VarErr, noticing that 1 + € S (1 + €,)[1 + €, + €,(1 + €;,)],
we have

+ W [fras (eo + (1+ €0) (6 + €al(l + 6))) -

*
)2 ”W(q) | ?(q)

05\?[ +2(1+é&ap T‘” + [|w(® ”iiifi)m

1+ €,)0? "
T o Iy o+ (0 e0)ep + cal1 4 )

lwt™2

(a)
Tz + Hw(q)*”Q

Fop(l+ €)1+ e+ ea(l+6)] H®
k*:00

N~
Then the proof is completed by tr(H(®) = (1 4 ¢;)tr(H) and /\Z(-q) = (14 €q) ;. O

Theorem @.2]can be deduced from Theorem [D.T]by noticing that

ot S+ €)1+ 6+ ea(l+ )] W[5,
where we use

*
w2,

2
* * *
S W R < W = T <

- I

D.3 PROOF FOR COROLLARY [4.]]

We provide a tighter excess risk bound under additive quantization in this subsection:
Corollary D.1 (Additive quantization). Under Assumption 3.1} 3.2} 33| and if there exist
€ds €1, €ps €q and €, such that for any i € {d,l,p,a,0}, quantization Q; is €;-additive, and the

stepsize satisfies v < m, then

E[£(Wn)] S ApproxErr + VarErr + BiasErr,

where

€d 2 . 1 * *
A Err < * BiasFrr < —— . [|[w(@ "2 (@)*)2
pproxBir S = [wliy, Biaskir £ W I L+ IO

Hw(q)*HZ(q) . ,

ap <Nj0=k*+||w(q> Hf{w + Cheetea 4o pe,[tr(H) + deg) -

VarE. < - n N 2 )\z 2
S 1 —vag[tr(H) + deg] <N+ v DZ]C( + €d)
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Proof. By Theorem[4.1}
E[£(Wn)] < 2VarErr + 2BiasErr + ApproxErr,

where
HW(q)*Hf(q) % 2
2ap (1\77” + [wl ”il}ﬂ) + ‘Tg) e
VarFrr < P00 Y NA2. 2\ (92
arErr < T~ oo (H@) (N + Ny 1;;*( O I8
BiasErr < (@) *712 ()2
iasErr < JIN? [Iw H(Hfjf,l*)*l + lw ”H;(;i):oo’

* (|2 *
ApproxBrr < [|[W*|p g4 p)-1m@+p)-1p T [W [y

o“+su e(o)e(u)T ot E(a)e(a)T ay
with 08)2 = o pt{HE[ £t JB }HE{ e | ]H} + apsup, E [tr (H(Q)egmlegmlTﬂ and

Dy = H(H(Q))_lj\% (I-(I-~yHD)N)HD)"'DHOD)'H.

Under additive quantization, it holds
r(HD) = tr(H) +deq, Y (AD)2 =D (hi+en)?,
i>k* i>k*

and
(q)2 . o? + €0+ €4

oG = B + apep[tr(H) + deg].
Then we have
w712 . )
ap TM* + [|w(@ H;I(‘?) + Léﬂrfa + apep[tr(H) + deg] i
k*:0c0 *
VarErr < B NA2. Mten)? |
~ 1 —yagltr(H) + deg] (N v DZ]C( d)

The proof is completed by Lemma [B.2}

2 A1€4

€ 2 €d 2
ApproxErr < ———4—— ||w*||} + Wi S w5 -
pPp —= 2()\d+€d)2|| ||H ()\d+6d)(>\1 +Ed) || ||H ~ )\d+€d || ||H
0
Corollary .T| can be deduced from Corollary [D.1]by noticing that
||W(Q)*Hf(q>* @* 12 @* 12 T R -
Ny I e S 1w e = wt HEE)THWT < [[wly

D.4 PROOF FOR THE MULTIPLICATIVE STATEMENT IN COROLLARY [£.2]
. 1
Proof. Recall that k§ = max{k : Ay = 75},
1 2 2 2
ap (F1w' IR, + Wl )+ %

1 —~yaptr (H)

ké 2 2
Ro=| 5 + N7 Z A2
i>k§

EffectiveVar

+ PNT H"V*H%I{M(*)r1 + HW*H%I,CS;M

EffectiveBias

and by Theorem|D.1]
E[£(Wn)] < ApproxErr + VarErr + BiasErr,
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where
d * (12
ApproxErr 5 1 [w . 5 I g 1+ I
o (Ue)a® | (o o2

VarErr < | == 4+ N~2(1 4 €4)? A B M ,

~ (N 7 (L +ea) ; 1—~ap(L+ el + 6 + a(l + 6)](1 + €)tr (H)
with

2 w2,

i = [eot(L1teo) (eptea(l€p))] [|W* [+ (1+eo) [L+eptea(1+ey)] T‘”‘ + w2 @

We then compare the upper bound of E[E(Wy)] with Rp. Rega.rding VarErr we first analyze

% + Nv2(1 + €q)? Zi>k* A2, Note that for kf < i < k*, m <\ < N , we have

k*
N + N’Y 1 + Ed Z )\2
i>k*
ko KRG 2 2
=¥t N1+ D NM+NyP (1L +e)? Y N
kg <i<k* i>kg
ky K=k 9 2 1 2
<= — N~%(1 B — k) + NAY2(1 AS
=N + N Y ( +€d) ( ())N272(1+6d)2 + ’Y +6d Z>Zk*
ko 2
:N + N’Y 1 + Ed Z )\
P>k
|w(@* 2( ,
We then analyze T“* + jw@” H2 . Similarly,
k*:oo
lw "2 W
I *
 Cok* (@72
Ny +[lw ||H<q)oo
lw @72, w(@7)%,
- 0:kG g @* (@)*)|2
Ny + Ny = [lw ||H<) +[lw ||Hl<%>:oo
lw @712,
To:kg (@*
Sy I
Iw*,...
STO [w ||Hk(’§:oo
Therefore, the sufficient conditions for VarErr < EffectiveVar are
1 * (|2 * ]2
2 oy WL+ Wl
€S, 6076a76p§ d 2 . O.ko* 2 -0 AL,
Bag||w*||g Wl
Secondly, we analyze BiasErr. Similarly,
1 *
,VQNQ ’ H ”(H(Q) -1 + ”W(q) ||§_I](€11*):OO
1 * * "
- . ()72 (@)™ 12 _ ()72 (@)*
e (nw L e e L PR LN o o
1 .
SW [w ||(H<q) -1 + [lw'® ||H(q>
1 * * . .
SW - lw H(Ho;k;;)*l +|w ||%_Ik6:oo = EffectiveBias.
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Thirdly, the sufficient condition for ApproxErr < Ry is €4 < H‘:ﬁ‘ Overall, we require
H

