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ABSTRACT

As general-purpose tools, Large Language Models (LLMs) must often reason
about everyday physical environments. In a question-and-answer capacity, under-
standing the interactions of physical objects may be necessary to give appropriate
responses. Moreover, LLMs are increasingly used as reasoning engines in agen-
tic systems, designing and controlling their action sequences. The vast majority
of research has tackled this issue using static benchmarks, comprised of text or
image-based questions about the physical world. However, these benchmarks do
not capture the complexity and nuance of real-life physical processes. Here we
advocate for a second, relatively unexplored, approach: ‘embodying’ the LLMs
by granting them control of an agent within a 3D environment. We present the
first embodied and cognitively meaningful evaluation of physical common-sense
reasoning in LLMs. Our framework allows direct comparison of LLMs with other
embodied agents, such as those based on Deep Reinforcement Learning, and hu-
man and non-human animals. We employ the Animal-AI (AAI) environment, a
simulated 3D virtual laboratory, to study physical common-sense reasoning in
LLMs. For this, we use the AAI Testbed, a suite of experiments that replicate
laboratory studies with non-human animals, to study physical reasoning capabili-
ties including distance estimation, tracking out-of-sight objects, and tool use. We
demonstrate that state-of-the-art multi-modal models with no finetuning can com-
plete this style of task, allowing meaningful comparison to the entrants of the 2019
Animal-Al Olympics competition and to human children. Our results show that
LLMs are currently outperformed by human children on these tasks. We argue
that this approach allows the study of physical reasoning using ecologically valid
experiments drawn directly from cognitive science, improving the predictability
and reliability of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) can do your physics homework, but might not find their way to the
classroom. While LLMs have made great strides in several areas, including writing code (Champa
etal., 2024), solving maths problems (Frieder et al., 2024; Yuan et al., 2023b), and answering general
knowledge questions (Wang et al., 2024), it remains unclear what they know and understand about
the physical world.

Physical common-sense reasoning is the capacity to perceive, understand, and predict the behaviour
of objects in an environment. This includes an understanding of the physical rules governing space
and objects in that environment, and how they interact to determine the outcome of events or actions.
In cognitive science, physical common-sense reasoning is also referred to as intuitive or folk physics
(Kubricht et al., 2017). In LLMs, this capability has typically been evaluated using task- or image-
based benchmarks involving short vignettes describing a physical scene, perhaps accompanied by an
image if the model is multi-modal, with questions about the objects and their interactions (Buschoff
et al., 2024; Bisk et al., 2020; Wang et al., 2023b). Benchmark scores are then aggregated to produce
the final estimate of an LLM’s capability. While this traditional approach has provided insight into



some aspects of physical reasoning, it misses many definitive features of physical common sense
reasoning - that is, the capacity to perceive, understand, and predict the behaviour of objects in a
physical environment, and use that knowledge to take appropriate actions.

Beyond this, traditional benchmarks suffer from a number of shortcomings (Herndndez-Orallo,
2017). First, these benchmarks lack ecological validity—when deployed, LLM agents will not
be interacting with well-described, clean vignettes with clear questions and uniquely identifiable
answers. Instead, they will be interacting with a complex, noisy world where the correct answer,
or action, is not always easily discriminated. Second, these benchmarks lack established construct
validity (Borsboom et al., 2004; Cronbach & Meehl, 1955)—they have not been validated indepen-
dently as good measures of physical common-sense reasoning by, for example, running experiments
with humans or animals. Third, these benchmarks are static, meaning that the test items are fixed.
When these benchmarks are released, there is a risk that new models will be trained on test items,
contaminating the benchmark and thus rendering any results invalid, since models have been trained
to predict the answer rather than to exhibit any emergent physical common-sense reasoning (Xu
et al., 2024). Finally, benchmarks of physical common-sense reasoning are large and general—it is
often unclear which aspects of physical common-sense reasoning they are targeting for evaluation.
This is problematic because this type of reasoning is multifaceted, comprising everything from un-
derstanding inertia, gravity, and the solidity of objects, to reasoning about the concepts of causality,
quantity and time (Lake et al., 2017; Shanahan et al., 2020). Traditional benchmarks do not allow us
to precisely answer questions about what LLMs know about their physical environments and how
they use that knowledge to take actions in them.

In this paper, we introduce LLMs in Animal-Al (LLM-AAI), a framework for conducting robust
cognitive evaluations of the physical common-sense reasoning capabilities of LLM agents in a 3D
virtual environment. Our framework allows us to test LLMs’ physical common sense reasoning
by embodying LLMs within Animal-Al—a virtual laboratory environment designed for the devel-
opment of systematic cognitive test batteries with a particular emphasis on physical common-sense
reasoning (Voudouris et al., 2023). Our approach situates LLMs in a physically realistic environment
(ecologically valid), draws on testing materials that have been independently validated on humans
and other animals (construct valid), capitalises on the variance of physical phenomena to produce
difficult, dynamic tests (non-static), and tests a range of components of physical common-sense
reasoning (precise evaluation target). A further strength of the LLM-AAI framework is that it facil-
itates comparison between human, animal, and multiple types of artificial intelligence systems on
directly comparable tests. Here, we present the first evaluation of physical common-sense reasoning
in LLMs using experiments drawn from research testing these capabilities in non-human animals,
and compare their performance to Reinforcement Learning (RL) agents and human children.

The paper proceeds as follows: First, we review the recent literature on LLM agents and physical
common-sense reasoning evaluations. Second, we introduce the Animal-Al environment and the
Animal-Al Olympics—a competitive cognitive benchmark drawing on experiments from compara-
tive psychology. Third, we introduce the LLM-AAI framework and describe the results from two
experiments, where we evaluate the performance of three state-of-the-art LLMs (Claude Sonnet 3.5,
GPT-40, and Gemini 1.5 Pro) on the Animal-Al Olympics, in comparison to RL agents and human
children, using different prompting strategies. Finally, we discuss these results and future work
developing the LLM-AAI framework.

