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ABSTRACT

The use of low-bit quantization has emerged as an indispensable technique for
enabling the efficient training of large-scale models. Despite its widespread em-
pirical success, a rigorous theoretical understanding of its impact on learning per-
formance remains notably absent, even in the simplest linear regression setting.
We present the first systematic theoretical study of this fundamental question, an-
alyzing finite-step stochastic gradient descent (SGD) for high-dimensional linear
regression under a comprehensive range of quantization targets: data, labels, pa-
rameters, activations, and gradients. Our novel analytical framework establishes
precise algorithm-dependent and data-dependent excess risk bounds that charac-
terize how different quantization affects learning: parameter, activation, and gradi-
ent quantization amplify noise during training; data quantization distorts the data
spectrum; and data and label quantization introduce additional approximation and
quantized error. Crucially, we prove that for multiplicative quantization (with
input-dependent quantization step) , this spectral distortion can be eliminated, and
for additive quantization (with constant quantization step), a beneficial scaling ef-
fect with batch size emerges. Furthermore, for common polynomial-decay data
spectra, we quantitatively compare the risks of multiplicative and additive quanti-
zation, drawing a parallel to the comparison between FP and integer quantization
methods. Our theory provides a powerful lens to characterize how quantization
shapes the learning dynamics of optimization algorithms, paving the way to fur-
ther explore learning theory under practical hardware constraints.

1 INTRODUCTION

Quantization has garnered widespread attention as an essential technique for deploying large-scale
deep learning models, particularly large language models (LLMs) (Lang et al.| [2024; |Shen et al.,
2024). In line with this low-precision paradigm, a new frontier of research has emerged: quanti-
zation scaling laws, which seek to formalize the trade-offs between model size, dataset size, and
computational bit-width. Seminal work by |[Kumar et al.| (2024) treated bit-width as a discrete mea-
sure of precision. This was extended by [Sun et al|(2025), who established a more comprehensive
scaling law for floating-point (FP) quantization (Kuzmin et al., 2022)) by separately accounting for
the distinct roles of exponent and mantissa bits. Going further, (Chen et al.| (2025) proposed a uni-
fied scaling law that models quantized error as a function of model size, training data volume, and
quantization group size. Collectively, these studies identify a crucial insight: for large-scale model
training, strategic low-bit quantization can drastically reduce memory, computation, and communi-
cation overhead. This efficiency enables the training of significantly larger models on more extensive
datasets under a fixed memory budget, all without sacrificing final model performance.

The practical deployment of low-precision training has advanced rapidly, yet a significant theory-
practice gap persists. Theoretical research remains predominantly restricted to analyzing conver-
gence guarantees on the training loss for quantized optimizers (Nadiradze et al., 2021} [Liu et al.,
2023; Xin et al., [2025; Markov et al.| 2023). For example, |[Markov et al.|(2023) proves convergence
guarantee for the communication-efficient variant of Fully-Shared Data-Parallel distributed training
under parameter and gradient quantization. While these studies offer crucial insights into optimiza-
tion, they overlook a more fundamental question: how does quantization affect the model’s learning
performance? Specifically, a rigorous characterization of the interplay between quantization, model
dimension, dataset size, and their joint effect on the population risk remains largely unexplored. A
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notable step in this direction is Zhang et al.| (2022), which analyzes the generalization of quantized
two-layer networks through the lens of neural tangent kernel (NTK). However, their work is limited
in three key aspects: it only considers parameter quantization; its analysis is confined to the lazy-
training regime; and it fails to provide explicit generalization bounds in terms of core parameters
like sample size, dimension, and quantization error. These limitations restrict its applicability to
modern low-precision training practices.

Motivated by recent theoretical advances in scaling laws (Lin et al.| [2024; 2025)), we analyze the
learning performance of quantized training using a high-dimensional linear model. This model
serves as a powerful and well-established testbed for isolating phenomena like learning rate and
batch size effects (Kunstner & Bach, [2025; [Luo et al.| 2025} Zhang et al., 2024b; Xiao, 2024} Ren
et al., [2025; Bordelon et al., 2025). Its simplicity provides the analytical flexibility necessary to
derive precise relationships between generalization error and critical parameters such as dimension,
sample size, and quantization error (or bit-width).

Our Setting. In this paper, we consider SGD for linear regression under quantization. We first
iterate the standard linear regression problem as follows:

min L(w), where L(w) = %]Ex,y [(y —(w,x))?],

where x € H, is the feature vector, where, H is some (finite d-dimensional or countably infinite
dimensional) Hilbert space; y € R is the response; D is an unknown distribution over x and y;
and w € H is the weight vector to be optimized. We consider the constant stepsize SGD under
quantization as follows: at each iteration ¢, an i.i.d. batch (with batchsize B) of examples (X¢,y:) €
RE*4 x RE is observed, and the weight w; € R? is updated according to SGD as follows.

1
Wi = Wit + 75 Qu(Xe) T Qo (Quye) = Qu(Qu(X)Qp(wi-1))), ¢ =1, N,
(Quantized SGD)

where v > 0 is a constant stepsize, N is the number of sample batches observed, the master weights
be initialized at wg, and Qg, 9;, 9, Qa, Q, are independent general quantization operations for
data features, labels, model parameters, activations and output gradients respectively. Notably, for
theoretical simplicity, we assume all matrix operations (e.g., addition and multiplication) are com-
puted in full precision, with quantization applied subsequently to obtain low-precision values. Then,

we consider the iterate average as the algorithm output, i.e., Wy := % Zii 61 Wy

The goal of this work is to characterize the learning performance of the quantized SGD via evaluating
the population risk L(W ), and more importantly, its relationship with the quantization error. Let
w* = arg min L(w), we define the following excess risk as a surrogate of the population risk:

E(Wy) = L(Wy) — L(w"). (Excess Risk)

Our Contributions. We develop a novel theoretical study on the learnability of the quantized SGD
algorithm for high-dimensional linear regression problems. Our contributions are as follows:

* By systematically analyzing a class of quantization techniques, we establish a theoretical bound
for the excess risk in quantized SGD. This bound is explicitly formulated as a function of the
full eigenspectrum of the quantized data feature covariance matrix, sample size, and quantiza-
tion errors (see Theorem [.1] for details). Our results precisely reveal how quantization applied
to different model components impacts learning performance: data quantization distorts the data
spectrum; the quantization of both data and labels introduces additional approximation and quan-
tized error; while the quantization of parameters, activations, and output gradients amplifies noise
throughout the training process on the quantized domain.

* We analyze two standard quantization error models: additive and multiplicative, which conceptu-
ally relate to the integer and FP quantization techniques. Our theoretical result shows that multi-
plicative quantization eliminates spectrum distortion and subsumes the additional quantized error
into dominated terms (see Theorem [.2] for details). For additive quantization, our theoretical
bound suggests that the impacts of activation and gradient quantization diminish as batch size
scales up (see Corollary for details).
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* We further derive the conditions on the quantization errors such that the learning performance
of the full-precision SGD can be maintained (in orders). Our results indicate that compared
with multiplicative quantization, additive quantization imposes more strict spectrum-related and
dimension-related requirements on data quantization but weaker batchsize-related requirements
on activation and parameter quantization (see Corollary for details). By extending the com-
parison to data spectra with polynomial decay, we draw implications for comparing integer and
FP quantization (see Corollary .3 for details). This allows us to identify the conditions under
which each type is likely to yield superior performance.

2 RELATED WORKS

High-dimensional Linear Regression via SGD. Theoretical guarantees for the generalization prop-
erty have garnered significant attention in machine learning and deep learning. Seminal work by
Bartlett et al.| (2020); [Tsigler & Bartlett| (2023)) derived nearly tight upper and lower excess risk
bounds in linear (ridge) regression for general regularization schemes. With regards to the classi-
cal underparameterized regime, a large number of works studied the learnability of iterate averaged
SGD in linear regression (Polyak & Juditsky, |1992; Défossez & Bach| 2015; Bach & Moulines)
2013; Dieuleveut et al.l [2017} Jain et al., 2018} 2017). With regards to modern overparameterized
setting, one-pass SGD in linear regression has also been extensively studied (Dieuleveut & Bach,
2015; Berthier et al.l 2020; [Varre et al.| 2021} |[Zou et al., [2023; Wu et al., 2022ab; [Zhang et al.,
2024a)), providing a framework to characterize how the optimization algorithm affects the general-
ization performance for various data distributions. Another line of work analyzed the behavior of
multi-pass SGD on a high-dimensional ¢2-regularized least-squares problem, characterizing excess
risk bounds (Lei et al.}[2021;|Zou et al.,[2022)) and the exact dynamics of excess risk (Paquette et al.,
2024a)). From a technical perspective, our work builds on the sharp finite-sample and dimension-free
analysis of SGD developed by |Zou et al.|(2023)). However, these works did not concern the practical
quantization operations. It remains unclear how quantization error affects the learning behavior of
SGD for linear regression.

Theoretical Analysis for Quantization. As a powerful technique for deploying large-scale deep
learning models, quantization has attracted significant attention. From the theoretical perspective,
a line of works focus on the convergence guarantee in both quantized training (SGD) algorithms
(De Sa et al., 2015; |Alistarh et al., [2017; [Faghri et al., 2020; (Gorbunov et al., 2020; |(Gandikota
et al.| 2021} [Markov et al.,|2023} Xin et al.| 2025) and post-training quantization methods (Lybrand
& Saabl 2021} |[Zhang & Saab) 2023 Zhang et al. 2023} 2025). For low-precision SGD, De Sa
et al.| (2015) was the first to consider the convergence guarantees. Assuming unbiased stochastic
quantization, convexity, and gradient sparsity, they gave upper bounds on the error probability of
SGD.|Alistarh et al.|(2017) refined these results by focusing on the trade-off between communication
and convergence and proposed Quantized SGD (QSGD). [Faghri et al.| (2020) extended the fixed
quantization scheme (Alistarh et al.l 2017) to two adaptive quantization schemes, providing a more
general convergence guarantee for quantized training. For post-training quantization, [Lybrand &
Saab| (2021) derived an error bound for ternary weight quantization under independent Gaussian
data distribution. [Zhang et al.| (2023) extended this results to more general quantization grids and
a wider range of data distributions using a different proof technique. More recently, [Zhang et al.
(2025) presented the first quantitative error bounds for OPTQ post-training algorithm framework.
However, no prior work provides explicit generalization bounds.

Linear Models for Theory of Scaling Law. Several recent studies have sought to formalize and
explain the empirical scaling laws using conceptually simplified linear models (Bahri et al., 2024;
Atanasov et al., 2024; Paquette et al., 2024b; Bordelon et al., 2024; [Lin et al., 2024; 2025)). Among
them, Bahri et al.| (2024) considered a linear teacher-student model with power-law spectrum and
showed that the test loss of the ordinary least square estimator decreases following a power law in
sample size IV (or model size M) when the other parameter goes to infinity. Bordelon et al.[(2024)
analyzed the test error of the solution found by gradient flow in a linear random feature model and
established power-law scaling in one of NV, M and training time 7" while the other two parameters
go to infinity. Building on the technique inZou et al.|(2023)), [Lin et al.| (2024)) analyzed the test error
of the last iterate of one-pass SGD in a sketched linear model. They presented the first systematic
study to establish a finite-sample joint scaling law (in M and V) for linear models that aligns with
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empirical observations (Kaplan et al. [2020). More recently, [Lin et al.| (2025) extended the scaling
law analysis to the setting with data reuse (i.e., multi-pass SGD) in data-constrained regimes.

3 PRELIMINARY

3.1 QUANTIZATION OPERATIONS

For all quantization operations in (Quantized SGD)), we employ the stochastic quantization method
(Markov et al} [2023), which unbiasedly rounds values using randomly adjusted probabilities. We

summarize this in the following assumption.

Assumption 3.1. Let Q;,i € {d,l,p,a,0} be the coordinate-wise quantization operation for data
feature, label, model parameters, activations, and output gradients, respectively. Then for any u,
the quantization operation is unbiased:

E[Q;(u)|u] = u.

Furthermore, to better uncover the effect of quantization, we consider the following two types of
quantization error: multiplicative quantization and additive quantization, which are motivated by
abstracting the behavior of prevalent numerical formats used in practice.

Definition 3.1. Let Q be an unbiased quantization operation. We categorize it based on the structure
of its error variance:

* Multiplicative quantization. We call the quantization is e-multiplicative if the conditional second
moment of quantization error is proportional to the outer product of raw data itself, i.e.,

X:| = GXXT.

E [(Q(x) (e - %"

* Additive quantization. We call the quantization is e-additive if the conditional second moment of
quantization error is proportional to identity, i.e.,

E (000 %) (@60 )7 |x| =t

This theoretical distinction is grounded in practical quantization schemes. For instance, integer
quantization (e.g., INT8, INT16) uses a fixed bin length, resulting in an error that is largely indepen-
dent of the value’s magnitude. This characteristic aligns with our definition of additive quantization,
where the error variance is uniform across coordinates. Conversely, floating-point quantization (e.g.,
FP8, FP32) employs a value-aware bin length via its exponent and mantissa bits (e.g., the E4M3 for-
mat in FP8). This structure causes the quantization error to scale with the magnitude of the value
itself, corresponding to the model of multiplicative quantization.

To precisely capture the quantization error, we further introduce some relevant notations on quanti-
zation errors during the training. Denote the activation and output gradient at time ¢ as

ag = Qd(Xt)Qp(Wtfl)y Oy = Ql(Yt) -9, (Qd(Xt)Qp(Wtfl))~

Then we are ready to define quantization errors.

Definition 3.2. The quantization error on data €, on label €, on parameter eE” ) at time t, on

activation eia) at time t and on output gradient ego) at time t are defined as follows.

ed .= Q4(x)—x, D = Qi(y)—vy, egp) = Qp(wy)—wy, e,(fa) = Qq(ar)—ay, ego) = Q,(0¢)—o04.

3.2 DATA MODEL

We then state the regularity assumptions on the data distribution, which align with those common in
prior works [Zou et al.|(2023); |Lin et al.| (2024). A key distinction in our setting is that all training
is performed on quantized data, Q4(x) and Q;(y). Consequently, we formulate these assumptions
directly on the quantized data rather than the full-precision versions.
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Assumption 3.2 (Data covariance). Let H = E[xx '] be the data covariance matrix and

H@ = E[Qu(x)Qa(x) "], D :=E[(Qa(x) —x)(Qa(x) —x)T],
be the covariance matrices of the quantized data feature and quantization error, respectively. Then
we assume that tr(H) and tr(H(9)) are finite.

