Under review as a conference paper at ICLR 2026

SELF-DUAL: UNIFYING NATURAL LANGUAGE AND
PROGRAMMATIC THINKING FOR ENHANCED MATHE-
MATICAL REASONING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have made significant progress in mathematical
reasoning. However, the methods that rely on a single reasoning paradigm ex-
hibit clear limitations. This has motivated recent studies to combine multiple
paradigms, but existing studies often fail to systematically exploit their comple-
mentary strengths. In this study, we first examine the complementary relationship
between natural language (NL) and programmatic language (PL) reasoning, and
show that their integration leads to consistent improvements in mathematical rea-
soning performance. Building on this analysis, we introduce Self-Dual, a frame-
work that unifies the two paradigms within a single inference process by generat-
ing complementary reasoning trajectories and combining them through structured
self-reflection. Beyond inference, we extend this principle to training by adopting
the Self-Dual data format to construct complementary reasoning datasets and eval-
uate its effectiveness in model training. We conduct comprehensive evaluations
of Self-Dual in both inference and training contexts. During inference, Self-Dual
consistently surpasses NL-only, PL-only, and hybrid baseline methods across mul-
tiple benchmarks. DeepSeek-V3-0324 integrated with Self-Dual attains 47.8% ac-
curacy on the AIME2S5 dataset, outperforming Chain-of-Thought (CoT) at 39.2%
and Program-Aided Language (PAL) at 35.6%. In the training experiments, we
apply the Self-Dual framework to further train Qwen2.5-7B-Instruct with only
7.5K MATH samples and construct Qwen2.5-7B-SD. The new model improves
performance on MATHS00 by more than 4% over the base model Qwen2.5-7B-
Instruct. It also surpasses Qwen2.5-Math-7B-Instruct on AIME25. These results
demonstrate that the Self-Dual framework effectively exploits complementary rea-
soning paradigms and substantially enhances the mathematical reasoning ability
of large language models in both inference and training.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al.l 2024} |Guo et al.l 2025 |Qwen et al.| [2025) make
remarkable strides across a diverse array of tasks through the application of prompting techniques.
Nevertheless, complex reasoning tasks (Xie et al.,[2024; |Sprague et al., |2024) such as mathematical
reasoning continue to present significant challenges. NL-based prompting methods, such as Chain-
of-Thought (CoT), utilize natural language to decompose complex reasoning tasks into multiple
intermediate steps and solve them step by step (Wei et al., [2022; [Zhou et al.,|2023} |Li et al., [2023).
These methods offer high interpret-ability but are prone to calculation and logical errors (Madaan
& Yazdanbakhsh) [2022; Nogueira et al., 2021} |Q1an et al., [2022). In contrast, PL-based prompting
methods like Program-aided Language (PAL) (Gao et al.||2023b)) generate programs as intermediate
reasoning steps and offload the solution steps to a runtime such as a Python interpreter. They are
more logically robust and computationally accurate (Chen et al., 2023;|Gou et al.,|2024b). However,
such methods often struggle to represent certain steps for solving natural language problems in
programming language.

Prior work on combining NL-based and PL-based reasoning can be grouped into two categories.
At inference time, methods such as Automatic (Zhao et al., 2023 select the final answer from
CoT and PAL outputs, but are sensitive to candidate ordering and often unstable. Other methods,

Under review as a conference paper at ICLR 2026

like CRITIC (Gou et al., 2024a)), refine programs through NL reflection, yet remain limited by the
expressiveness of PL. At training time, approaches such as MathCoder (Wang et al.,[2023)) construct
datasets by deriving formulas and code with PL reasoning, while SAAS (Kim et al.l [2024)) and
Qwen2.5-Math (Yang et al [2024a) mix NL and PL data for joint training. CoR (Yu et al.| 2025b)
adopts progressive paradigm training, where the model is first trained on NL-reasoning data and then
on PL-reasoning data. All these methods empirically combine NL-based reasoning and PL-based
reasoning, but they overlook the central principle of complementarity between them, leaving much
of their combined potential unexplored.

In this paper, our observation confirms that NL reasoning and PL reasoning are inherently comple-
mentary: their union consistently outperforms either alone, while their intersection reflects conver-
gence across reasoning attempts, as shown in Figure |1} This suggests that hybrid reasoning should
explicitly leverage complementarity, rather than treat NL and PL as independent or sequential sig-
nals. Building on this insight, we propose Self-Dual, a unified framework that exploits the comple-
mentarity of NL and PL reasoning to enhance inference, while also serving as a data construction
format to support model training. At inference time, Self-Dual produces two complementary rea-
soning paths within a single forward pass: one in NL and one in programmatic form. These paths are
then compared and integrated through a structured self-reflection process consisting of three steps:
Look Back, Decomposition, and Resolution. At training time, Self-Dual generates complementary
trajectories that are used as cold-start data. These data are then integrated into Group Relative Pol-
icy Optimization (GRPO) (Shao et al., [2024) with a tailored reward function to assess whether the
Self-Dual format can improve model performance in mathematical reasoning.

For inference-time experiments, we evaluate the empirical performance of Self-Dual across mul-
tiple series of LLMs, including DeepSeek-V3-0324 (DeepSeek-Al, 2024) and Gemma 3 (Team,
2025)) variants (4B, 12B, 27B), on diverse mathematical reasoning benchmarks. Our findings show
that Self-Dual consistently surpasses prior techniques without supplementary data or training. For
example, DeepSeek-V3-0324 with Self-Dual BAND achieves 4% improvement in accuracy on
the MATHS500 benchmark and 16.66% gain on AIME25. For training-time experiments, we use
Qwen2.5-7B-Instruct (Qwen et al.,[2025) as the base model and train it with Self-Dual data, obtain-
ing Qwen2.5-7B-SD. On AIME25, Qwen2.5-7B-SD surpasses Qwen2.5-Math-7B-Instruct (Yang
et al.|, [2024a), which is trained with large-scale hybrid data and GRPO. This result shows that
the Self-Dual format can deliver competitive improvements in mathematical reasoning with much
smaller training data.

2 RELATED WORK

2.1 ENHANCING MATHEMATICAL REASONING

There are two main techniques for enhancing the mathematical reasoning capabilities of LLMs:
prompting methods and fine-tuning-based methods. The in-context few-shot learning through
prompting is simple and broadly applicable, like popular CoT (Wei et al. 2022)) and PAL (Gao
et al.} 2023b)). Automatic-CoT (Zhang et al.,[2023)), Many-Shot (Agarwal et al.,|2024) and Synthetic
Prompting (Sprague et al., 2024) explore improving model performance by enhancing the quality
or quantity of few-shot examples. ToT (Yao et al} [2023)), GoT (Besta et al., [2024) and BoT (Yang
et al.| 2024b) design different ways of structuring thoughts to further enhance LLMs performance.
TIR (Gou et al.,|2024b), CRITIC (Gou et al.,|2024a) and Recursive-Introspection (Qu et al., [2024)
perform multi-round self-evaluation based on previous results to iteratively improve the reasoning
process. The most related to our work are Mathprompter (Kim et al., 2023al) and Automatic (Zhao
et al., |2023), which use simple selection or majority voting to select the results of PAL and CoT.
Unlike these methods, our approach decomposes the complementary reasoning paths to extract their
respective strengths and synthesizes a new solution during the refine stage.

Beyond prompt-based approaches, fine-tuning improves mathematical reasoning by training on cu-
rated datasets (Tong et al.,[2024a}; [Zhou et al.,[2024; Luo et al.,|2025a) or large-scale synthetic data,
such as MetaMath (Yu et al., [2024)) and DeepSeekMath (Shao et al., 2024). Building on this line,
recent work explores multi-paradigm reasoning by mixing natural language, code, and symbolic
forms (Yu et al, 2025a} Zheng et al., 2025) or by integrating reinforcement learning and external
tools (Luo et al., 2025a; |Gou et al., 2024b)). Yet these methods treat NL-based and PL-based rea-

Under review as a conference paper at ICLR 2026

Pass@k on Gemma-3-4B-it Pass@k on Gemma-3-12B-it
0.60 0.60
—e— CoT
PAL e — — —x
Self-Dual ~
0.48 0.48
< —< CoT_PAL_Union < —
€} CoT_PAL Intersection ® =
@ @ . —./0—0
g 0.36 —_— % g 0.36 € ———
2 - o ——
5 e T /
o / o
ﬁou e — —(— — ﬁou
] — - S —e— CoT
@ [a PAL

Self-Dual
—< CoT_PAL_Union
CoT_PAL Intersection

2 36 48 60 0 12 2 36 48 60
k (Number of Solutions) k (Number of Solutions)

Figure 1: Pass@k curves of Gemma3-4B-it and Gemma3-12B-it on CoT, PAL, Self-Dual, as well
as the union and intersection of CoT and PAL, evaluated on the AIME2S5 dataset. Setup is given in

Section [Zﬂ_j'}

soning as simple combinations, overlooking their complementarity. Our work instead unifies both
paradigms within a single inference pass and reconciles them through self-reflection.