2 RELATED WORK

In machine learning and natural language processing, there is increasing interest in whether LLMs
possess the capacity to perceive, understand, and predict the behaviour of objects in their environ-
ment, which has come to be known in the literature as physical common-sense reasoning (Bisk et al.
2020; Buschoff et al. 2024; Sap et al. 2020; Storks et al. 2019; Wang et al. 2023b; see also ‘world
models’, e.g., Matsuo et al. 2022). This capacity has been studied extensively in the cognitive sci-
ences, where it is often called intuitive or folk physics (Bates et al., 2019; Battaglia et al., 2012;
Chiandetti & Vallortigara, 2011; Povinelli, 2003; Smith et al., 2018). Physical common-sense rea-
soning is multifaceted, ranging from understanding the properties and affordances of objects (Rutar
et al., 2024) to tracking occluded objects (Voudouris et al., 2022b; 2024), using tools (Shanahan
et al., 2020), and predicting the effects of gravity and momentum (Buschoff et al., 2024; Jassim



et al., 2024; Povinelli, 2003). One approach to studying physical common-sense reasoning in Large
Language Models is through the administration of text-based descriptions of physical scenes, some-
times accompanied by images in the case of multi-modal LLMs, about which the model must answer
some questions. The Physical Interaction: Question Answering (PIQA) benchmark (Bisk et al.,
2020) consists of over 16K items that follows this approach using only text-based questions. LLMs
are asked how they might achieve certain goals, such as Make an outdoor pillow and they are given
two potential solutions, in this case, Blow into a {trash bag, tin can} and tie with a rubber band.
Clearly, the answer is trash bag, given what we know as humans about the properties of trash bags
and tin cans. Aroca-Ouellette et al. (2021) extend PIQA to over 18K question-answer pairs in the
PROST benchmark, and Wang et al. (2023b) scale up even further to over 160K items in the NEW-
TON benchmark. The results from these three benchmarks indicate that physical common-sense
reasoning is not yet at human-level in text-only LLMs. In the multi-modal context, Buschoff et al.
(2024) develop a suite of tasks inspired by cognitive science to study physical common-sense among
other things. In their design, multi-modal prompts including task descriptions and visual stimuli are
combined, and LLMs are tasked with providing a numerical judgment or rating about the described
physical scene. For example, in the block towers task, LLMs are presented with pictures of stacks of
coloured blocks, and asked to provide a binary judgment about whether the ‘tower blocks’ are stable
or not. In their results, they found that only OpenAI’s GPT-4V was able to make correct judgments
above the level of chance on this task. In a similar vein, Jassim et al. (2024) present the Ground-
ing And Simulated Physics (GRASP) benchmark, but in this case images are replaced with videos
generated by a physics simulator. For every video, models are asked whether they think that the
physical scene depicted is plausible, and they can only give a binary answer. Videos depict scenes
in which objects appear to change size, colour, or shape spontaneously, disappear when occluded,
or lack inertia or momentum. Their results also indicate that current LLMs that can process videos
do not answer questions about these visual scenes above the level of chance.

An alternative approach to studying physical common-sense reasoning in LLMs is to grant them
control of an agent, such that they are embodied in a real-world environment. Previous work has
explored different approaches to LLM embodiment in both physical and digital environments. In
the field of robotics, LLMs have been used to generate high-level action plans that are executed
in real-world settings (Ahn et al., 2022; Driess et al., 2023; Jiang et al., 2022). However for such
forms of deployment to be safe and reliable, it is important to establish whether LLM’s apparent
understanding of the physical world translates into appropriate behaviour when faced with real-
world physical constraints (Ahn et al., 2022). Evaluating LLMs in ‘real-world’ contexts offers
a high degree of ecological validity, but presents significant challenges: these approaches require
extensive additional training, and face bottlenecks related to cost, safety and development speed in
robotics. Hence, there is much to be gained from taking incremental steps towards true embodiment.
One such step involves embedding LLMs as agents within virtual environments.

While there has been recent progress towards embodied LLM agents (Li et al., 2024), there has
been no work, to our knowledge, on providing a robust framework for evaluating their physical
common-sense reasoning. In the remainder of this section, we briefly review research on LLM
agents before comparing it to our approach. LLM agents have been implemented and evaluated
in a wide variety of game environments (Hu et al., 2024), ranging from co-operative games like
OverCooked (Agashe et al., 2023; Gong et al., 2023; Liu et al., 2023; Zhang et al., 2023a) to strategy
games like StarCraft II (Ma et al., 2023; Shao et al., 2024). Many of these games do not directly
require good physical common-sense, because they involve simplistic visual and physical scenes
with limited action spaces—their focus tends to be on evaluating how LLMs interact with other
agents. In open field environments, there have been implementations of LLMs in Minecraft (Chen
et al., 2024; Fan et al., 2022; Feng et al., 2023; Liu et al., 2023; Stengel-Eskin et al., 2024; Wang
et al., 2023c;d;a; Yuan et al., 2023a; Zhang et al., 2023b; Zhao et al., 2024; Zhu et al., 2023) and
Crafter (Du et al., 2023; Wu et al., 2024; Zhang et al., 2023c; Zhang & Lu, 2024), although again
the physical reality of these environments is heavily limited by their simplicity - indeed, Crafter is
a 2D world (Hafner, 2021). Most closely aligned to our work are those LLM implementations in
VirtualHome (Huang et al., 2022; Xiang et al., 2024; Li et al., 2024), which has a realistic physics
engine (Puig et al., 2018). In all cases, however, the focus has been on developing LLMs that
can outperform humans or other AI agents, rather than developing a framework for more precise
evaluation of physical common-sense reasoning.



This paper is the first example of a novel framework and proof-of-concept results demonstrating
that LLMs can be evaluated on ecologically valid, complex tasks of physical common-sense reason-
ing. Furthermore, our approach allows meaningful direct comparisons to be drawn between LLMs
and other agents, both biological (e.g. children) and non-biological (e.g. Reinforcement Learning
agents).

3 THE ANIMAL-AI ENVIRONMENT

The Animal-Al (AAI) environment (Beyret et al., 2019; Crosby et al., 2019; Voudouris et al., 2023)
is a physically realistic 3D simulation based on the Unity ML-Agents framework (Juliani, 2018),
designed to be used by researchers from AI and cognitive science to assess nonverbal physical
common sense reasoning in embodied agents. The goal of the environment is to offer a tool for
interdisciplinary research at the intersection of Al and cognitive science, with a particular focus
on comparative and developmental psychology. All experiments in AAI consist of a 40x40 arena,
populated with a single agent (spherical with diameter 1) and a variety of different objects.

