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Abstract

Knowledge graphs (KGs) are crucial for repre-
senting and reasoning over structured informa-
tion, supporting a wide range of applications such
as information retrieval, question answering, and
decision-making. However, their effectiveness is
often hindered by incompleteness, limiting their
potential for real-world impact. While knowledge
graph completion (KGC) has been extensively
studied in the literature, recent advances in gener-
ative AI models, particularly large language mod-
els (LLMs), have introduced new opportunities
for innovation. In-context learning has recently
emerged as a promising approach for leveraging
pretrained knowledge of LLMs across a range of
natural language processing tasks and has been
widely adopted in both academia and industry.
However, how to utilize in-context learning for
effective KGC remains relatively underexplored.
We develop a novel method that incorporates topo-
logical information through in-context learning
to enhance KGC performance. By integrating on-
tological knowledge and graph structure into the
context of LLMs, our approach achieves strong
performance in the transductive setting i.e., nodes
in the test graph dataset are present in the training
graph dataset. Furthermore, we apply our ap-
proach to KGC in the more challenging inductive
setting, i.e., nodes in the training graph dataset
and test graph dataset are disjoint, leveraging the
ontology to infer useful information about miss-
ing nodes which serve as contextual cues for the
LLM during inference. Our method demonstrates
superior performance compared to baselines on
the ILPC-small and ILPC-large datasets.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the SPIGM workshop at ICML
2024. Do not distribute.

1. Introduction
Knowledge graphs have emerged as a powerful framework
for representing and reasoning over large-scale structured
knowledge, with applications spanning question answering
(Song et al., 2023; Yani & Krisnadhi, 2021), reccomed-
nation systems (Chicaiza & Valdiviezo-Diaz, 2021) and
decision making (Hogan et al., 2021). The effectiveness
of knowledge graphs in these domains relies heavily on
their completeness and accuracy. However, constructing
and maintaining comprehensive knowledge graphs is a chal-
lenging task, often requiring extensive manual effort and
domain expertise (Yan et al., 2016). To address this chal-
lenge, researchers have explored automated methods for
Knowledge Graph Completion (KGC) (Shen et al., 2022;
Chen et al., 2020). These methods leverage information
extracted from various sources, such as text corpora (Wang
et al., 2021; Shi & Weninger, 2018), web pages (Dong
et al., 2014; Mitchell et al., 2018), and databases (Zou et al.,
2014). These methods typically employ natural language
processing techniques, such as named entity recognition and
relation extraction (Li et al., 2022; Pawar et al., 2017), to
identify new facts, integrate them into the existing knowl-
edge graphs and identifying new relations between nodes
that exist in the graph. The rapid growth of unstructured data
has introduced new challenges in automated graph extension
methods.

Recent advances in generative AI, particularly the emer-
gence of Large Language Models (LLMs) have opened up
new possibilities for extending knowledge graphs (Pan et al.,
2024). Modern LLMs demonstrate impressive capabilities
in understanding large texts (Gemini Team, 2024), generat-
ing natural language as well as reasoning (OpenAI, 2024)
over complex information. These models are trained on vast
amounts of unstructured data, allowing them to capture rich
semantic knowledge and develop a deep understanding of
various domains. Pretrained knowledge of LLMs and their
reasoning capabilities can be harnessed to infer connections
between nodes and relations predicting missing information
in graphs. links in the graph, making LLMs well suited for
task of KGC.

In this paper, we propose a novel approach that leverages
graph topological information through in-context learning
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to enhance the KGC performance of LLMs. Our method is
based on the intuition that the extensive knowledge embed-
ded in pretrained language models can provide valuable in-
sights and predictions for missing information in knowledge
graphs. We introduce a two-step process: first, we construct
an ontology from the knowledge graph using the LLM’s
domain understanding, capturing the types of nodes and
relationships in the graph. By combining this ontological
structure with the graph’s topology and employing chain-of-
thought (CoT) reasoning, we provide the LLM with context
to make more informed predictions. Secondly, our algorithm
leverages structured information from the graph, utilizing
overlapping nodes between the missing knowledge triplets
and the existing graph triplets, combined with the ontology,
to generate candidate solutions for the missing informa-
tion. Additionally, we consider alternative paths between
the existing nodes and potential candidate nodes, thereby ex-
ploiting the complex topological structure of the graph. This
comprehensive use of the graph’s topological structure and
the LLM’s predictive capabilities leads to our method per-
forming significantly better than the state-of-the-art baseline
approaches.

Our contributions are as follows: (1) We propose a genera-
tive ontology creation method using LLMs to derive ontolo-
gies from raw knowledge graph data, capturing the types of
nodes and relationships in the graph. (2) We leverage the
generated ontology and the graph’s topological information,
including paths between nodes, to enhance link prediction.
(3) By utilizing the ontology to identify candidate solutions
for missing triplets and employing the LLM to select the
correct solution, we improve KGC performance in both
transductive and inductive settings. Importantly, our method
requires no additional training, highlighting its efficiency
and immediate applicability.

2. Related work
There exists a substantial body of work at the intersection of
LLMs and knowledge graphs, extensively reviewed in (Pan
et al., 2024). This section provides a detailed exploration of
relevant literature.

Knowledge graph completion datasets Some of the pop-
ular knowledge graph completion datasets include Freebase,
a comprehensive knowledge base integrated into Google’s
Knowledge Graph, from which FB15k (Bordes et al., 2013)
and FB15k-237 (Toutanova et al., 2015) datasets are derived.
WN18RR (Dettmers et al., 2018) is a subset of WordNet
widely used for link prediction models. ILPC (Inductive
Link Prediction Challenge) datasets (Galkin et al., 2022a)
are also significant, featuring both small and large datasets
designed for inductive reasoning tasks. Other domain-
specific datasets include MEDCIN (med, 2024) covering

biomedical entities and GeoNames (geo) focusing on ge-
ographical entities. These datasets collectively serve as
crucial benchmarks for evaluating various aspects of knowl-
edge graph completion models.

Link prediction in knowledge graphs One group of
methods for link prediction in knowledge graphs involves
the use of vector embeddings. (Kazemi & Poole, 2018)
makes use of background knowledge when creating the em-
beddings. (Zhang et al., 2021) embeds head and tail entities
into time and frequency domain spaces respectfully. (Zhang
et al., 2020) shows an embedding scheme based on entity
type hierarchies. Another family of methods is the use of
trained deep neural network models. (Zhang & Chen, 2018),
(Nguyen et al., 2022) and (Mohamed et al., 2023) demon-
strate the use of GNNs for link prediction in graphs and
knowledge graphs. (Neelakantan et al., 2015) uses RNNs
for graph completion. Other methods focus on ’lifelong-
learning’ and the continual updating of knowledge graphs
based on new information (Mazumder et al., 2019).