Further let H = Y, A\;v; v, be the eigen-decomposition of H, where {);}3°, are the eigenvalues
of H sorted in non-increasing order and v; are the corresponding eigenvectors. As in|[Zou et al.
(2023)), we denote

Hoku)\vl {0 Hio =) Aviv), Io,cfzv”, oo 1= Y Viv, .

i>k >k

Similarly, we denote the eigendecomposition of H(@) as H@) = 3, Ag‘”vg”v@ and correspond-
ingly obtain H() H\?_1(9) 1(9)
Assumption 3.3 (Fourth-order moment). Let x(9) = Q4(x). Then for any PSD matrix A, there
exists a constant ag > 0 such that

E {Xm)X(q)T Ax<q>x<q)T} < ap tr(HOA)HO.

We note that the above assumptions are adopted primarily to simplify the exposition of our final
theoretical results. In practice, for specific quantization mechanisms (e.g., the multiplicative or
additive schemes in Definition [3.1)), Assumption [3.2]is naturally satisfied by combining standard
regularity conditions on the full-precision data (Assumptions 2.1 and 2.2 in Zou et al.[(2023))) with
the specific properties of the quantization errox'|

Furthermore, to extend the model noise assumption to the quantization setting, we define the optimal
model weights regarding the quantized data features and labels:

w®” = argming, Ex,op [(Qu(y) — (w, Qu(x)))?] -

Accordingly, we make the following assumption on the model noise £ := Q;(y) — (w(@", Q4(x))
based on the optimun under quantization.

Assumption 3.4. Denote £ := Q;(y) — (WD", Qy(x)). Assume there exists a positive constant
o > 0 such that
E [62Q4(x)Qu(x) "] < o*H .

In fact, Assumptions and can be directly inferred from the standard assumptions on the
full-precision data under specific quantization regimes. We defer the discussion to Section|G]

4 MAIN THEORETICAL RESULTS

We first derive excess risk upper bounds for Quantized SGD in Section[d.1] then compare these rates
with the full-precision SGD (in orders) in Section4.2]and perform specific case study in Section4.3]

4.1 EXCESS RISK BOUNDS

We now provide excess risk bounds under general quantization, multiplicative quantization and

additive quantization. Denote the effective dimension for HY: k* = max {k : )\,(ﬂq) > 1\% }

Theorem 4.1. Consider the geneml data quantization, let DY = H(H+D) 'DH+D) 'H
and DH i ilH 1D and consider the zero initialization wg = 0. Under
1I13.2013.3

Assumptlon and|3.4} if the stepsize v < m, then it holds that,

] < VarErr + BiasErr + ApproxErr 4+ QuantizedErr,

"We remark that the multiplicative quantization regime will require no dimensional constraints, making the
results applicable even to infinite-dimensional settings. In contrast, additive quantization necessitates a finite
dimension to prevent the variance of the quantization error, tr(el), from becoming infinite.
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where
(9)2 2aB (@) *12 N q)
fel HW || (q) + ’YHW ||H(q) k* ( )2
V E — k*:00 o N 2 )\‘q
R 1—'yaBtr(H+D) vt ; o
1
; _ (@*
Binsklrr = oz - [w ||(H<q> R A

%112 1 *
ApproxErr = E [(em)z} + 5 1wl + 5w B,

w2

QuantizedErr = 2||D|| [ (H -2

2N? +Hw(q) ”I(") }

2
aé?) +2aB (|W(q) ||2<q> + Noyl|w!? HH(‘” >

2|D
+2|IDll 1—’ya3tr(H-|—D)

)\(Q) +Ny? Z /\(q) ’

i>k*
withog)Q _ g2+supt)|JE[e§o>e§o>TJB JHE[ee T jar]| +apE [tr (H(Q)eg@legf):)} .

Theorem [4.1] establishes an excess risk bound for quantized SGD under a general quantization
paradigm, which is decomposed into four terms: variance error, bias error, approximation error, and
quantized error. In particular, the variance and bias errors resemble those for the full-precision SGD
(Zou et al., [2023) and can be equivalent by setting the quantization error to be zero. The key role
that quantization plays relies is two-fold: data quantization significantly influences the effective data
Hessian H(9), while activation, output gradient and parameter quantization affect the effective noise

i<k*

variance ng ) (which will be further characterized in the subsequent theorems when given specific
quantization type). Specifically, the quantized Hessian arises from performing SGD in quantized
data space and the quantized noise variance corresponds to additional quantization error introduced
in the parameter update rule.

The additional two error terms, i.e., approximation error and quantized error, can be interpreted
as follows. The approximation error, resulting from quantization of both data and labels, corre-
sponds precisely to the discrepancy between the optimal solution in non-quantized data space and

quantized data space, i.e., [(Ql( ) — (w(@D, Qd(x)>)2} —1iE [(y — (w*, x>)2}. The quantized
error originates from the rlsk associated with applying the quantized averaged SGD iteration W
to the discrepancy between the quantized data Qq(x) and the raw data x, which takes the form

(D,E [Wy ® Wx]). This expression resembles the quantized bias and quantized variance, but in-
cludes an additional factor accounting for data quantization error.

Moreover, in the absence of quantization, our bound exactly reduces to the standard results presented
in/Zou et al.|(2023). It is also worth noting that under the unbiased quantization assumption, param-
eter, gradient and activation quantization will not affect the BiasErr term E] To better uncover the
effects of quantization, we consider two specific quantization regimes: multiplicative quantization
and additive quantization.

Theorem 4.2 (Multiplicative quantization). Under Assumption[3.1}[3.2] 5.3| and[3.4|and notations
in Theorem if there exist €4, €1, €, €, and €, such that for any i € {d,l, p, a, 0}, quantization Q;
is e;-multiplicative with €; < O(1) and the stepsize satisfies v < m E| then the excess risk
can be upper bounded as follows.

E[£(Wn)] < ApproxErr + varErr + BiasErr,

’In Theorem L || - || denotes the spectral norm.
3In absence of the unbiased assumption, the conditional expectation for n; := w; — w™ (Eq. ) involves
additional terms related to quantization expectations, thereby introducing extra terms (related to parameter,
output gradient and activation quantization) into bias. Our framework can easily extend to this case. The
unbiased assumption is applied for theoretical simplicity.
*Ce = (14 €q)(1 + 2¢p +4eo(1 + €a)(1 4 €p) + 260 (1 +¢)) < O(1).
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where

ApproxErr < HW*H%I €4+ €, BiasErr < ||w* ||H : + HW*H%MDC,

2N2

W* 2
y 2 4 ap ((60+6a+6p)||w*||%1+ P e ||w*||§lk*:w)
VarErr < | — 4+ NA? A2
arkrr S <N+ Y Z z> 1 vapC.tr (H)

i>k*

We would like to remark that, compared with Theorem the discrepancy between H(9) and H
can be incorporated into H under multiplicative quantization, eliminating additional error due to the
spectral gap. Though the multiplicative nature of the quantization introduces additional complexity
into the iteration update rule, this additional error is merged when ¢,, ¢,, €, are at most constants
(see Theorem [F1|for details). Regarding additive quantization, the excess risk bound can be directly
adapted from Theorem[4.1] which is summarized in the following corollary.

2
Corollary 4.1 (Additive quantization). Denote cr(q) = "““ + apeptr (H + ¢I) + 32 Under
Assumption 3.1} @ and [3.4| and notations in Theorem if there exist €4, €, €, €, and €,
such that forany i € {d,l,p,a,o}, quantization Q; is €;-additive, and the stepsize satisfies v <

— 1 then
yaptr(H+e4I)
E[£(Wn)] < ApproxErr + VarErr + BiasErr,

where

1
ApproxErr < ¢ + ¢4 ||w*||?, BiasErr < N7

aﬁlq) +2QB <||W ”I‘“’ + Noyllw* HH(Q) ) E*
VarErr < =2 | =+ Nv° Z (A +ea)” |-

w2, w -1 F IIW*IIH<q> :

1 — yaptr (H + ¢41) N bt

A key point to emphasize under additive quantization is that, compared with multiplicative quan-
tization, the contribution of activation and output gradient quantization error to the effective noise

variance USI) is scaled by a factor of %. The interpretation is that additive quantization provides

a constant-level conditional second moment for the quantization error, which diminishes the un-
derlying effect of the (quantized) data. Specifically, this reduction manifests as a change from a
dependence on the fourth moment of the data (i.e., 312 IE[X’JTX‘? XqTXq]) to a dependence on the
second moment (i.e., 5z LE[X? TXq]) consequently introducing an extra factor of 1/B in the output
gradient and activation quantization error. This leads to a distinction in how quantization affects dif-
ferent components: the influence of ¢, and €, diminishes as batchsize B increases, while the effect
of ¢, remains independent of batchsize B.

4.2 COMPARISONS WITH STANDARD EXCESS RISK BOUND
In this part, we will provide a detailed comparison with standard excess risk bounds and identify

the conditions on the quantization error such that the excess risk bound will be not largely affected.
First, let k§ = max{k : A\, > ﬁ}’ we recall the standard excess risk bound (Zou et al., [2023)):

dag (w2, + N1lwe I, )

Ry = +N 22
° ! 2,; N7 [~ yaptr (H)
1 ko 2 2 o? 2 2 2
— N~ AS lwt _ 2||lw*
+B N + gk:* 1— ’YOéBtI' (H) + 72N2 ||W ||(H0:k3) 1+ ||W ||Hk(’§:oo

The following corollary derives the conditions on the quantization errors such that the learning
performance of the full-precision SGD can be maintained (in orders).

Corollary 4.2. To ensure that E[€(Wy)] < Ry, conditions on the quantization error are as follows:
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* For Multiplicative quantization, under the Assumptions in Theorem[4.2] we require

2
g Ro
< — Al <
e S Blwe gt w

€] §R07

* For Additive quantization, under the Assumptions in Corollary .| we require

0.2

2
6 SR, €+e o7, 61)5M7

W* 2 + 1 W* B
P s i L R L

€d <
~ w d -k w13,

Corollary [4.2] establishes explicit conditions under which the quantized population risk matches its
non-quantized counterpart Ry up to a constant factor. Our theoretical results indicate that com-
pared with multiplicative quantization, additive quantization imposes more strict requirements on
data quantization €4, with an extra term related to data spectrum and dimension d [’} but weaker
requirements on activation €, and output gradient €y quantization (weaker by a factor of %). These
theoretical results align well With our insights: (1) multiplicative data quantization diminishes the
spectral gap between H and H(?); (2) additive activation and gradient quantization leads to a bene-
ficial scaling with the batch size B.

4.3 CASE STUDY ON DATA DISTRIBUTION WITH POLYNOMIALLY-DECAY SPECTRUM

Following Lin et al.| (2024])), we study the excess risk bound assuming constant level optimal param-
eter (i.e., [|[w}]|* = ©(1), Vi > 0) and the power-law spectrum. In particular,

Assumption 4.1. There exists a > 1 such that the eigenvalues of H satisfy A; ~i~%, i > 0.
Corollary 4.3. Under Assumption if o2 is constant level, we have:
» For multiplicative quantization under the Assumptions of Theorem if we further assume
1
[w*||% < o letdeff [NY(1 + €q)]®, then

dnd  dMAd (g2 )Ad
— eff eff g eff
E(Wn)] Seq+e + o + N 5 +é€pt+ €0t et v .

* For additive quantization, under the Assumptions of Corollary it holds

d()/\d d()/\d o2 + d()/\d

eff eff €o T €a eff
— 1+d

N + N + (14 deg)ep + B + N ,

E[E(WN)] S €ad + € + s

1
a

whered(f}: (d max{d_ ’Nv ed} )edN'y—i—maX{d a’Nv ed}7

Our findings in polynomial-decay data spectrum scenarios reveal distinct scaling behaviors under
multiplicative and additive quantization. Specifically, under additive quantization, the impacts of
both data quantization and parameter quantization scale with the data dimension d. In contrast, under
multiplicative quantization, these effects remain independent of d. This difference arises because
multiplicative data quantization is applied coordinate-wise, causing its behavior to depend solely
on the original data spectrum—making it applicable even in infinite-dimensional settings. Additive
data quantization, however, employs uniform quantization strength across all dimensions, leading
to a strong dependence on the data dimension d. We also note that under additive quantization, the

influence of the spectral gap is captured by the effective dimension term di?}, which includes an

additional term [d max{d~?, ﬁ —€eq}” ]edN ~ that depends significantly on €g4.

Implications to integer and FP quantization. In practical integer quantization with bit-width b and
FP quantization with mantissa bit-width m, the quantization steps for a value x are approximately

3Under specific case ||w*||7; = ©(1) and ||w*||*> = ©(d), we require ¢ < O ( £0) in additive quantiza-
tion but 4 < O(Ryp) in multiplicative quantization. See Section [4.3|for details.
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Figure 1: Generalization under quantization. Test risk for SGD with iterate averaging under

multiplicative (FP-like) vs. additive (INT-like) quantization. (a) and (b): vary the quantization level
at fixed dimension. (c) and (d): vary dimension at fixed quantization level.

§(z) = 27% and §(x) = 2llo%2 IJm;L respectively. Consequently, the conditional second moment
of quantization error E[(Q(x) — x)*|x] is roughly proportional to the square of the quantization
step §(x)2. This implies a fundamental correspondence: multiplicative quantization exhibits the
characteristic of FP quantization (input-dependent quantization step), whereas additive quantization
characterizes integer quantization (constant quantization step).

A practical takeaway is that, given specific FP and integer quantization with bit-width b and mantissa
bit-width m, practitioners can directly apply Corollary 4.3|to determine which quantization scheme
is more suitable under specific scenarios. A notable observation is the distinct role of dimension
d: FP quantization becomes preferable when mg > by — % log, d whereas integer quantization is
favored when by > md+% log, d This means FP quantization can outperform integer quantization

even when its mantissa bit-width is smaller than the integer bit-width by % log, d, highlighting the
advantage of FP quantization in high-dimensional settings.