3.1 THE ANIMAL-AI TESTBED AND OLYMPICS

AAI was first released in 2019 as part of the Animal-Al Olympics Competition, in which over 60
entrants competed to produce agents that could solve a series of unseen tasks inspired by com-
parative psychology research (Crosby et al., 2020), thus favouring the development of agents that
could perform robustly out-of-distribution on tests of physical common sense reasoning. After the
competition was completed, these tasks were released as the Animal-Al Testbed to further stim-
ulate interdisciplinary research between Al and comparative psychology. The Animal-Al Testbed
contains 300 distinct tests (with 3 variants of each; n=900 tasks) that test the full breadth of ca-
pabilities that underpin physical common-sense reasoning, including navigating around obstacles,
making spatial inferences, tracking occluded objects, and causal reasoning. The aim in every task is
to maximise total reward at the end of the episode. The environment contains spheres of different
colours and sizes: yellow spheres increase reward, as do green spheres, which also end the episode;
red spheres decrease reward and end the episode. In all cases, the magnitude of the reward change
is proportional to the size of the sphere. Touching red ‘death zones’ leads to a decrease in reward of
—1 and also ends the episode. Reward decreases at a constant rate starting from 0 on each timestep,
thus favouring efficient action sequences. Entering orange ‘hot zones’ leads to a doubling in reward
decrement. A variety of movable and immovable blocks are present in the environment, including
tunnels and opaque and transparent walls. While the colours and textures of objects in AAI are
simplified, their physical interactions are close enough to those of the real world to appear identical.
This is because AAI uses the physics engine provided in Unity: Every object has mass, volume,
and static and dynamic friction coefficients, meaning that their movements are governed by laws of
momentum, inertia, friction (including air resistance), and gravity.

The Animal-Al Testbed is arranged into 10 levels of 90 tasks of roughly increasing difficulty
(Voudouris et al., 2022a) which probe different aspects of physical common-sense reasoning. For
example, level 1 (Food Retrieval) tests the ability of the agent to navigate towards rewarding green
and yellow spheres, level 2 (Preferences) tests the ability to distinguish objects that give different
rewards, and level 3 (Static Obstacles) tests the ability to navigate around and over immovable solid
objects, such as walls, ramps, and tunnels. The most complex levels test sophisticated physical
common-sense reasoning abilities: level 8 (Object Permanence and Working Memory) tests whether
agents understand that objects continue to exist when they are occluded, while level 10 (Causal
Reasoning) tests the ability to understand cause and effect through the use of tools that can be used
to achieve certain goals. These levels are described further in the Appendix in Table 1. Examples of
the tests from each level used in this paper are presented in Figure 1.

4 METHODS

4.1 LLM-AAI

The LLM-AAI framework allows us to connect LLMs with the AAI environment. It is LLM-
agnostic, requiring only a multimodal agent that can receive text-and-image inputs and return text
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Figure 1: One task from each of the ten levels of the Animal-Al Testbed. The aim in every task
is to collect as many yellow and/or green spheres while avoiding red zones, orange zones, and red
spheres, before time runs out. Blue arrows indicate the location of the agent, and green arrows
indicate the location of green spheres. The rightmost images show the agent’s perspective during
play in levels 5 and 10.

outputs. Figure 2 illustrates our approach. At each timestep, ¢, the environment returns a colour
image of its current state, along with the agent’s current reward and health. These observations are
combined into a prompt and presented to the LLMs as a request.

Observations Prompt + Observation History

Animal Al
Environment

AAI Commands

|opol abenbue]

if command == ScriptComnands. Turn. valve:
if arg > 0:

retun [
action_nane_to_action_tuple[ 'RIGHT"]
1 % (arg // DEGREES_PERROTATE)

Figure 2: LLM-AAI LLMs generate actions such as Turn (45) ; and passes them to LLM-AAL
LLM-AALI then parses these actions into commands that are understandable to the AAI environment
and where they are subsequently executed. Observations from the environment are passed back to
LLM-AALI, concatenated into the observation history, and provided, along with prompts like “Your
remaining health is 80.6”, to the LLM for reasoning and planning its next actions.

AAI requires an input on each frame describing how the agent should act (for example moving for-
wards or backwards, or rotating). We use an approach that finds a middle ground between requiring
the LLM to provide such an input for each frame (which is costly), with approaches that require
the LLM to interact with the environment by writing code that calls higher level APIs (Wang et al.,
2023a) (which may outsource cognitively interesting tasks to specialised, environment-specific func-
tions). LLMs act in the environment using a simple scripting language. The LLMs have access to
three functions:

1. Go—this command moves the agent forwards (positive integer) or backwards (negative
integer). Go (1) ; moves the agent one unit forwards, where the units are in the size of the
agent. Due to the momentum of moving objects in the environment, higher values take the
agent slightly further than the number of units specified. For instance, crossing the width of
the arena can be achieved with the Go (35) ; command, even though the arena is 40x40
units.

2. Turn—this command rotates the agent right (positive integer) or left (negative integer).
The units are in degrees of arc. Turn (-90); rotates the agent 90° to its left, while
Turn (90) ; rotates the agent 90° to its right. In AAI, the minimum amount of rotation is
6°, so all values in the Turn command are rounded down to the nearest multiple of 6.



3. Think—the agent is instructed to use this command to describe the environ-
ment it observes, assess its position within that environment, track its remain-
ing health and reward, and plan its course of action to collect the reward as
efficiently as possible. For example, if the reward is behind the agent it
might return Think (‘I think the reward is directly behind me: I
will turn around to look for it’); Turn(180) ;. The inclusion of this
command is influenced by approaches such as ReAct (Yao et al., 2022), in which LLM
agents reason ‘aloud’.

The LLM’s response is parsed to return those scripts, which are converted into low-level action
sequences, leading to a new state of the environment. Within a single episode, previous prompts and
answers are prepended to the next prompt, so that the LLM has full access to previous states and
action scripts. The LLM does not receive observations during the execution of action scripts.