LMs for link prediction ans ontology creation Ap-
proaches such as BERTRL (Zha et al., 2022) and KGT5
(Saxena et al., 2022) treat each triplet in the knowledge
graph as a textual sequence, refining models based on these
sequences. These methods leverage information from lan-
guage model parameters but do not explicitly integrate
information extracted from knowledge graph during link
prediction. In contrast, frameworks like Better Together
(Chepurova et al., 2023) and KGT5-context (Kochsiek et al.,
2023) incorporate node neighborhoods directly within the
context of generative language models. Additionally, re-
cent studies have explored the capability of large language
models (LLMs) to create coherent ontologies. LLMs4OL
(Giglou et al., 2023) systematically evaluated various LLMs,
demonstrating that models fine-tuned for specific tasks con-
sistently outperformed zero-shot methods. In another ap-
proach, Kommineni et al. (Kommineni et al., 2024) used
LLMs to generate "competency questions," which were em-
ployed to develop ontologies for knowledge graphs.

3. Problem formulation
In this section, we introduce mathematical notations and for-
mally define the problem of KGC using LLMs incoporating
topological information.

3.1. Knowledge graph with ontology

Let O be an ontology and let G be the corresponding knowl-
edge graph.

Ontology O can be defined as O = (C,R, E), where:

• C consists of ontology nodes, node categories of the

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

In-Context Learning with Topological Information for Knowledge Graph Completion

nodes in the graph,
• R is the set of relations,
• E consists of unique triplets (ci, r, cj) where ci, cj ∈ C

and r ∈ R.

Graph G can be defined as G = (V,R, T ), where:

• V is the set of nodes, where each node vi ∈ V is
associated with at least one category cvi ∈ C.

• R is the set of relations,
• T consists of triplets formed according to the ontology

triplets E . For nodes vi of category cvi and vj of cate-
gory cvj , (vi, r, vj) ∈ T such that (cvi , r, cvj ) ∈ E .

3.2. Knowledge graph completion

Knowledge Graph Completion (KGC) is the task of infer-
ring missing information in a knowledge graph. Given a
training knowledge graph Gtrain = (V,R, Ttrain) with some
missing triplets (vi, r, vj) ∈ Tinference, the objectives are to:
(1) predict the missing relation r ∈ R between two existing
entities vi, vj ∈ V , i.e., (vi, ?, vj); (2) predict the missing
tail entity vj ∈ V given the head entity vi ∈ V and the rela-
tion r ∈ R, i.e., (vi, r, ?); and (3) predict the missing head
entity vi ∈ V given the relation r ∈ R and the tail entity
vj ∈ V , i.e., (?, r, vj). Typically in the literature (Galkin
et al., 2021; Chepurova et al., 2023) the problem of pre-
dicting the head node is converted to a tail node prediction
problem by using the inverse relationship, i.e., (vj , r−1, vi).
In our experiments, we focus on node prediction rather than
relation prediction. We consider the graphs where the rela-
tions in the test graph dataset is a subset of the relations in
the trainning graph dataset.

Transductive vs inductive link prediction KGC tasks
can vary based on the type of knowledge graph: induc-
tive or transductive. In a transductive setting, the task is
formulated as follows: given a training knowledge graph
Gtrain = (V,R, Ttrain), train the model to predict on the in-
ference triplets (vi, r, vj) ∈ Tinference, where vi, vj ∈ V ,
i.e., nodes in inference triplets are present in the train-
ing graph. In inductive KGC, the model is trained on
Gtrain = (Vtrain,R, Ttrain) and predicts on the inference
triplets (vi, r, vj) ∈ Tinference, where vi, vj ̸∈ Vtrain. By
nature KGC in the inductive setting is more challenging
compared to the transductive setting.

4. Methodology
In this section, we outline our approach to KGC encompass-
ing both transductive and inductive settings.

4.1. Generating ontology

To generate the ontology O = (C,R, E) of a knowledge
graph G = (V,R, T ), for each relation r ∈ R, we create

two node sets Vi and Vj of length n that contain head and
tail nodes (vi, vj) ∈ V connected by r. We then prmopt
GPT-4 model to predict a head category ci and a tail cat-
egory cj for entities in Vi and Vj respectively, given the
relation r. Note that this results in ci = cvi ,∀vi ∈ Vi and
cj = cvj ,∀vj ∈ Vj . Naively prompting the LLM to create
an ontology by providing node pairs corresponds to a given
relation to inconsistencies. GPT-4 model can assign syn-
onyms of node categories to nodes of same class connected
to different relations. For example GPT-4 can assign node
class label film to head node of the triplet (cruel intentions,
film cast member actor, Alaina Reed Hall) and assign a node
class label movie to head node of the triplet (Dear America:
Letters from home Vietnam, directed by, Bill Couturié). To
improve the quality of the created ontology, we adopt an it-
erative generation approach that incorporates the previously
created sub-ontology at each step. This ensures consistency
in node class assignments across similar nodes. Further-
more, we add the triplet (cvi , r, cvj ) to the set E to associate
each relation r ∈ R with exactly one pair of node categories
(cvi , cvj ), maintaining a well-structured ontology.

4.2. Link prediction using topology of the ontology

For a triplet (vi, r, vj) ∈ Ttest with a missing tail vj
(or missing head vi), we use the generated ontology O
to infer the category cvj of vj , based on the relation r
and the category cvi of the head. We provide this infer-
ence as a hint to the LLM. Consider the example triplet
(Miles Davis, died In, ?). There are multiple choices for the
answer: it can be a city, country, hospital, etc. In our method
we find the ontology triplet (musician, died In, country) and
let the LLM know that the answer is of type country.
Additionally, we compute ontology paths between cvi
and cvj , providing these as context to the LLM. For in-
stance, alternative paths between musician and country
could include (musician) → part Of Band → (band) →
conceived In Country → (country).