1 * *(|2
Reo o2 WL+ W™ g,
CSINT— €or€arep S o 8
W™ [l

Bag|lw*|# w12

D.5 PROOF FOR THE ADDITIVE STATEMENT IN COROLLARY [4.2]

Proof. Recall that ki = max{k : \y > ﬁ}’

2
ap (R5IWIR,, + 1w, )+ %
1 —~yaptr (H)

k*
Ry = WO+N72-Z>\3
>k

EffectiveVar

_ 1 * (|12 *12
+ Nz - lw H(Ho:ks)—l + |lw HHk31x7

EffectiveBias

and by Corollary [D.1]
E[£(Wn)] < ApproxErr + VarErr + BiasErr,
where
.2 : 1 (@)*)|2 (@2
ApproxErr < )\ + o [w*|5, BiasErr < JENE |w ”(Hfffi*)’l + [|w HH(A(,)OC,

lw (@™ )
ap <W + |w(® |;qu)0€> + Tt + apep[tr(H) + deg] -
VarErr < (N

——i—nyZ- Z()\i+6d)2> .

i>k*

1 —yapltr(H) + deg]

We then compare the upper bound of E[£(Wy)] with Ry. Regarding VarErr, we first analyze
A+ N2 3ok (N + €a)?. Recall that for kf < i < k", 3= —ea < X < 1,

ki okt — kg
—+N722 itea)’ =3+ LNy > (Nt e+ Ny D (i +ea)?

P>k N kg <i<k* i>ky
k/,*
SNO + N> (N +ea)’.
i>ky
f[w(®" H2
We then analyze T“’“* + |w@” H2 . Similarly,
k*:oo
lw (@72, Il
okt W@ M ”W*”%ik*m' (D.2)
o

<
N~ ||H§f)oo ~ Ny

Therefore, the sufficient conditions for VarErr < EffectiveVar are

w13

k 0:kg * (|2
e < ~ t N2 Zi>k(’; A7 . < o2 n Ny T [|w HHka:OO
~ N~2(d — k) " P~ Bag[tr(H) + deg) tr(H) + deg

L
Ca,foNO' +BO{B T+||W ||Hk6‘><> .
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Secondly, we analyze BiasErr. Similarly,

1 * *
PN [w'(® H?Hff-’i*)*l + [wl® Hilﬁjﬁ,
1 * * * *
e (I B 4 W g ) = W B+ g
0:k s s e
1 * *
< w72 + [[w(@7)2
1 * * . .
SW -|w ”%H‘)rké)fl + [|w ||%{k0m = EffectiveBias.

Thirdly, the sufficient condition for ApproxErr < Ry is €5 < H‘f%"”?)\d. Overall, we require
H

kg 2 2 * (|2
+Ny2- S A2 Ro\ WL, ..
N i>k % 0Nd 2 0:k 12
< . A , €0 S 0“4+ Ba — 4w ,
CINT N k) w7 PR T g
[
_ o2 N N»:.ko + ||W*||%—Ik8:oo
?~ Bagltr(H) + deg] tr(H) + deg

D.6 PROOF FOR THE MULTIPLICATIVE STATEMENT IN COROLLARY [£.3]

Proof. We prove by applying Theorem 4.2}
E[£(Wn)] < ApproxErr + VarErr + BiasErr,

where

€q
1+e€y

w7 w3

* (12 . <
HW HH ) BiasErr ~ (H(()qll*)71 H}(Cq*):ooa

1
ApproxErr < N7

2
) L) L o p(1 4 €0)[1+ €6 + €al(l + 6)] [ w* |3

k*
VarErr < | — + N~2(1 2 g A '
arErr < (N + Ny (1 +eq) 1 —yap(1+ €)1+ ep + ea(l + 6)](1 + eq)tr (H)

i>k*

We first deal with VarErr under power-law spectrum Assumption 4.1l Under multiplicative quanti-
zation, we can estimate k* by

1
1 B —
(1+€a) Ny’
that is .
E* ~ [Ny(1+e€q)]=. (D.3)
Further, the power-law Assumption[d.1]also implies that for any positive £,
S it sk (D.4)

i>k

By and (D4),

min {d, [N~(1+ Gd)]% + N¥2(1 + €4)? [NY(1 + €4)] = }
N

% + Nv23(1 + €q)? Z A<
P>k
min {d, [N~(1+ Gd)]é}
~ .
Moreover, under polynomial spectrum Assumption .1}

tr(H) =~ 1, E|w*|%4 ~ 1.

A
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Therefore, under Assumption , by applying stepsize v <
and taking expectation on w*, it holds that

min {d, [Nv(1+ ed)]%}
I (

1
2ap(14€,)[14+€epteq(1+€p)](1+€q)tr(H)

Ew+VarErr < 14 €)1 +ep+ e (1+6€)], (D.5)

where we use 02 < 1.

We secondly deal with BiasErr. Under Assumption.1] using (D.J),

. 1 * (12 * 12
Ey«BiasErr <Ey,- {721\72 W Gy )+ W7

1 & d
:W;)\;I—FZM

i>kg

(D.6)
<

ke &
0
£
Ny i>kg
_ kg

< max {dlfa, (N’y)l/afl} .

+ ()

Therefore, together with and (D.6), and taking expectation on w*, we have

min {d7 [Nvy(1+ ed)]%}
N

E[S(Wy)] < —2 +max{d1-a,(m)l/a-1}+ (1+ €)1 + 6 + €a(l +6,)].

~14eq

Denote R = E[£(Wn)] — 154

1
o d>[Ny(1+¢€4)]®
In this case,

1
[Ny(A + €ea)]”
N
< nN1l/a—1 1/a
SNVOTI(1 4 €)1+ € + eall + €)1+ 0) .

R (Nt 4 (1+ €)1+ 6+ €a(l+ep)]

o (N9)V < d < [Ny(1+ea)]
In this case,

1/a—1 d
R S(N7) +(1+eo)[1+ep+ea(1+€p)]ﬁ
1
- NA(1+¢q)]=
S(Ny)He 1+(1+€0)[1+6p+€a(1+€p)]%

§N1/a—1(1 + o)1+ €y +€a(1+¢,)](1 _~_€d)1/a.