2.2 SELF-REFINE

Self-Refine refers to the ability of LLMs to improve or revise their previous responses based on
feedback (Madaan et al., 2023} Shinn et al., 2023). Automated feedback has primarily been used for
training-time correction (Yan et al.| |2023) or for guiding LLMs during inference through prompt-
ing (Weng et al.,|2023). One crucial aspect of self-refinement is that the source of feedback provides
reliable and effective additional information. A vast amount of research leverage external feedback
for optimization, including external knowledge sources (Gao et al, [2023a)), external tools (Chern
et al., [2024)), program executors (Chen et al., 2024), symbolic solvers (Pan et al., [2023)), or even
trained models (Paul et al., [2024). Some approaches, such as Self-Refine (Madaan et al.,[2023)) and
RCI (Kim et al., [2023b)), further optimize responses through multiple iterations by leveraging the
model’s inherent reflection capabilities. While the primary goal of our method is to generate com-
plementary solutions that inspire reflection, external feedback from the Python interpreter is also
integrated into the refine stage as a component of the PL-based approach.

3 METHODOLOGY

3.1 COMPLEMENTARITY BETWEEN REASONING MODES

NL-based methods are adept at capturing semantic and intuitive reasoning, while PL-based methods
primarily emphasize symbolic and structured reasoning. Intuitively, integrating these two paradigms
is expected to enhance reasoning capabilities, much like the human cognitive process that combines
intuition with logic. Although several recent studies (Yu et al.l[2025b) have explored the integration
of NL and PL to improve the reasoning ability of LLMs, to the best of our knowledge, a systematic
understanding of their complementary interplay is still missing.

In this work, we explicitly examine the notion of complementarity and conceptualize it as a central
principle underlying the effectiveness of hybrid NL-PL reasoning. Concretely, we position CoT
as the representative paradigm of NL-based reasoning and PAL as the representative paradigm of
PL-based reasoning. By analyzing these two paradigms, we provide empirical evidence supporting
their inherent complementarity.

To evaluate performance, we adopt the Pass @K metric, which measures the probability of obtaining
at least one correct solution when sampling K diverse outputs from a model. Formally, let .S; denote
the set of solutions generated by method ¢ (€ CoT,PAL), and let C denote the set of correct
solutions. Then Pass@K is defined as:

Pass@K(S;) =P[S; NC #0]. (1)

In addition to evaluating each method individually, we also analyze the union and intersection of
the solutions produced by CoT and PAL. The union reflects the expanded solution space when

Under review as a conference paper at ICLR 2026

both paradigms are combined, while the intersection reveals their agreement. Examining these sets
allows us to better understand the complementary and consistent aspects of NL-based and PL-based
reasoning. They can be expressed as:

Su = Scor U SpaL, Sn = Scor N SpaL.)

As illustrated in Fig. [I] our key observations are as follows.

Union as upper bound. Pass@K(Sy) increases steadily with K and consistently surpasses both
CoT and PAL alone. This demonstrates that NL-based and PL-based reasoning are complemen-
tary. Since their outputs are not fully overlapping, the union expands the effective solution set.
Pass@K(S) therefore serves as an upper bound for hybrid reasoning.

Intersection as consistency. Pass@K(Sn) increases and gradually converges as K grows. This
behavior indicates that CoT and PAL exhibit increasing consistency in their outputs. At the same
time, Pass@K(Sn) < min (Pass@K(Scor), Pass@K(Spar)), which confirms that their solution
sets are not fully overlapping. This motivates the use of the symmetric difference to characterize
their non-shared components:

Sa = (Scor \ Spar) U (Sear \ Scor) 3)

Symmetric difference as complementarity. The non-empty symmetric difference further supports
the claim that CoT and PAL capture distinct reasoning capacities. Their complementarity provides
opportunities for hybrid methods to exploit.

In a nutshell, the union highlights the upper bound of hybrid reasoning, the intersection reflects
growing consistency, and the symmetric difference confirms complementarity. Together, these ob-
servations provide a foundation for designing methods that explicitly exploit NL-PL synergy.

3.2 INFERENCE-TIME COMPLEMENTARITY

To exploit the complementary strengths of NL and PL reasoning, we propose Self-Dual, a hybrid
framework that integrates both paradigms within a single inference. The key idea is to generate dual
reasoning trajectories in one forward pass and then combine them through structured self-reflection.
This design preserves the diversity of multiple reasoning paths while maintaining the efficiency of
single-shot inference.

Self-Dual operates in two stages: Dual-Path Generation and Refinement. In the first stage, the
model produces an NL-based reasoning path Ryy = LLM(Q; On1), followed by a PL-based path
Rpr, = LLM(Q, Rnv; 6pL) with Ryp as context. This sequential generation improves consistency
between the two paradigms, as discussed in Section [f.1.3] During the generation of Rpy, external
feedback can be incorporated via stop tokens ““ ‘output”, allowing partial code execution and
verification f(Rpr) — Execution Feedback to strengthen the reliability of the PL trajectory.

In the second stage, Refinement, the two paths are compared and integrated in three structured steps.
Look Back prompts the model to revisit the original problem statement (), extract key information,
and mitigate attention drift. Decomposition contrasts Ry, and Rpy, to identify agreements and con-
flicts between the two paths. Resolution then consolidates Ryy., Rpr, and the execution feedback
f(Rpp) into a refined trajectory R, from which the final answer A = Answer(R) is derived and
presented as “boxed{A}”.

3.3 TRAINING-TIME COMPLEMENTARITY

At training time, we use the Self-Dual framework as a data generator to construct complementary
reasoning trajectories. These trajectories serve as cold-start data for reinforcement learning and
allow us to examine whether the Self-Dual format can enhance mathematical reasoning through
data construction. We adopt standard GRPO for training and design a reward function that preserves
the complementary reasoning pattern of Self-Dual:

R = ¢ - (format reward), 4)

Under review as a conference paper at ICLR 2026

where § € {0, 1} is a binary coefficient, and format_reward is provided by an external reward model.

The value of § is determined by two conditions. The first condition enforces a complementarity
constraint: the model must output both an NL-based and a PL-based answer, preserving the reason-
ing format of Self-Dual during training. We do not evaluate the correctness of these intermediate
answers, so the model can explore diverse reasoning paths. The second condition is the correctness
of the final answer A, which determines the success of the solution. The coefficient § is set to 1
only when both conditions are satisfied. The format reward term provides a fine-grained evaluation
of reasoning quality, covering the completeness of the three-stage Self-Dual process, the correctness
of the reasoning trajectory, and the correctness of the final answer.

4 EXPERIMENTS

4.1 INFERENCE-TIME
4.1.1 SETUP

Benchmarks. We evaluate our approach on four widely-used benchmarks in the field of mathemat-
ical reasoning: SVAMP (Patel et al, 2021), GSM8K (Cobbe et al., |2021), MATH500 (Lightman
et al.| [2024) and AIME25. Their difficulty increases progressively in the given order. Please see
Table[/|for details in Appendix.

LLMs. We conduct experiments using DeepSeek-V3-0324 (DeepSeek-All [2024), as well as the
Gemma-3 Instruct model (Teaml 2025) across three parameter scales: 4B, 12B, and 27B. To ensure
a fair comparison, we set the temperature of all LLMs to 0.7 and the maximum token limit to 8192
for all experiments.

Baselines. We group the baselines into three categories. For NL-based methods, we consider
CoT (Wei et al.||2022)), which solves problems step by step in natural language, and Reflexion (Shinn
et al.l [2023)), which follows the Response—Evaluation—Revision paradigm. For PL-based meth-
ods, we include PAL (Gao et al) [2023b)), which generates executable programs. For hybrid-based
methods, we evaluate Automatic (Zhang et al., |2023), a simple selection between CoT and PAL,
Self-Dual-Automatic, which integrates independently executed CoT and PAL under the Self-Dual
framework, CRITIC (Gou et al.l[2024a)), which iteratively refines programs using natural language
feedback, and TIR (Gou et al., 2024b), which generates a rationale before producing and refining
code. We set the maximum number of iterations to n = 4 for iterative methods, while for single-pass
methods such as CoT and Self-Dual we report the average over three runs.

4.1.2 MAIN RESULTS

In Table[I] we report both the accuracy and the number of API/LLM calls (#Call), which serves as
an approximate measure of computational cost. Table [6] shows remaining results of GSM8K and
SVAMP in Appendix. Hybrid-based methods consistently outperform single-paradigm methods
across both benchmarks. While NL-based methods such as CoT and Reflextion capture semantic
reasoning effectively, and PL-based methods such as PAL and TIR emphasize symbolic reasoning,
their performance remains limited when used in isolation. By contrast, hybrid-based approaches
achieve clear improvements, highlighting the intrinsic complementarity between NL-based and PL-
based paradigms.