Numerical experiments. We evaluate constant—stepsize SGD with iterate averaging on a Gaus-
sian least—squares model. The feature distribution has covariance matrix with eigenvalues \; = i 2.
The ground-truth parameter is w* with entries w*[i{] = 1, and the observation noise variance is
02 = 1. This study answers two questions: Q1: How do additive vs. multiplicative quantization

errors affect learning? Q2: How does dimension d interact with these two quantization types?

Q1 (quantization level). We fix d = 200 and B = 1, and vary the quantization error level ¢ €
{0.001, 0.005, 0.01} for each scheme. Results are shown in Fig. a,b). This empirically validates
our theory: additive errors distort the data Hessian spectrum, increasing risk, whereas multiplicative
errors diminish the spectral gap, maintaining risk constant despite higher error levels.

Q2 (dimension). We fix the quantization level at ¢ = 0.01 and B = 1, and vary d €
{50, 100, 200, 400}. Results are shown in Fig. c,d). These empirical results align with our theo-
retical finding: additive quantization leads to a dramatic increase in excess risk with larger d, while
multiplicative quantization maintains stable performance even with high-dimensional data.

5 CONCLUSION AND LIMITATIONS

In this work, we analyze the excess risk of quantized SGD for high-dimensional linear regression.
Our novel theoretical framework characterizes the distinct impacts of various quantization types on
learnability: data quantization distorts the data spectrum (eliminated by multiplicative quantization);
parameter, activation and gradient quantization amplify noise (mitigated by additive quantization);
data and label quantization introduce additional error (scale with dimension in additive quantization
yet are dimension-independent in multiplicative quantization). Our theory establishes the conditions
on quantization errors required to maintain full-precision SGD performance, and it identifies the
scenarios under which FP and integer quantization are each likely to yield superior performance.

Our limitations are twofold: (i) we only establish excess risk upper bounds without a corresponding
lower-bound analysis, and (ii) our analysis is confined to one-pass SGD, leaving multi-pass SGD
and algorithms with momentum as open problems.

Swe assume the exponent bits in FP quantization can cover the scaling of .
"b4 and my are the bit for integer data quantization and the mantissa bit for FP data quantization respectively.
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APPENDIX

The appendix is organized as follows. In Section[A] we begin the analysis of excess risk bounds for
the iteratively averaged quantized SGD by first deriving the update rule for the parameter deviation

W — w@” (detailed in Section b and performing an excess risk decomposition (detailed in

Section[A22):
E[S(WN)] = Ri1+ Ry + R3 + R4.

We then conduct a refined analysis of R4 and R3 in Sections[B]and [C] respectively. For Ry, we ex-
tend techniques from|Zou et al.|(2023) in Sectlon In particular, we first introduce useful notations
in Section and then present a comprehensive analysis of the update rule for E[n;n,'] in Section
[D:2] This analysis is crucial for adapting previous proof techniques to the quantized SGD setting.
Based on these results, we perform a bias—variance decomposition in Section [D.3] and analyze the
bias and variance errors separately in Section[D.4]and [D.3] Bounds for R; are derived in Section [E]

Finally, we provide detailed proofs of Theorem [.1] in Section Theorem in Section
Corollary {1]in Section[F:3] Corollary @.2]in Sections [F.4|and [F3] and Corollary |4.3]in Sections
and[E7]

Additionally, we discuss Assumptions [3.3] and [3:4] in Section [G] and clarify the use of LLMs in
Section[Hl

A INITIAL STUDY

For simplicity, we denote /(4 =9(y),w (q) = Qp(wy), x(@) = Qa(x).

A.1 DEVIATION OF THE UPDATE RULE

We introduce the global minima w (%) " in the sense of quantization, that is,

*

w(®" = argmin,, Ex, [(Q(y) — (w, Qu(x)))’].
Therefore,

E )~ [(Qi(y) — (WP, Qu(x))) Qu(x)] =

Denote 1, := w; — w4 )", define N = % Zt 0 7],5 We first derive an update rule for 7;:

Lemma A.1.
1 1 o a
N = (I — B’YQd(Xt)TQd(Xt)> Mi—1 + ’YEQd(Xt)T [Et + GE ) E,g ) Qd(Xt)E,gp)1 )

where

(O) =0, (QZ(Yt) Qa (Qd(Xt)Qp(Wtfl))) - [Ql(}’t) - Q, (Qd(Xt)Qp(Wtfl))] ,
(a) =Qq (Qa(Xt) Qp(Wi-1)) — Qa(Xt) Qp(Wi—1),
eﬁp)l :7Qp(wt 1) Wi_1,

& =Qi(ye) — Qd(Xt)W(q)*.

Proof. By definition and the update rule of wy,
ne =w; —w(@’

=~ w412 0u(X) Q0 (Qily1) — Qu (QulX)Qy(wi 1))
1+ 75 Qu(X0) T Q0 (Quye) — Qu (QulX)Qy(wi)

14



Under review as a conference paper at ICLR 2026

Then, by introducing quantization errors, we have
1
Nt =M—1 + ’YE Qd(Xt)TQo (Qi(yt) — Qa (Qa(Xt)Qp(Wi—1)))
1 1 o
=1 +7Qa(X0) 5 [Qiy1) — Qu (Qu(X1)Qp(wi-1)] + 755 Qu(X) "€

1 1 (o] a
=M1 +’7Qd(Xt)T§ [Qi(yt) — Qa(Xy) Qp(Wi—1)] +’VEQd(Xt)T(€£ = eg ))

1 o “ 1
=1+ 15 (X)) (6 — ) +7Qu(X) 5

[Ql (ye) — Qd(Xt)W(q)* — Qui(Xy)mi—1 — Qa(Xy) Qp(wyi—1) + Qd(Xt)Wt—l]

0 a 1
=m1 +7Qa(X) (€ — 6”) +7Qu(X0) 5

|Qu(y) = Qu(X)w ™ — Qu(X)mp—1 — Qu(X1)el”) |
1 o u 1
=ni1 + 75 QX)) T (e — €+ &) = 1Qu(X0) 5 | QulXi)mor + Qu(Xi)e

O

A.2 DECOMPOSITION OF THE EXCESS RISK

Denote H := Ey p[xx '], H® := E, p[Qa(x)Qa(x)T]. We decompose the excess risk as
follows.

Lemma A.2. Under Assumption[3.1]
E[€(Wn)] = R1 + Ro + R3 + Ra,

where
Ry =5 (s~ Quw))*] + 3E [(Wy, Qux) — x)7]
Ry =3 (H®. Elny @ 1y,
Ry =3B [(Qi(y) — 4] + 3E [(w", Qux) ~x)?]
Ri =5 (HLE[(w" = w@") @ (w = w®)]),
Proof.
BIE(W)] =B [Exy [ — (x,30)] | — 2By [10— (w7307
=3B [Bay [0~ n 0] — SE Q) — (W, Qu(0))’)
Ry
+5E[(Q) — (r, Q)] — 5B [(Quly) — (w@", Qu(x)))?]
R>
+5E (@) - (w", Qu(x)))?] - SE [(y - <w<q>*,x>)2]
Rs
+-E {(y - <w(’1)*,x>)1 - %]Ex,y [(y - <W*,X>)2}
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Next, we compute R, Ro, R3 and R4 respectively. These computations are mainly based on the
first order optimality condition and the unbiased quantization Assumption [3.1} For Ry,

(e [
:%IE By [(w' =W ) (29— (w + w7 )|
— B [Ex [t - w9 x?]]
1.7 AT *
:51[43 _(w* —wl@ ) H (w* —w@ )]
:%<H,E[(W* w0 @ (w = wl@7)).
For Ro,
Re =5 [(Qu(y) — (W, Qa0)?] = E [(Qu(y) — (W, Qul)))?]
=5 [ = . a0 (2010) — (w9 . Q)|
s w00
:%(H(q),E[ﬁN ® 7in]).
For R3,
Ry =58 [(@1(0) ~ (W, Q)] - 32| (v - (w0 )]
= E[(Q) —y— v, Qu(x) —x)) - (Qulw) +y— (W@, Qul) +))]
:%E {Qz(y)2 — 9+ (w7, Qa(x) — x)(w7, Qu(x) + x>}
%E [(Qu(y) —v)*] + %E (w0, Qalx) — x)?]
For Ry,
o =52 By (0~ (93 3)] - GE[(00) (. Qo0
:%E [(y — Qiy) — (Wn,x = Qu(x))) - (¥ + Qu(y) — (W, x + Qu(x)))]
I

A.3 COMPUTATION OF THE QUANTIZED OPTIMAL SOLUTION

Here we compute w* and w(%) *. From the optimality,

*

w = HilE(x,y)ND[ny W(q) = (H(q))ilE [Ql(y) Qd(x)] = (H(q))ilE(x,y)ND[yx]'
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Hence, by HY = H + D,
W@ _w* = [(H@)—1 - H‘l} E(x,4)~p[yx]

=(H@)~! (H - H(q)) H™'E(x y)~p[yx]
:(H(q))71 (H _ H(q)) w*

= — (HY9) 'Dw*
=— (H+D) 'Dw".

B ANALYSIS OF R,

Lemma B.1.

Lo
Ry = §||W lpE+D)-'HH+D)'D-

Proof. Recall that
1 * *
Ry =3 (HE[(w" = w(®") & (w* = w0,
Further note that
Ej(w* —w®") @ (w* —w@") —=E [(H+D) ' Dw*w* "D (H + D)_l} :
we have
1 —1 k% | —1
Ry =3E {tr (H(H+D) Dw*w* D(H + D) )}
1 * T —1 —1 *
—2E [tr (w D(H + D)"'H(H + D) 'Dw )]

1 *
*§||W ||D(H+D)*1H(H+D)*1D-

C ANALYSIS OF R3

Lemma C.1.
E [(e(l) )2]

Ry=———+ %||W*H%—I(H+D)*1D(H+D)*1H'
Proof
Ry =3B [(Qiy) ~ 9)*] + 5B [(w @, Qulx) -~ x)?
=SE[(Q(y) —y)°] + %W(‘”*TDW(")*
=-E [(Q(y) —y)*] + L TH (H+D) 'DH+D) 'Hw*

2
]E [(E(Z))2] 1 * (|2
=5 T 5”“’ lf1@4D) -1 DE+D)H

N =N =N =

D ANALYSIS OF Ry

D.1 PRELIMINARY

We first define the following linear operators:
I=10I, M9 =Ex@ ox@gx@ex@], M®=HgcHD,
T@ =HYD @I+I0HY — y M@, T@ =HWD I+IoH® — +vH@ @ H@,
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For a symmetric matrix A,

ToA=A, M@WDoA= E[(X(q)TAx(Q))X(q)X(q)T}, MDA = HYAH®,
(Z - ’YT(q)) oA =E[I- ’yx(q)x(Q)T)A(I _ ,yx(tl)x(tz)—r)}7 (T - 7/7‘(!1)) oA =(I- 'yH(q))A(I _ ’YH(q))-

Further,

M9 o A =E [;X@TX@)AX(@TX(q)] ,
(T - 77'];‘1)) oA =E [(I — 7;X(Q)TX(Q)) A (I — W;X(q)TX(q))} .

D.2 INITIAL STUDY OF Ry

Lemma D.1. Under Assumption 3.1}

—1N-1
Ry < ~3 Z Z < —yHW) " H Eln, ®77t]>'
t=0 k=t
Proof. By Lemmal[A.2]
1
Ry = §<H( ) E[nn @ 0y])
Then we focus on E[ny ® nn].
_ _ 1
Eny ® 1] =Nz Z Eln: @ mi] + Z E[n: @ ny]
0<k<t<N-1 0<t<k<N—1
1
SNz > EEmemmll+ Y. EEmn <
0<k<t<N-1 0<t<k<N—1

Note that by the unbiased Assumption[3.1]

B 1Qu(X)" (e~ )~ Qu(Xel?))

7775—1] =0.

Further, by the optimality,

E [nyd(thst nt_l] _o.

mea| = B [1QuX) " [@uly) - Quxw ]

Hence, by Lemma[A-T]
E [mifne1] = (1= H® ) s ()

Therefore,

Enn ® nn]

<7 Z E [E[n: @ ng|nk]] + Z E [E[n: ® nx|n:]]
0<k<t<N—1 0<t<k<N-—1

1
== (I—HD)Y " Empom] + Y Epe@n)d—yHO)H
0<k g <N 0<t<k<N—1
N—-1N-1

- ((I YHO) T, & ] + Bl © 7] (1— 7H®)1).
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Applying into Ry, we have
1
Ry :§<H(q), E[nny ® nnl)

N—-1N-1
1
<o >3 <H(Q), (I—HD)*"E[n, ® ] + E[n, @ n,] (I - WH(q))'H>
=0 k=t
1 N—-1N-1
=7 <(I —yHD)FH@ Ep, ® 77t]> -

O

To bound R5, the main goal is to bound E[n; ® 7,]. Next lemma provides an update rule for iteration
E[n; ® 0.
Lemma D.2. (Update Rule) Under Assumption[3.1]3.3|3.4|

Bine ] = | (1= 750407 QuX) ) Bl & ] (1- 15040 Qa0 )| 4173

<E KI L Qd<X)TQd(X)> Efri—1 @ np_1] (I L Qd(X)TQd(X)>] 2o ),

B B
where
1 o a
B = {Qd(xtf [+ el — el = Qu(X))e) | [& + €l — € — Qu(Xy)el! L} Qd(Xt)}
— 5 [QulX) 67 Qu(X)] + ;B | Qu(Xy) el Qu(Xy)
- B2 d\At) StSt Ld At B2 d\At) € "€ d\ At
= (@)
1 a a T
5 | 0u(X0) 76T 0u(X)| + B | Qu(X) T QuX)eiel?, k)T Qa1
sl @)
and
ap = Qd(xt)Qp(Wt—l)a Oy = Ql(Yt) —Q, (Qd(Xt)Qp(Wt—l)),
and
, B |7 o]+ [l | g
ol - p B [t (WO |21, s )|+ 5

Proof. By Lemmal[A.T]

1 1 ] a
m = (I - Bde<xt)TQd(xt>> Mot +95Qa(X0) " [&+ el — ) - Qu(X)el?) |-

Hence,
i ond = | (1= 51040 0u(X) ) Bl 9] (1= 570a%) 0400 )| +9%3

Next, we cope with each term in ;.