4.3. Link prediction using topology of the graph

Recall that in transdictive setting nodes in the test graph
dataset are present in the training graph dataset. For a triplet
(vi, r, vj) ∈ Tinference with a missing tail vj , we infer its
category cvj using the ontology O. Next, using Vtrain and
the category cvj , we create candidate solutions vcandidatei ∈
Vtrain that are of category cvj and prompt the LLM to use
the list of candidates as an hint for predicting the missing
node. However, the number of candidate nodes we extract
from Vtrain using the information from ontology can be very
large and exceed the limit of the context window. In order
to address this problem we employ a strategy which maks
multiple LLM calls with sublists of the candidate nodes.
Each call tasks the model with selecting the answer that
most is most likely to be the missing node. The winning
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candidates from these calls are subsequently aggregated and
provided in a final LLM call as hints to predict the ultimate
solution.

4.4. Chain-of-thought style reasoning

In our methodology, we employ chain-of-thought (CoT)
reasoning to guide the LLM in making informed predictions
about missing nodes in the knowledge graph. CoT reasoning
involves providing the LLM with a series of intermediate
reasoning steps or questions that help break down the prob-
lem and lead to the final answer. By incorporating CoT
prompts, we encourage the LLM to consider relevant infor-
mation from the ontology and graph structure, enhancing its
ability to make accurate predictions. The CoT prompts are
designed to prompt the LLM to reason about the potential
missing node based on the available information, such as
the ontology paths, graph paths specific to the given triplet,
and the ontology hint about the missing node type. This
approach helps the LLM make logical connections between
the available information and the missing node, ultimately
leading to improved performance in knowledge graph com-
pletion tasks.

5. Results
In this section, we present our experimental setup, including
the datasets used, baselines compared, and evaluation met-
rics employed. We then discuss the results obtained from
our experiments and provide a comprehensive analysis of
our findings, highlighting the key insights and implications.

Datasets and ontology We utilized the small and large
datasets from the Inductive Link Prediction Challenge
(ILPC) 2022 (Galkin et al., 2022a). The ILPC datasets
are specifically designed for inductive link prediction, mean-
ing they contain disjoint inference graphs with new, unseen
entities. Both the small and large ILPC datasets consist of
three subsets: inductive training graph dataset, transduc-
tive training graph dataset and inference test set. All the
evaluations were done on the inference test set.

To create the ontology, we first combined the inductive
and transductive training graphs, resulting in a graph with
approximately 900k triplets. Following the methodology
described in Section 4.1, for each relation in the resulting
graph, we sampled 50 examples that are connected by this
relation and prompted OpenAI GPT-4 to create two ontology
categories that best describe the head and tail examples. We
allowed the LLM the option to select already predicted cate-
gories if it found them appropriate. We then classified all
triplets connected by the relation using the LLM-predicted
head and tail ontology categories. We performed a post veri-
fication step which validated that each relation is associated

with only one pair of node categories. Details of the datasets
and ontology are given in Table 1

Experiment Settings During inference, for each triplet
in the test set, we used GPT-4 to predict the head and the
tail under the following conditions: (1) no context, (2) hint
derived from the topology of the ontology, (3) hints derived
from the topology of both ontology and graph.

No context. In no-context setting we provide GPT-4 with
the triplet with missing node and promt it to directly predict
the missing node. The results for this setting in reported as
GPT-4 + vanilla in Table 2.

Ontology hints. In this setting we provide supporting hints
constructed from the topology of the ontology. We consider
4 experimental settings under this method. In GPT-4 + on-
tology we provide GPT-4 with the category of the missing
node infered from the ontology triplet that corresponds to
the given relation relation. Ontology paths are the paths that
exists between available node and missing node categories
in the ontology, except the given relation. In GPT-4 + on-
tology paths we provide the path details an additional hint
and in GPT-4 + ontology + ontology paths we provide both
category of the missing node and alternate ontology paths
as hints.

Ontology and graph hints. In this setting, we leverage the
topology of the graph to generate candidate solutions for
the missing node and provide them as hints to GPT-4. We
consider four experimental settings under this method. In
GPT-4 + candidate solutions, we infer the category of the
missing node using the ontology and provide GPT-4 with a
list of candidate nodes from the training graph that belong
to the same category. In GPT-4 + candidate solutions +
ontology, we provide both the candidate solutions and the
ontology-inferred category of the missing node as hints.
GPT-4 + candidate solutions + ontology paths extends the
previous setting by including the alternate paths between
the available node and the missing node categories in the
ontology as additional hints. Finally, in GPT-4 + candidate
solutions + ontology + ontology paths, we provide GPT-4
with the candidate solutions, the ontology-inferred category
of the missing node, and the alternate ontology paths as
comprehensive hints to guide the prediction of the missing
node.

Candidate node selection. To generate candidate nodes for
the missing node in the transductive setting, we leverage
the ontology and the graph structure. First, we infer the
category of the missing node from the ontology based on
the given relation. Then, we identify all the nodes in the
graph that belong to the inferred category and are connected
to the available node through the given relation. However,
due to the limited context window size of GPT-4, processing
all candidate nodes simultaneously may not be feasible. To
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Table 1. Dataset details for ILPC-small and ILPC-large.

Dataset ILPC-small ILPC-large

# nodes # relations # triplets # nodes # relations # triplets

Inductive training graph 10,230 96 78,616 46,626 130 202,446
Transductive training graph 6,653 96 20,960 29,246 130 77,044
Ontology graph 36 96 96 42 130 130
Inference test graph 6,653 96 2,902 29,246 130 10,184

Table 2. Hits@k results on ILPC-small, and ILPC-large in transductive setting.

Method ILPC-small ILPC-large

H@1 H@3 H@10 H@1 H@3 H@10

GPT-4 0.132 0.208 0.289 0.146 0.204 0.253
GPT-4 + neighbors (Chepurova et al., 2023) 0.122 0.202 0.288 0.154 0.208 0.273

GPT-4 + candidate solutions 0.172 0.233 0.319 0.177 0.246 0.292
GPT-4 + candidate solutions + ontology 0.173 0.234 0.318 0.176 0.245 0.292
GPT-4 + candidate solutions + ontology paths 0.174 0.237 0.322 0.178 0.251 0.300
GPT-4 + candidate solutions + ontology + ontology paths 0.174 0.236 0.317 0.177 0.249 0.297

address this, we employ a batch-wise approach, where we
divide the candidate nodes into batches of 2,000. For each
batch, we prompt GPT-4 to select the most likely candidate
node. After processing all the batches, we compile the
selected candidate nodes from each batch and include them
as hints for the final prediction of the missing node. By
providing GPT-4 with a refined set of candidate nodes, we
aim to enhance its ability to accurately predict the missing
node in the transductive setting.

Hyperparameters Here we provide the hyper parameters
used in our experiments. All the results are provided with
GPT-4-32k model with temperature 0.0 and 2000 maximum
number of output tokens. For reproducibility of results we
have provided all the prompts used in the experiments in the
appendix.