4.2 LARGE LANGUAGE MODELS TESTED

We consider three state-of-the-art multi-modal Large Language Models. Our selection was based
on a convenience sample, guided by the inclusion criterion that models must be multi-modal with
a large context window (>64k), and the exclusion criterion that models must not be too costly to
run inference on. We evaluated Claude 3.5 Sonnet, GPT-40, and Gemini 1.5 Pro. We ran all
experiments with temperature 0, but noticed that model responses can vary nevertheless. Therefore,
we ran three trials of each model on each task.

4.3 EXPERIMENTS

In this study, we use a subset of the Animal-Al Testbed containing four randomly selected tasks
from the ten levels (n=40), replicating the design of Voudouris et al. (2022a), in which 59 children
aged 6-10 completed the same subset of 40 tasks. This allows direct comparison of LLM agents with
human children, and non-human entrants to the Animal-Al Olympics Competition (Crosby et al.,
2020).

We conduct two experiments to explore LLM performance in this setting. Our first experiment
includes a prompt that explains the environment and possible actions to the LLM, and assesses
three models on 40 AAI Testbed tasks. Our second experiment provides the LLM with an in-context
example of the completion of a simple ‘tutorial’ level, which we assess on a subset of the 40 instances
assessed in Experiment 1.

When we encountered errors from API calls that persisted after three retries, we discarded the current
trial data and relaunched that trial run.

4.4 EXPERIMENT 1: REACT PROMPTING

First, we designed a simple prompt that provides the core information needed to navigate and collect
rewards in the AAI Testbed. To improve the LLM’s decision-making, we incorporated the ReAct
(Reasoning and Acting) framework (Yao et al., 2022) into our prompt design. The ReAct approach
combines reasoning and acting by allowing the model to generate reasoning traces alongside actions,
which can improve performance on agentic tasks (Yao et al., 2022). By integrating ReAct, we
encourage the LLM to first reason about the environment—identifying visible objects and their
spatial relationships relative to the agent—before producing action scripts.

Our prompt begins by setting the context: The LLM is informed that it is a player in a game set in a
square arena with a white fence, tasked with collecting green and yellow ball rewards as quickly and
efficiently as possible using a basic scripting language. The prompt details the kinds of objects the
LLM will encounter, their key properties, and instructions on how to write scripts using the com-
mands Think, Go, and Turn. It includes examples to illustrate correct usage of these commands
and provides guidelines to avoid common mistakes.

To aid the LLMs in navigating the environment efficiently, we incorporated expert tips on movement
distances and turning angles. For instance, we explain that moves of 1 to 10 steps cover small dis-
tances, while moves of 10 to 20 steps cover larger distances. We also provide strategic guidance on



how to approach the task using the Think command to describe the current state of the environment
and plan its actions, and subsequently using either Go or Turn to move within the environment.

Lastly, the prompt warns about potential obstacles such as red lava puddles, holes, blue paths, purple
ramps, transparent walls, pushable grey blocks, and immovable objects like walls and arches. It
provides instructions on how to identify and interact with these obstacles, emphasizing caution to
prevent the agent from dying or becoming trapped. The full prompt is provided in Appendix C.

Armed with this prompt, each LLM is evaluated on the 40 tasks performed by children in Voudouris
et al. (Voudouris et al., 2022a). The LLM is not presented with previous action scripts from other
episodes, meaning it approaches each task as if it is interacting with the AAI Testbed for the first
time.

4.5 EXPERIMENT 2: SUPERVISED IN-CONTEXT LEARNING

When children played the tasks in the AAI Testbed, they received a short two-minute video to de-
scribe “the game”—that is, to introduce the AAI environment, its objects and controls. To emulate
this, we designed an example level in AAI that introduced the same information presented in the
video, including a sequence of scripts for solving the level and “Think’ actions to explain obser-
vations. These were incorporated into the prompt above. LLMs are thus provided with images of
objects they may encounter, as opposed to just textual descriptions, and an ‘expert example’ (shown
in Appendix D), before they are tasked with controlling the agent. We call this supervised in-context
learning.

Due to the increased cost of passing additional images and text, we conducted this experiment on
a subset of tasks. We focused on the first three levels of the AAI Testbed as they provide a better
opportunity to observe meaningful differences given LLMs’ poor performance on later levels in
Experiment 1.

5 RESULTS

5.1 EXPERIMENT 1

1.00
S 075 A A Reference
c O @ Children
8 @ A Competition (Top 10)
£
S a 050
Sy + LLM
]
a.s [l Claude
F 0.25 A Gemini
L l I i M GPT-40
0.00 I I [ [ | [ ] I A
< @ 3 3 25 S 2 g2 BS 2
] o © c o = = c T O =
5 g g g 32 & T 25 =28 g
2 3 2 S sH g S 8 29 @
= 9] [e) z go 5 = £ S e
IS a o < =5 < T o< 2a =
g N 3 3 = 3 s 2% Eg 3
= - & g e & 88 2% 3
- ) ) - = o5 s o
- [Te) ~ Oe > o
4 -~ 0 © g =
.} -}

Level

Figure 3: The proportion of trials passed by each LLM on each level, consisting of 3 trials of 4
tasks each (total n=12 trials per level). The interquartile range of proportions for all children (n=59)
and the top 10 entrants to the Animal-Al Olympics Competition are presented as bars, with overall
proportion for those populations indicated by points. Note that the children and competition agents
have error bars, while the LLMs do not. This is because the child and competition agents contain
a population of different individuals, across which we would like to understand variation, while the
LLMs are repetitions of the same individual, and so are aggregated into a single value.



Our results, summarised in Figure 3, show that LLMs are able to complete some challenges in Levels
1 and 2, with sporadic performance across Levels 5, 6 and 8. They are comparable in performance
with competition agents in Levels 3, 8, 9 and 10, however these all occur at a very low success
rate, so there may be a floor effect obscuring a difference in capability between the groups. Children
perform convincingly better than LLM agents across all levels, with child error bars only overlapping
with LLM performance in Levels 4, 5, 9 and 10, where LLM performance is very low.