The proposed Self-Dual framework establishes better performance across all model scales, surpass-
ing both automatic switching methods and their tool-free variants. Notably, Self-Dual achieves
47.78% on AIME2S5 with DeepSeek-V3-0324 and 90.04% on MATH500, demonstrating that explic-
itly generating and reconciling dual reasoning paths yields stronger gains than heuristic integration.
These improvements are particularly pronounced for smaller models, where Self-Dual narrows the
gap with much larger baselines. Tool feedback plays a crucial role in amplifying the benefits of
programmatic reasoning. As shown by the “w/o tool” settings, removing Python interpreter feed-
back substantially degrades performance for PAL, CRITIC, and Self-Dual, confirming that external
verifiability strengthens the PL-based reasoning pathway. Importantly, even without tool feedback,
Self-Dual still maintains competitive accuracy, underscoring the robustness of its complementary
reasoning design.

Under review as a conference paper at ICLR 2026

Table 1: Solve rates on AIME25 and MATHS00. The "w/o tool" setting indicates that the method
described in the previous line does not utilize the execution results from the Python interpreter as
feedback. D-V3 refers to DeepSeek-V3-0324, while G-4B, G-12B, and G-27B denote different
sizes of the Gemma-3 family. SD-Auto denotes the Self-Dual-Automatic method. The best results
are highlighted in bold, and the second-best are underlined.

Methods AIME25 | MATHS500
D-V3 G-4B G-12B G-27B | D-V3 G-4B G-12B G-27B #Call
NL-based methods
CoT 2778 89 1778 20 | 87.67 622 79.87 8553 1
Reflextion 36.67 10 20 2667 | 88 648 796 852 3
PL-based methods
PAL 1667 0 1333 1667 | 68 352 584 686 | 1
Hybrid-based methods
TIR 1333 0 6.67 2333 | 81 434 63 772 | 15
w/o tool 1333 0 3.33 10 76 188 328 458
CRITIC 1333 3.33 10 10 | 684 398 606 68.6
w/o tool 16.67 333 10 16.67 | 656 376 606 652
Automatic 40 6.67 2333 2667 | 81.8 602 758 826
SD-Auto 40 10 2333 2667 | 88 67 82 85.6
Self-Dual 47.78 1556 24.44 30 | 90.04 7033 81.6 8633
w/otool 2667 10 1667 1667 | 874 68 79.6 86

— N W WO O —

4.1.3 ANALYSIS

To further investigate the proposed framework in depth, we randomly sample 100 examples from
MATHS500. All sampled problems are kept consistent across methods to ensure a fair comparison.
A comparative analysis of all methods is shown in Table 2] based on the consistency of the two
initial reasoning paths and the correctness of the final outputs in the refine stage. We define four
main categories: Concordant Correctness (CC), Concordant Error (CE), Discordant Correctness
(DC), and Discordant Error (DE). CC denotes cases where both NL- and PL-based paths give the
same correct answer, and refinement preserves it. CE corresponds to both paths producing the same
wrong answer, which refinement follows. When the two paths are different, the case is Discordant.
DC indicates that refinement yields the correct answer, while DE means it remains incorrect. We
further distinguish DC'y;, and D En, when the NL path is correct, and DCpy, and DEp;, when
the PL path is correct. Badcode refers to PL programs that fail to execute, FN (False Negative) to
correct answers mismatched with the ground truth, and No2Paths to cases where dual solutions are
not generated.

Table 2: Results of Self-Dual, Self-Dual-Auto, Auto, and DCT on MATHS500, categorized by the
consistency of the initial reasoning paths and the correctness of the final outputs in the refine stage.

Models Methods CC CE DC DE Badcode FN No2Paths

Self-Dual 77% 4% 6% 4% 4% 1% 4%
DeepSeek-V3-0324 Self-Dual-Auto 67% 1% 8% 9% 15% 0% -
Auto 67% 1% 4% 13% 15% 0% -

Self-Dual 67% 6% 8% 5% 4% 1% 9%
Self-Dual-Auto 53% 4% 16% 13% 12% 2% -
Auto 53% 4% 11% 18% 12% 2% -

DCT 80% 9% 4% 1% - 2% 4%

Gemma-3-12B-it

Complementary Analysis. In this paper, we regard the divergence between the NL-based and
PL-based methods in the initial stage as the main concrete manifestation of their underlying com-
plementarity. As shown in Table 2| in Gemma-3-12B-it, the proportion of Discordant outputs in

Under review as a conference paper at ICLR 2026

Table 3: Confidence of NL-based and PL-based = Table 4: Selection accuracy of each method in
methods when a divergence occurs in the initial ~ the refine stage.

stage.

Models Methods SCR DCR

Models Methods Cni Crr Self-Dual 954% 60%
DeenSeek.V3.0324 Self-Dual 50% 30% DeepSeek-V3-0324 Self-Dual-Auto 89.29% 47.06%
eepSeel-VS- Self-Dual-Auto 41.18% 27.65% Auto 84.52% 23.53%
. Self-Dual 61.54% 15.38% Self-Dual ~ 93.75% 61.54%
Gemma-3-12B-it Self-Dual-Auto 51.72% 20.69% Gemma-3-12B-it Self-Dual-Auto 84.15% 55.17%
Auto 78.05% 37.93%

Self-Dual is higher than that of DCT. This indicates that employing NL and PL reasoning separately
does indeed increase the likelihood of generating divergent outputs.

The comparison between Self-Dual and Self-Dual-Auto can be viewed as an evaluation of generat-
ing complementary reasoning paths in in-context versus out-of-context settings, respectively. The
results demonstrate that the in-context setting reduces the occurrence of divergence and improves
the accuracy of selection. Moreover, the divergence observed between the two methods suggests
that LLMs may exhibit an inherent "duality" in their reasoning behaviors.

Analysis of Divergent Reasoning Path. To better analyze the reliability of PL-based and NL-
based methods when they produce divergent outputs, we propose a new set of evaluation metrics for
comparison. The confidence score C' is computed using the following formula:

_ DC, + DE,

Co= 56— pp € INL, PL]. (5)

Table [3] shows the main results of confidence score. From a methodological perspective, Self-Dual
demonstrates higher reliability than Self-Dual-Auto when divergences occur. For example, in the
Deepseek model, Self-Dual achieves 80% confidence compared to Self-Dual-Auto’s 69.45%. This
indicates that the in-context setting in Self-Dual simultaneously enhances the confidence of both
reasoning methods while reducing the likelihood of divergence (from 81% to 68%). Besides, both
models consistently show that the NL-based method exhibits higher reliability; however, the contri-
butions of the PL-based method remain significant and should not be overlooked.

Refinement Strategy Evaluation In this section, we propose new metrics to evaluate the selection
accuracy of each method during the refine stage. Since CE indicates that both solutions are incorrect,
we do not consider this case when evaluating the impact on the second stage. The Selection Cor-
rectness Ratio (SCR) measures the proportion of correct selections made among avoidable errors. It
is defined by the following formula:

CcC+ DC
SCR = CC + DC + DE~ ©

The Discordant Correctness Ratio (DCR) is calculated using the following Equation [/ and is de-
signed to measure the proportion of making the correct selection when the two methods produce
divergent answers. It serves as a reliable indicator of the effectiveness of the refine stage.

DC

DOR = DC + DE"

)

As shown in Table {4} it can be concluded that Self-Dual performs the best, followed by Self-Dual-
Auto, while Auto shows the weakest performance based on the overall data. The difference between
Self-Dual-Auto and Auto can be entirely attributed to the design of the refine stage, demonstrating
that our proposed refinement strategy is significantly superior to the simple selection mechanism
used in Auto. The results on Self-Dual and Self-Dual-Auto also merit further discussion. This
may result from the in-context setting, which enhances consistent correctness and supports better
decision-making when divergences arise.

Under review as a conference paper at ICLR 2026

Table 5: Main training results on MATH500, AMC23, AIME24 and AIME25. Bold numbers indi-
cate the best accuracy, and underline indicates the second best.

Model Backbone Model RLVR DataSize Training Format
Qwen2.5-7B-Ins Qwen2.5-7B-Base No - -
w/ SFT Qwen2.5-7B-Ins No 3.1k Self-Dual
w/ SFT+GRPO Qwen2.5-7B-Ins Yes 7.5k Self-Dual
Qwen2.5-Math-7B-Ins Qwen2.5-Math-7B-Base Yes 3000k CoT & TIR
MATHS00 AMC23 AIME24 AIME25
Pass@1 Best@64 Best@64 Best@64
Qwen2.5-7B-Ins 72.2 65.0 20.0 16.67
w/ SFT 74.4 62.5 26.67 16.67
w/ SFT+GRPO 76.8 62.5 30.0 26.67
Qwen2.5-Math-7B-Ins 77.8 62.5 20.0 20.0

4.2 TRAINING-TIME

4.2.1 EXPERIMENTAL SETUP

Training Setup. We adopt Qwen2.5-7B-Instruct as the backbone model, which is one of the most
widely used open-source instruction models. To evaluate the quality of model outputs, we employ
Qwen3-32B as the reward model, responsible for computing the format reward. All training data
are drawn from the 7.5K training set of the MATH benchmark.