« d < (Ny)le
In this case,

d
R<d™ + (14 €)1+ € +ea(l+ ep)]ﬁ
A4 (14 €)[1+ € + €a(1 + )| NY/27L,
Overall,

E[EEN)] S 7 e +d 7+ N T 1 @)t 6t a1+ 6)] (1t o)/
d
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D.7 PROOF FOR THE ADDITIVE STATEMENT IN COROLLARY [4.3]

Proof. We prove by applying Corollary .1}
E[£(Wy)] < ApproxErr + VarErr + BiasErr,

where

ApproxErr <

D g

2
arllw* 4 T teoten 4 tr(H) +
VarErr < L ”H B 56 [tr(H) + ped ( + N~?%- Z i + €d) )

1 —yaptr(H) + ped] byt

We first deal with BiasErr. Under Assumption[4.1} using (D.2)),

E-BiasErr <E- {2N2 lw H?Ho:k*)*l + [|w ||%_Ik6(x>:|
. SRR
1>k
ot Z Ai

i>kg

(D.7)
_ ks *\1—a
< max {dl_a,(N’y)l/a_l}.

We then analyze VarErr. If eg +d—¢ > L, then

——I—N’y Z i +€q) :%.

i>k*
Otherwise,
k* 2 2
N+N’7 ;(AZ+€d)
1 —1/a 9 o 1 —(1—2a)/a 9 A2 9 1 —1/a
(m—ﬁd) +N’y (m—Ed) +€dN’7 d_(m_ﬁd)
<
~ N
1 —1/a 1 —1/a
(5 —e) " +aney [d (- }
< .

—1/a
Denote kg = [d*“ \Y (NL«/ — ed)} , it follows that

k* 9 2 ko +€dN2 2(d kcﬁ")
~ TV ">Zk*()\i+€d) < N

Hence, under Assumption , taking expectation on w* and applying stepsize v < m,

ko + 6(21N2"y2 (d — keff)
N .

€, + €4

Ew-VarErr < (1 + +ep(1+ ded)> (D.8)

Therefore, together with (D.7) and (D.8), and taking expectation on w*, we have

€ + €q ket + €2N272(d — keff)

EE(wn)] S +max{d1 @ (Ny)t/a- 1}+(1+ +6p(1+ded)>

Nd+ N

Denote R = E[E(Wn)] — =24
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e 470 < 1/(Ny) - e

In this case, let ¢/, = d%,. Then d~* < 1/(N~) — d~%,. Thatis, d~¢ < m

_1/

—1/a
+ Ni*ﬁd +€§N2’)/2 (d (Nifyied> )
€o T €q
+ep(1 + deqg ) N

R S(Ny)tes 1+<1+

1/a
= —d /) (1— N242) + &N?y2d

N71/a1+(1+eo+6a+€p1+d€d> -
1 1/a N 1/a 2 242 2N2~24g
N“Yl/a1+(l+ +ep1+ded> ) (V) (Ned ) €Ny
1 1/aN 1/a
<(Ny)/at 4 (1+ €0 * Ca +ep(1+ded)> {( <) N( ) + AN~2d| .
We then focus on e2N~2d. By Ny < + -4 we have
/1\2
EdN’)/2d< d1+a _ (ed)/dlfa.
1+ €4 1+¢€
Therefore,
€0 1 €q €0+ €q

RSNV N (14 d%q)" " (1 +

1 1

a 2
+ep(1+ ded)> Mdl_“.

1 —a 1
.N"/ €g<d SN’Y

In this case, ]\} —d ™%, < d?, thatis, d* < Nvy(1 + €). Consequently,

€, + €4
B

R <(NA)Yet 4 (1 + ~

d
+e,(1+ ded)> —=

€, + €

S(N’Y)l/a_l‘i‘ (1+ a +€p(1+d€d)> (1+6 )1/aN1/a 1

g (1 n Eogfa +€p(1 +d6d)> (1 +da6d)1/aN1/a71'

. —a 1
d=% > Ny
In this case,
€, + €

R<d'"™+ (1 +

=]~

“+ep(1+ ded)>

<dlTe 4 <1 + 6"; (1 + ded)> N1/a=1,

Overall,

o d%y €0 + €4 1 (d“ed)2
E < 1 1+d Na=Y(1+4q° dr—e -— .
E@®N)] S 1+da€d+< +=5 +ep(1+ ed))[ (1+d%q)" + ( +1+d“6d

O

E DISCUSSION OF ASSUMPTIONS

In this section, we verify Assumption [3.3] and Assumption [3.4] under the standard fourth moment
and noise assumptions made on the full-precision data (Zou et al.| 2023).

Assumption E.1. Assume there exists a positive constant cvg > 0, such that for any PSD matrix A,
it holds that

E [XXTAXXT} < aptr(HA)H
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Assumption E.2. Assume there exists a constant o3 such that

E[(y— <w*,x>)2xxT] < osH.

We consider specific quantization schemes.

Example E.1 (Strong multiplicative quantization). We consider a strong multiplicative quantiza-
tion. In this case, there exist constants €q, €, such that

E [e(d)e(d)”x} = edXXT, E [e(d)e(d)TAe(d)e(d)T‘x} < e&xxTAxxT.

Example E.2 (Strong additive quantization). We consider a strong additive quantization. In this
case, there exist constants €q, 6:1 such that

E [e(d)e(d)—r‘x} =¢qI, E [e(d)e(d)TAe(d)e(d)T‘x} = e&tr(A)I. (E.1)

E.1 DISCUSSION OF ASSUMPTION [3.3]
Under Assumption [ET} we are ready to verify if Assumption[3.3]can be satisfied. We begin by:
B {X@)X(q)T Ax(q)x(q)—r} ) KXm)T Ax@)) X(q)xmﬁ]
<2E _(X(Q)TAX(Q)) (xx" + e(d)e(d)T)]
AR '(XT Ax +e@ " Ae(d)) (exT + E(d)e(d)T)] (E.2)
=4E [XXTAXXT] + 4E {e(d)e(d)TAe(d)e(d)T}

+4E :(xTAx) e(d)e(d)T] + 4E Ke(d)TAe(d)) XXT} .

Lemma E.1. Under strong multiplicative quantization[E-1|and Assumption|[E_1|

E [x(q)x(q)TAx(q)x(q)T} Sap(l+eg+ €)tr(HDA)H@,

Proof. We proof by (E.2). From Assumption

E [XXTAXXT} =< aptr(HA)H. (E.3)
Under strong multiplicative quantization[E.I] we have
E [(e(d)TAe(d)> XXT:| = ¢ E [XXTAXXT] =< eqap tr(HA)H, (E.4)
E {(XTAX) e(d)e(d)w = ¢4 [XXTAXXT] < eqao tr(HA)H, (E.5)
and
E [e(d)e(d)TAe(d)e(d)T} < eE [xx"Axx "] < a0 tr(HA)H. (E.6)

Therefore, together with (E:2)), (E3), (E-4), (E:3) and (E.6), we have
E [x@)x(qw Ax(q)x(q)T] < ap(1+ g+ €)tr(HAYH < ag(1 + €4 + € tr(HD A)H@ .