These results show that LLMs are able to perform successfully in the simplest tasks of the testbed,
but performance drops off quickly in more challenging tasks. The LLMs’ performance never ex-
ceeds that of the top 10 agents submitted to the Animal-Al competition. It could be argued that this
comparison will always favour the RL agents, who had been specifically trained for the environ-
ment, if not for the specific tasks. However, the same cannot be said for the human children, whose
performance also exceeded that of the LLMs across the board. These results indicate that LLMs
may still lack the physical common-sense reasoning abilities possessed by human children.

5.2 EXPERIMENT 2

The supervised in-context learning results are shown in Figure 4. Each LLM’s performance is
illustrated by a pair of bars. The first bar illustrates performance without our ‘expert example’, and
is identical to the results of the main experiment from Figure 3, while the second bar represents
performance with our example and is new in the in-context learning experiment.

Overall, we did not observe a notable difference in performance when providing the LLMs with the
‘expert example’. While the LLMs still broadly perform successfully on these early levels, they do
not outperform the competition agents or the children.

The observed performance difference, when including the ‘expert example’, was not the same across
all the tested LLMs. Claude performed slightly worse in Level 1 than it had without in-context learn-
ing, whereas the opposite occurred in Level 2. Performance on Level 3 stayed the same. For Gemini,
the addition of in-context learning had either no effect, in Level 1, or decreased the proportion of
trials passed, in Levels 2 and 3. While GPT also experienced no performance difference in Level 1,
its results rose both in Levels 2 and 3, with its Level 3 proportion of trials passed matching the upper
interquartile range of the competition agents and the lower range of the children.
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Figure 4: The proportion of trials by each LLM on each level, consisting of 3 trials of 4 tasks
each (total n=12 trials per level). The interquartile range of proportions for all children (n = 59)
and the top 10 entrants to the Animal-Al Olympics Competition are presented as bars, with overall
proportion for those populations indicated by points.



6 DISCUSSION

The LLM-AAI framework tests the out of the box physical reasoning capabilities of LLMs by allow-
ing them to perceive and interact with the Animal-Al environment via the ReAct prompting method
(Yao et al., 2022). While previous work has explored the capabilities of LLMs in virtual environ-
ments, none have used them to develop a framework for testing physical common-sense reasoning in
LLMs. Our results show that this method LLMs can not only be assessed in this way, but that when
this is done it allows meaningful comparisons to be made with other biological and non-biological
intelligences.

Evaluations in LLM-AAI have synergies with other efforts in evaluating and training LLMs. In
evaluation, several LLM testbeds can be seen as targeting facets of the Animal-Al Testbed such
as spatial reasoning (Ranasinghe et al., 2024), numerosity (Trott et al., 2017; Villa et al., 2023)
and tool use (Tian et al., 2023). Evaluations in LLM-AAI complement such efforts, but also adds
the increased challenge of interacting in a 3D environment, which has less direct correspondence
with the linguistic prompt. Furthermore, where a 3D environment has been used at the learning
stage (Dagan et al., 2023; Zellers et al., 2021; Driess et al., 2023; Xiang et al., 2024), an LLM-AAI
approach can be used to ensure the robustness of a model’s physical common-sense.

For humans, an understanding of the physical world is built from countless embodied interactions
with objects in their environment (Thelen, 2000). It is from these interactions that humans construct
intuitive theories of the causal relationships that exist in their external world (Goddu & Gopnik,
2024; Gopnik & Schulz, 2004; Tenenbaum et al., 2011), and ground the symbolic concepts contained
in language (Lakoff & Johnson, 2008; Wolff, 2007). To date, there has been much debate as to the
potential for ‘disembodied’ systems such as LLMs to have a ‘meaningful’ understanding of the
physical world, or even a ‘world model” (Bender & Koller, 2020; Mitchell, 2021; Shanahan, 2010).
The LLM-AAI framework allows us to make headway on these debates, with our initial results
suggesting that LLMs still have some way to go before they can compete with their embodied
counterparts.

6.1 LIMITATIONS AND FUTURE WORK

The LLM-AAI framework satisfies an important demand in the field of LLM evaluation. It provides
a methodology and way forward for evaluations of physical common-sense reasoning using inde-
pendently developed tests from cognitive science (construct valid) that measure specific components
of physical common-sense (precise evaluation target), in a physically realistic environment (ecolog-
ically valid) with real-world dynamics (non-static). These tests identify the capabilities and failure
modes of contemporary multi-modal LLMs, aiding researchers to identify how training curricula
and model architectures can be improved to achieve better performance. Furthermore, LLM-AAI
enables direct, cognitively meaningful, comparisons between LLMs, deep reinforcement learning
(DRL) agents, humans, and other animals. Our results in this paper demonstrate that out-of-the-box
systems can produce meaningful results on the Animal-Al competition. Nevertheless, there remain
a number of extensions to how LLMs interact with AAI through our framework that could improve
LLM performance. These extensions remedy some of the limitations of this current work and serve
as the basis for future research.

Sensing the environment. In LLM-AAI, at every conversation turn, the tested LLM receives a
single 512 x 512-pixel image of the environment. This image is captured after the LLM’s action
script is executed. The number of environment time-steps that unfold during the execution depends
on the action script. For example, if the LLM uses the Turn (180) command, more environment
time-steps will go by than if the LLM uses the Turn (25) command. Despite this difference
in time-steps, in both cases a single image observation is sent to the LLM. While this observation
routine allows larger agent-displacements with fewer API calls (and hence reduced costs), it can also
cause the LLM to miss important environment information. For example, the agent may execute a
Turn (180) script meaning that it misses the goal that is placed 90° to its right.

Locomotion and control. The control scheme used in the study, although theoretically sufficient
for completing levels, is a relatively coarse way of controlling an agent in the environment compared
to both children and AAI Olympics competition entrants, who could all provide a single action after
every timestep. The additional challenge of writing action scripts manifests in the game-play of



the LLMs. For example, in many cases, the LLM almost aligns itself with the goal but misses it
slightly. This could result in the LLM finding itself beyond the goal and having to take extra turns
to reorient itself before trying again. Future work could experiment with alternatives to the control
scheme employed in this paper, such as allowing the LLM to control the agent frame-by-frame, or
fine tuning a model to turn natural language descriptions of the action into environment commands.