Baselines Our first baseline involved implementing a
vanilla GPT-4 prediction without any context window, where
it was tasked with predicting the correct missing node (head
or tail) from each triplet in the test set. Results are reported
in Table 2. For our second baseline, we implemented the
method proposed by Chepurova et al. (Chepurova et al.,
2023). Here, we augmented each triplet in the inference
test set with the 1-hop neighbors of the head (or tail) entity
obtained from the ILPC transductive train graph. GPT-4
then received this contextual information and was tasked
with predicting the missing tail (or head) of the triplet. Re-
sults are reported in 2. For the inductive setting where the
LLM did not have access to the test entities, we compared
our results with two baselines reported by the authors of the
ILPC small and large datasets (Galkin et al., 2022a). These

baselines evaluate two variants of the NodePiece model
(Galkin et al., 2021), a proposed method for inductive graph
representation learning. Results are reported in 3

Evaluation Metrics To assess the performance of our
knowledge graph completion approach, we employ the
widely adopted Hit@k evaluation metric, specifically fo-
cusing on Hit@1, Hit@3, and Hit@10. The Hit@k metric
measures the accuracy of the model in predicting the cor-
rect missing node within the top k ranked candidates. In our
evaluation, we consider three different values of k to provide
a comprehensive understanding of the model’s performance
at various levels of precision. Hit@1 represents the strictest
evaluation criterion, where the model is considered success-
ful only if the correct missing entity is ranked as the top
candidate. This metric assesses the model’s ability to ac-
curately identify the most likely answer for a given query.
Hit@3 and Hit@10 provide more relaxed evaluation criteria,
allowing the correct missing node to be ranked within the
top 3 and top 10 candidates, respectively.

5.1. Results and Analysis

In this section, we present a comprehensive analysis of
our experimental results and discuss the key insights and
implications derived from our findings.

Finding 1: LLMs demonstrate strong performance in
knowledge graph completion tasks.

Our experimental results show that GPT-4, even without
any additional context or information, performs signifi-
cantly better than the baselines on the ILPC-small and ILPC-
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Table 3. Hits@k results on ILPC-small, and ILPC-large in inductive setting.

Method ILPC-small ILPC-large

H@1 H@3 H@10 H@1 H@3 H@10

IndNodePiece (Galkin et al., 2022b) 0.007 0.022 0.092 0.037 0.054 0.125
IndNodePieceGNN (Galkin et al., 2022b) 0.076 0.140 0.251 0.032 0.073 0.146

GPT-4 + ontology 0.134 0.207 0.288 0.150 0.202 0.247
GPT-4 + ontology paths 0.135 0.210 0.290 0.150 0.208 0.256
GPT-4 + ontology + ontology paths 0.138 0.208 0.289 0.152 0.205 0.252

Table 4. Hits@k results on ILPC-small dataset with different numbers of candidate nodes in the context. The numbers given in the table
are for the case where GPT-4 is prompted to choose one candidate node from each sub candidate node list. Numbers in parentheses
represent the case where multiple candidate nodes are selected from each sublist, totaling 100 candidate nodes.

Method ILPC Small

H@1 H@3 H@10

GPT-4 + candidate solution 0.172 (0.196) 0.233 (0.305) 0.319 (0.391)
GPT-4 + candidate solutions + ontology 0.173 (0.187) 0.274 (0.290) 0.318 (0.383)
GPT-4 + candidate solutions + ontology paths 0.174 (0.198) 0.237 (0.295) 0.322 (0.389)
GPT-4 + candidate solutions + ontology + ontology paths 0.174 (0.196) 0.236 (0.294) 0.317 (0.386)

Table 5. Number of accurate head node predictions obtained by
direct head node prediction compared to predicting tail node with
inverse relation in ILPC-small dataset.

Method ILPC Small

H@1 H@3 H@10

GPT-4 4 9 12
GPT-4 + ontology 4 10 20
GPT-4 + ontology + paths 6 19 20
GPT-4 + ontology + ontology paths 2 7 19

large datasets. As shown in Table 2, GPT-4 obtains Hit@1
scores of 0.132 and 0.146 on the ILPC-small and ILPC-large
datasets, respectively. The table 2 further illustrates similar
performance with Hit@3 and Hit@10 as well.

Finding 2: Leveraging candidate solutions significantly
improves LLM performance.

In the transductive setting, where test nodes are a subset of
nodes in training graph, our approach of generating candi-
date solutions based on the ontology and utilizing LLMs
to select the correct answer yields substantial performance
gains. As shown in Table 2 GPT-4 + candidate solutions
achieves Hit@1 scores of 0.172 and 0.177 on the ILPC-
small and ILPC-large datasets, respectively, outperforming
the GPT-4 baseline and the GPT-4 + neighbors approach
proposed by (Chepurova et al., 2023). Furthermore, incor-
porating ontology information and ontology paths alongside
the candidate solutions leads to even higher performance.

However results illustrate that adding both ontology hint
and ontology paths does not necessarily offer a performance
improvement. The reason for this is that ontology paths
already contains the information about the node category of
the missing node, which is the piece of information provided
in the ontology method.

Finding 3: Incorporating ontology information enhances
LLM performance in the inductive setting

By providing GPT-4 with ontology information, such as
the category of the answer and paths between the head and
tail categories, we observe a consistent improvement in
performance across both the ILPC-small and ILPC-large
datasets. As shown in Table 3, GPT-4 + ontology achieves
Hit@1 scores of 0.134 and 0.150 on the ILPC-small and
ILPC-large datasets, respectively, outperforming the base-
line GPT-4 model. Similarly, GPT-4 + ontology paths and
GPT-4 + ontology + ontology paths demonstrate even higher
performance, with Hit@1 scores reaching 0.138 and 0.152
on the ILPC-small and ILPC-large datasets, respectively.
These results suggest that incorporating ontological knowl-
edge and structural information from the graph can guide
LLMs towards more accurate predictions in the inductive
setting.