That is, under strong multiplicative quantization Example [E.T] and fourth moment Assumption [E.T]
on full-precision data, Assumption[3.3]is verified. O

Lemma E.2. Under strong additive quantization[E-2)and Assumption[E.1]

/
E X(q)x(q)TAx(Q)X(q)T} < (14 ap) (1 + 6121> tr(H(Q)A)H(q).
€d
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Proof. We proof by (E:2). Under strong additive quantization [E:2]

E [(e(d)TAe(d)) xxT] < eqtr(A)H, (E.7)

E [(XTAX) e(d)e(d)T] < eqtr(HA), (E.8)
and . .

E {e(d)e(d) Ae@el® } =< e tr(A)L (E.9)

Therefore, together with (E.2)), (E77), (E=8) and (E9), we have

E [X(q)x(q)TAX(q)X(Q)T] < (14 ap) (1 + %

) (r(H@ AYH® |
€d

That is, under strong additive quantization Example [E.2] and fourth moment Assumption [E.I] on
full-precision data, Assumption [3.3]is verified.

E.2 DISCUSSION OF ASSUMPTION [3.4]
Under Assumption [E.2] we are ready to verify if Assumption [3.4]can be satisfied. We begin by:
E [(y(Q) _ <W(Q)*’X(Q)>)2X(Q)X(Q)T]
=E [(59 —y+y — (w*,x) + (w", %) — (w(" x(0)2x(0x(@ ]
<3E [(y(@ — y)QX(Q)x(‘I)T} 1 3E {(y (W, x>)2x<Q>x(‘1>T}
. ) . (E.10)
+3E |((w*,x) — <W(q) ,x(q)>)2x(q)x(Q) }
<3E {( @ _ )25 @x(@ } { X>)2X<q>x(q>q
)

+6E _<W(Q) —w,x)°xDx } +6E {< @ )*aﬁ(d)>2x(q)x(q)q .

Lemma E.3. Under strong multiplicative quantization Assumption and Assumption|E.2)

* 1 /
B[ " x0T 3 (o ETE ol ) 1
d

Proof. Regarding E [(y — <w*’x>)2X(Q)x(q)T} ,

E [(y _ <W*7X>)2X(Q)X(Q)T} <9E [(y _ <W*,X>)2XXT] +2E {(y _ <W*,X>)2€(d)6(d)T]

=<2(1+€4)E [(y — (W™, x>)2xxT]

=<2(1 + €q)02H,
(E.11)
where the second inequality holds by the definition of Example and the last inequality holds by

Assumption @ Regarding E [(W(‘?)*, e(d)>2x(‘1)x(q)—r},

E[(w@, e<d>>2x<q>x<Q>T}

_E _6<d>Tw<q>*w<q>*Te(d>x(q>x<q>T]

(E.12)
<oF [€<d>Tw<q>*w<q>*Te<d>xxT] LR {AdWW(q)*W<q>*Te<d>e<d>€<d>T

* * 1 * * 1
<2eq00tr(w? w0 H)H + 2¢,00tr(w'? w(@™ H)H,
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where the last inequality holds by the definition of Example[E-T|and Assumption[E.I] Regarding the
term

E {<W(q)* _ w*7x>2x(Q)x(q)T} ~<9R [(w(‘”* _ W*,X>2XXT:| +92E [<W(q)* _ W*’X>2€(d)€(d)T}

=2(1 + eq)aptr ((w(q)* - w*)(w(‘”* - w*)TH) H,
(E.13)
where the last inequality holds by the definition of Example [E.I] and Assumption [EJ} Re-

garding E [(y(q) — y)2x(q)x(‘I)T] , if we further assume that there exists a constant C' such that
E [y2xxT] =< CH, then

R [(ym) _ y)2x<Q>x<Q>T} <9E [(y@ _ Wqu 1 9E [(y<q> _ y)2€<d)€<d>q

=<2(1+ €)E (4 — y)*xx| (E.14)

=2(1 + eq)eE[y?xx "]
j2(1 + ed)elC’H.

Therefore, together with (E.10), (E.11)), (E.12)), (E.13)) and (E.14), we have
E {(ym) _ (W(q)*7x(q)>)2x(Q)x(q)T}

2
. H+ (14 ¢€:)eH

%2 *
(14 €q)0H + (eq + € HW(Q) HH H+ (14 €5)ap HW(‘I) —w*

= [(1 + ed)(a(z) +e)+(1+e+ e&)aOHW*H%{] H

1+es+€ .
= <0’8 + €+ Tedd()éonw ”%—I) H(q)
That is, under strong multiplicative quantization Example [E.T] and fourth moment Assumption [E.2]
on full-precision data, Assumption[3.4]is verified. O

Lemma E.4. Under strong additive quantization|E.2} Assumption|[E-1|and Assumption[E2]

* T /
E (50— (w®" x@))2x0x® ] 3 [oé et eall+ ) [w* + (1+a0) |w*|i1] HO.
d

Proof. Regarding E [(y — (w*, x))zx(q)x(‘”q , if we further assume that E [(y — (w*,x))?] <
o2, then
T T
E (g — (w", %)) 2% | <28 [(y — (w*,x))%xxT] + 2B [(y — (w*,x))%eDel® ']

j?agH + 26dU§I.

(E.15)
Regarding E [(y(q) — y)zx(q)x(Q)T] ,
E [(y(q) — y)zx(Q)x(Q)T} < eq¢ 1. (E.16)
- @ edy2x(@)x(a)
Regarding E [(w el xWx ,
E {<W<q>*’ e<d>>2x<q>x<Q>T}
_E {gd)TW(q)*w<q>*T€(d>X(q>X<q>T]
(E.17)

<9E [e(d)TW(q)*W(q)*Te(d)XXT] + 2K |:€(d)TW(q)*W(q)*Te(d)e(d)E(d)T
* xT * * 1
j?edtr(w(q) w(@) JH + 2€fjtr(w(q) w(® ).
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Regarding E [(w(Q)* —w*, x>2X(Q)X(q)T}’

E (w0 —w,x)2x@x@]
B [x ("~ w) (W@ —w) x|

*

=<2E [XT(W(q)* —w*)(wl" — w*)TxxxT} +2E {XT (W(Q)* — w*)(w(q)* - W*)Txe(d)e(d)w

<2aptr ((W(Q)* _ W*)(W(q)* B W*)TH) H + 2e4tr ((W(Q)* B W*)(W(q)* _ W*)TH) L
(E.18)

Therefore, together with (E.10), (E.13)), (E.16)), (E.17) and (E.I8), we have
E [(y(q) _ <w(q)*,x(q)>)2x(q)x(Q)T]

/ « 2 " 2
=2(02 4+ 6)HD 4 (1 + Z%) Hw(q) H H® + (1+ ag) Hw(q) W . H@
d

6/ * * q
<[ et ealt+ ) oI+ (104 ) oy 71
d

That is, under strong additive quantization Example[E.2]and noise Assumption[E.2]on full-precision
data, Assumption [3.4]is verified.