Capability limitations. This study aimed to assess LLMs out of the box on the Animal-Al Testbed.
This ensures that the evaluation is not contaminated as LLMs have not been explicitly trained to
solve these tests. However, it might be that the challenge of controlling the agent in the environment
is so large that this dominates the cognitive challenge on some tasks. By comparing the LLMs’
Think responses with their in-world actions on selected levels (see Capability Case Studies in
Appendix A), we describe a specific example (object permanence) where low-level navigational
demands may have limited LLMs’ performance, among other indicative failures (in affordance un-
derstanding and numerical magnitude comparison) that may shed light on the the behavioural mech-
anisms underlying our results. Future work could ensure LLM performance is not constrained by
low-level perceptual or navigational demands by fine-tuning multi-modal LLMs on the observa-
tions and action scripts of an agent successfully completing simple navigation tasks. This would
overcome the problem of calibrating action scripts to the environment, and allow our tests to more
accurately reveal the cognitive capabilities of LLMs. An alternative approach would be to embed
LLMs as components of a larger control and memory system (Wang et al., 2023a; Sumers et al.,
2023) to attempt achieve better performance on the Animal-Al Testbed.

Cost. The scaling cost of longer experiments rendered some experiments financially unfeasible. For
example, human participants completing the same tasks as the LLM would have had the ability to
learn over the course of the 40 arenas; this could be replicated in LLMs by attempting all 40 arenas
in a single context window. However, the large number of tokens this generates is too costly. Due
to financial limitations, the tested LLMs were also restricted to using, at most, 30 action-scripts, and
therefore API calls, per episode. In contrast, human participants and DRL agents were only restricted
by the arena’s time-limit, rather than a maximum number of executed actions. This constraint was
especially penalising for LLMs in arenas with multiple goals and those that required many finely
controlled movements and adjustments; such sequences inflated the number of action-scripts needed
to complete the level. Future work will increase or remove the action-script limit and assess the
change in performance.

Towards cognitively-driven evaluation. The levels in the Animal-Al Testbed are inspired by the
rich tradition of developing non-verbal tests of capacities in cognitive science. Since there exists a
large number of tests and experimental paradigms, they cannot be condensed into a single testbed
such as ours. More targeted LLM-AAI evaluations using the tests from Voudouris et al. (2022b) for
object permanence or Rutar et al. (2024) for object affordances, will allow assessors to make more
precise statements about physical common-sense reasoning capabilities, and produce comparisons
with the humans and DRL agents that have been evaluated on these tests.

7 CONCLUSION

We have introduced LLM-AAI, a framework for evaluating the physical common-sense reasoning
capabilities of LLMs in a 3D environment. Using the diverse tasks of the Animal-AI Testbed, we
have presented results from an initial assessment, showing that LLMs are capable of completing
tasks using LLM-AALI, but may lack the physical common-sense reasoning capabilities of humans.
We hope that these results will inspire researchers to embrace embodied evaluations as a powerful
addition to the LLM evaluation toolbox.

8 REPRODUCIBILITY STATEMENT

All the results presented in this paper can be reproduced, provided that the closed-source LLM
checkpoints that were tested are not altered. The checkpoints used were:

¢ Claude 3.5 Sonnet: claude-3-5-sonnet-20240620
* GPT-40: gpt-40-2024-05-13
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* Gemini 1.5 Pro: gemini-1.5-pro-001

During our experiments we encountered issues with the API for Gemini 1.5 Pro, these issues were
the only occasions in which we had to discard and rerun trials, as it stopped us from collecting
complete data for trials. The API issue we encountered is documented at https://github.com/google-
gemini/generative-ai-python/issues/559.

We also make the prompts that were passed to the LLMs available in Appendices C and D. We
produced all of our results using Animal-Al version 3.1.3. Source code for our experiments is
available at https://github.com/Kinds-of-Intelligence-CFI/LLM-AAL

9 ETHICS STATEMENT

No human or animal participants were involved in this study, and no sensitive topics were used or
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A CAPABILITY CASE STUDIES

Beyond the overall pass-rates of models, our evaluations in LLM-AAI also generated a rich dataset
of behaviours and Think actions which can be used to investigate the reasons for LLM performance
further. In this section we assess LLM performance in some cognitive domains.

A.1 AFFORDANCE UNDERSTANDING

Affordance understanding is “the cognitive capability to identify what action-possibilities exist with
a particular object or set of objects, given an agent’s specific physical properties and capacities”
(Rutar et al., 2024). Our results demonstrate interesting failures of affordance understanding in
LLM agents.

In arena ‘10-22-03° of the AAI testbed the reward is on a platform. To reach the reward the agent
must push a block to bridge the gap between the platform and a ramp that faces it, and then climb
the ramp !. To do this, the agent must have an understanding of two sets of affordances: That certain
blocks can be pushed, and that ramps can be climbed from a certain side.

No models considered using the pushable block, but only GPT-40 consistently noted its existence,
indicating that for the others their vision may not have been sensitive enough to detect it. However,
all LLMs acknowledged the existence of the ramp. For example Gemini 1.5 Pro stated ‘I see a
purple ramp to my right and the blue path is still visible’. Of the three models tested only Claude
Sonnet 3.5 noticed the ramp and attempted to climb it, for example stating ‘I need to climb this
ramp to explore what might be on the other side’. However, it did not consider the fact that ramps
must be climbed from a particular side and so failed to climb it. The fact that LLMs were able to
recognise the ramp, but only one realised its affordance of being climbable, without realising that
this affordance is only available from one side, indicates that robust affordance understanding is still
a significant challenge for models.

A.2 OBJECT PERMANENCE

Object permanence is “the understanding and belief that objects continue to exist even when they
are not directly observable” (Voudouris et al., 2022b), and the presence of this capability is a founda-
tional milestone in human cognitive development (Piaget, 2013; Baillargeon et al., 1985). Although
LLM performance on object permanence tasks was generally poor (see Figure 3, Level 8), verbal re-
port from the models suggests that these failures may be due to low-level navigational or perceptual
difficulties, rather than failures of object permanence per se.

In arena ‘08-03-03’, two yellow rewards descend from above before being hidden behind a series of
walls on the other side of the arena. To solve this task, agents must reason that although the rewards
are no longer visible, they nonetheless continue to exist, and can be discovered by searching for
them behind the wall.