b ]- ’)
557 = LB | 0u(X,) T Qu(X,)e, e, Qd<xt>TQd<xt>}

——F |Qu(X:) " Qu(X,)E {eimlei”)l |wt_1] Qd<xt>TQd(xt)}

1 T
— B[ 0u(X) T Qu(XE {e@lei@l Wi | 0u(X0)T 0u(X,)
<apEy, , [tr <H(Q)E[ @ ¢ \wt 1D] H©.
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5 =B [0u(X) 6] Qu(X,)]
Z Qu(Xy)" & (Qd( ) Et) ]
i=1 j=1
1 & '
WZE{Q( )€ (Qux )|
1=1
1 T
=5 E{Qd x)¢) }
1
=5 E [6%Qua(x)Qa(x )T]
o’ H®
<7 HO
= 45" =B |0u(x) (e + el ) 0u(X))

=B | Qu(Xy)’ (IE [e,@ego |ot} +E{e§ @ t]) Qd(Xt)}

1 o a a T ]

<—E (H [et eg )7 ] +E [eg )eg ) |ay H) Qd(Xt)TQd(Xt)]
1 0) (o a _

jﬁ Slip ‘IE [eg )eg a lo } +E [et )eg ) |at] HE [Qd(Xt)TQd(Xt)]
1
7 Sup ’E [eﬁ‘”ei‘” | f,:| +E { (@) |a} H@,

O

Lemma D.3. (Update Rule under Multiplicative Quantization) If there exist €q, €1, €p, € and €,
such that for any i € {d,l,p,a,o}, quantization Q; is €;-multiplicative, then under Assumption

B1B3I3.4) it holds
1 T 1 T )
E[nt ® 77t] =E [(I - ’YE Qu(X) Qd(X)> E[UH & TItfl] (I - ’)’E Qa(X) Qd(X))] +7°%

< | (1- 5104007 QX)) Elmr @ mii] (T- 570aX)70u()) |

e [% Qd(X)TQd(X)E[Tltfl ®m71]%Qd(X)TQ (X)} Nips U( q)? H®,
where

€=2¢p +4eo(1+ €)1+ €p) +264(1+¢p),
2

2 1 4 o *(12
oy = el e a1 4 )14 ) 1)+ 260 (14 ) 4 26,).
d

Proof. By the computation in Lemma | regarding Ef(p)

p 1
e [Qd(xtfgd(xt)nz el ] 020" Q)|

61)1@{ Qd (X )wi 1w, 1 Qa(Xy) Qd(xt)}
2
GPE[Qd Qd (Xe)Me—1Mi—1 Qd(Xt)TQd(Xt)}

+JE Qu(Xy) T Qu(Xy)w “*w(q)”Qd(Xt)TQd(xt)].
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Regarding zg(“’

(@) [ T
2 =B Qu(Xh) e el Qu(Xy)

— | QX0 QuX i, 04X Qx|
— 2B [Qu(X) Qu(X) Wi awi 1 Qu(Xe) ' Qu(X)]

+ 2B [Qu(X) Qu(X)el €, QalX1) " Qu(Xy)]

Lt o)

o)y [0, T Qu(Xweiwiss T Qu(X0) T Qu(Xy)]

2(1+¢€p)eq
B2

2(14¢p)eq
B2

E [Qd(xt)—rQd(Xt)nt—lnt—lTQd(Xt)TQd(Xt)}

N E {QdoctfQd<xt>w<q>*w(q)”Qd<xt>TQd(xt>] |

Regarding zg(")

o [ ° T
2 = E [ Qu(X,) el el Qd(Xt)]
=—E Qd(Xt>T0t0tTQd(Xt):|

<3E [Qu(X) T Quly) Quly) T Qul(Xe)| + LB [Qu(Xe) " Qular)Qu(ar) T Qu(X)|

1—|—ea eo

SE[QuX) Ay () E[Qu(X,) aal Qu(X,)]

TQ4(X) }
<—E Qd(Xt)TQl( )Qu(ye) " Qal Xt:|

+4<1+6p§+6a)601@[ Qu(X4) " Qu(Xe)me-1mi1 T Qu(X0) " Qu(Xy)]

41+ ¢,)(1+€q)e0
+ B2

E {Qd(xt)bd(Xt)w(q)*w(q)* Qd(xtf@d(xt)]

<;2 [Qd(xt) &/ Qd(Xt)]
+4(1 a 6;;33(21 - GQ)GOE {Qd(Xt)TQd(Xt>77t—177HTQd(Xf)TQd(Xt)]
+4[(1 + Gp)(}g‘;‘ €a)€o + 1]

E [chxtﬂQd(xaw@*w@”Qd(xt)ngo@)} .

Therefore,

(1 + 4e,)0?
B

* w1
3= HY 4 ap (46,[(1 + €a)(1 + €,) + 1] + 2e4(1 + €) + 2¢,) tr (H(q)w(Q) wl® ) H@

+26p +4eo(1+ €)1+ €p) +2€4(1 + )
B2

E[Qu(X) Qu(Xoym-1m-1" Qa(X1)" Qu(X.)] .

* (|2
o (H<q>w<q>*w<q>”> _ Wl

Note that

1+eg
then
(1+4e)0® _ weli
B 1+eg
+2ep +4eo(1+ €)1+ €p) +2€,(1 +€p)
B2

¥, < ap (4e[(1+€0)(1+€p) + 1] + 2e4(1 +¢,) + 26p)] H(

E |Qu(X1)" Qu(Xi)me1mi1 T Qu(X1) T Qu(Xy)] -
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Hence,

Bin ] <B | (1= 570u(X) 0u(X) ) Bin-s & ] (1 570uX) 04(%))|

2 Q4(X) " Qu(X)

+ [2ep + deo(1 + €a) (1 + €,) + 2¢a(1 + €,)] E [%Qd(X)TQd(X)E[nt_l ® Mi-1] %

o [tdele” Il

ap (4e[(1+ €)1+ €p) + 1] + 2e4(1 + ¢,) + 2ep)] H@,

B 1 + €d
O
D.3 BIAS-VARIANCE DECOMPOSITION
Denote A, := E[n; ® ]. Then under general quantization, Lemma D.2|shows
2
A= (T AT 0o A1 + 775 = (T —TE) 0 Ayq + 7209 HO@,
Under multiplicative quantization, Lemma [D.3]shows
2
A, =T - yT];Q)) oA 1 +928 < (T - yTéq) + €72M§3q)) oAy 1+ 7201(\(14) H@,
Lemma D.4. Under Assumption
N-1N-1 N-1N-1
Ry < <5 3 < —AH@) -t B > < —AH@)t @), Ct>,
t=0 k=t t=0 k=t
bias variance
where
B := (T - ’YTéq))t oAy, Bo=A¢=E[n @mno.

Ci:=(T- ’YTB( )Ci1 + U(Q) HY, Cy=0.

Proof. By Lemma|D.T|and Lemma|[D.2]
N-1N-1
() yk—tgg()
RQ_N2 S (@ HOHO, A
t=0 k=t
The proof is immediately completed owing to
At - Bt + Ct.
O

Lemma D.5. Under Assumption if there exist eq, €], €p, €, and €, such that for any i €
{d,l, p,a, o0}, quantization Q; is ¢;-multiplicative, then

N—-1N-1 N—-1N-1
Ro<—5-3 < — AH@)t @) B(M)> - < I — yH@)k- tH<q>,C§M)>7
t=0 k=t t=0 k=t
bias variance

where
B") = (T 7TV + & MP) o Ay, By =Ag=Eny®mno].

2
CM = (T T + & MPD)CM) + 426 H@, ¢ = 0.
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D.4 BOUNDING THE BIAS ERROR

1
bias = 3 <(1 _ 7H<q>)k*tH<q>,Bt>
t=0 k=t
1 Nl
_ - (1-9H®)V"" B,)
DI 7
WS
N-1
< xEl- (- YHO)YN 3" B,).
t=0
Let S, = 1:01 B, S%M) = t o B(M) then we only need to bound S and S( ) We first
derive the update rule for S; and S,EM).

Lemma D.6. For1l <t < N,
St 2 (T —7TW)o8_1 +7v°* M oSy + By.

Proof.
t—1 t—1
St =Y (T—Tp")FoBy = (Z—yT5")o (Z(I — A TRV)E 1o Bo> +Bg = (T-T5")oS:_1+By.
k=0 k=1
)
Then we have
S: =(Z —7T4") 0 Si-1 + By
=T AT D) oS, 1 +v(T@ - T) 08,1 + By
=(T—~7T D) oS, 1 +7 (M<q> MD)oS, | + By
<(Z —ATD)0S,_1 +7*MP oSy + By.
O
Lemma D.7. For1 <t < N,
SM < (T —AT@)o 8™ 4 (148> M oSy + By, 3)
Proof. Similarly,
SM =T — 4T + &#2MEP) 08P + By
=(Z -~TD)oS,_ 1+7(T()—T )oSIM) ey MW o sM) 1 B,
=(Z —7TW) oS +72(1 + MY — M@)o s™) 1 B,
(T —ATD) o SM) + (1 +e)y2 MW oSGV + By,
O
(q) . . 1
Lemma D.8. (A bound for M5’ 0S,) For 1 <t < N, under Assumption|3.183.4} if v < St (E@Y’

ap -t ({I (- wﬁq))t} o BO)
¥(1 = yap tr(HD)) '

M(Bg) o St = H(q)

Proof. The first step is to derive a crude bound for S;. Take summation via the update rule, we have
t—1
-1
St =D (T -T{") o By =717 o [T~ (T~ 4T§")']| o Bo.
k=0
Note that

T-2TO 2T 3T", (T~ (T -1Ts")) 2 (T~ @ -ATW)),
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and further note that ’T(q) is a PSD mapping, and [T — (Z — 7 @)!] o By is a PSD matrix, we
obtain

S; = 'yflTéqu o (T — (T —~TW)" o By.
For simpliEity, we denote A := (Z—(Z— fy7~'(‘1))t) o By. We then tackle TE(;q) - o A.To be specific,
we apply 7 (9.
FOTO 7 oA =MD 0T oA+ A AHOTY o AH®
=< fy/\/lg) o Téq)_l oA+ A.

Therefore

-1 ~ —1 ~
T 0 A=ATD) o MPoT” oA+ (T@)loA.

Then we undertake the second step, applying Mg) on both sides.

- PO -1 ~
M%’) o (TE(;Q) ' oA) =< Mg) o y(T@) ! O./\/lg;’) OTé»Q) OA—i-MgI) o (T@) 1o A
N =\~ - (4)
(VM%I) o (T) l)t o (M%’) o (T9) ‘o A) (By recursion).

t=0
By Assumption[3.3]

MY o (T@) " 0 A < ap tr(H@(T@) " 0 A)H®

o0
= apytr (Z H@O (I — yHD) A (I - ’YH(Q))t> H@
t=0

— aptr <H<q)(2H<q> o (H@)2)! A) H©@
< aptr(A)H@

where the last inequality requires the condition that v < m

Hence, by , and further by (%(q))ilH(Q) < Tand MEBQ) ol <ap tr(H(q))H(Q), we obtain

1 > _ .
M(L]) ( Z ’YMB o )) 1)to(M(§])O(T(q)) 1oA)
t=0
< aptr(A)> (yaptr(H®))HY
t=0
ap tr(A) H(q).

~1—yaptr(HD)

Therefore,

aptr(A) H@ — ap - tr ([I - (T~ 'YT(Q))t] o Bo) '
1 —~yaptr(H@) (1 — yap tr(H@))

M 08, <41 H@

O

Lemma D.9. (A bound for Mg) ° SEM)) For 1 <t < N, under Assumption ify <
1
(1+&)aptr(H@)’

M 05 ap -t ([T = (T —~T@)] o By) |

H@ .
= T (1 Drap w(HD))
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Proof. The first step is to derive a crude bound for SEM). Take summation via the update rule, we
have

t—1

S = S @ATE e MY ) EeBy = 4 (TS —er M) o[ T (T = AT + &2 M) 0By,
k=0

Note that

T—AT@ T -7, (T— T =T + e MDY = (T — (T —7T@ +&2M D)),
we obtain
S 2y T — M) o (T = (T =T + & M) 0 By,
Denote A := (Z — (Z — 7@ + 672M59q))t) o By, then
T@ o (TS —ey M@)o A < (1+ MY o (TS — ey M) 1o A+ A.
Therefore

(T30 — ey MPD) o A < (14+9UT@) " o MW o (T — ey M@)o A+ (T@) 10 AL
Then we undertake the second step, applying M%z) on both sides.
o0
~ -1 ~ =1
M o (TSP —exME) T o A 23 (14 M o (T) ) o (Mo (TW) 0 A). (5)
t=0

By Assumption[3.3]

M(lg) ° (7-(q))_1 oA <ap tr(H(q)('f'(q))_l o A)H®

= apgytr (Z HO (I — yHO) AL - 'yH(q))t> H@
t=0

= agtr (H(Q)(QH(q) — ,Y(H(Q))2)—1A) H@
< aptr(A)H@

where the last inequality requires the condition that v < m

Hence, by , and further by (7~'(‘J))_1H(‘Z) < Tand Mg) oI <ap tr(H(‘J))H(q), we obtain

> 1 ~oy -1
Mg) o ((Tlgq) 67_/\/l(q Z 148) M(Q) (7-( )) ) o (M%I) o (T(Q)) oA)
t=0
< aptr(A) > ((1+&yap tr(HD))HO
t=0
~ ap tr(A) ) H(q)
T 1—(1+é&)yaptr(HW)
Therefore,
. (T — ~T (@)t
@ o 5D < 1 ap tr(A) R < ap-tr ([I (Z—~T'7) ] oBo) H@
B t =7 = = = .
1— (1+é)yap tr(H@) Y(1 = (1+ é)yap tr(H®))
O]

Next, we are ready to bound the bias error.
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Lemma D.10. (A bound for bias) Under Assumption if the stepsize satisfies v < m,
then

bias Sll + 12

2ap (I = w0 [y + Nl —w 2y )
< =/ .| =4+ N A
: N1 — oy tr(H0)) Nt 2 )

i>k*

1
s Iwo = Lo — w2

’)/2N2 ”(H(‘” H(tz)

Proof. Recalling (2)), we can derive an upper bound for S; by Lemma|D.§}
St 2(ZT —~7T )08, 4_72/\/101) oSy + By
yag - tr ([I - (- 'y7~'(‘1))N} o BO)

(T —~T D08, .H@Y + B
2T =T ) 081 + (1 — yap 0 (H@)) + Bo
S =y [ 1B ([z- @70 oBy) (@
_ T_ q -HY +B
k:O( T (1 —yagp tr(H@)) i
t—1 . _ _ ( N _ N
-3 mys 10z (B (- 0H DB DY) o) 4y ) (1- YH@)k,
P (1 — yap tr(H@))

(6)
Before providing our upper bound for the bias error, we denote
Boy =B, — (I - yH@)?" B, (I — yH?)"~
Then

1
SON?

N-1
ST (I—AHDY, Y " By)
t=0

1= (@\N @k (e tr(Bon) i) (@)\k
< I-(I-~yH'Y)Y (I-~H'Y) l—vaBtr(H(‘I)).H +By | I-~H'Y)

k=0
1= (I — AH@)2E (] — A @)V +2k vos tr(Bon) g 4 p
TANZ & ! ! "\1—raptr(H®D) va

Note that

k k N+k
(I— ’yH(Q))Qk —(I- ,YH(q))NHk — (I _ ’YH(q)) ((I _ ’YH(q)> _ (I _ ’YH(q)> )
< (I—yH@)F — (I - yH@)NTE,

we obtain

N

@k _ (1 — y@)vi 208 (Bon) g
kZ<I AH@)E — (1 — yH(®) T g tr(H®) HY 1+ B;).