Finding 4: Our approach outperforms state-of-the-art
baselines in both inductive and transductive settings

Comparing our results to the state-of-the-art baselines,
IndNodePiece and IndNodePieceGNN (Galkin et al., 2021).
We observe that our approach significantly outperforms

6
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these methods in both the inductive and transductive settings.
As shown in Table 2, our best-performing model, GPT-4 +
ontology + ontology paths, achieves Hit@1 scores of 0.138
and 0.152 on the ILPC-small and ILPC-large datasets, re-
spectively, in the inductive setting, surpassing the baselines
by a wide margin. Similarly, in the transductive setting,
our approach demonstrates superior performance, with GPT-
4 + candidate solutions + ontology paths achieving Hit@1
scores of 0.174 and 0.178 on the ILPC-small and ILPC-large
datasets, respectively. These results highlight the effective-
ness of our approach in leveraging LLMs and incorporating
topological information for knowledge graph completion.

Finding 5: Increasing the number of candidate nodes
given in the context improves the performance.

Table 4 presents the performance of our proposed methods
on the ILPC-small dataset when using different numbers
of candidate nodes are given in the context window. The
numbers outside the parentheses represent the case where
we choose a single candidate node from each sublist of
the original candidate nodes. In contrast, the numbers in-
side the parentheses correspond to the case where we select
multiple candidate nodes from each sublist, such that the
total number of chosen candidate nodes is 100. We observe
a consistent improvement in performance when increas-
ing the number of candidate nodes provided in the context.
For instance, GPT-4 + candidate solutions achieves Hit@1,
Hit@3, and Hit@10 scores of 0.172, 0.233, and 0.319, re-
spectively, when using a single candidate node from each
sublist. However, when using multiple candidate nodes to-
taling 100, the scores increase to 0.196, 0.305, and 0.391,
respectively. This trend holds for all the other methods as
well, demonstrating that providing a larger number of rel-
evant candidate nodes in the context enhances the LLM’s
ability to accurately predict the missing node.

Finding 6: Predicting head nodes directly yields sim-
ilar performance to predicting tail nodes with inverse
relations.

In the literature, the problem of predicting head nodes is
typically converted to a tail node prediction problem by
considering the inverse of the relation, denoted as r−1 which
constructed by adding the word inverse as a prefix to the
original relation. For a triplet (vi, r, vj), predicting the
head node vi is transformed into predicting the tail node in
(vj , r−1, ?). However, in our experiments, we compared the
results of directly predicting the head node (?, r, vj) with the
inverse relation approach (vj , r−1, ?) using GPT-4 with the
proposed methods. Interestingly, we found no significant
difference in performance between these two approaches
when using GPT-4 with our proposed methods. To validate
this finding, we conducted experiments on the ILPC-small
dataset using both the direct head node prediction and the
inverse relation approach with vanilla GPT-4 prompting

and ontology based prompting. The results consistently
showed that the performance of direct head node prediction
was comparable to that of tail node prediction with inverse
relations across all methods. Table 5 presents the number
of correct head node predictions made by direct head node
prediction method compared to using inverse relation head
node prediction method out of the total 2902 head node
predictions.

6. Discussion and conclusions
In this paper, we have presented a novel approach to KGC
leveraging LLMs in both inductive and transductive set-
tings. Our method introduces a generative ontology creation
process using LLMs, which extracts structured knowledge
directly from raw knowledge graph data. This ontology
serves as a foundation, providing crucial cues for inferring
missing node categories and pathways between ontology
entities.

In the inductive setting, our approach utilizes the ontology
and category inference to enhance missing node prediction,
demonstrating significant improvements in predictive accu-
racy without requiring additional training. Additionally, in
the transductive setting,our method effectively identifies can-
didate solutions for triplets using the ontology and selects
the correct solution through LLM inference.

These preliminary results are promising and indicate the
potential of our approach. Moving forward, our research
directions include incorporating important pathways be-
tween nodes, exploring online learning techniques to adapt
to evolving knowledge graphs with varying triplet probabili-
ties, integrating additional information from diverse external
sources into the graph, and expanding our experimental val-
idation to include more datasets.

7. Limitations
The ontology constructed in our method operates under a
closed world assumption, where no new entities are added af-
ter the initial ontology creation phase. This assumption may
limit the adaptability of our approach in dynamic knowledge
graph environments where new entities frequently emerge.
Looking ahead, addressing this limitation will guide us in
enhancing the robustness and applicability of our framework.
Another limitation of our approach is that its performance
may be impacted by the density of the graph dataset. The
effectiveness of leveraging ontology paths relies on the pres-
ence of a rich set of relationships and connections within
the graph. In cases where the knowledge graph is sparse
and lacks a sufficient number of connections between nodes,
the ontology paths may not provide significant support for
link prediction.
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A. Prompts used for results generation
Vannila Prompt You will receive a triplet with a missing node. Given triplet can be of the form available node –> relation
–> ? or ? –> relation –> available node. Your task is predicting the missing node. Alongside, you will get a hint about the
type of answer that is correct, and you might receive additional relevant information to aid your prediction. Please respond
only with the missing node, without including the head node or the relation.

Your task:

Triplet with missing node: {triplet}

Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:

Ontology Prompt You will receive a triplet with a missing node. Given triplet can be of the form available node –>
relation –> ? or ? –> relation –> available node. Your task is predicting the missing node. Alongside, you will get a hint
about the type of answer that is correct, and you might receive additional relevant information to aid your prediction. Please
respond only with the missing node, without including the head node or the relation.

Your task:

Triplet with missing node: {triplet}

Hint about missing node type: The missing node should be of type {type}

Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:

Ontology Paths You will receive a triplet with a missing node. Given triplet can be of the form available node –> relation
–> ? or ? –> relation –> available node. Your task is predicting the missing node. Alongside, you will get a hint about the
type of answer that is correct, and you might receive additional relevant information to aid your prediction. Please respond
only with the missing node, without including the head node or the relation.

Example:

Triplet with missing node: John Lennon –> born_in –> ?

Available node John Lennon is of node type person.

Graph paths that can be important for filling missing information for a triplet type person –> born_in –> country are
[person –> died_in –> country, person –> child_of –> person –> citizen_of –> country].

Chain of thought: This can be a list of questions that might help predict the missing node: [In which country the person
died?, If a person is a child of another person who is a citizen of a certain country, which country is that?].

If John Lennon –> died_in –> United Kingdom, John Lennon –> child_of –> Alfred Lennon –> citizen_of –> United
Kingdom then it is likely that John Lennon –> born_in –> United Kingdom

Missing node: United Kingdom

Your task:

Triplet with missing node: {triplet}

Available node {known node} is of node type {type}.

Graph paths that are important for filling missing information for a triplet type are {ontology paths}.