All LLMs reported that they were searching for the rewards that they had seen previously, while
GPT-40 and Claude Sonnet 3.5 made explicit comments relating to the continual existence of the
rewards despite them no longer being in view. For example, GPT-4o states: ‘I can no longer see the
yellow balls. They might be behind the grey blocks ahead. I will turn to the right to get a better
view.” And then, after series of poorly executed actions, GPT-40 continues: ‘I still cannot see the
yellow balls. They must be behind the grey blocks. I will ... move closer to investigate.’

In contrast to the other models, Claude Sonnet 3.5 showed some success retrieving the reward (see
Figure 3, Level 8) and their verbal reports also suggest a coherent strategy. At the start, Claude
comments: ‘There appears to be grey block structures in front of me, which might be obscuring the
view of the balls.” After moving closer, Claude continues: ‘It seems the balls might be behind these
structures. I need to move forward and to the right to try to get around these obstacles and locate the
yellow balls.’

Given that these verbalisations are being provided in response to dynamic visual input in an embod-
ied environment, rather than as part of a purely linguistic interaction, they make a more robust case

'An alternative solution involves building up momentum on the ramp to jump the gap. This solution was
not discovered by any agents.
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for the presence of a generalisable object permanence capability that future work could investigate
systematically.

A.3 NUMERICAL MAGNITUDE COMPARISON

Numerical magnitude comparison is the ability to determine which one of two numbers has the
greater magnitude.

In our experiments, failures in numerical magnitude comparison arose when the LLMs attempted
to track the change in their health. In LLM-AALI, at every turn, before the LLM agent provides a
new action script, the environment states the agent’s current health value. An example of this might
be: ‘Your remaining health is 83.4°, which is passed as user content to the LLM assistant. The
agent may then infer, from this health value, whether it has collected a reward while executing its
last action script, by comparing the value with the one it was told one turn before. Misjudging this
difference in health may lead to misinterpreting whether or not a reward has been collected.

All three tested LLMs showcased occasional errors in comparing previous and current health values.
The following example illustrates the most common flow in which this issue was observed. In arena
‘05-09-01°, GPT-40 attempts to collect a yellow reward in its view. The LLM is provided with a
health reading of 63.3 followed by one of 59.7. Clearly, the health has decreased as the agent has not
collected the reward. Surprisingly, however, its following Think command content—‘My health
has increased, confirming the collection’—showcases an inability to correctly compare the numbers
63.3 and 59.7. Similar inaccuracies were observed for Claude Sonnet 3.5 and Gemini 1.5 Pro. In one
example, Claude Sonnet 3.5 explicitly verbalised that a health decrease was an increase: In arena
‘04-16-01", after missing the green reward, Claude stated ‘I have successfully collected the green
ball as my health has increased from 84.2 to 35.4’. This rarer example illustrates how numerical
mistakes may also lead to the LLM forgetting some basic rules of the environment. Namely, that if
it had collected the green reward, the episode would have ended.

Our goal was not to conduct a statistical study of the occurrence of this failure mode or to compare
numerical magnitude comparison in different LLMs. Rather, we demonstrate that this ability can be
crucial to completing physical common sense tasks.
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B THE ANIMAL-AI TESTBED

The Animal-Al Testbed contains 10 levels of 30 tasks with 3 variants each (n=900 tasks). Each level
tests different aspects of physical common-sense reasoning. A description of each level is presented
in Table 1 overleaf. Participants in the Animal-Al Olympics Competition were tested on all 900
tasks of the Testbed, and developers were not given access to the contents of the Testbed prior to
submission to the competition. In our plots in Section 5, we only report the top 10 entrants to the
competition in terms of overall score, indicating the current best performance of deep reinforcement
learning (DRL) agents tested out-of-distribution. Data from children (n=59) on 4 tasks from each
of the 10 levels (n=40) were taken from Voudouris et al. (2022a). All comparisons between LLMs,
children, and competition agents is based on their performances on only these 40 tasks. In the
Animal-Al Testbed, objects with specific functions have fixed colours. Ramps are always purple,
platforms are always blue, and pushable blocks are always light grey. Other blocks may take any
colour.
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C INITIAL PROMPT

You are a PLAYER in a game set in a square arena with a white fence. Your
task is to collect all the rewards as quickly and efficiently as
possible using a basic scripting language. The rewards are green and
yellow balls.

To successfully collect a reward, you must fully pass through it. For
example, if you think the reward is 10 steps away, you should go
further than 10 steps to ensure you collect it, e.g., Go(l5);.

The game ends when you have collected all the rewards and the arena
closes. If you are still in the arena, the game is NOT finished and
you have NOT collected all the rewards.

Your remaining health is displayed in the environment as "Your remaining
health is:". The game will end if your health reaches 0.

NOTE: When you collect a reward, your remaining health will INCREASE
compared to the previous timestep. If it doesn\’t increase, the
reward was not collected. Always compare your current health with the

previous timestep to confirm this. The scripting language consists
of commands in the form <COMMAND> (<ARG>) ;

Note:

— If ARG is numerical it should always be an integer, never a float.

— DO NOT include any response not following the format of the scripting
language. Doing so will result in failure.

- DO NOT wrap your commands with inverted commas: \’ \’Think (\’Something
\");\’"Go(5);\’ \’' would fail whereas \’ Think (\’Something\’);Go (5);
\’ would not.

Commands are:

— Think: Reason about what actions to take to collect the rewards most
efficiently (does not affect the environment). Note: Always format
the thought as a string. Also, when using this command, do not
include parentheses as arguments. For example, correct: \’Think (\’'I
cannot see the reward---yellow or green ball---in the arenal’);\’
Incorrect: \’Think (\’I cannot see the reward (yellow or green ball)
in the arenal\’);\’

- Go: Move forward or backward a certain number of steps (1 to 35 steps
forward, -1 to -35 backward).

— Turn: Turn by a specified number of degrees (any positive number
between 1 and 360 degrees turns the character to the right (clockwise
) and any negative number between -1 and -360 degrees turns the
character to the left (anticlockwise)).

Examples:

To move forward by 5 steps: \'Go(5);\’.