SFT Data Construction. We follow the data generation paradigm established in prior work (Guan
et al.| 2025)). Specifically, we use DeepSeek-V3.1 as the generator and score the outputs with
Qwen3-32B under the same prompts used in the RL stage. Starting with 3.5K samples as the can-
didate pool, a sample is included in the SFT set if it satisfies two conditions: the final answer is
correct and the format reward exceeds 0.8. Otherwise, the sample remains in the pool and a new
answer is generated. We allow up to three iterations and collect approximately 3.1K high-quality
SFT samples. During this process, we apply the Self-Dual reasoning template to ensure consistent
formatting. In both SFT and RL training, we only provide the problem statement as input to reduce
inference latency.

RLVR Data Construction and Training. Samples that fail the filtering process are combined with
the remaining 4K examples to form a 4.4K RLVR dataset, which encourages exploration in the RL
stage. For training, we use the LLaMA-Factory framework for SFT and the VERL framework to
perform reinforcement learning with standard GRPO. For SFT, we adopt LoRA with rank 32 and
« = 64, using a batch size of 32 and a learning rate of 5 x 102, For GRPO, we train the full model
with a batch size of 64 and a learning rate of 1 x 10~5. We set the group number n = 6 and train for
3 epochs, which corresponds to about 200 steps. All training is conducted on NVIDIA H200 GPUs.

4.2.2 MAIN RESULTS

As shown in Table[5] we evaluate the effectiveness of Self-Dual during training by comparing it with
Qwen2.5-Math-7B-Instruct, a strong math-specific baseline. Qwen2.5-Math-7B-Instruct is trained
on large-scale CoT-TIR mixed data and RLAR, making it a competitive reference point. We focus
on the AIME25 benchmark for two reasons. First, AIME2S5 has high difficulty and can better re-
flect a model’s reasoning ability. Second, both Qwen2.5-Math-7B-Instruct and Qwen2.5-7B-Instruct
were released after the creation of AIME25, while our training data come exclusively from the 7.5K
MATH training set, ensuring no data contamination. Unlike prior work, Self-Dual does not rely
on large hybrid datasets. Instead, it enhances reasoning by explicitly combining complementary
paradigms. For this reason, we directly use Qwen2.5-7B-Instruct as the backbone to leverage its
existing natural language reasoning and coding capabilities. This setup allows us to isolate the con-
tribution of the Self-Dual framework during training. We further compare Qwen2.5-7B-SD against
prior methods on MATH-500 and GSMSK, with results presented in Table @

Under review as a conference paper at ICLR 2026

Pass@k & Maj@k on AIME25 Pass@k & Maj@k on AIME24

=—e— Qwen2.5-7B-Ins pass Qwen2.5-7B-Math maj = Qwen2.5-7B-Ins pass Qwen2.5-7B-Math maj
=== Qwen2.5-7B-Ins maj Qwen2.5-7B-SD pass === Qwen2.5-7B-Ins maj Qwen2.5-7B-SD pass
0.56 Qwen2.5-7B-Math pass Qwen2.5-7B-SD maj 0.72 Qwen2.5-7B-Math pass Qwen2.5-7B-SD maj

o
>
(S
o
o
b

Accuracy
o
N
@
=
N
Accuracy
)
w
)

o
2
5
k
o
2
5
N
1

0.00—Y 0.00
0 12 24 36 48 60 0 12 2 36 48 60

k (Number of Solutions) k (Number of Solutions)

Figure 2: Pass@K and Maj@K curves of Qwen2.5-7B-SD, Qwen2.5-7B-Instruct, and Qwen2.5-
7B-Math-Instruct on the AIME24 and AIME25 benchmarks.

We observe that Self-Dual training consistently improves performance across multiple math bench-
marks. On MATH500, Qwen2.5-7B-Instruct achieves 72.2, while adding Self-Dual SFT raises the
score to 74.4. With GRPO, the score further increases to 76.8, which is close to Qwen2.5-Math-7B-
Instruct at 77.8. On AIME24 and AIME25, Self-Dual with SFT and GRPO, denoted as Qwen2.5-
7B-SD, achieves 30.0 on AIME24 and 26.67 on AIME2S5, significantly higher than both the instruct
and math baselines. These results show that Self-Dual not only improves single-answer accuracy
but also provides stronger generalization on challenging reasoning tasks.

The comparison also highlights the efficiency of Self-Dual. Qwen2.5-Math-7B-Instruct relies on
about 3000k mixed samples combining CoT and TIR, whereas Qwen2.5-7B-SD uses only the 7.5k
MATH dataset. Despite this gap in scale, Qwen2.5-7B-SD reaches similar accuracy on MATHS500
and even surpasses the math-specific model on AIME. This demonstrates that combining comple-
mentary reasoning with reinforcement learning can achieve strong results with much less data. We
hope that the data construction approach of Self-Dual can inspire further efforts to enhance reasoning
ability through data-centric methods.

4.3 PASS@K AND MAJ@K

As show in Fig. 2] Self-Dual training yields clear performance gains. On both AIME24 and
AIME?25, the trained model achieves higher Pass @k than the baselines, including Qwen2.5-7B-Ins
and Qwen2.5-7B-Math-Ins. The improvement is especially strong on AIME24, where the model
shows higher accuracy at small & and maintains the lead as k increases. This indicates that Self-
Dual improves not only single-solution quality but also overall exploration. Another interesting
observation comes from the Maj@k curves. On AIME2S, the Self-Dual model achieves a stable
improvement, reaching about twice the accuracy of the baselines. This indicates that Self-Dual con-
sistently increases the reliability of reasoning by integrating diverse paths. On AIME24, the gains
are smaller, but the curve is more stable compared to both instruct and math-instruct baselines. This
suggests that Self-Dual improves robustness and consistency, even in settings where performance
improvements are less pronounced.

5 CONCLUSION

We presented Self-Dual, a framework that unifies NL and PL reasoning by generating complemen-
tary trajectories and integrating them through structured self-reflection. At inference time, Self-Dual
consistently improves reasoning performance across benchmarks, showing that complementarity
can be effectively exploited within a single forward pass. At training time, we further evaluate Self-
Dual as a data construction strategy. On the challenging AIME25 benchmark, the resulting model
Qwen2.5-7B-SD surpasses both the general instruct and math-specialized baselines, demonstrating
the potential of Self-Dual to enhance reasoning under limited data conditions.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the mathematical reasoning capabilities of large language mod-
els through the integration of complementary reasoning paradigms. All experiments are conducted
on publicly available benchmark datasets such as MATH500, AIME, and GSM8K, which contain
no sensitive or personally identifiable information. Our methods do not involve the collection of
new human data, nor do they raise direct privacy concerns. The proposed framework is intended to
advance fundamental research in reasoning and transparency, and has no foreseeable immediate neg-
ative societal impact. Nevertheless, as with all improvements to language models, there remains the
potential risk of misuse in high-stakes applications. We encourage responsible deployment, includ-
ing careful evaluation of robustness and fairness, before applying these methods beyond academic
research.

REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available. Detailed experimental settings, including model
configurations, training procedures, and evaluation protocols, are provided in the paper. We will
release our code, data construction scripts, and trained checkpoints to facilitate full reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report, 2024. URL https://arxiv.org/abs/2303.08774,

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie C.Y. Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In ICML 2024
Workshop on In-Context Learning, 2024. URL https://openreview.net/forum?id=
gol7DFH1gS.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michat Podstawski, Lukas Gi-
aninazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: solving elaborate problems with large language models. AAAI
Press, 2024. doi: 10.1609/aaai.v38i16.29720. URL https://doi.org/10.1609/aaai.
v38116.29720.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?1d=Yf747pt8zd.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIgPiq.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian
He, Graham Neubig, and Pengfei Liu. Factool: Factuality detection in generative Al - a
tool augmented framework for multi-task and multi-domain scenarios, 2024. URL https:
//openreview.net/forum?id=jolYuxpvnll

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-Al. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. RARR: Researching

10

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=goi7DFHlqS
https://openreview.net/forum?id=goi7DFHlqS
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=jolYuxpVn1
https://openreview.net/forum?id=jolYuxpVn1
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437

Under review as a conference paper at ICLR 2026

and revising what language models say, using language models. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 16477-16508, Toronto, Canada, July
2023a. Association for Computational Linguistics. URL https://aclanthology.org/
2023.acl-1long.910/.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: program-aided language models. In Proceedings of the 40th International
Conference on Machine Learning, [CML’23, pp. 10764 — 10799. JMLR.org, 2023b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=Sx038gxjekl

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving. In
The Twelfth International Conference on Learning Representations, 2024b. URL https://
openreview.net/forum?id=EpQ0Tt jVoap.