F EXTENSION TO QUANTIZED MASTER WEIGHTS

In the quantized SGD algorithm (quantized SGD)), the master weight maintains full precision. In this
section, we demonstrate that our theoretical framework can naturally extend to the setting where the

master weight is also quantized. For simplicity, we only discuss the bounds for Rg\?). The theoret-
ical bounds are presented in Theorem [FI} Theorem [F.2] and Theorem [F.3] for general quantization,
additive quantization and multiplicative quantization, respectively. These results demonstrate that
when the master weights are quantized, quantized SGD requires stricter conditions on the step size
to ensure convergence. Furthermore, the final excess risk bounds incorporate additional error terms,
which degrades generalization performance.

We first present the algorithm and the propagation of E [n;,n," |. Specifically, we consider

1
wy = Qp(Wi—1) + VEQd(Xt)TQo(Ql(Yt) - Qa(Qd(Xt)Qp(Wt_l))>, t=1,..,N. (El)

When master weight is quantized, Lemma[A-T] changes to

1 1 ° a
N = (I - B«de(Xt)TQd(Xt)> M-1+75 Qu(Xy)" [€t e — e - Qd(Xt)EEZi)l} e,

(F2)
In particular, the coefficient for parameter quantization error egf )1 changes from

_%7Qd(Xt)TQd(Xt) to I — éygd(Xt)TQd(Xt). Therefore, we can rewrite Lemma
and LemmalC.3]as follows.

Lemma F.1 (Update rule under general quantization with quantized master weight). Under Assump-
tion[3.1} Assumption[3.2] Assumption[3.3) and Assumption

E [mn, ] < 2(B; + Cy),

where
1 1 9 -
G 2| (11504007 QX)) Ceor (1-95,040%0)7 QX)) | 44700 1O 22 [, .

B, —E [(I - fy;gd<x>TQd<X)) B, , (I - V;Qdocfgd(m)] ,
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with Co = 0, By = E [nonq | and

sup €l |0 +E e(a)e(a)T\a
2 t i€ t € ¢

Oq B
2

-
+2apsupEy, [tr <H(q)E |:6§p) (p) |Wt 1})] + %’
t

Proof. Noticing that

E [(I - éygd(Xt)TQd(Xt)> € )1e§p)1 (I - ;’Ygd(xt)TQd(Xt)>:|

2 (E.3)

.
<25;E [Qd(xt) Qu(Xo)er e’ Qd(xt)TQdoct)] +2E { ey } :
together with (F2) and Lemma[C.2] we complete the proof. O

Lemma F.2 (Update rule under multiplicative quantization with quantized master weight). If there
exist €q, €], €p, €q and €, such that for any i € {d,l,p,a,o}, quantization Q; is e;-multiplicative,
then under Assumption[3.1) Assumption[3.2] Assumption[3.3} and Assumption it holds

E [nmtT] =<2(B;+ Cy),

where

C, <E (I - ;de(X)TQd(X)> Cor (I - ;w%xmd(m) +8¢)(Cot+Bi1)

HE [£:04(X)" Qu(X)(Bis + Cio1) F0ul(X) " Qu(X)] + 720 H® + ey (w )T,

B, =E (1 - ;de(X)TQd(XO B:_: (I - ;’YQd(X)TQd(X)> ;

with
€=28c(1+¢,)(1+€,) + 8¢ +4e, (1 +¢p),
2

G2 _ (L+de)o” | [[w|lfy
M B 1+ €4

ap (de[(1+€p) (14 €q) + 1] + 2e(1 + €p) + 4e,)

Proof. Under multiplicative quantization,
T * *
E {eg@le]@l } =¢E [Wt—lth_l] = 2¢E [77t—177tT_J + 26pw(q) (w(q) )T. (F.4)
By (F2), (F3), (F4) and Lemma[C.3] the proof is immediately completed. O

F.1 GENERAL QUANTIZATION

In this section, we derive upper bounds for RE\(,)) under general quantization. We first perform bias-

variance decomposition under general quantization. By Lemma[F1] we have

E [771577;] =2(B:+Cy),

where
B, := (I —~T") 0By, By=E [nong ],
and

.
Cii= (T —T{) 0 Coot + 770 H@ 4 28 [ e, } ; Co=0.
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Then by Lemma|[C.1]
| NoiN-1 N-1N-1
R /2 < el <1 AH@) b=t @) Bt> < yH(Q))k‘tH(q),Ct>.
t=0 k=t t=0 k=t
bias variance

(ES5)
Noticing that the bias error when master weight is quantized is the same as the bias error when master
weight maintains full precision, we then only need to derive bounds for variance error. Similar to

€22,

~ 2
C, 2 (T—-7T9)oCry+7*MP 0 C,y +120 W HW 4 2R [ (@ P } . (F6)

Lemma F.3 (A bound for /\/lg) o C; with quantized master weight). Fort > 1, under Assumption

Assumption Assumption and Assumption if the stepsize v < m then

(@)? 2d
aptr(H@) (’YUG + wtr(Pﬁq’)) ()
[~ yaptr(H®) '

M@ oc, =

.
Proof. We first derive a crude bound for C;. Denote 3 = U(Q) H©@ + 2 sup, E |:€£p ) P } By

€29,

_ @t
C, XCx =775 oX.
Applying 7@, we have

T@oC,, = B(’q) 0 Co +7MS§) 0Co — M@ 6 Co
=12+ MW 0 Cp — Y M@ 0 Co
=X —i—v/\/l(q)

(q) HY + = 5 bupE [et )1e§p)1 ] + 'y./\/lg) 0 Cw
Applying (7~'(‘1))*1 and by solving recursion, we have

2 ~ ~
Coo <0 d (T@W) 1o HW 4 = (T<q>) osupE [e?)legi) ]+7(T<q>)1o/w§_g> 0 Cus
t

Z( (F@)- M};’)) (W(cn (F@)1 o 7@ 4 2 (F@)-1 osupE{eg ) e®) D

t=0 Y
ET7)
By (CZ7).
S (@) @\ @y-1 o F1(@ 10’
N~ oM q R T I F.8
; ( T B ) o 70- (T ) 1 — ’VOéBtI'(H(q)) ( )
Noticing that

o0
(%(q))_l osupE {egp)ﬁt 1 } VZ (- VT ‘o supE [61(& )1“3?)1 }
t P t

=7 > (I—~yH®) SupE[ e ] (I—yH@)!
t=0
-<sup ’ [ ® ¢ ”’ HO) = . (H@)
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we have

~ T
(T or e

(F9)

" ytr(H@) 1 — yaptr (H@®)

Therefore, together with (E7), (E8) and (F9), we have

(a)? 2dy
C; < Co < 196 T SamEm)
- 7% T 1 —yaptr(HW)

It follows that

2
tr(H@) (10 + 2
aptr( ) (vog Yer(H@) H@

(9) C, <
M oG = 1 — yaptr(H@)

Together with (E6), we can provide a refined bound for C; and we are now ready to bound the
variance error.