Therefore, it suffices to upper bound the following two terms

N-1

ap tr(Bo N) ( k
I = d I — ~HV: _ (T — ~HOVN+- (1@
! N2(1 — yatr(H@)) Z <( 7 o=y A >

N—1
1
= _ (@VE _ (71— (@) \N+k
I 7N2;§3<(I FHO)E — (T - 7H ) ,Bo>.
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Regarding I, since H(@ and I — vH(9 can be diagonalized simultaneously,

aptr(Bo ) q) (@O\N+k]| (@)
I = — N .
'TON2(1 - rap tr(H@)) Z Z [ — ) = (=) A
aptr(Bo.n) (@\N]?
- : 1— (1 -\
’yNQ(l—fyothr(H(‘I)))Z[ (1 =727) }

OlBtl" BON
= AN2(1 — yap tr(H@)) me{LvQNz()\E@)?}

ap tr(BO N) 2 (q)
< (A
- '7(1 —yap tr(H(Q)) ( T Z

i>k*

where k* = max{k : /\,(f) > 1\%} Then we tackle tr(Bo n).
tr(Bo,v) = tr (BO —(I- WH(q))NBO(I _ ,VH(q))N))
* 2
- Z (1 —(1- ’y)\l(_Q)>2N) , ((Wo _w@ ’Vl(q)>)
(9) ()2
<23 min{L VA (o — " v17)
i

2(|lwo — W TE .+ Nylwo — w5, ).

Hence,
I < e (”WO - W(q)*”ié?i* +Nflwo - W(q)*”il‘ki’;o) K NA2 ST (2@)2
e NA(1 = yap tx(H®)) ACRREPIE
Regarding I, decompose H@® = V(q)A(Q)V(Q)T, then
= .
k= yN? Z (XT— WA(q))k —(I—- fyA(Q))N*‘k,V(Q) Bov(q)>.
k=0

Note that BO = nong . it can be shown that the diagonal entries of V(q)TBOV(‘?) are wi, ..., where

wi = V(tz) - _V(q) (wo — w@"). Hence,

2

1 N-1
I, = ’7N2 ICE::O ; [(1 — ’Y)\z(q))k _ (1 _ ,\/)\EQ))N—H@} wg

1 w? 2
- v2N?2 Z )\(Q) {1 - (1= vqu))N]

1

< e Z {1,72N2()\1(.Q))2}

,y 7
< X 4 3 A
~ 42N? @

i<k ’L i>k*

b w@”

~ J2N? [[wo — H(Hm -+ [[wo — ||H<q)
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. . . . 1
In conclusion, if the stepsize satisfies v < S (E@)

bias Sjl + 12

= N~(1 = yap tr(H@)) ' ‘

|wo — w(@

+ [[wo — w2

1 % g
+72N2 ”(Hff:i*)*l HY

Lemma D.11. (A bound for bias under multiplicative quantization) Under Assumption [3.1}{3.4
. . . 1 . .
if the stepsize satisfies v < (Tdapu@@)’ if there exist €q, €1, €p, €q and €, such that for any
i € {d,l,p,a,o}, quantization Q; is e;-multiplicative, then

21+ &ap ( [wo — W(q)*”Q(q) + Nvllwo — W(q)*H2 (9) *
bias < Forn M) (KL a2 ST (A2
: NA(L = (1 + )yap G(H®)) N e
oz w0 = WO I = WO
'72N2 (Hyl)™t H%
Proof. Recalling (3)), we can derive an upper bound for S; by Lemma[D.9
S, (T —~ATD)oS, 1+ (1+ 6)72/\/1%1) oSy + By
i (1+ap - tr ([I— (I—ﬁ@)ﬂ oB0>
<(Z - 7T D) oS4+ "H@W + B,

(1 -1+ &)vyaptr(H®))

t—1 3 (1+é)yap .trqz_ (I_,y'i'(q))N} oBO)

= — (9)\k .H@
k:O(I ) (1— (1 +é)yaptr(H@)) H'Y + By
S gy (L O0m ([z- @ —+T®)] oBy) -
k:O( T (1-(1+éraptr(HW®)) ' + Bo
t—1

(I — AH®)* <(1 +&yas - r (Bo — (1 - yH)TBy (I - yHW)Y)

.HY + B I — ~H@)k.
(L~ (1 + Sap H(HD)) ’ °>< )

k

Il
o

Repeat the same computation in Lemma [D.10] we obtain

1+ E)'yaB - tr (Bo N)
bi < _ (I— H(fl) H(@)N+k ( ) CH@D 2B, ).
s Z < 7 — = T i T vap i (H®) + 5o

Therefore, it suffices to upper bound the following two terms

_ N-1
(1+&aptr(Bo.n) (@)\k
I = , I — ~HDY _ (T — v HOVV+E 1@
'TON2(1 = (14 e tr(H@)) kz:;) <( THE)T — (L= HE) T, >
N-1
= 3 (1 HO - (1 HO)V By )
Y2 k=0 ,

Repeating the computation in Lemma [D.10]

2(1+é)agp <||W0 - W(q)*”f(q) + Ny|lwo — W(q)*H;I(q) ) ( *
0:k* 100 2
| ).

I <

Nv(1— (1 + é)yap tr(H@))
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1
Iy < g w0 = w2+ o = wO

(H(Q) y—1 H(Q)

. . . . 1
In conclusion, if the stepsize satisfies v < (T 5apt@E@)

bias <

o 2 (0)y2
N’y(l — 1+ é)~ap tr(H(Q))) + N~y Z ()‘i )

21+ ([lwo W [2) -+ Nalwo w0 By ),
N

i>k*

+ ||W0 — W(q)* 2

1
+ 73 Iwo - ll gz
k*:oc0

,ygNQ ”(H(tz) y—t

D.5 BOUNDING THE VARIANCE ERROR

The key part of bounding the variance error is to derive an upper bound for C; and CEM).

C, = (T - 1T{)Ciy + 120D H@, C, = 0.
C(M) (T - 'yT(q) + 672/\/1 )C(M) + v O'(Q) HY, C,=0.
We first estimate C;:
( )OCt 1 +7%0g s )
( @) o Cpy +7(TW = T§) 0 C +72<7éq)2H(q)
=T =T ) 0 Gy (M) = M) 0 €y +v%(g>2H<q>
( )

Similarly,
CM (T — AT + 22 MDY 4 42,0
=T AT o Cry +9(TW - T + eyMP) o M) 47268 (g1
=(Z =T D)o CM) + 2(M'D — M@ 4 eyMD) o CM) 4 205‘;1[) H®
(T AT @) 0 CM 4421+ OMD 0 CM) 4 1260 H.

Lemma D.12. (A bound for ./\/lg) o Cy) Fort > 1, under Assumption if the stepsize

1
VS Gpumm) then

(9)?
@) (@) aptt(BD)yo )
Mp' oGy I Mp oGy =X 1—fyaBtr(H(<I))H -

2
Proof. The main goal is to derive a crude upper bound for C;. Denote 3 = ng) H@,
Step 1: C; is increasing.
Ci= (T —7T{) 0 Cioy +4°S
t—1

=7 Z(I - VTéq))k o3 (solving the recursion)
k=0

= Cot +72(T =T oS
= Cy_q1. (sinceZ — VTB(q) is a PSD mapping).
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Step 2: C exists. It suffices to show that tr(C;) is uniformly upper bounded. To be specific, for
any t > 1,
t—1 o'}
C, = ,_Y2 Z( T(Q) 72 Z (Q) o).

k=0 t=0

Then

(e o) 00 2
(G <5 (o) =) < )
d
t=0 t=0

where the second inequality holds by the iteration:

tr(By) = tr(By_1) — 29tr(HOE, ;) + 4%t (EH]E {;X@)TX(Q)){@TX(Q)D
< tr(Bi_q) — (27 — Y2aptr(HD)) tr(HOE,_,)
<tr ((1-yHD)E, )
< (1 =vAa) tr(E—1),
where the first inequality holds by Assumption the second inequality holds if v < m

Step 3: upper bound C,

Coe = (Z=7T5") 0 Coc +7°%,
which immediately implies

Do — ’YT(Q) o},
We provide the upper bound by applying T@,
TWoCy =T 0 Cop + 7MP 0 Cop =7 M@ o

=72+ 9M() 0 Cop — 7MW o C

<%+ yMP 0 C
That is,

T@oCu < 70 )H(q)+7./\/l Co..

Therefore,

C. = W(q) (7-(q))—1 oH@ + ,Y(7-(q))—1 o M(lg) o Coy

< 7a(q) Z(V(%(Q))_l o MDYt o (T@)~1 o H@. (solving the recursion)
=0

We first deal with (7(®)~1 o H(@,

(7-(q))—1 oH@ =~ Z(I _ ,Y%(Q))t o H@®

t=0

(o)
=~ Z(I _ ’yH(Q))tH(q)(I _ 'yH(q))t
t=0

<~y (I- ,YH(Q))tH(Q)
t=0
=L
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Hence,
2 X -
Coo 270 - Y ((T W) o M) o1
t=0
2 X - -
=0 D ((TO) o M) I(T @) o M o
t=0
2 X -
<90 3 (UTD) o MP) T o yaptr(H@)I
t=0
2 X t
5702?’ .Z('yaBtr(H(q))> I
t=0
2
yold)

=—"= 1T
1 — yaptr(H@)
Here we complete deriving a crude upper bound for C;:

(0)?
Y0q
C,if——=— 1
L yaptr(H@)

Then

M9 o, < O‘Btr(H(q))Wg)Q (@)
0]
B -1 yaptr(H@)

O

Lemma D.13. (A bound for M%}) o CEM)) For t > 1, under Assumption if the stepsize

1
7S T Papu@ED) then
2
tI"(H(‘I))VU(‘Z)
Mg C . M H(@),
B oMt =T (1 + é)yaptr(H@)

Proof. The main goal is to derive a crude upper bound for C,EM). Similar to the proof for Lemma
D12} we merely need to upper bound C:

2
Coo = V(T3 — ey M) o0l " HO.

We provide the upper bound by applying T,
T@WoC, = (TB()Q) _ g,yM%I)) 0 Co + (1 + €)’VMS§) 0Coo — M 6 Coyp
_ (q)QH(q) = (@) —_ M@
VoM + (1 +yMp 0 Coo =MW 0 Cqy
2
< 7ol HO 4 (147 MP o Cop.

Therefore,

2~ ~
Coo 2703) (TO) o HW 4 (14 89(TW) ™ o Mif) 0 Cc
2 & ~ ~
=< *yoj(&) S(A+eyT@O) o Mg))t o (T@W)" 1o H@, (solving the recursion)
=0
By the computation in the proof for Lemma[D.12}

(7~‘(¢1))*1 oH@ < 1.
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Hence,
2 X _
Cw = voff}) - Z((l + &)y (Tt OMg)>t ol
t=0
2 X _ N
= 30l S (1 4+ U (T@) o MPY L1+ OU(T@) o MW o1
=0
2 X _
= 705&) : Z((l +EV(T@) 1o ./\/ISBQ))Fl o (14 &)yaptr(HD)I
=0
2 & "
= ’Yag\q/f) . Z ((1 + €)'yaBtr(H(Q))> I
t=0
2
1— (14 é&)yaptr(H@)™
Then

M9 oo < aptr(HD)yold”
0]
BUTE T (1 Oyapte(HWO)

Lemma D.14. (A bound for variance) Under Assumption if the stepsize satisfies v <

m, then
(a)2 *
pu k
TR p— — L N SV
variance < 1—7aBtT(H(q)) <N + Ny z‘>k*( i )

Proof. Applying Lemma[D.12]

- 2
Cy 2(Z—7T9W)oCpy + ’YQMS;»]) 0Cy1 + 72081) H?

2
_ 2 tr(H(q)),yg(‘I) 9
<(T — (q) C,_ 7aB G H(q) 2 _(q9) H(q)
(T —AT'") o Ci1 + T ~aptr(H®) + %05
2 (a)?

(T —~T Do C,_ 7 9¢ H@
=( YT )0 Cpy + 1~ ~apte(H®D)

Pol”  $h F@k o {@
X———= ——— .y (Z—~T'Y)*oH'Y (solving the recursion)

1 —yaptr(H@) & %
2 t—1
72081)

(I— 'yH(q))kH(Q)(I _ ’YH(Q))k

(]

"1 qaptr(H®)

k=0
2 (a)? t-1

<~ 19 N[ AH@)FH©
1 —vaptr(HW)

2
10

— 9% (1 (1-HD)).
1 — yaptr(H@) ( (I=7 ))
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After providing a refined bound for C;, we are ready to bound the variance.