To investigate what is happening to your left: \’Think(\’I would like to
investigate what is happening to my left\’);Turn(-90);\’

The number of scripts you can send is limited, so try to complete the
levels efficiently.

The size of the arena is 35 by 35: \’Go(35)\’ will take you from one end
of the arena to the other.

After you submit your script, you will receive an image observation. Use
this image to plan your next script.

EXPERT TIPS:

- Moves of 1 to 10 steps cover small distances, while moves of 10 to 20
cover larger distances.
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— Turns of 25 to 45 degrees turn you a small amount to the right, while
turns of -25 to -45 degrees will turn you a small amount to the left.
DO NOT use turns less than 25 degrees.
— Turns of 45 to 90 degrees will turn you a large amount to the right,
while turns of -45 to -90 degrees will turn you a large amount to the
left.\n
- Turning 180 or -180 degrees will turn you all the way round so that you
are facing backwards.

How to approach the task:

Start by using the \’Think\’ command to describe the environment you see.
When you find the rewards, i.e. green or yellow balls, ALWAYS
explicitly state BOTH your DISTANCE and ANGLE with respect to them.
Note: Only green and yellow balls are rewards and nothing else.
Take appropriate actions. Use \’Go\’” OR \’Turn\’, but DO NOT combine them
in the same turn. Always follow \’Think\’ with one of these two
actions.

HINT: Your vision is good but not perfect and some rewards may not be
immediately visible. Rewards may be behind you. Explore the arena to
locate them. When exploring, try to get a 360-view of the arena. If
both green and yellow balls are present, collect the yellow balls
first and green balls last. Note that some arenas may not have green
balls at all. The reward you get is proportional to the size of the
ball: make sure to get the bigger balls first!. Finally, the lights
may go out during a level. They may or may not come back on: use what

you\’ve learnt about the arena so far to move around and collect the
reward when this happens!

When you find a reward:

Use the \’Turn\’ command to align yourself directly with the reward.
Before moving towards it, check the observation image provided by the

environment to ensure the reward is centered in your view. If the
reward is not centered, adjust your alignment with additional turns
until it is.

Use the \’Go\’ command to move toward the reward.

If the reward is more than 15 steps away, align yourself with the reward
as best as you can and move half the distance first. Then reassess
your angle with respect to the reward, use \’Turn\’ to adjust your
angle if the reward is not centered in your view, and move the
remaining distance.

Remember: ALWAYS check your health after collecting a reward. You have
successfully collected the reward only if your health has INCREASED
compared to the previous timestep.

Be mindful of obstacles:

Red lava puddles and red balls: If you run into them, you will die.
Holes: Some may contain rewards, but if you fall into an empty hole, you
will be trapped and unable to collect other rewards.
Blue paths: These are slightly raised paths. You can walk on them, but
once you step off, you won’t be able to get back onto them.
Purple ramps: You can climb them to get to the other side. Once you climb
over the ramp, you cannot climb back over the same ramp.
Transparent walls: You can see through them, but you cannot walk through
them.
Pushable grey blocks: These are cube-like structures, patterned with dark
grey rectangles on each face. If viewed from one side, they will
look like a rectangular structure. They can be pushed, but they are
heavy! To move these blocks, you need to run into them. The blocks
are heavy so you need to add extra steps to your Go() command.
Immovable objects: Walls and arches cannot be moved.
Ready to play? You will start by seeing three image observations.
A new level begins now. Environment observation captured
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1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

D ICL PrROMPT

In the additional, in-context learning, experiment, the initial prompt was accompanied by a demon-
stration of an episode, which included examples of objects it may encounter in AAIL. We replicate
this below in human-readable format; with observations in sequence, and their responses below:

Figure 5: ( Initial image: no Figure 6: ( Initial image: no Figure 7: Think(*“I can move
response ) response ) forwards and backwards with
Go7);Go(3);

Figure 8: Go(-3); Figure O: Think(“I can Figure 10: Turn(-30);
turn left and right with
Turn”); Turn(30);

Figure 11: Think(“T’ll move Figure 12: Turn(90); Figure 13: Go(9);
through this level and take a

look at some of the items I

might encounter”);Go(9);
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Figure 14: Turn(90); Figure 15: Think(“I shouldn’t
stand on the orange zone for
too long. I’ll lose health more
quickly!”);Go(10);

Figure 17: Go(9); Figure 18: Turn(-90);

Figure 20: Turn(90); Figure 21: Go(7);
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Figure 16: Turn(-90);

Figure 19: Think(“I shouldn’t
step in the red zone at all:
that will make me lose the
level!”);Go(9);

Figure 22: Turn(90);



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 23: Think(*“T should Figure 24: Go(5); Figure 25: Turn(-90);

collect as many yellow balls

as possible, they’ll increase
Figure 26: Go(9); Figure 27: Turn(45); Figure 28: Go(3);

my health!”);Turn(30);

Figure 29: Turn(-45); Figure 30: Go(4); Figure 31: Turn(-90);

Figure 32: Think(“I should be Figure 33: Go(4); Figure 34: Go(2);
very careful to avoid the red
balls: if I touch one of those
I'll lose the level!”);Turn(45);
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307 Figure 35: Turn(-90); Figure 36: Go(2); Figure 37: Turn(-15);
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319 Figure 38: Go(2); Figure 39: Go(4); Figure 40: Think(“The red
1320 ball is somewhere to my
1321 right: I'll make sure to get
1322 it in view before I con-
1323 tinue”); Turn(120);

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335 Figure 41: Turn(-25); Figure 42: Go(15); Figure 43: Turn(-50);
1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 44:  Think(“There
seem to be piled boxes in
front of me: I’ll push them
out of the way by crashing
into them with speed”);
Go(15);

Figure 47: Think(“The green
ball is in view, I should turn
about 30 degrees to my left to
get it”); Turn(-30);

Figure 45: Think(*T should
confirm that I was successful
in moving the boxes by turn-
ing around”); Turn(-120);

Figure 46: Think(“I can see
some piled boxes from the
other side, so I have made it
through. TI’ll turn to search
this area for the reward”);

Turn(90);

Figure 48: Think(“The green
ball is centered in my field of
vision! I can advance forward
to get it!”); Go(10);
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