Melody Y. Guan, Manas Joglekar, Eric Wallace, Saachi Jain, Boaz Barak, Alec Helyar, Rachel Dias,
Andrea Vallone, Hongyu Ren, Jason Wei, Hyung Won Chung, Sam Toyer, Johannes Heidecke,
Alex Beutel, and Amelia Glaese. Deliberative alignment: Reasoning enables safer language
models, 2025. URL https://arxiv.org/abs/2412.16339.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948\

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCel

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen.
Key-point-driven data synthesis with its enhancement on mathematical reasoning, 2024. URL
https://arxiv.orqg/abs/2403.02333.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
In Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS °23, pp. 39648 — 39677, Red Hook, NY, USA, 2023a. Curran Associates Inc.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
In Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS °23, pp. 39648 — 39677, Red Hook, NY, USA, 2023b. Curran Associates Inc.

Hyeonwoo Kim, Gyoungjin Gim, Yungi Kim, Jihoo Kim, Byungju Kim, Wonseok Lee, and Chanjun
Park. Saas: Solving ability amplification strategy for enhanced mathematical reasoning in large
language models, 2024. URL https://arxiv.org/abs/2404.03887.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities, 2024a.
URLhttps://arxiv.org/abs/2403.04706.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024b.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Mak-
ing language models better reasoners with step-aware verifier. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5315-5333, Toronto, Canada, July 2023.

11

https://aclanthology.org/2023.acl-long.910/
https://aclanthology.org/2023.acl-long.910/
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://arxiv.org/abs/2412.16339
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2403.02333
https://arxiv.org/abs/2404.03887
https://arxiv.org/abs/2403.04706

Under review as a conference paper at ICLR 2026

Association for Computational Linguistics. URL https://aclanthology.org/2023.
acl-long.291/.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8LOpN6EO1L

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew Chi-Chih Yao. Augmenting math word
problems via iterative question composing, 2024. URL https://arxiv.org/abs/2401.
09003.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. Mathcoder2: Better math reasoning from continued pretraining on model-translated
mathematical code, 2024. URL https://arxiv.org/abs/2410.08196.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-Guang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. In The Thirteenth
International Conference on Learning Representations, 2025a. URL https://openreview.
net/forum?id=mMPMHWOJOy.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct, 2025b. URL
https://arxiv.org/abs/2308.09583.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes
two to tango, 2022. URL https://arxiv.org/abs/2209.07686.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
iterative refinement with self-feedback. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS °23, pp. 46534 — 46594, Red Hook, NY, USA,
2023. Curran Associates Inc.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks, 2021. URL https://arxiv.org/abs/2102.13019.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3806-3824, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.248. URL https://aclanthology.org/2023.
findings-emnlp.248/.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080-2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168/.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. REFINER: Reasoning feedback on intermediate representations. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1100-1126,
St. Julian’s, Malta, March 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-1long.67/l

12

https://aclanthology.org/2023.acl-long.291/
https://aclanthology.org/2023.acl-long.291/
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2401.09003
https://arxiv.org/abs/2410.08196
https://openreview.net/forum?id=mMPMHWOdOy
https://openreview.net/forum?id=mMPMHWOdOy
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2209.07686
https://arxiv.org/abs/2102.13019
https://aclanthology.org/2023.findings-emnlp.248/
https://aclanthology.org/2023.findings-emnlp.248/
https://aclanthology.org/2021.naacl-main.168/
https://aclanthology.org/2024.eacl-long.67/
https://aclanthology.org/2024.eacl-long.67/

Under review as a conference paper at ICLR 2026

Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and Xifeng Yan. Limitations of language models in
arithmetic and symbolic induction, 2022. URL https://arxiv.org/abs/2208.05051.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching lan-
guage model agents how to self-improve. In The Thirty-eighth Annual Conference on Neural

Information Processing Systems, 2024. URL https://openreview.net/forum?id=
DRCI9pZwBwWR.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URLhttps://arxiv.org/abs/2412.15115.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS *23, pp. 8634 — 8652, Red Hook,
NY, USA, 2023. Curran Associates Inc.

Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. MuSR: Test-
ing the limits of chain-of-thought with multistep soft reasoning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=jenyY¥Qzuel.

Gemma Team. Gemma 3. 2025. URL https://goo.gle/Gemma3Reportl

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. DART-math: Difficulty-
aware rejection tuning for mathematical problem-solving. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024a. URL https://openreview.
net/forum?id=zLU210Q D5/

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-
aware rejection tuning for mathematical problem-solving, 2024b. URL https://arxiv.
org/abs/2407.13690.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Lingi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning, 2023. URL https://arxiv.org/abs/2310.03731,

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS *22, pp. 24824 — 24837, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023. URL https://openreview.
net/forum?id=s4xIeYimGQ.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao,
and Yu Su. Travelplanner: a benchmark for real-world planning with language agents. In
Proceedings of the 41st International Conference on Machine Learning, ICML 24, pp. 54590
—54613. JMLR.org, 2024.

13

https://arxiv.org/abs/2208.05051
https://openreview.net/forum?id=DRC9pZwBwR
https://openreview.net/forum?id=DRC9pZwBwR
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=jenyYQzue1
https://goo.gle/Gemma3Report
https://openreview.net/forum?id=zLU21oQjD5
https://openreview.net/forum?id=zLU21oQjD5
https://arxiv.org/abs/2407.13690
https://arxiv.org/abs/2407.13690
https://arxiv.org/abs/2310.03731
https://openreview.net/forum?id=s4xIeYimGQ
https://openreview.net/forum?id=s4xIeYimGQ

Under review as a conference paper at ICLR 2026

Hao Yan, Saurabh Srivastava, Yintao Tai, Sida I. Wang, Wen-tau Yih, and Ziyu Yao. Learning to sim-
ulate natural language feedback for interactive semantic parsing. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 3149-3170, Toronto, Canada, July 2023.
Association for Computational Linguistics. URL https://aclanthology.org/2023.
acl-long.177/.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024a. URL https://arxiv.org/abs/2409.12122,

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gonza-
lez, and Bin CUI. Buffer of thoughts: Thought-augmented reasoning with large language models.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b. URL
https://openreview.net/forum?id=ANO1i9JPth.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5XclecxOlhl

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models, 2024. URL https://arxiv.org/abs/2309.12284,

Yiyao Yu, Yuxiang Zhang, Dongdong Zhang, Xiao Liang, Hengyuan Zhang, Xingxing Zhang,
Mahmoud Khademi, Hany Hassan Awadalla, Junjie Wang, Yujiu Yang, and Furu Wei. Chain-
of-reasoning: Towards unified mathematical reasoning in large language models via a multi-
paradigm perspective. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
mad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 24914-24937, Vienna, Austria, July
2025a. Association for Computational Linguistics. ISBN 979-8-89176-251-0. URL https:
//aclanthology.org/2025.acl-long.1213/!l

Yiyao Yu, Yuxiang Zhang, Dongdong Zhang, Xiao Liang, Hengyuan Zhang, Xingxing Zhang, Ziyi
Yang, Mahmoud Khademi, Hany Awadalla, Junjie Wang, Yujiu Yang, and Furu Wei. Chain-
of-reasoning: Towards unified mathematical reasoning in large language models via a multi-
paradigm perspective, 2025b. URL https://arxiv.org/abs/2501.11110

Liang Zeng, Liangjun Zhong, Liang Zhao, Tianwen Wei, Liu Yang, Jujie He, Cheng Cheng, Rui
Hu, Yang Liu, Shuicheng Yan, Han Fang, and Yahui Zhou. Skywork-math: Data scaling laws
for mathematical reasoning in large language models — the story goes on, 2024. URL https:
//arxiv.org/abs/2407.08348.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5NTt 8GF jUHkr.

James Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Michael Xie. Automatic model
selection with large language models for reasoning. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 758-783, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.55. URL https://aclanthology.org/2023.
findings—emnlp.55/.