Lemma F.4 (A bound for variance under general quantization with quantized master weight). Under
Assumption [3.1) Assumption 3.2 Assumption 3.3} and Assumption if the stepsize satisfies v <

1
S Bt (@) then

0.81)2 + 2apdp k* (@) 2,u, 1 (9)
: <& v (2 4 NA2. NP+ N Sk
variance < 7— o e (H@) (N + Ny l;( i)+ ~ l; Ny + Wi;; i

-
where pu = sup, HE {ei’i)l 6,(511)1 }
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Proof. We first provide a refined upper bound for C,. By (F.6) and Lemma|[F.3]

Ci XL =T @) 0 Coy + M 0 Cp_y + 4200 H(q)+2E[ ® () ]

2
om0 (o +

2
) H@ + 429 H@ 4 241
1 — yaptr(H@) T e

2(Z—ATW)oCry +

2 _(9)?

~ + 2vapdu

=T —ATW)oCyy + LG H + 21
( AT'9) o Cyq1 + 11— ’yOthr(H(q)) +2u

9 ()2 t—1 _ t—1 _
_09%6 F20BA0 NP7 Tk g@ 4 203 (T —ATDY o1
1 — yaptr(H@)
k=0 k=0
2 (a)2 t—1 t—1
og +2yapdy (@Y pg(@) ON: (0))2k
= ST = A H@OYH@ (T - yH@ 2 I—~HY
Tt (H®) kzzo( YHO)FHD (T - HD)* 4 ukzzo( +HD)
9 ()2 t—1 t—1
oG+ 2yapdp @k pp(@) (@)\k
ST - A H@OWH@ 19 I-—~HY
= et (@) (I— yHO)H 42, (T - yH@)
k=0 k=0

(a)?
196+ 20pdn @yt) 4 2# @) (Fp@)-1
=26 ToPC (1 (I-yHU P11 —HD)) ("
1—7aBtr(H(‘1))< (=7 ))+,y( (I—~ ))( )

Vi V3
By (€32).
N—1N-1 (@? | 2apdu
1 _ o+ k*
. I—~HOY—tg@ v al Yo NA2. A@y2 )
N2 poriw <( K ) ’ 1>* 1 — yaptr(H@) N+ K z;;( i)
(F.10)
Regarding Vo,
| N-oiN-d
— (I—’yH(Q))k_tH(q) V,
N = k=t< >
N-1
2N2 Z<I (I— yH@)N- (I—(I—7H<q>)t) (H<q>)71>
=0
S (a) (0] 1
q)\N—t q)\t
2N2 ;[1— TA) Hl—(l—ﬂi )}@ (F.11)

=45 A(q>+ Ny 3T A

v igk* i>k*

Together with (F3), (FI0) and (FTI)), we have
2
O'g]) + 2(1:(1# (k*

1
N )\(Q) 2 2& N )\(Q)

variance <
v i<k* i>k*

where p = sup, H [egp)legp)l ] H O

Theorem F.1 (A bound for R ) under general quantization with quantized master weight). Under
Assumption [3.1) Assumption @ Assumption [3.3) and Assumption if the stepsize satisfies v <
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7{13“(1}1@), then
©) 2053 <W0 - w(q)*Hf(q) + N’Y”WO - W(q)*”il(q) ) k* (@
RY /2 < L el | =+ Ny? A7)
N /2% Nv(1 — yap tr(H@)) N zgk:( -

1
s o = w2 1 fwo — w2

2N2 H(Q) H(Q)

+M k*+N7 ST (A)? L2 > ! + Ny > AP
1 — yaptr(H@) i>k* ' T i< NV /\(q) i>k* 7

where k* = max {k : )\,(CQ) > 1\%} M = supy H [egp)legp)l ] and

T T
I s R
)" _

on =
T 2
+2ap Slip Ew,_, {tr (H(q)E {6?1)16?1)1 ‘Wt—1:|):| + %.

Proof. The proof is completed by (F.3), Lemma[C.10]and Lemma [F4] O

Next, we deduce an upper bound for Rg\(,)) under additive quantization from Theorem

F.2 ADDITIVE QUANTIZATION

Assumption 3.1} Assumption Assumption [3.3] and Assumption 3.4} if there exist e, €1, €, ¢,
and €, such that for any i € {d,l,p,a,o}, quantization Q; is €;-additive, if the stepsize satisfies
v <

Theorem F.2 (A bound for R%under additive quantization with quantized master weight). Under

aplE) e then

s (I~ w2+ Nylwo—w [, )/
Rg\?)/z S 0:k k*:00 . o 2

N+? i
Ny(1 = ~yap[tr(H) + deg)) v+ ;:( +eq)

1 * 1o W
+772N2 - |lwo —w@ ||(H((;:Ii*)71 + [Jwo — a)* H

o2+%>7+6a + QEpQB (% + tr(H) + ded) (k*

N2 by 2
1-— 'YO(B[’EI‘(H) + ded] N + Ny Z>Zk*( + Gd) >

H(‘I)

+

2¢p

1
+==2 ————+N Xi +
gl %; Nv(Ai + €q) 72;} @

Proof. The proof is completed by Theorem [F1] O

F.3 MULTIPLICATIVE QUANTIZATION

In this section, we derive upper bounds for RE\?) under multiplicative quantization, i.e., there exist

€d; €1, €p; € and €, such that for any ¢ € {d,(,p, a, o}, quantization Q; is e;-multiplicative. We first
perform bias-variance decomposition under multiplicative quantization. Denote

B™ = (1 +86,)T — T3 + &y’ M) o BM, B =E [nong | -

2 * *
CM = (148¢,)T T + &2 M) o CIM) 442601 H@ 146, w@ " (w@)T ' = 0.
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By Lemma|[F.2] we have
E[nn/] <2 (B + ™).
Then by Lemma|C.1]
N-1N-1 N-1N-1
R(O)/ < I— yH@)F~ BEM)> + R <(I — yH @)kt (@) C§M)> )
t=0 k=t t=0 k=t
bias variance

(F.12)

F.3.1 ANALYSIS OF VARIANCE ERROR

Similar to (C23),
c™

—

—((1 4 86,)T — /TS + &2 MD)CM + 426D HO 4 4e,w(@" (w@")T

=((1+ 8¢,)Z — ’Y%(Q)) ° Cg[l) +9*(1+ €)MB °© Ctyl)
+7 a( 0 HY + 4e,w )*(W(q)*)T.