N-1N-1
variance =—; Z Z < I_fyH(Q) k—tgp(9) Ct>
=0
| N-1
N2 Z <I (I- ’YH(q))N ¢ Cf>
t=
1 v GC?) = (O\N—t o
< I- H@O)N=t T (I - H
~“32NZ? 1 — yaptr(H®) ; -7 ) I—v )>
1 70 0)? Nl @ @
G a)\N—t Nt
2N21—7aBtrH(q) ZZ[ 7/\ ) }{17(1*7)‘1‘ )}
1 70 0)? Nl (N @)
& a Q)\N
SN T = Aapti(H) th[ = NN (1= =]
(a)
Ty 2 [1- -
2N1—'yo¢3tr
2
1 7208]) ; 2772y (042
VQleaBtr(H(q))zi:mm{l’V N=(A™) }

1 '72‘78]) 2 2 (9)
< k* 4+ N242. A2
2N 1 - yaptr(HW) o Z>Zk( -

(Q)2 *
el k 2 (@)y2
=% (T N2 S92,
1—7@Btr(H(Q)) (N + N Z( i )

i>k*

Hence,

(q) *
i % (M N (@)y2
variance < T~ aptr(H®) (N + N7y z;;()\l ).

O

Lemma D.15. (A bound for variance under multiplicative quantization) Under Assumption

if the stepsize satisfies 7 < m if there exist €q, €1, €p, €q and €, such that for any

1 € {d,l,p,a,o}, quantization Q; is €;-multiplicative, then

(¢)2 *
o k
: < M N 2, /\(q) 2 .
variance < 1= (1 % Oyapte(H®) (N + Ny E (A7)

i>k*
Proof. Applying Lemma|D.13] and repeating the computation in the proof for Lemma|[D.14]

2
C, (T - 'y’T(Q))oCt 1+ (1+e)./\/l( o Cy 1+'y20§\;1[) H@

2
~ tr(H(Q))’ya(Q) 2
<(T —~ATD) 0 Cpoy +72(1 + &) —B M___F(@) 4 4250 gy(0)
ST =AT) e Comt 74 +6)1—(1+€)7a3tr(H(q)) YoM
2
20\ "H® -

:(I — ’Y%(q)) o Ct—l +

H
1— (14 é)yaptr(H@)

70551)2 (a))t
~< (1-@-~HU )
~1—(1+ényaptr(H®) ( (I—7H)
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Therefore, repeating the procedure in the proof for Lemma[D.14]

o0’ k* ()2
i < NA~2 AL
variance 1= (15 O)y0ptr(HO) + Y DZk( )7
[
. . . . 1
Lemma D.16. Under Assumption if the stepsize satisfies v < St (E@Y’ then
20n (”WO - W(q)*”iq) + Noyllwo — W(Q)*”iﬂw ) k* ()
R, < 0:k* k*:00 4N 2 )\.q 2
2= Nv(1 — vyap tr(H@)) N K Z>zk*( i)
1 *
+W [lwo — w2 =@ ) +[lwo — w? ”iﬁg)
(Q)Q *
9¢a k 2 (2)y2
— + N~~. A .
+1—fyaBtr(H(‘1)) (N A Z;:*( i)
Proof. The proof is immediately completed by Lemma[D.T0]and Lemma[D.14] O

. . . . 1 . .
Lemma D.17. Under Assumption if the stepsize satisfies v < THapu@@)’ if there exist
€ds €1, €p, €q and €, such that for any ¢ € {d, 1, p, a, o}, quantization Q; is e;-multiplicative, then

21+ &ag | [wo — w2 (@ + Ny[wo — w2 @ x

Ry < Iy H kf + N,y2 Z (}\(Q))2

: N (LT g w(H)) N 2

1 ‘o
+W [lwo — w? H(Hff:’i*)“ + [[wo — wl®” HH<q>
vl K (9))2
N~? A .

T T anagu@e) (v T 200

Proof. The proof is immediately completed by Lemma[D.TT|and Lemma [D.15] O

E ANALYSIS OF R;

Ry =3 [(y— Qiw))*] + 3B [(Wy, Qu(x) — %)
=3E (s~ Q)] + ;& [WDw]
=3B [(s— 2w)?*] + 3E [y + w0 ) DGy + W)
Z%E (- Q)]+ %E [MADAy] + ;E { (q)*TDW(‘”*] +E [7iDw’]
S%E [(y - Qz(y))z} +E [1yDay] +E [W(‘”*TDW(")*}
<3E [0 - )] + .y e my) + 5 [ Dwlo”].

E.1 MULTIPLICATIVE DATA QUANTIZATION
Lemma E.1. If there exist 4, €], €, €, and €, such that for any i € {d,l,p, a, 0}, quantization Q;

is €;-multiplicative, then
)?
E {(6 ) ] + 2€d €d

Ry + ——||w* 3.
2 1+eq 2 (1+ed)2||w It

Ry <
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E.2 GENERAL DATA QUANTIZATION

Lemma E.2. Under Assumption if the stepsize satisfies vy < m then

E[(0)’]
Ry < — T 2[D[|(B+V)+ ||W*||?—I(H+D)*1D(H+D)’1H’

where

* *
20 (Iwo = w2+ Mo — w2, )
B < 0:k* k*:00

1
— F N2 YA
Ny(1 = yap tr(H@)) ; NA@ ;
1 * "
+W [lwo — w(@) ”?Hfffi*)’z + [[wo — wl@ H?fﬂ):w’
(@)?
o 1
V < G + "Y2N>\(q)
T o) | 2 @ * 2
Proof. 1t suffices to prove
(D,Emy ©@ny]) <2[D[(B+V).
Firstly,
(D,E[my @nyl) <Dt (E[my @7y]).-
Secondly, from the computation in the analysis of Ro,
| NoinN-d
E [y ®7ix] < 775 (== D) Elm, & m] + Efme © me] (T 7H®) ).
t=0 k=t
Hence,
] NoIN-d
St Efy ©Tn) <3z > Y tr (A= HD) Eln @ ] + Efme @ m)(L— yH®)* )
t=0 k=t
| NoiN-1
N2 tr ((I — yHD)* "B, ® Ut])
t=0 k=
| NoiN-d | NoiN-d
<+ tr ((I - 7H<q>)’HBt) + 5 tr ((I - 7H<q>)’Hct) .
t=0 k=t t=0 k=t
B \Y%
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We then focus on bounding B and V. By (),

N—-1N-1

) _
B=rs > 2 tr ((I — AH@)k-tg )
t=0 k=t
| NoIN-d
== <(I AH@)-t B >
t=0 k=t
N-1
1
L (1 ~H® N—t) (2))-1 >
TEADD ((1- @—yHD)¥) @)~ B,
1 N-1
< (I — (9) (9)y-1
< <(I (T vHD)Y) (HO) P
N-1
< L (I—(I—’yH(q))N) (H@)~! (I — yH D)k vap - tr (Boy) "HY + By | (I —yH@)k
TyN? =~ ’ 1 —~yaptr(H@)
1 = yag - tr (Bo.y)
- I— ~H@)2k _ (T - ~H@ N+2k> H@)-1 B ON) H@ LB
,YNQ P <(( Y ) ( Y ) ( ) AW vap tr(H(Q)) + By
N-1
1 _ Yap - tr (BO N)

I—~HV _ (T - ~+H@ N-He) H@)-1 ) .HY + B
< 2 (0B ) o (O8R4
=I3 + I4,

where
I _ 1 = ((I o ’YH(q))k o (I o "}/H(q))N+k) YaB - tr (BO,N) . I
3 TIN? P "1 —~vaptr(H@) ’
1 Nl
- _ (@Vk _ (1 (@) \N+k (@y—1
Ii=—y 2 (07 HO) = (= HO)VE) (1) 7B, ).
k=0
Regarding I3,
ap-tr (B iy (q) (@)
I — B 0,N) [ NOVE _ (1 _ 4\ N+k}
8 N(l—vaBtrH(Q) I;)zl: —AT) (1=7A7)
N-—
ap - tr (Bo,n) (q) (q)
= : 1-— A A
N2(1 — yap tr(H@)) ZL: [ —7 } kz:;) -7
ap -tr (Bo n) [ ()\N (@)y—1
1— (1= A } Al
T AN2(1 — yag tr(H®)) Z (L=2A77 ] ()
ap - tr( BON { (q) 27724 (@)
(), 2N
“yN2(1 — yap tr(H@) me L
ap tI‘(BO N) 2 (q)
i . A
(1 —yap tr(H@)) Z Nz)\(Q) Z;:*
Note that N *
tr(Bo,v) < 2(|wo = W[+ Noyllwo — w1, ),
hence,
2ap (lwo —w@ [} .+ Ny|wo—w@ |,
I; < ( - ’”'°°) > + N2 3T AW

Ny(1 = yap tr(H@)) b N/\@) f
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Regarding I, decompose H(?) = V(Q)A(q)V(q)T, note that By = 197, , it can be shown that the
T T X
diagonal entries of V(‘Z)TBOV(Q) are w?, ..., where w; = vgq) Ny = vgq) (wo — w(®7). Hence,

Iy = ,yNg Z Z { 7)\(‘1) .yl _,y)\Z(Q))N+k} ()\gq)),lwi2
:# Z [1 —(1- 'y)\l(_Q))N} ()\Z(_q))—lwiz — (1- 7/\5}1))1«

k=0
ZNZZ )\(q))z [ 1*7/\((])) }

2
. wi 2
<72N2 Z ()\(q))z + Z Wi

=

i<k* i>k*
1 *
:,YQNQ ’ ||W0 - ( ) || H(q> - + HWO - W(Q) H?Lq*):oc
Therefore,
B3+ 14
20z ([lwo = wi@ |}, + Nyllwo — w3y, )
< D@ NN
Nv(1 = yop tr(H@D)) N
i<k* i>k*
1
+72N2 “lwo — H(H<q> -2 T+ [wo — ||I<q)
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By (7),
N-1N-1
1 _
Ve=oz tr (T vHD)Cy)
t=0 k=t
N-1N-1
1 <(I—H )ktc>
_N2 Y t
t=0 k=t
—1
1
_ryNQ <[I (I—~yH@)N t} (H@) Ct>
t=0
1 ot R (@\N—t] (F(@)-1 (@
I-(I-~HY H I-(TI-~HY
Y2N? 1 — yaptr(H@) tz: <{ ( ) } ( ) ( ) >
2 N—-1
1 Y Oé) Z {1 (- ,y/\(Q))N—t} ()\(q))—1 {1 —(1- ,Y)\(q))t}
T 2N21 = yaptr(H®) — = ‘ ‘ ‘
2 N—-1
1 Yol @ \N]? (\(@)y—
< 1—(1— )\4‘1 N )\vq 1
*’}/QNQ].*’)’OZBU'(H(‘I)) ; — [ ( YA ) } ( (] )
1 120’ @ \N]% (\ (@)~
- 1— (1=~ APyt
val—mBme»;[ (1= ()
1 7ol i d (@)~
_ A@y=1 22y (@)
'yQNl—WaBtr(H(Q));mm{( ;)T i }
2
1 ")/20'((1) 1 9 (@)
=— + ~y N)\Z-q
T an ) | 22 o * 2
)2
<—(q Z S ST 2NAY
1-— WaBtr(H(‘Z)) e N)\(Q) =

F DEFERRING PROOFS

F.1 PROOF FOR THEOREM [£.1]

Proof. By the fact that H@ = H+ D, Theoremcan be directly proved by Lemma Lemma
Lemma Lemma|C.1]and Lemma O

F.2 PROOF FOR THEOREM [4.2]

We present another Theorem El to provide precise excess risk bound rather than only in order and
prove Theoremmln thlS section. By Theorem|[F.I] Theorem [d.2]can be immediately proved by the

fact that w(@* = H@ ~'Hw* and € < O(1).

Theorem F.1. Under Assumption |3.113.4| and notations in Theorem if there exist €q, €1, €p, €4
and €, such that for any i € {d,[,p,a,o}, quantization Q; is ¢;-multiplicative and the stepsize
satisfies v < then the excess risk can be upper bounded as follows.

ap(l+eq)(1+€)tr(H)’

+ 3€q

1+3
E[£(Wn)] < ApproxErr + T e, VarErr + 1_:_ ;dd BiasErr,
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where
3,1
_|_
ApproxErr = HW*HH (2( QGd)) 44 aEly?],
k* 9 a](@)Q
VarErr = | — + N4?2 (1 A
AR N + Ny (1 +ea) I>Zk* 1—(14&yap(l+ e)tr (H)

21+ (w2, + VoW, )
0:k* k*:00
) Ny[1—(1+é&)yap(l+eg)tr (H)] ’

E* 9
+<N+N’y 1—|—€d Z/\

i>k*

with

@2 _ (L+de)o? | [w'f
oM T B + 1+eq
€:=2¢p +4eo(1 + €)1+ €p) + 264(1 +€p).

[eo[(1+ €)1+ €p) + Lap + 26,(1 + €p)ap + 2¢,aB],

Proof. By Lemma[A.2] Lemma[E.T] Lemma[D.T7, Lemma[C.1]and Lemma[B.1] applying the mul-
tiplicative condition, Theorem |F.1|is immediately proved. O

We would like to remark that, the multiplicative nature introduces additional complexity into the
update rule, resulting in an additional parameter € in VarErr. It is worth noting that when €, €4, €,
are at most constant level, € is at most constant level and can therefore be merged.

F.3 PROOF FOR COROLLARY [4.1]
We present Theorem [F2]to provide precise excess risk bound and prove Theorem|[F2]in this section.
By Theorem Corollarycan be immediately proved by the fact that w(%) "~ HO 'Hw*

Theorem F.2. Under Assumption and notations in Theorem if there exist €q, €1, €p, €a
and €, such that for any i € {d,l,p,a,o0}, quantization Q; is €;-additive and the stepsize satisfies
1

7 < yaptr(H4e4I)’ then

E[£(Wn)] < ApproxErr + 2VarErr + 2BiasErr,

where

3€q € "
ApproxErr = ¢ + —~ HW HH(H+sdI) YHipe ) 'H T Ed”W ||%H+ed1)*1H(H+edI)*1’

P
VarErr = 0:k k*:00

1 —yaptr (H + ¢4I)

—|—N722 i + €d) ),

i>k*

M)

with 0@ = cotea 4 o pe tr (H + eg1) + 2
A = F BGPT( +6d)+B.