Tong Zheng, Lichang Chen, Simeng Han, R. Thomas McCoy, and Heng Huang. Learning to reason
via mixture-of-thought for logical reasoning, 2025. URL https://arxiv.org/abs/2505.
15817,

14

https://aclanthology.org/2023.acl-long.177/
https://aclanthology.org/2023.acl-long.177/
https://arxiv.org/abs/2409.12122
https://openreview.net/forum?id=ANO1i9JPtb
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2309.12284
https://aclanthology.org/2025.acl-long.1213/
https://aclanthology.org/2025.acl-long.1213/
https://arxiv.org/abs/2501.11110
https://arxiv.org/abs/2407.08348
https://arxiv.org/abs/2407.08348
https://openreview.net/forum?id=5NTt8GFjUHkr
https://aclanthology.org/2023.findings-emnlp.55/
https://aclanthology.org/2023.findings-emnlp.55/
https://arxiv.org/abs/2505.15817
https://arxiv.org/abs/2505.15817

Under review as a conference paper at ICLR 2026

Denny Zhou, Nathanael Schérli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables com-
plex reasoning in large language models, 2023. URL https://arxiv.org/abs/2205.
10625,

Kun Zhou, Beichen Zhang, jiapeng wang, Zhipeng Chen, Xin Zhao, Jing Sha, Zhichao Sheng, Shijin
Wang, and Ji-Rong Wen. Jiuzhang3.0: Efficiently improving mathematical reasoning by training
small data synthesis models. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=ujDKXWTbJX.

A COMPLEMENTARY EXPERIMENTS

A.1 PASS@K oN MATHS500

Pass@k on Gemma-3-4B-it Pass@k on Gemma-3-12B-it
1.020 1.020

—_— e — — —

— < ¢ — ———

— T /
0.816 /;//’ P
0.612 0.612

0.408 0.408

—e— CoT —e— CoT
PAL PAL
Self-Dual Self-Dual

— CoT_PAL Union — CoT_PAL Union
CoT_PAL_Intersection CoT_PAL_Intersection

Success Rate (Pass@k)
Success Rate (Pass@k)

0.204 0.204

a8 60 0 12 a8 60

24 36 24 36
k (Number of Solutions) k (Number of Solutions)

Figure 3: Pass@k curves of Gemma3-4B-it and Gemma3-12B-it on CoT, PAL, Self-Dual, as well
as the union and intersection of CoT and PAL, evaluated on the MATHS500 dataset.

The results on MATHS500 show clear differences among CoT, PAL, Self-Dual, and their combina-
tions. CoT and PAL achieve moderate Pass @k, but both plateau early, indicating limited exploration.
Self-Dual consistently outperforms CoT and PAL across different values of k, which demonstrates
its ability to integrate complementary reasoning paths within a single inference.

The union of CoT and PAL sets provides the highest Pass@k across all %, confirming that the two
paradigms cover different solution spaces. The intersection curve is lower but stable, reflecting
their shared consistency. Importantly, Self-Dual tracks close to the union curve, suggesting that the
framework approximates the exploration benefit of multiple samples with only one inference. These
results highlight the effectiveness of Self-Dual in leveraging complementarity while maintaining
efficiency.

A.2 ABLATION STUDY

Contribution of the Initial Stage. The method DCT in Figure [and Table 2] refers to Double CoT
in Self-Dual, where two identical CoT-based reasoning paths are used in the initial stage instead of
complementary thinking modes. We designed this method to maintain the similar reasoning stages
and token consumption as Self-Dual, ensuring a fair comparison. As shown in Figure] Self-Dual
consistently outperforms both CoT and DCT across the two models. For example, on MATH-
500, DCT slightly outperforms CoT by 2.4% on Gemma-3-4B-it, suggesting that iterative reasoning
and reflection over dual outputs provide modest performance gains. However, Self-Dual achieves a
5.6% improvement over DCT, highlighting the effectiveness of leveraging complementary reasoning
modes across natural and programming languages.

The Impact of Refine Stage. Since both Self-Dual-Auto and Auto are built upon existing NL-
based and PL-based methods, we ensure that they utilize the same underlying methods and results
for consistency. On the diverse MATH-500 dataset, Self-Dual-Auto significantly outperforms Auto
in terms of accuracy, as shown in Table E} For example, on Gemma-3-4B-it, Auto yields a -3.4%
change while Self-Dual-Auto achieves a +4.6% improvement. These results suggest that the refine-
ment stage in Self-Dual-Auto is more stable and adaptable than the simple selection mechanism

15

https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://openreview.net/forum?id=ujDKXWTbJX

Under review as a conference paper at ICLR 2026

o MATH-500 AIME25
CoT 82.2 CoT 26.67
DCT 80.6 pCT :
80 784 » 2333
W Self-Dual . W Self-Dual .
37 S
T 714 T 16.67 16.67
&0 S
2 2
= 65.8 ° 10
A 65 63.4 @A 10
6.67
60 5
> Gemma-3-4B-it Gemma-3-12B-it Gemma-3-4B-it Gemma-3-12B-it
Models Models

Figure 4: Results of CoT, DCT, and Self-Dual with Gemma-4-4B-it and Gemma-3-12B-it on
MATH-500 (a) and AIME (b).

employed by Auto. On the AIME benchmark, except for Gemma-3-4B-it which outperforms Auto,
all other models maintain comparable performance. This may suggest that the complementary po-
tential between independently applied CoT and PAL has reached its upper bound on the AIME2025
dataset. The result that BAND outperforms both Self-Dual-Auto and Auto further demonstrates that
the Self-Dual format is a more efficient way to combine complementary thinking modes.

A.3 REMAINING RESULTS

Table [6] presents the remaining results on the GSM8K and SVAMP benchmarks. Consistent with
the findings on MATH-500 and AIME, Self-Dual continues to demonstrate superior performance on
GSMSK. Notably, even when using Gemma-3-27B-it, Self-Dual without external tools outperforms
all other methods, including BAND itself. This advantage may be attributed to inherent randomness
and the relatively lower difficulty of the GSM8K dataset. Furthermore, it can be observed that
once accuracy surpasses 93%, the performance gains from prompt-based methods over standard
approaches become marginal. This plateau may be constrained by the model’s inherent capabilities
and limitations.

Table 6: The remaining results on SVAMP and GSM8K.

Methods GSMSK SVAMP
G-4B G-12B G-27B \ G-4B G-12B G-27B #Call

NL-based methods
CoT 77.33 91.96 95.15 | 87.44 94.11 94.67 1
Reflextion 78.24 92.12 94.09 | 81.33 93 93.67 3

PL-based methods
PAL 70.2 91.05 9393 | 83.33 91.33 92 1

TIR 66.34 87.95 91.58 | 85.33 93.33 91.33 1-5
w/o tool 13.19 26.54 41.85 65 79.33 84 1
CRITIC 72.4 91.28 93.4 86 92 92 9
w/o tool 70.96 90.9 9295 | 85.67 92 91.33 9
Hybrid-based methods

Automatic 77.86 91.48 95.25 | 85.67 9433 93.67 3
SD-Auto 82.71 93.71 95.68 90 94.67 93.33 3
Self-Dual 83.07 93.61 95.43 88 92 92.33 2
w/o tool 8226 93.93 95.83 | 87.67 92 91 1

In contrast to previous results, Self-Dual Auto achieves the best performance on the SVAMP dataset,
although its advantage gradually diminishes as model size increases. This trend may be attributed
to two main factors: 1) SVAMP is relatively simple and imposes minimal demands on complex
computation; and 2) existing models already possess strong capabilities for solving such problems.
Together, these factors limit the effectiveness of complementary thinking modes in further improving

16

Under review as a conference paper at ICLR 2026

performance. Additionally, the reduced divergence in Self-Dual BAND may constrain its ability to
exploit complementary reasoning, potentially accounting for its inferior performance compared to
LEGO.

A.4 DATASET

SVAMP is a benchmark dataset designed to evaluate LLMs on applied mathematics problems typi-
cally encountered in elementary and middle school. The test set of GSM8K(Cobbe et al., 202 1)) con-
tains 1.2K high-quality, linguistically diverse grade school math word problems. MATH(Hendrycks
et al} [2021) is a large-scale dataset consisting of 5K challenging competition-level mathematics
problems. MATHS00 (Lightman et al., [2024) is a curated subset of the MATH dataset, containing
500 high-quality problems, and is commonly used to evaluate the mathematical reasoning capa-
bilities of large language models. AIME25 comprises competition-level problems from the 2025
American Invitational Mathematics Examination (AIME), including both AIME 2025-I and AIME
2025-11.

Table 7: The details of datasets.