Reason about the missing node using Chain of Thought method.
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Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:

Ontology and Ontology paths prompt You will receive a triplet with a missing node. Given triplet can be of the form
available node –> relation –> ? or ? –> relation –> available node. Your task is predicting the missing node. Alongside,
you will get a hint about the type of answer that is correct, and you might receive additional relevant information to aid your
prediction. Please respond only with the missing node, without including the head node or the relation.

Example:

Triplet with missing node: John Lennon –> born_in –> ?

Available node John Lennon is of node type person.

Graph paths that can be important for filling missing information for a triplet type person –> born_in –> country are
[person –> died_in –> country, person –> child_of –> person –> citizen_of –> country].

Chain of thought: This can be a list of questions that might help predict the missing node: [In which country the person
died?, If a person is a child of another person who is a citizen of a certain country, which country is that?].

If John Lennon –> died_in –> United Kingdom, John Lennon –> child_of –> Alfred Lennon –> citizen_of –> United
Kingdom then it is likely that John Lennon –> born_in –> United Kingdom

Hint about missing node type: The missing node should be of type country

Missing node: United Kingdom

Your task:

Triplet with missing node: {triplet}

Available node {known node} is of node type {type}.

Graph paths that are important for filling missing information for a triplet type are {ontology paths}.

Reason about the missing node using Chain of Thought method.

Hint about the missing node type: The missing node should be of type {type}

Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:

Neighbor Prompt You will receive a triplet with a missing node. Given triplet can be of the form available node –>
relation –> ? or ? –> relation –> available node. Your task is predicting the missing node. Alongside, you will get a hint
about the type of answer that is correct, and you might receive additional relevant information to aid your prediction. Please
respond only with the missing node, without including the head node or the relation.

Your task:

Triplet with missing node: {triplet}

1-hop neighbours of the available node {known node} are given along with their relations as a list: {neighbours}. This does
not mean that the missing node is in this list. It is just a hint to help you predict the missing node.

Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:
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Candidate nodes prompt You will receive a triplet with a missing node. Given triplet can be of the form available node
–> relation –> ? or ? –> relation –> available node. Your task is predicting the missing node. Alongside, you will get a
hint about the type of answer that is correct, and you might receive additional relevant information to aid your prediction.
Please respond only with the missing node, without including the head node or the relation.

Your task:

Triplet with missing node: {triplet}

Hint about missing node: The missing node should be of type {type}. Potential candidate nodes for the missing node are
{data}. This does not mean that missing node is always in the provided list. It is a hint to help you predict the missing node.

Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:

Candidate nodes with Ontology hint prompt Same as Candidate nodes prompt with
Hint about the missing node type: The missing node should be of type {type}

Candidate nodes with Ontology paths prompt You will receive a triplet with a missing node. Given triplet can be of
the form available node –> relation –> ? or ? –> relation –> available node. Your task is predicting the missing node.
Alongside, you will get a hint about the type of answer that is correct, and you might receive additional relevant information
to aid your prediction. Please respond only with the missing node, without including the head node or the relation.

Example:

Triplet with missing node: John Lennon –> born_in –> ?

Available node John Lennon is of node type person.

Graph paths that can be important for filling missing information for a triplet type person –> born_in –> country are
[person –> died_in –> country, person –> child_of –> person –> citizen_of –> country].

Chain of thought: This can be a list of questions that might help predict the missing node: [In which country the person
died?, If a person is a child of another person who is a citizen of a certain country, which country is that?].

If John Lennon –> died_in –> United Kingdom, John Lennon –> child_of –> Alfred Lennon –> citizen_of –> United
Kingdom then it is likely that John Lennon –> born_in –> United Kingdom

Hint about missing node type: The missing node should be of type country

Missing node: United Kingdom

Your task:

Triplet with missing node: {triplet}

Available node {known node} is of node type {type}.

Hint about missing node: The missing node should be of type {type}. Potential candidate nodes for the missing node are
{data}. This does not mean that missing node is always in the provided list. It is a hint to help you predict the missing node.

Graph paths that are important for filling missing information for a triplet type are {ontology paths}.

Reason about the missing node using Chain of Thought method.

Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:
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Candidate nodes with Ontology paths and hit prompt Same as Candidate nodes with Ontology paths prompt with
Hint about the missing node type: The missing node should be of type {type}

Candidate nodes with ontology hint and graph paths prompt You will receive a triplet with a missing node. Given
triplet can be of the form available node –> relation –> ? or ? –> relation –> available node. Your task is predicting
the missing node. Alongside, you will get a hint about the type of answer that is correct, and you might receive additional
relevant information to aid your prediction. Please respond only with the missing node, without including the head node or
the relation.

Example:

Triplet with missing node: John Lennon –> born_in –> ?

Available node John Lennon is of node type person.

Graph paths that can be important for filling missing information for triplet John Lennon –> born_in –> ? are [John
Lennon –> died_in –> United Kingdom, John Lennon –> child_of –> Alfred Lennon –> citizen_of –> United Kingdom].

Chain of thought:

If John Lennon died_in United Kingdom, and John Lennon is a child_of Alfred Lennon who is a citizen_of United Kingdom
then it is likely that John Lennon –> born_in –> United Kingdom

Hint about missing node type: The missing node should be of type country

Missing node: United Kingdom

Your task:

Triplet with missing node: {triplet}

Hint about missing node: The missing node should be of type {type}. Potential candidate nodes for the missing node are
{data}. This does not mean that missing node is always in the provided list. It is a hint to help you predict the missing node.

Graph paths that are important for filling missing information for triplet {triplet} are {graph paths}.

Reason about the missing node using Chain of Thought method.

Hint about the missing node type: The missing node should be of type {type}

Please provide a list of 10 candidate nodes for the missing node. Answer should be of the format [’candidate_node_1’,
’candidate_node_2’, ......, ’candidate_node_10’]. The list of candidate nodes should be in order of most probably candidate
node to least probable candidate node.

Missing candidate nodes:

Ontology Prompt I will provide you with a relation and two data pairs. Your task is to determine the specific ontology
node classes for the entities in these data pairs that are connected by the specified relation.

Strict Requirements: 1) All node classes must be written in lowercase. 2) Connect words within node classes using
underscores. 3) The relation provided must not be altered in your response. 4) Provide a single response for all data pairs,
formatted as follows: [’head node class’, ’tail node class’, ’relation’]. 5) Ensure your answer strictly adheres to this format:
[’head node class’, ’tail node class’, ’relation’]. Do not include any additional text or explanation.

Soft Requirements: 1) Refer to the existing node classes: {ontology_categories}. You may reuse these if they accurately
describe the data pairs. If not, provide a more suitable classification. 2) Avoid using generic terms like ’person’. Instead,
use more specific classifications such as ’film_producer’ or ’play_writer’ where applicable.