Proof. By Theorem[4.1]and the additive condition, Theorem [F2]is immediately proved. O

F.4 PROOF FOR THE MULTIPLICATIVE STATEMENT IN COROLLARY [4.2]

Proof. We prove by applying Theorem Denote kj = max {k C A > ﬁ }, the key of the proof

is to convert k* into k. We first handle some norms. Note that for kj < i < k*, 1\% < /\Z(.q). Then
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it holds
*
[wo — w'® ||2<q>* + Noyllwo — wi®” ||H<q>
=[[wo — w(?” ||I<q> + [[wo — w'® ||?<q> - — Ny|lwo — w@ ||i123)k + N [wo — w(@” H
kg o k"
<|lwo — w?” ||f<q>* + Nvllwo — ||H<q>

0:ky

=[wo — w2+ (1 +ea)Nyllwo — w7 |3,
- 5.

<2[lwo — w3,

<2lfwo — w2,

+2HW*H]23(H+D)*

and
1 *
~2NZ Iwo — H(H<q> -1 lwo — w'® ”il}f,)
1 *
= . —_w@ 2 _
~ 42N?2 <”WO W H(Hf;f;é)—l +llwo w(@)” H(Hm *)_1) — [[wo — wl®” ||H< ) + [[wo — wl?” ||H<q)
1
STNE lwo — w@” H(H<q> yor T llwo = ||H<q>
1 *
_ ) _w@" —_ w@ 2
_(1 + Gd)72N2 HWO w H(HOsz)*1 + (1 + Gd)”Wo w ”Hk(‘j:oo
2 * (12 * (|12
S v W0 =W lIfe,, )0+ 201+ ) [wo — w7y,
2 * X
7w —w@72 *_ w(@)))2
Farapawe IV W o F 20 el -,
2 . .
= ey o= Wl 20+ ca)lwo —w

2

* (12 * 12
ez W eyt grep)—p 20+ €)W lD @) 1m,; D) -

201+ ea) Nyllwo — W[5y,

* (|12
g, (H+D)~1D +2(1 + eq) Nyllw ||D(H+D)*1Hk3;m(H+D)*1D’

‘We second handle

Note that for k§ < i < k*

e+ )
Nﬂ\w (14 €q)? §A

) 7}\,4{(14_61) <N < N . Hence,

k*
~ TN A+’ YA
i>k*

5 E R N2 ) STORENPIe)? Y N

NTTN

k§<i<k* i>k§
<8 B N0 a8~ R s + NP ) 3N
NN NZ92(1 + cq)? s
t>Fo

*

N

ki
=D 4 N2 (L4e0)? ) AL

i>k§

40

- + 2Hw* —w@ ||%0;k-;; + 2(]_ + Gd)N’YHWO — W*H%Ikazoo + 2(]_ + Gd)N’yHW* —w@ ”%Ikg-oo
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Therefore, applying Theorem [F.T| we have

E[E(WnN)]
3,1
)2 (5 =+ 56(1) €d 5
< L2 0 274/ 4 E
= HW HH (1 +€d)2 +e [y ]
2
ko 1+ 3eq e
+ [ 2 4+ Ny2(1 +€q) M- ) _ M
NN N T e e ()
c * |12 %112
(54 e 5 a2 L A D (I w300l )
N i>hk I+e NA[1 = (1+é&yap(l + eq)tr (H)]
41+ &) [i”W*”Q n Noyllw |2 }
+ @ +N 1 +e€ Z /\2 . 1+ 3eq . B | (i+ea)? To:rg 1+ed v Hpx,
DA g >k I+e Ny[1—(1+é&yap(l+eq)tr (H)]
2 |2 * (12 1+3€d
+ {M)QNQ wo = WG, -1 + 201+ €a)lwo — w ”Hk;:w} e
26d 63 *(12 1+3€d
+ |:(1+6 ) 2N2” ”H ! 1+€d||W ”Hk;;:oo Tte,’

Denote the standard excess risk bound (Zou et al.| [2023)

Ry = EffectiveVarl + EffectiveVarl + EffectiveBias,

where

dag (lwo = w3, +Nylwo — w3y, )
N1 = qats (H) |

. ko 2 2
EffectiveVarl = N + Nvy*- Z Aj

i>kg
k* 1 0'2
EffectiveVarll = | =2 + Ny*- 3 A7 | mo— e
ectiveVar N + Ny Z “| B1—~aptr(H)’
i>kg
) ) 2 * *
EffectiveBias = ¥2N?2 “[lwo —w ”%Ho:ka)*l +2|[wo —w H%I’“?i”“’

°+N'v (14+€q)? Diskg A
]\? +Nv? Zi>k8 A

2
, then

with k% = max {k DA > N%} Denote C =

€ . .
E[£(Wn)] S HW*H% Tded + e + Co(1 + €)(1 + e4)EffectiveVarl

(¢)2

02/B CoEffectiveVarll + (1 + €4)EffectiveBias.

Therefore, if

0_2 Ro
<O(R w0 grom AL, <0 s AL
€ <O (Ry), €p,€q,e (B||W*||%I > €d (”W*H%_I )

then
E[E(Wn)] < O(Ro).
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F.5 PROOF FOR THE ADDITIVE STATEMENT IN COROLLARY [4.2]

Proof. We prove by applying Theorem We begin by handling % +N~2. D ise A (H A+ D)2 .
For ki < i < k*, \; (H+ D) > Niv Hence,

k* 2 2 kO k* — ké 2 2 2 2
~ TV VZ)\I»(H+D) Nt v M Z A\ (H+ D)+ Ny ZAi(HjLD)
i>k* kg <i<k* i>kg
_ EJk 2 2
=~ TV ;:A (H+D).
)

We next handle some norms. A key observation is that for D = ¢41, H@ = H + D has same
eigenvectors as H.

We first cope with

* *
lwo — w'® ||i()q;* + Ny[lwo — w?@ ||i1<q>

<2|wo — W*Hi(fi* + 2N7[[wo — W*||i1§i>. +2llw* — w(@” ||2<q> +2N7[w* — w@)” ||H<q>
Regarding ||wo — W*||2(q> + Nylwo —w HHm) ;
[wo —w ||I<q> + Nylwo —w ||H<q)
=[wo —w ||I<q> + [[wo — *||I<q> T NVHWO - *HHm ot Nylwo —w ||H<q)
<[wo —w ||I<q) + Nyllwo — w2
:ké ka:oo

. * * * *
Regarding [|[w* — w(®" |2, + Ny|w* —w@" |2
L By H.

lw* —wl ||I<q) + Nyfw* — w@” HH(q>

:w*TD(HJrD) 1If)q,)€*(H+D)*1Dw +N7w*TD(H+D)*1H,§%{oo(H+D)*1Dw*
_ N’Y d *x T \2
=2 /\<q> RS /\<q> vi)

i<k* P>k
<||W*||I<q> +N’Y||W>'F||H<q)
—W*Z +W*2 - N W*2 —|—N w*2
| ||Iéq;0 [ ||I§f) X 7l HH%);@ gl HH;(%)OQ
<[ w3 + Ny[w* ||H<q)
0:1«6 0 100

Further note that

T
Nry|[w* ||H<q> =N~y Z (w* vi)*(\i + €a)
e i>kg

=N~ Z (w*Tvi)2\; + Ny Z (w* T vi)2eq

i>kg i>ky
=Nyl R, eaNYIw IR,
and similarly,

Ny[lwo — *||H<q) = Nvllwo — W*H%{kém + ealNv|[wo — W*||%k3m’
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hence,

* *
[wo — w'@ Hi(f';:* + Nyllwo — w? ”il“”

<2fwo = W[ +2N7wo — w7}

HO
<2fwo —w ||I<q> + 2Nv[[wo —w ||H<q> +2[w” ||I<q> +2N7||W ||H<q>
K Koo K Koo
=2|lwo —w ”IMS +2N7y|lwo —w ||Hk§m
+2||W*||%0;,€8 + 2]\77||W*||%1k3:oo + 2eaNy (||Wo - W*||%,€5:oo + HW*H%kSm) :

We second cope with

1 *
N2 lwo — wl@” H(H<q> )-1 + [[wo — w(® ”iliq»?m
2 * (12 2 * (
*W.HWO w ”(Hé‘:” )-1 , H2fwo —w” ||H<q> +W‘HW -w
Regarding ﬁ lwo — W*H?H((f)l*) L+ llwo —w ||H(q) ,
1
PN [wo —w*||? D) + [lwo — W*H;i‘i)m
1 1 * (|2
=pN? [wo —w ||(H<q> -t PN [wo —w ”(Hgf*);w)*l — [lwo
0
1
AN “[lwo —w ||(H<q> -1 [wo —w* HH(Q)OC
0
1
s I - w*n?Hg?)*)_l Flwo — Wl +elwo — WU,
*
Regarding sk - [w* = w2+ w = w2
1 *
TNQ = wl? ||2H<q> L = w@ HH<q>
> S
2N2 )\(Q) T
z<k* 2 z>k*
1 * |2
727]\]2”“’ ”(H(?Z*) W ||H<q>
*||12
= 2N2||W ”(H(Q) y—1 + ||W ||Hl(%):oo
1 « *112 * (12
= I o I T+l

Further note that

I

- w3

+ 2w — w2 @ T 2Nyllw? — w2

(H{D.)

(a)
Xk
k‘,o.k

*TVZ')Q

(HD. )~

(w*Tv;)? (w*Tv;)? .12
19" g = D e € D = W 0
( ) i<he )\z + €q i<ke )\z 0:k%
hence
1 *
e Iwo = wld H?Héi’i*)‘l + [lwo — ||H<q>
2o — w? T — +i~|| w2
2 2 2
< wo = Wl o+ 2 wo =Wy,
2
g I g+ 29 g 2ea (I o = WYl )
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+ [lwo — W*H%m

+ 2w = wlT

k}:oo
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+2|w* —w(@
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H
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Finally, adopting in Theorem [F.2]
El£(Wn)]

€d 2 €d 2
<e+ b ”W*||H(H+sdI)’1(H+edI)’1H + EHW*H(H+ed1)*1H(H+edI)*1

2
Nvaff) +4dagp (HWO — W*H%o;kg + Nvy|lwo — W*”%{kém) ks

2 . Y N 2 )\’L 2
' N7(1 = yap tr(H + egl)) N TV ;;*( + €a)
0

Sap (w2, + Nolw s, +eaNy (Iwo —wolE, _+Iw 2. )] (1

. o N 2 )\l 2
+ Ny(1 —vyaptr(H + ¢41)) Nt ;C:( +<a)
t>Ro

o 90 =W gy Ao — w7 I,

4

,Y2N2
4 * (12 * (12 * (12 * (12

a9 ety A9 g 2ea (I lwo = WYl
Denote
% + N2 Zi>k5 (N + €a)? B ed”W*H%k;}m

k* ) 2 —

~+ Ny Zvﬁ>k3 5

1=

ER = A
)

Under the condition |[wg — w*|| = ©(||w*||) and the definition of Ry,

(@)?
EE(wa)) SIW P + o 35 CrfectiveVarll

+ (1 4+ Cy) C1EffectiveVarl 4 (1 + Cy) EffectiveBias.

Further, if
2 o’
< O (R ° <0 , <Ol ——m—— s
€= ( 0)?6+6 = (J) €p > (Btr(H+€dI)>
* |2 1 * (|2
B o
€d > * * ’
[[w*]|> d— kg lwg..
5
then
E[E(wx)] < O(Ro).
O]
F.6 PROOF FOR THE MULTIPLICATIVE STATEMENT IN COROLLARY [4.3]
Proof. We prove by applying Theorem We first compute & + Nv2(1 +€4)2 - 3. 4. AZ. Note

that by the power-law assumption,

E i ke

i>k
We have
min {d, [N7(1+ €0)]* + N292(1+ e [Ny(1+€0)] = }
N

k* 2 2 2
7t N+ e) ;:)\ <

min {d, [Nv(1+ ed)]%}
I .
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We secondly compute |[wg — w*|

[wo — *||I<q> + Nv[[wo —w ||H<q> =0 <k* + Nv(1+ €q) Z )\z)
i>k*

(min {d, [NY(1+ )] + N9(1 + €0 [N7(1+ )] = })

<0
) (ml {d [Nv(1+ Ed)]%})

Hence,

* *
[wo — w9712, + Nyllwo — w72,
Io-k* Hk*-

<2|wo — W*H?ffi* + 2N7|[wo — W*||i1<q>

+2[lw* - w® ||f<0qk> +2N7[w* — w@)” ||Hq>

<0 (min {d, [N’y(l—l—ed)ﬁ}) + 2[|w*||? + 2Ny||w*||?

D(H+D)-'1{"), (H+D)-1D D(H+D)-'H!Y (H+D)-1D

SR (1wl + NIl

<0 (min {d [N~(1+ ed)ﬁ})

The last inequality uses wg = 0.

Q=

-0 (min {d, [NY(1 + €q)]

We thirdly compute —55 - [wo — w I

(H() ) + [lwo — W*Hf{(kw

1

+[lwo — w2

[lwo — w12 H

H(q) y—1

o
o[

<0 ( 221+e 1/\i1+2(1+ed)/\i>
(

i>k
k
<0 Ni 1 + Ed))\i>
z>k
min {d, (Ny(1+ e))* }
<0
< Ny
Hence,
1 *
w0 = W By o — WO [y
2 2 2 . (@2
AN “[lwo —w ||(H<q> )-1 2w —w ||H<q> +VQT lw* = w(@7| (H@ )1 2w —w ”Hﬁf*):oo
min{d, (N’y(l—i—ed))i} 2¢2 ,
SO N’Y + (1+€d)2 |:’}/2N2|W H (q) -1+ ||W ||H<Q)
min {d, (N~(1+ ed))é}
<0

N~

The last inequality uses wy = 0.
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Therefore, applying Theorem [F.1] we have

min {d, (N~(1+4 ed))é}
N~y

— €d *

B <0 (T2 Wl +a ) +0

min{d, [N’y(l—i—ed)]%} o2 (14 €)ap min {d7 [N’Y(1+€d)]%}
— + (ep + €0+ ca)ap|| W[ + Ny

+0 N | B

*

Assuming that the signal-to-noise ratio is upper bounded, that is, “WUJ‘%’ <1,0% ~ 1 (Lin et al.,
2024). If (1 + eq)d™ < w5,

Ele(w)] < O ( “@_y ) +0 <<Nv<1+d>>>

I+eq N~
+0 (W <U;_|_(€p+60+6a)+ (1+€)[N];,y$+€d)]}l>>.