Dataset Num Example Difficulty License
He then went to see the oranges
being harvested. He found out
SVAMP 300 that they harvest 66 sacks per C(.)mbine.ltions of .basic MIT
day and that each sack containes arithmetic operations.
25 oranges. How many oranges will
they have after 87 days of harvest?
A new program had 60 downloads
in the first month. The number of
downloads in the second month was
three times as many as the downloads Grade-school level math
GSM8K 1319 in the first month, but then reduced word problems. MIT
by 30% in the third month. How many
downloads did the program have
total over the three months?
How many fractions in the form .
MATH 5000 2, with0 < n < 99, HI%E SCh‘t’."l fevel o MIT
are in lowest terms? mathematics competitions.
The polynomial 2% — 322 + 4z — 1
MATHS00 500 is a facter of o® 4 paS 4 qa® 1 Subset extracted from MIT
. the MATH dataset.
Enter the ordered triple (p, ¢, 7).
Positive real numbers x and y 2023 American Mathematics
AMC23 40 satisfy y® = 22 and (y —)% = 492 Competition, released -
What is = + y? after February 2023
Find the largest possible real part of 2024 American Invitational
AIME24 30 (754 117i)z + 26£14% Mathematics Examination, -
where z is a complex number with |z| = 4. released after February 2024
Quadratic polynomials P(z) and Q(x)
have leading coefficients 2 and —2, 2025 American Invitational
AIME25 30 respectively. The graphs of both Mathematics Examination, -

polynomials pass through the two points
(16,54) and (20, 53). Find P(0) + Q(0).

released after February 2025

A.5 BASIC STATISTICS OF SAMPLED RESULTS

Table[§]presents a detailed breakdown of categories within the sampled results. D2E refers to cases
where the two answers generated during the initial stage are different, and both are incorrect. In
addition, the calculation formulas used to derive the results in Table [2] are also provided.

DC = DCynyr + DCpy. ()
DE =D2FE + DENy, + DEpy,. 9)

17

Under review as a conference paper at ICLR 2026

Table 8: The most detailed categorization of sampled information.

Models Methods DC CE D2E DCyn; DENn; DCpr, DEp; Badcode FN No2Paths
b . BAND T1% 4% 4% 5% 0% 1% 2% 4% 1% 4%
ee{’,iee LEGO 67% 1% 1% 7% 0% 1% 2% 15% 0% -
v Auto 67% 1% 1% 3% 4% 1% 2% 15% 0%
BAND 67% 6% 6% 8% 0% 0% 2% 4% 1% 9%
Gemma-3 LEGO 53% 4% 4% 14% 1% 2% 4% 2% 2% ;
-12B-it Auto 53% 4% 4% 10% 5% 1% 5% 12% 2% -
DCT 80% 9% 9% 3% 0% - - . 2% 4%

Table 9: Pass@1 accuracy of models in the zero-shot setting on MATH and GSM8k.

MATH GSMS8k

Model Base 7ZS Pass@1 ZS Pass@1
Skywork-Math (Zeng et al., 2024) Llama-2 47.7 72.9
Xwin-Math(Li et al.,[2024a) Llama-2 40.6 82.6
WizardMath-Qwen (Luo et al., 2025b)) Qwen2.5-Math 77.8 93.9
WizardMath-Qwen (Luo et al., 2025b) Qwen2.5 74.5 94.0
WizardMath-DeepSeek (Luo et al.,[2025b)) DeepSeekMath 64.6 91.0
DART-Math (Tong et al., 2024b) DeepSeekMath 52.9 88.2
DeepSeekMath-Instruct-7B (Shao et al., [2024) DeepSeekMath 46.8 73.6
DeepSeekMath-RL-7B (Shao et al., 2024) DeepSeekMath 51.7 88.2
MMIQC (Liu et al., 2024) DeepSeekMath 45.3 79.0
KPMath-Plus (Huang et al., 2024) DeepSeekMath 52.9 88.2
MetaMath-Llemma-7B (Yu et al., 2024) Llemma-7B 30.0 69.2
MetaMath-Mistral-7B (Yu et al., 2024 Mistral-7B 28.2 77.7
MathCoder2-DeepSeekMath (Lu et al.| 2024) DeepSeekMath 38.6 68.8
MathCoder2-Code-Llama (Lu et al., [2024) Code-Llama 28.8 52.3
MathCoder2-Mistral (Lu et al., [2024) Mistral 36.7 68.2
ToRA (Gou et al., [2024b) LLaMA-2 40.1 68.8
ToRA-CODE (Gou et al ., [2024b) CodeLLaMA 44.6 72.6
NuminaMath-CoT (Li et al., 2024b) DeepSeekMath 55.2 75.4
CoR-Math-7B (Yu et al., 2025b) DeepSeekMath 66.7 88.7
Qwen2.5-7B-Math-Instruct (Yang et al., 2024a)) Qwen2.5-7B-Math 83.6 95.2
Qwen-2.5-7B-SD Qwen2.5-7B-Instruct 78.12 92.4

A.6 INFERENCE-TIME CASE STUDY
We further discuss notable and illustrative examples in the process of reviewing the experimental
results in this section.

Overcoming the Consensus Fallacy. In general, if both methods reach a consensus during the
initial stage, the refine stage typically accepts this agreed-upon answer as the final correct solution.
This observation is also evident from the sampled results presented in Table[2] But we also discover
an interesting case worth discussing. The two solutions in the first stage consistently arrived at the
incorrect answer of 1. However, during the refine stage, the model reanalyzed the problem and
successfully produced the correct answer of i. We believe that the key component that triggers the
realization of the initial error lies in the Look Back phase—specifically, the prompt segment: "Let’s
analyze the problem." This reflective step encourages the model to revisit and reassess the reasoning
process, ultimately enabling it to identify and correct earlier mistakes.

Reasoning, Verification and Reflection Format. We also identify a typical case pattern with po-
tential for further utilization: the PL-based method serves to verify the correctness of the result
generated by the NL-based method, rather than producing an entirely separate reasoning path. This

18

Under review as a conference paper at ICLR 2026

format can improve the computational accuracy of the NL-based method, but it comes at the cost of
losing the potential benefits of independent PL-mode reasoning.

Diverse Reasoning, Shared Conclusion. Another meaningful Case is selected from the CC-type
results. Concretely, both solutions correctly identify 27 as the smallest positive perfect cube. The
NL-based solution offers a clear and logically structured mathematical explanation, while the PL-
based solution validates the answer through straightforward brute-force computation. This case also
exemplifies how complementary reasoning modes can manifest in practice.

Hallucination in Self-Dual. The sampled results from the Self-Dual method reveal several cases of
hallucination, which we report herein. A case illustrates a hallucination in which the LLM fabricates
a programming solution and evaluates it as if it were valid, despite the absence of real code. An-
other case demonstrates that the model mistakenly treats numerically equivalent values expressed in
LaTeX format and decimal notation as unequal. A third case involves an incorrect prediction of the
code execution result. We hope these cases may inspire future research on hallucination.

A.7 COMPARE WITH OTHER METHODS

Table [9] summarizes pass@1 results on GSM8k and MATH in the zero-shot setting. All compared
models are standardized to 7B parameters to ensure fairness. Our proposed model, Qwen-2.5-7B-
SD, achieves 78.1% on MATH and 92.4% on GSM8k. This performance surpasses the expert model
on arithmetic reasoning and is second only to the proprietary Qwen-2.5-7B-Math-Instruct on MATH.
On GSMB&Kk, our method also outperforms most fine-tuned and RL-based approaches. These results
demonstrate that combining NL and PL supervision, even with only 3k samples for SFT initial-
ization and 4k samples for RL training, can substantially enhance reasoning performance under a
lightweight training regime.

B THE USAGE OF LARGE LANGUAGE MODELS

LLMs were used in a limited capacity for brainstorming, minor phrasing suggestions, and partial
writing refinement. All generated text was carefully reviewed and substantially revised by the au-
thors. No LLMs were involved in research design, model development or experiments. Therefore,
we confirm that LLMs did not play a significant role and should not be regarded as contributors.

C PROMPTS

Listing 1: The Self-Dual prompt designed for MATH-500 benchmark.

You need to follow the following process to solve the math problem
1. Natural language based solution process, i.e., think step by step
using natural language
2. Programming language based solution process, i.e. writing python code
to accomplish step-by-step thinking
3. Then you need to scrutinize the sovling step of each solution and
compare them with each other. Give a new correct solution. You need
to pay attention to a few points:
1. please note that you need to ensure that the final answer is the
correct answer to the user’s problem
2. The answers to the two solutions may not be the same, and you need
to double-check to get the right answer.
3. the output of the program is through the python interpreter, so you
can trust the results of the code execution. So you need to pay
attention to whether the code solves the problem or not.
4. Give your answer by ‘\boxed{}‘.

Question: Suppose $d\\not=0$. We can write $\\left (12d+13+14d"2\\right)
+\\left (2d+1\\right)$, in the form $ad+b+cd”2$, where a, b, and
c are integers. Find $a+b+c$.