Recall that 7@ = H@ @ I+ 1 H® — yH@ @ H®. Denote 7,¥ = HY 9 I+ I ®
H@ — v/ 2H(@) @ H(@ . Before proceeding, we find conditions for step size such that 8epl =X

AT (@) — %ﬁ(q). It suffices to restrict:

2 3 2
1< @ 8¢, < AW — 17%\51) : (F.13)
1

Equipped with (F-13)),

CEM) =(Z- %’7'2((1)) C(M) + 7y (1 + e)M(Q) o C(M) + ’yz (@) H@ + 4epw(q)*(w(q)*)—r‘

We would like to remark that, in the analysis of variance, to simplify W(q)*(w(Q)*)T, we assume
the parameter prior

E [W*W*T} =1,
and take expectation over w* on variance error. It follows that|

CEM) (I 77-(61)) ° Ciyl) + 72(]_ + g)j\/l(q) o C(M) + v o'(q) H(q) + 46 I. (F.14)

In subsequent analysis, we first derive a crude bound for CEM), then establish a refined bound for
™) via (F.14).

Lemma F.5 (A bound for Mg) ngM) with quantized master weight). Fort > 1, under Assumption
Assumption[3.2] Assumption[3.3} and Assumption[3.4] if the step size satisfies

3
1> 2(1+ éyaptr(H?), 8¢, < 'y/\gq) - 172)\((;)

then
8de,,

2,}/0.(‘1) +
@ o c) 4 Ytr(H9)
M oG X T 0 T raptr@@)

tr(H)H@,

Proof. By (F.14),

1~ - ?
ci™ < ch <4 (27'2(") —y(1+ E)M%’)> ° <"1(\3) H 4;’§I> '

>

7 Actually, 1| holds under the expectation of w*. Slightly abusing notations, we omit Ey,«.
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Applying 7,
T390 CN = (39 — 21+ 6)7/\/15;)) o CRY 4201+ €)7M5§) o CY
<292 +2(1 + &)yM? o CQD),
Applying (T(q )~ we have

8ep

O <2yolf)” (F) ™ o B + Z2(T) ™ oLt 21+ (T”) ™ o MY o O

[e%e} ¢ ~ 5
<> (20 + 9T o M) o<’r§q)>lo(2w<ﬁ’ H<q>+8§”1>~

t=0

Noticing that (7,7)~1 o H@ < Tand (7)1 oI < (H@)~!, we have

oo . N
C0 <3 (20 + T o M) o (T0) ! (270-() H@ 4 831)

o (F.15)
= Z (2(1 + &)y (T(q)) Mg)) (270(‘1) I+ 83’ (H(Q))—1> .
t=0
Firstly,
21+ (T ”) " o M o T <2(1 + &)yaptr(HO)L (F.16)
Secondly,
21 + V(T3 L o MY o (HD) 1 <2(1 + &)yaptr(T)L. (F.17)

Therefore, together with (F.13), (F.16) and (F.17), we have

t—1 2
cM < Z ( (I+é)y T(q)) o Mg)) ol- [4(1 + €)7201(&) aptr(HD) + 16(1 + €)o¢Bd6p]

8d = -1
(27 (0)2 o 6p )Z (14 &)y(F0)-1 M<q>) oI 2(1+ &)yaptr(H®)

r
t=0

2 8d -
= (2701(\3) ~o(H ep ) E 2(1+¢€) 'yaBtr(H(Q))} I
t=
2 8de
2’705\(]4) + n,tr(Hz(’@)

T1-2(1+ Oyaptr(H@)
where the second inequality uses (FI6). At last,

Ok 8de
2vo + L
(@) 5 M) M uH®)
./\/lB o LUy - 1—2(1+€)’}/O¢Btr(H(‘1))aB

tr(H(Q))H(q).

O

Lemma F.6 (A bound for variance under multiplicative quantization with quantized master weight).
Under Assumption[3.1) Assumption[3.2) Assumption[3.3) and Assumption if the step size satisfies

3 2
1>2(1+ €)7aBtr(H(Q)), 8¢, < ,y)\gI) - 172)\((;1) ,

then

40'(q) +32(1 + é)depap/y
Ew* : < M P N 2 )\(q) 2
variance <—- 30+ yaptr(HW) N + l;ﬂ( i)

+ Ny Z A(Q)
i>k*

+ 16€p Z

v \ S Nn@
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Proof. We first provide a refined upper bound for C,. By (F.14) and Lemma[F5]

~ 2
Ci' (T - ST) 0 €Y + 92 (1 + M 0 O + 420 H® + 4e,1

~ 2
<= 2T) 0 O 49201 THW 4 4e, 1

(q)2 8de
29051+ Sy

2 -
1
P T 30+ rapte(E®)

OthI‘(H(q))H(q)

2
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= 7—2 ) O T 2(1 4 é)yaptr(HW@)

H 4 4e,1
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1= 2(1 + &)yaptr(HW®)

7208 4 891+ ey
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V1 V2
(F.18)
Recall (F.12),
N-1N-1
E,.+variance < < — < (I— fyH(q))k*tH(q), Vi + V2> .
t=0 k=t
Regarding V1,
| NoIN-1
7 <(I — ,YH(q))k*tH(q)’ V1>
t=0 k=t
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t=0 k=t
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Regarding Vo,
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Together with (F.12), (F.18), (F.19) and (F.20),

. 401(\3[) +32(1 + é)de,ap /7y 9 (@2 16¢,
E -~ variance < N + N~ Z N7+ Z )\(q)

[ —2(1 + )yapte(H) 2 v\ &

F.3.2 ANALYSIS OF BIAS ERROR
Recall that

BM = (14 86,)T — 1T + &M D) o B, BM =By = E [nong |,
From (C.14) we deduce that

N—1
. <I— ~VH(@) N,ZBM)>. (F21)
t=0

Denote S%M ) = ?;Ol B,EM). Motivated by Lemma

SIM) (14 86,)T — 4T + &* M) 0 81M) 4+ B,
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Similar to the analysis of variance error, we consider

3 2y (@2
— ., 8¢ S'Y)\(q)_*’};)\q .
3)\§q) p d 4 d

It follows that 8¢,Z < 7 (@) — %~2(Q) and hence
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Lemma F.7 (A bound for M (Q) o S with quantized master weight). For 1 < t < N, under
Assumption 3.1} Assumption @ Assumptton 33} and Assumption if the step size satisfies

3 2
1> 2(1+ éyaptr(H?), 8¢, < 7)\;‘1) - 172)\;(1) ,

then
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Proof. From (F22),
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together with li (7~'2(q))_1 ocH@ < Iand Mg) oI < aptr(HW)H, we have
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e . t
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Therefore, recall that
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Together with (F22) and Lemma [F7] we are now ready to bound the bias error with quantized
master weight.