Otherwise, if (14 ¢4)d= > ﬁ’ note that
1

ez I = [~ w2
1 *
:72N2 : ||W0 - W(q) ||?H(11))—1

2 - 2
§72N2 W Ty -1 + SN? [[w

d
< .
=0 (72]\72(1 + ed)d“)

E[¢(wn) <O (1 fEd + fl) +0 <72N2(1il|-€d)d_a>

d o2 (1+é)d
+O<N.<B+(6p+eo+ea)+ Ny )>
Consider the condition that e; < O(1),Vi € {l,d, p, a, 0}, the proof is immediately completed. [

*

—wl? ||%H(q>)—1

it holds

F.7 PROOF FOR THE ADDITIVE STATEMENT IN COROLLARY [4.3]

Proof. We prove by applying Theorem Ifeg+d > ﬁ’ it holds

. a0 L1
k max{k.)\k,q > ’y}d'
Hence, by Theorem|[F2]

VarErr
2 * *
o 252 (wo = w2, + Nyllwo — w2, .
_ v Toiox Hv oo . k/; +N 2 Z()‘ te )2
1 —vaptr (H+ ¢I) N 7 et rr
2 *
o+ R fwo — w1
— 0:d _—
1 — yaptr (H + 1) N’
BiasErr
1 * *
- ) —w@*)2 — wl@ 2
R R A TCT R AL IO
1 *
THEINZ lwo — wl® H?Hm)fp
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Note that

[wo — w'?@ ”?E;z; < 2fwo - *Hlm +2w* —wl(@” ||2 @ < 4||W*H1<q> = O(d),

* . . * . d
[wo — w(? H(QH(cn)—l < 2|lwo —w ||%H<q))—1 +2[|w -wl? ||?H<q>)—1 <Adflw ||?H<q))—1 <0 (ed—l—d_a> )

Therefore,

E[€(wy)] <O (1 - ) +0 (Mw)

d eo—|—ea o? d
+O(N( B +(1+d€d)€p B +—N')/)>

Next, we consider €4 + d =% < . We first compute %~ 4+ NA2 > ions (Ni F€a)?

~
2
4
a
SW
~—
+
%
N
| —
—
2|
2
|
a
sW
|
+
[\
Q)
AN
N
QU
~
2
2
|
a
Q
—
|
Q=
N—
—_

k* 2 2
N + N~ l;;*(/\z —|—€d) <

We second compute ||wg — W*||2(q) + Nv|lwo — w*||?

H(fz)
Iwo = w2+ Nyllwo — w2

H(?,
=0 (k + Ny > N(H+ D))

i>k*

Note that

Zk* € (@) Zk* (@)

d T 2 T 2 2
|| ||D(H+D) 11((1) (H+D)-1D (q)2 (W* Viq ) < (W* viq ) = HW*HI(()QI)C*’

im1 A, i=1 :

and
w2 =3 TV < w2
D(H+D)'H? (H4D)~'D | - @ = a2 -’
i>k N
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hence,

*
[wo — w'® HQ(% + Nrllwo — w(@” ||H<q>

<2[|wo —w *||I<q) +2Ny|lwo —w *||H<q> + 2w = w(@7|? o +2Ny|w — w2

<0 <ed1\m <d— (1\}7 _€d>3‘> . <N17 —q)i)

+ Noyllw12

H(q)

D(H+D) 'H? (H+D)—1D:|

1 1
<0 <edzvfy (d(med) >+(Med> ) (nw 2o+ Nollw Iy )
1

1
a

1 _1
SO (EdN’y <d - <]\f'y — Ed)

|:|| ||D(H+D) 11(12) (H+D)-1D

We thirdly bound —z - [[wo — w*||?Hé?; o T lwo —w ||H(q>
1 *
~2ZN2 wo —w ||2H(‘1;*)7 + [[wo —w ||H<q>
M(H+D
(WZA oy )

Q‘H

1 1 l—a
T a 1 T Ta
=0 (M < _€d> >€d+<N7_€d>

<0
< Ny
Note that
2
* € * T (Q) 2 1 * 1 (Q) 2 * (12

[[w* |2 @ Y1 1 :Zidg(w v;')" < (W V)T = (W o

D(D+H)~!(Hy) )~ (D+H)~'D = )\Eq) 5 )\Z(_q) (Hl W)
and

_ €d (@) o+ T (2))2 * 12

hence,

1

PN w = wl” H(H(") )-1 + W = wl®” ||H(q>

2 * (|12 2 * ( )* 2 * (q)

§72N2 HWO - W ||(H(<1) )—1 + 2HW0 - W ||Hl(cq*>;oo + W . ||W —w ||(H(()‘ZI)€*)—1 + 2||W A
_1 _1
(=) (=) )
< . ) _w@
<0 e oy I = WO R 2w
d— (L — = N £L =
Ny~ €d €alNY + | N5 — €d

<0
< Ny
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Finally, applying Theorem [F.2]

— € *
El(wWNn)] <O (1 +d€d l|w*||? + 61) +0
vt = (R -a) T (S -w) ) o
0 2 (%
17 1
€EN?y? |d — (ﬁ - ed) + (NLA/ - Ed)
+0 N

+ (1 + ded)OlBEp + 7

I (e et
<
[E®n)] O(1+€d +€l) +0 No
17 _1
v o () ] )Y .
+0 N ( 5 +(1+ded)ep+§
_17 _1 _1 _1
€2N22 d—<1\%—€d> ’ +<ﬁ—€d) "\ eaNy (d—(l\ﬁ/—ed> a)—i—(]\}v—ed) ‘
+0 N Ny

Consider the condition that ¢; < O(1), the proof is immediately completed.

G DISCUSSION OF ASSUMPTIONS

G.1

Consider the standard fourth moment assumption on the full-precision data (Zou et al., [2023):

DISCUSSION OF ASSUMPTION [3.3]

Assumption G.1. Assume there exists a positive constant oy > 0, such that for any PSD matrix A,

it holds that

Under Assumption we are ready to verify if Assumption [3.3|can be satisfied. We begin by:

E [xxTAxxT} = oo tr(HA)H.

E [X@x(q)T AX(q),{(q)T}

K me)T AX(q)) X<q>x<q>q
:(Xm)T Ax(Q)) (xxT + €<d)€<d>T)}
:(XTAX + e(d)TAe(d)) (xx" + e(d)e(d)T)}

—4F [XXTAXXT] +4E [e(d)e(d)TAe(d)e(d)T}

<2E

=4E

+4E

:(XTAX) e(d)e(d)—r} + 4E Ke(d)TAe(d)) XXT} .
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From Assumption[G.1]
E [XXTAXXT} < aptr(HA)H

Regarding E [(e(d)TAe(d)) XXTi| ,

[(a¢) ] B[ ("ac) o) = A (") o]

Regarding E [( TAX T}

[( TAx) eDel } [tr (Axx )]E [(e(d)e(d)T> ’XH .
Next, we provide some examples on specific quantization mechanism to exemplify the satisfaction
of Assumption[3.3]

Example G.1. Strong multiplicative quantization. We consider a strong multiplicative quantiza-
tion. In this case, there exists a constant C' such that

e@DedT < C'xx .

Hence,

E [(e(d)TAe(d)> () ¢(d) } < C”E [(x"Ax)xx ],
" E[ (el |x] = 0T
Therefore,

E X(q)x(Q)TAX(Q)x(Q)T} < 4dag(1+2C" + C™*) tr(HA)H < 4ap(1 + 20" + C/Q)tr(H(q)A)H(q).

Example G.2. Strong Additive quantization. We consider a strong additive quantization. In this
case, there exist constants C, C' and constant matrix M such that

D:=E {e(d)e(d)q =CM, @@’ < C'M.

Hence,
i

E [(e(d)TAe(d)> e(d)e(d)—r} < C'tr (AM)E [e(d)e(d)—r} _ %tr(AD)D.
Therefore,

T T o4 c’ o
E [x@x(q) Ax(@x (@ } <day tr(AH)H + 4= tr(AD)H + 4 5 tr(AH)D + 4= t(AD)D
/

C
<4 —
< |:O£0+3C

} tr(H(‘J)A)H(q).
G.2 DISCUSSION OF ASSUMPTION[3.4]

Consider the standard noise assumption on the full-precision data (Zou et al., 2023):
Assumption G.2. There exists a constant o3 such that

E [(y — <W*7X>)2XXT] =< 0'(2)H.
Under Assumption [G.2] we are ready to verify if Assumption [3.4]can be satisfied. We begin by:
E [(y(q) _ <W(Q)*’X(Q)>)2X(Q)X(Q)T]

B[40~y +y — (W, %) + (w", %) — (wlD x(@))2x0x@ ]
<3E @(q) _ y)2x<q>x(qﬁ} L3 [ (v (w" X>)2X(q>x(q)r}
13E [((w*, x) — (W@ x@))2x@)x(@ }
<3E {( (@) _ )20 (@) } { w* X>)2X<q)x(qﬁ}
)

+6E _<W(q) - w,x)*x(0x(@ } + 6B {< X )*aﬁ(d)>2x(q)x(q)q .
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Next, we provide some examples on specific quantization mechanism to exemplify the satisfaction
of Assumption [3.4]

Example G.3. Strong multiplicative quantization In this case, we consider there exist constants
C', C" such that

@@’ < C'xx",
E[(y'? —y)?ly] = C"y>.
1 w2 (@D x (@ T
Regarding & [(y (w ,x>) x(@x )
E [(y— (w", x))x x| <2B [(y — (w*, %) ] + 2B [ (y — (w*, %)%V
<2(1+C’) [( <W x>)2xxT]
<2(1 4 C")o2H
Regarding E [(Vv(q)*7 e(d)>2x(Q)X(q)T} i
E [<W(q>*, e<d)>2x<®x(qq

& [ewﬁw(q)*W<q>*T€(d>x<q>X(q>T}

<K [GM)TW(q)*W(q)*l(d)XXT} L 9E [euﬁw(q)*W(q)*T€<d>€(d)€<d>T]

* * 1 * * T
<2C" aptr(w'D wl@" H)H + 2C"%aptr(w'? wl®” H)H.

Regarding E [(w(‘n* —w*, x>2x(q)X(Q)T]’
E {(w(q)* - w*,x>2x(q)x(‘1)w <2E [(w(")* - w*,x)2xxT} +2E [(w(q)* - W*,X>26(d)e(d)T]
=<2(1+ Cagtr (W —w')(w®@ —w*)TH) H.

Regarding E {(y(‘I) —y)*x(@Dx(@) } if we further assume that there exists a constant C""" such that
E [y?xx"| < C""H, then

| =<
E { @ _ )2 (q)x(qq <9F {(ym _ y)ZXXT} 1 9E [(y(w _ y)Qe(d)e(d)T}
<2(14+C")E {(y(q) - y)2XXT}

<2(1 4+ CC"E[y?xx "]
52(1 +O/)C”C/”H.

Therefore,
E [(y(Q) _ <W(q)*’x(q)>)2x(q)x(q)—r}
<3E {(yw) _ y)Qx(q)x(q)T} 13K [(y _(w, X>)2X<q)x<q>q
16K {<w<q>* —w", X>2X<q>x<q>T} 1 6E {<W<q)*’ e(d)>2x(q)x(q)T}
* * T
=<6(1+ C"C"C"H + 6(1 + C")oH + 12C" ap(1 + C)tr(w'? w@™ H)H
+12(1 + C")aptr ((W(q)* —w)(w@" — W*)TH) H

jUQH(q),
where
0% =6(1+ C)(C"C" + 02) + 12C" ap(1 + C) WO |12 + 12(1 + C o[ W@ — w* |34
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Example G.4. Strong additive quantization In this case, we consider there exist constants
C,C’,C" and constant matrix M such that

D:=E {e(d)e(d)q =CM, DT < C'M,
E[(y'? —y)*ly] < C".
Regarding E [(y —(w*, x>)2x(‘J)x(‘Z)T}, if we further assume that E [(y — (w*,x))?] < o3, then
E [(y - <W*7x>)2x(q)X(Q)T} =<2E [(y — (w*,x))?xx | + 2E {(y - (w*,x))Qe(d)e(d)T]
jQO’SH + QC”U%M
/

C
=202H + 2
ooH + c

o2D.
Regarding E [(y(q) — y)Zx(q)x(q)T}’
E {(y(Q) _ y)2x(q)x(q)—r} < ¢"H@,
Regarding E [(w(‘I)*, e(d)>2x(Q)X(q)T} ,
E [<W(q>*, e(d)>2x(q)x(q)—r}

_E [ewﬁw(q)*W<q>*Te(d>x<q>x<q>T}

<9K {gd)Tw<q>*w<q>”€<d>xxj LR {gdﬁw(q)*w(q)*T€<d>6<d>e(d>T

* * T * * 1
jQC’tr(w(q) w(®) M)H—|—20'tr(w(q) wl®)

M)D.
Regarding E {(w(‘Z)* —w*, x>2x(q)X(Q)T}

E [<W<q>* _ W*,X>2X<q>x(qﬁ}
B [xT (W~ w) (W@ w) T @x@

<2E [XT(W(q)* - w*)(w(q)* - w*)TxxxT} +2E [XT(W(q)* - w*)(w(q)* - W*)Txe(d)e(d)w

/
j20&0tr ((W(Q)* _ W*)(W(q)* _ W*)TH) H 4 Q%tr ((W(q)* . W*)(W(q)* . W*)TH) D.

Therefore,
E {@(q) _ <W<q>*7x(q>>)2x<q>x<q>T]
=<3E [(y(Q) _ y)2X(Q)X(Q)T} +3E [(y _ <W*’X>>2X(q)X(Q)T}
+6E [(w(Q)* _ w*7x>2X(Q)X(Q)T} +6E {<W(q)*’ E(d)>2X(Q)X(q)T:|
! * * T
<3C"HY + 602H + 6%g§D +12C"tr(w @ w@" M)H
!
(200 + 2%)tr ((w@ —w)(w@" = w*)TH> H
jU2H(Q),
where
/ * * T / * *
0? =30" +6 (O —EC +12C"tr(w D w (@ M)) o8 4 2(ag + %)tr ((w(q) —w)(wlD" — W*)TH>
C C/ * C/ *
=307 +6 (1L 4 1201w [y ) o + 20 + S
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H THE USE oF LLMS

The use of large language models (LLMs) in this work was limited to linguistic polishing of the
text (e.g., grammar, clarity, and readability) and was not involved in any research phases, from
conceptualization and proofing to experimentation and interpretation.
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