Example 1: Relation: ’was born in’ Data Pairs: [’(John Lennon, United Kingdom)’, ’(Miles Davis, United States)’] Answer:
[’musician’, ’country’, ’was born in’]

Example 2: Relation: ’directed by’ Data Pairs: [’(Inception, Christopher Nolan)’, ’(Titanic, James Cameron)’] Answer:
[’film’, ’film_director’, ’directed by’]
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In-Context Learning with Topological Information for Knowledge Graph Completion

Your turn: Relation: ’{relation}’ Data Pairs: ’{data_pairs}’ Answer:

B. Paths identified in the ontology
B.1. Alternate ontology paths for relations in ILPC-small dataset

In this section we provide the alternate ontology paths for a given ontology triplet

Individual → medical condition → medical condition

• Individual → cause of death → medical condition

Individual → place of birth → city

• Individual → employer → university or organization → headquarters location → city
• Individual → place of death → city
• Individual → residence → city

Individual → part of → organization

• Individual → member of → organization

Individual → residence → city

• Individual → employer → university or organization → headquarters location → city
• Individual → place of death → city
• Individual → place of birth → city

Individual → languages spoken, written or signed → language

• Individual → employer → university or organization → located in the administrative territorial entity → city or country
→ official language → language

Individual → member of → organization

• Individual → part of → organization

Individual → place of death → city

• Individual → employer → university or organization → headquarters location → city
• Individual → residence → city
• Individual → place of birth → city

University or organization → headquarters location → city

• University or organization → located in the administrative territorial entity → city or country → named after →
individual → place of death → city

• University or organization → located in the administrative territorial entity → city or country → named after →
individual → residence → city

• University or organization → located in the administrative territorial entity → city or country → named after →
individual → place of birth → city

Individual → cause of death → medical condition

• Individual → medical condition → medical condition

City or country → official language → language

• City or country → named after → individual → languages spoken written or signed → language

B.2. Alternate ontology paths for relations in ILPC-large dataset

Individual → field of work → field of work

• Individual → is the study of → field of work
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Location → country → country

• Location → named after → individual → country of citizenship → country
• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →

organization → founded by → individual → country of citizenship → country
• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →

organization → chief executive officer → individual → country of citizenship → country
• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →

organization → chairperson → individual → country of citizenship → country

Location → has use → sport

• Location → named after → individual → sport → sport
• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →

organization → founded by → individual → sport → sport
• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →

organization → chief executive officer → individual → sport → sport
• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →

organization → chairperson → individual → sport → sport

Individual → languages spoken, written or signed → language

• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial
entity → official language → language

• Individual → part of → organization → airline hub → location → located in the administrative territorial entity →
administrative territorial entity → official language → language

Individual → movement → genre

• Individual → genre → genre

Individual → employer → educational institution

• Individual → educated at → educational institution

Organization → chairperson → individual

• Organization → founded by → individual
• Organization → chief executive officer → individual
• Organization → airline hub → location → named after → individual

Organization → chief executive officer → individual

• Organization → founded by → individual
• Organization → chairperson → individual
• Organization → airline hub → location → named after → individual

Individual → educated at → educational institution

• Individual → employer → educational institution

Creative work → country of origin → country

• Creative work → creator → individual → place of burial → location → country → country
• Creative work → creator → individual → country of citizenship → country
• Creative work → creator → individual → part of → organization → airline hub → location → country → country
• Creative work → publisher → organization → founded by → individual → place of burial → location → country →

country
• Creative work → publisher → organization → founded by → individual → country of citizenship → country
• Creative work → publisher → organization → chief executive officer → individual → place of burial → location →

country → country
• Creative work → publisher → organization → chief executive officer → individual → country of citizenship → country
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• Creative work → publisher → organization → chairperson → individual → place of burial → location → country →
country

• Creative work → publisher → organization → chairperson → individual → country of citizenship → country
• Creative work → publisher → organization → airline hub → location → country → country
• Creative work → publisher → organization → airline hub → location → named after → individual → country of

citizenship → country
• Creative work → narrative location → location → country → country
• Creative work → narrative location → location → named after → individual → country of citizenship → country
• Creative work → narrative location → location → located in the administrative territorial entity → administrative

territorial entity → legislative body → organization → founded by → individual → country of citizenship → country
• Creative work → narrative location → location → located in the administrative territorial entity → administrative

territorial entity → legislative body → organization → chief executive officer → individual → country of citizenship
→ country

• Creative work → narrative location → location → located in the administrative territorial entity → administrative
territorial entity → legislative body → organization → chairperson → individual → country of citizenship → country

Organization → headquarters location → city

• Organization → founded by → individual → place of death → city
• Organization → founded by → individual → place of birth → city
• Organization → founded by → individual → residence → city
• Organization → founded by → individual → place of burial → location → located in the administrative territorial

entity → administrative territorial entity → capital → city
• Organization → chief executive officer → individual → place of death → city
• Organization → chief executive officer → individual → place of birth → city
• Organization → chief executive officer → individual → residence → city
• Organization → chief executive officer → individual → place of burial → location → located in the administrative

territorial entity → administrative territorial entity → capital → city
• Organization → chairperson → individual → place of death → city
• Organization → chairperson → individual → place of birth → city
• Organization → chairperson → individual → residence → city
• Organization → chairperson → individual → place of burial → location → located in the administrative territorial

entity → administrative territorial entity → capital → city
• Organization → airline hub → location → named after → individual → place of death → city
• Organization → airline hub → location → named after → individual → place of birth → city
• Organization → airline hub → location → named after → individual → residence → city
• Organization → airline hub → location → located in the administrative territorial entity → administrative territorial

entity → capital → city

Individual → residence → city

• Individual → place of death → city
• Individual → place of birth → city
• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial

entity → capital → city
• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial

entity → legislative body → organization → headquarters location → city
• Individual → part of → organization → headquarters location → city
• Individual → part of → organization → airline hub → location → located in the administrative territorial entity →

administrative territorial entity → capital → city

Individual → place of birth → city

• Individual → place of death → city
• Individual → residence → city
• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial

entity → capital → city
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• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial
entity → legislative body → organization → headquarters location → city