Lemma F.8 (A bound for bias under multiplicative quantization with quantized master weight).
Under Assumption[3.1] Assumption[3.2} Assumption[3.3) and Assumption[3.4] if the stepsize satisfies
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Proof. By (F22) and Lemma|[F7]
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Before providing our upper bound for the bias error, we denote
B,,:=B, - (I- %H(Q))b‘“Ba(I - %H(Q))b‘
Recall from (F2T) that
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we have

N-1 .
I-(I- lH(Q))N I-— lH(Q))k 21+ 6)7?3 tr (Bon) HY + B | (I- ,H(Q))
2 2 1—2(1+ é)yap tr(HW@) 2

N-1 .
2 Z (I— ZH(q))WC —(I- lH(q))NHk 2(1 + épyap - tr (Boy) "H@ + B, ).
N2 — 2 2 "1 —2(1 + &)yap tr(H@)
Note that
(I— lH(q))% —(I- ZH(q))NHk < (I- lH(q))k —(I- ZH(Q))N+I€
2 2 - 2 2 ’
we have

N-1 -
. 2 vy o 2(14 &)yap - tr (Bo n)

bias < ——— I— 2HOYV _ (1 - TH@\N+E ; H@D B, ).
R EIEPD (- gm - Juoyven PEEOIE R O+ By

Therefore it suffices to bound the following two terms:
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Then we tackle tr(Bg ).
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Based on the analysis for bias and variance error, we are ready to present the bounds for RE\?) under
multiplicative quantization with quantized master weight.

Theorem FE.3 (A bound for RE\?) under multiplicative quantization with quantized master weight).

Suppose there exist €4, €, €, €, and €, such that for any i € {d,l,p,a, o}, quantization Q; is €;-

multiplicative. Under Assumption[3.1] Assumption[3.2] Assumption[3.3] and Assumption if the
step size satisfies

3 2

1> 2(1 4 &)yaptr(H?P), 8¢, < 'y)\glq) - 172)\((;1) )
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then taking expectation over w* on variance E]
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Proof. The proof is completed by (F.12), Lemma|F.6|and Lemma|F.8] O

G DETAILS OF ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL DATASETS

For the supplementary experiments, we consider both synthetic and real-world datasets.

Synthetic dataset. We construct a synthetic regression dataset whose covariance spectrum follows
an exponential decay. Specifically, the eigenvalues are given by

N =e ", i=1,2,...,d.

This allows us to examine the behavior of our method under rapidly decaying spectral structures,
complementing the polynomial-decay setting used in the main paper.

Real-world dataset: Communities and Crime. We additionally evaluate on the publicly
available Communities and Crime dataset, which contains community-level statistics from
across the United States. The features integrate socio-economic indicators from the 1990 U.S. Cen-
sus, law-enforcement statistics from the 1990 LEMAS survey, and crime records from the 1995 FBI
Uniform Crime Reporting (UCR) program. The task is a standard regression problem: predicting the
per-capita violent crime rate from community attributes. The dataset contains about 2000 instances
with 122 features.

G.2 EXPERIMENTAL SETTINGS AND RESULTS

We describe below the protocol for each additional experiment and corresponding results. In both
real-world dataset and synthetic datasets, we examine how do additive vs. multiplicative quantiza-
tion affect learning (generalization) performance.

* Real-world regression (Communities and Crime). We apply both additive and multiplicative
quantization schemes (with fixed quantization error level ¢ = 0.01) to the regression task on
Communities and Crime dataset. For each quantization method, we evaluate the resulting

population risk E ,, {(y — (w, x))ﬂ . As illustrated in Figure , the results demonstrate that,

unlike additive quantization, the multiplicative scheme successfully maintains the performance
of full-precision SGD. This aligns with our theoretical finding that multiplicative quantization
exhibits greater tolerance to quantization error level.

$Here we assume that Ew*w* ' = L.
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(a) Real-world regression (b) Effects on spectrum

Figure 2: Comparison between multiplicative quantization and additive quantization. (a):
Real-world regression (Communities and Crime). (b): Effect of quantization on data spectrum.
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Figure 3: Generalization under quantization. Test risk for SGD with iterate averaging under

multiplicative (FP-like) vs. additive (INT-like) quantization. (a) and (b): vary the quantization level
at fixed B = 10. (c) and (d): vary the quantization level under exponential decay.

* Effect of quantization on data spectrum. Using the same settings on Communities and
Crime dataset, we record the resulting empirical covariance spectra to study how each quanti-
zation type perturbs the underlying eigenvalue structure. Results are shown in Figure Itis
shown that additive errors errors dramatically distort the spectrum of effective data covariance
while multiplicative quantization errors largely preserve the spectral structure. This visualization
corroborates the specific mechanism by which additive and multiplicative quantization lead to
distinct generalization behaviors.

* Sensitivity analysis on batch size and spectral decay. To demonstrate the robustness of our
findings, we conduct additional experiments varying the batch size and data spectrum. First,
we extend the batch size to B = 10 (with d = 200) and vary the quantization error level ¢ €
{0.001, 0.005, 0.01}. Second, we replace the polynomial-decay spectrum with an exponential-
decay synthetic dataset while keeping other settings identical. The results, shown in Figures[3(a)l-
B(D)] (batch size) and Figures (spectral decay), consistently mirror the findings in the
main paper: multiplicative quantization preserves the generalization performance of full-precision
SGD across various quantization error levels, whereas additive quantization suffers from perfor-
mance degradation as the error level increases.

H THE USE oF LLMS

The use of large language models (LLMs) in this work was limited to linguistic polishing of the
text (e.g., grammar, clarity, and readability) and was not involved in any research phases, from
conceptualization and proofing to experimentation and interpretation.
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