• Individual → part of → organization → headquarters location → city
• Individual → part of → organization → airline hub → location → located in the administrative territorial entity →

administrative territorial entity → capital → city

Creative work → narrative location → location

• Creative work → creator → individual → place of burial → location
• Creative work → creator → individual → part of → organization → airline hub → location
• Creative work → publisher → organization → founded by → individual → place of burial → location
• Creative work → publisher → organization → chief executive officer → individual → place of burial → location
• Creative work → publisher → organization → chairperson → individual → place of burial → location
• Creative work → publisher → organization → airline hub → location

Individual → place of burial → location

• Individual → part of → organization → airline hub → location

Individual → country of citizenship → country

• Individual → place of burial → location → country → country
• Individual → part of → organization → airline hub → location → country → country

Creative work → publisher → organization

• Creative work → creator → individual → place of burial → location → located in the administrative territorial entity
→ administrative territorial entity → legislative body → organization

• Creative work → creator → individual → part of → organization
• Creative work → narrative location → location → named after → individual → part of → organization
• Creative work → narrative location → location → located in the administrative territorial entity → administrative

territorial entity → legislative body → organization

Administrative territorial entity → capital → city

• Administrative territorial entity → legislative body → organization → headquarters location → city
• Administrative territorial entity → legislative body → organization → founded by → individual → place of death →

city
• Administrative territorial entity → legislative body → organization → founded by → individual → place of birth →

city
• Administrative territorial entity → legislative body → organization → founded by → individual → residence → city
• Administrative territorial entity → legislative body → organization → chief executive officer → individual → place of

death → city
• Administrative territorial entity → legislative body → organization → chief executive officer → individual → place of

birth → city
• Administrative territorial entity → legislative body → organization → chief executive officer → individual → residence
→ city

• Administrative territorial entity → legislative body → organization → chairperson → individual → place of death →
city

• Administrative territorial entity → legislative body → organization → chairperson → individual → place of birth →
city

• Administrative territorial entity → legislative body → organization → chairperson → individual → residence → city
• Administrative territorial entity → legislative body → organization → airline hub → location → named after →

individual → place of death → city
• Administrative territorial entity → legislative body → organization → airline hub → location → named after →

individual → place of birth → city
• Administrative territorial entity → legislative body → organization → airline hub → location → named after →

individual → residence → city
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Location → named after → individual

• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →
organization → founded by → individual

• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →
organization → chief executive officer → individual

• Location → located in the administrative territorial entity → administrative territorial entity → legislative body →
organization → chairperson → individual

Organization → founded by → individual

• Organization → chief executive officer → individual
• Organization → chairperson → individual
• Organization → airline hub → location → named after → individual

Organization → airline hub → location

• Organization → founded by → individual → place of burial → location
• Organization → chief executive officer → individual → place of burial → location
• Organization → chairperson → individual → place of burial → location

Individual → genre → genre

• Individual → movement → genre

Administrative territorial entity → official language → language

• Administrative territorial entity → legislative body → organization → founded by → individual → languages spoken,
written or signed → language

• Administrative territorial entity → legislative body → organization → chief executive officer → individual → languages
spoken, written or signed → language

• Administrative territorial entity → legislative body → organization → chairperson → individual → languages spoken,
written or signed → language

• Administrative territorial entity → legislative body → organization → airline hub → location → named after →
individual → languages spoken, written or signed → language

Individual → sport → sport

• Individual → place of burial → location → has use → sport
• Individual → part of → organization → airline hub → location → has use → sport

Individual → unmarried partner → individual

Creative work → creator → individual

• Creative work → publisher → organization → founded by → individual
• Creative work → publisher → organization → chief executive officer → individual
• Creative work → publisher → organization → chairperson → individual
• Creative work → publisher → organization → airline hub → location → named after → individual
• Creative work → narrative location → location → named after → individual
• Creative work → narrative location → location → located in the administrative territorial entity → administrative

territorial entity → legislative body → organization → founded by → individual
• Creative work → narrative location → location → located in the administrative territorial entity → administrative

territorial entity → legislative body → organization → chief executive officer → individual
• Creative work → narrative location → location → located in the administrative territorial entity → administrative

territorial entity → legislative body → organization → chairperson → individual

Individual → occupation → occupation

• Individual → n/a → occupation

Individual → is the study of → field of work
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• Individual → field of work → field of work

Individual → place of death → city

• Individual → place of birth → city
• Individual → residence → city
• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial

entity → capital → city
• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial

entity → legislative body → organization → headquarters location → city
• Individual → part of → organization → headquarters location → city
• Individual → part of → organization → airline hub → location → located in the administrative territorial entity →

administrative territorial entity → capital → city

Creative work → language of work or name → language

• Creative work → creator → individual → place of burial → location → located in the administrative territorial entity
→ administrative territorial entity → official language → language

• Creative work → creator → individual → languages spoken, written or signed → language
• Creative work → creator → individual → part of → organization → airline hub → location → located in the

administrative territorial entity → administrative territorial entity → official language → language
• Creative work → publisher → organization → founded by → individual → place of burial → location → located in

the administrative territorial entity → administrative territorial entity → official language → language
• Creative work → publisher → organization → founded by → individual → languages spoken, written or signed →

language
• Creative work → publisher → organization → chief executive officer → individual → place of burial → location →

located in the administrative territorial entity → administrative territorial entity → official language → language
• Creative work → publisher → organization → chief executive officer → individual → languages spoken, written or

signed → language
• Creative work → publisher → organization → chairperson → individual → place of burial → location → located in

the administrative territorial entity → administrative territorial entity → official language → language
• Creative work → publisher → organization → chairperson → individual → languages spoken, written or signed →

language
• Creative work → publisher → organization → airline hub → location → named after → individual → languages

spoken, written or signed → language
• Creative work → publisher → organization → airline hub → location → located in the administrative territorial entity
→ administrative territorial entity → official language → language

• Creative work → narrative location → location → named after → individual → languages spoken, written or signed
→ language

• Creative work → narrative location → location → located in the administrative territorial entity → administrative
territorial entity → official language → language

• Creative work → narrative location → location → located in the administrative territorial entity → administrative
territorial entity → legislative body → organization → founded by → individual → languages spoken, written or
signed → language

• Creative work → narrative location → location → located in the administrative territorial entity → administrative
territorial entity → legislative body → organization → chief executive officer → individual → languages spoken,
written or signed → language

• Creative work → narrative location → location → located in the administrative territorial entity → administrative
territorial entity → legislative body → organization → chairperson → individual → languages spoken, written or
signed → language

Individual → part of → organization

• Individual → place of burial → location → located in the administrative territorial entity → administrative territorial
entity → legislative body → organization

Individual → n/a → occupation
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• Individual → occupation → occupation
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