19

Under review as a conference paper at ICLR 2026

Answer:

Natural language based solution process:

12d+13+14d72 + 2d+1 = 14d"2 + 14d + 14.\nThen $a=14$,

b+c = 14+14+0 = 28$. The answer

Programming language based solution
‘Y 'python
from sympy import symbols, simplify

d = symbols (’d")
expr = (12xd + 13 + 14xdxx2) + (2xd
simplified_expr = simplify (expr)

= simplified_expr.coeff (d)
simplified_expr.coeff (’'d’)
simplified_expr.coeff (d*=*2)

a
b
c

result = a + b + ¢
print (result)

AN
AN

42

AN

output

Scrutinize:
Analysis of Solutions

Natural Language Solution:
1. xxCombining Like Termsx*x:
- Correctly combines: (12d + 13 +

is 28.

process:

14d) + (2d + 1)

- Results in: 14d + (12d + 2d) + (13 + 1)

2. xxIdentifying Coefficientsxx:
— Correctly identifies:
- a (coefficient of d)
- b (constant term) = 1
— ¢ (coefficient of d)
3. xxCalculation Error«x:

14

el

14 (not 0 as stated)

- Incorrectly states c¢c = 0 (should be 14)

Incorrect sum: 14 + 14 + 0 = 28

Programming Solution:
1. xxSymbolic Computation*x:

— Correctly uses sympy to simplify the expression
- Gets correct simplified form: 14d + 14d + 14

2. xxCoefficient Extractionxx:
— Correctly extracts coefficients:

- a (d term) = 14
- b (constant) = 14
- ¢ (d term) = 14

3. *xCorrect Sumxx:
- Computes 14 + 14 + 14 = 42

Key Differences:

(should be 14 + 14 + 14

$b=148§,

14d + 14d + 14

$c=0$.\nSa+

42)

1. The natural language solution made an error in identifying c (

coefficient of d) as 0 when it should be 14

2. The programming solution correctly handles all coefficients through

symbolic computation

Corrected Solution:
1. Combine like terms:

(12d + 13 + 14d) + (2d + 1) = 14d + 14d + 14
2. Identify coefficients:

- a (d) = 14

- b (constant) = 14

- c (d) = 14

20

Under review as a conference paper at ICLR 2026

3. Compute sum:
a+b+c=14 + 14 + 14 = 42

Final Answer:
The correct answer is $\boxed{42}$.

The programming solution was correct, while the natural language solution
contained an error in identifying the d coefficient. The proper sum
of coefficients is indeed 42.

Question: How many combinations of pennies (1 cent), nickels (5 cents)
and/or dimes (10 cents) are there with a total value of 25 cents?

Answer:

Natural language based solution process:

1. Let p be the number of pennies, n the number of nickels and d
the number of dimes. We want to find the number of non-negative
integer solutions to $p + 5n + 10d = 25$.

We can consider cases based on the number of dimes $ds.

\\begin{itemize}

\\item $d=0S$: S$p+5n=25$. Then $5n \\le 25%, so $n \\le 5. n can take
values from 0 to 5, so there are 6 solutions.

\\item $d=1$: S$p+5n=15$. Then $5n \\le 15%, so $n \\le 3$. n can take
values from 0 to 3, so there are 4 solutions.

\\item $d=2$: S$p+5n=5$. Then $5n \\le 55, so $n \\le 1$. n can take
values from 0 to 1, so there are 2 solutions.

\\end{itemize}\

The total number of solutions is $6+4+2=12$.

Alternatively, we can express Sp = 25 - 5n - 10d$. Since S$p \\ge 0S$, we
have $25 - 5n - 10d \\ge 0%, so $5n + 10d \\le 25$%, which simplifies
to $n + 2d \\le 5$.

For $d=0$, $n \\le 5%, so $n=0,1,2,3,4,5$ (6 solutions).

For $d=1$, $n \\le 3%, so $n=0,1,2,3$%$ (4 solutions).

For $d=23%, $n \\le 1%, so $n=0,1S$ (2 solutions).

For $d=3$%, $n \\le -1$, which is impossible.

Thus the total number of solutions is $6+4+2=12$.

The answer is 12.

Programming language based solution process:
‘Y 'python
def solve():

count = 0

for p in range(26):

for n in range(5):
for d in range(5):
if 1xp + 5%n + 10xd == 25:
count += 1

print (count)

solve ()

AN
AN

11

AURWRY

output

Scrutinize:
Analysis of Solutions

Problem Interpretation:

We need to count all non-negative integer solutions to the equation:
p + 5n + 10d = 25

where:

21

Under review as a conference paper at ICLR 2026

number of pennies (1)
number of nickels (5)
number of dimes (10)

|
Q. B0
Il

Evaluating the Solutions:

1. xxNatural Language Solutionxx:
— Correctly analyzes cases by dimes (d):
- d=0: 6 solutions (n=0 to 5)

— d=1: 4 solutions (n=0 to 3)
- d=2: 2 solutions (n=0 to 1)
- d>=3: No solutions

— Total: 6 + 4 + 2 = 12
- xCorrect*: Systematic and complete enumeration

2. **xProgramming Solutionxx:

- Uses brute-force enumeration:
- p: 0-25
- n: 0-4
- d: 0-2 (should be 0-2, as written)

— Outputs 11 (incorrect)

— xIssuex: The range for n should be 0-5 (not 0-4) since 5 nickels make

25

Corrected Programming Solution:

‘Y'python
def count_combinations() :
count = 0
for d in range (0, 3): # dimes: 0-2
for n in range (0, 6): # nickels: 0-5
p = 25 - 5%xn - 10*d
if p >= 0:

count += 1
print (count)

count_combinations ()
Y loutput
12

AN

Final Answer:
There are $\boxed{1l2}$ valid combinations of coins that sum to 25 cents.

Listing 2: The reward prompt designed for filtering and GRPO training.

You are tasked with evaluating a response to a math problem to determine
if it adheres to the specified format and requirements. You must
assign a score between 0 and 1 based on the response’s compliance
with the format, focusing on completeness and clarity/structure. Your

evaluation must check each component, identify deviations, provide

suggestions for improvement, and output the results in a structured

format that includes the natural language (NL) and programming
language (PL) answers, as well as the assigned score. If the natural
language solution is missing, report ‘[NL-Based Answer] ‘' as ‘None‘.

Expected Format and Requirements
The response must solve a math problem using the following structure:
1. Natural Language-Based Solution Process:
- Provide a step-by-step explanation in natural language, solving the
problem as a human would.
— Clearly combine terms, derive coefficients, or perform calculations
as needed.
— Identify the final values (e.g., coefficients a, b, c¢) and compute
the required answer.

22

Under review as a conference paper at ICLR 2026

Programming Language-Based Solution Process:

- Provide Python code that solves the problem step-by-step using
symbolic computation (e.g., with ‘sympy') or numerical methods.

— The code must include a print statement to output the final result.

— The code must be executable through a Python interpreter.

Scrutiny and Comparison:

— Analyze both the natural language and programming solutions.

— Compare the two solutions to determine if they align or differ in
their approach or results.

- If discrepancies exist, explain why and provide a reconciled solution

Final Answer:

— Present the final answer in a LaTeX box format: ‘\\boxed{{}}‘.

- The response must terminate after the ‘\\boxed{{}}' answer, with no
additional or redundant content.

Additional Notes:

— The response must explicitly label sections (e.g., "Natural Language-
Based Solution Process," "Programming Language-Based Solution
Process," "Scrutiny," "Final Answer").

— The programming solution must be verifiable via Python execution.

— The scrutiny section must compare the two approaches and explain any
differences.

— The response must be coherent, with logical and organized reasoning
in both the natural language and scrutiny sections.

Scoring Criteria
Assign a score between 0 and 1 based on the following criteria:

— Completeness (60%):

15% for including
15% for including
15% for including
15% for including

natural language solution.
complete, executable Python code solution.
scrutiny section that compares both solutions.

a
a
a
a final answer in “\\boxed{{}}‘ format.

- Clarity and Structure (40%):

20% for clear, step-by-step, and coherent explanations in the natural
language solution (if present), with logical progression and no
rambling or disorganized reasoning.

10% for proper labeling of sections (e.g., "Natural Language-Based
Solution Process").

10% for a thorough scrutiny section that clearly compares solutions
and explains differences in an organized manner.

- Penalties:

Deduct up to 15% per missing section (e.g., no natural language
solution, no scrutiny section).

Deduct up to 10% for minor issues (e.g., unclear steps, improper
labeling) .

Deduct up to 20% for major issues (e.g., incomplete code, vague
scrutiny section).

Format Penalty: Deduct up to 20% if the response continues with
redundant or repeated content after the ‘\\boxed{{}}' answer (e.g.,
restarting the solution, adding unnecessary explanations, or
reiterating the answer).

Clarity Penalty: Deduct up to 25% for incoherent, disorganized, or
rambling reasoning in the natural language or scrutiny sections (e.g
., illogical jumps, contradictory statements, excessive verbosity,
or lack of clear progression).

A score of 0 is assigned if the response is entirely absent or
irrelevant.

Evaluation Task
Given a response to a math problem, evaluate its compliance with the

1.

format and assign a score. Provide your assessment in the following
structure:

Compliance Check:

23

Under review as a conference paper at ICLR 2026

3.

4.

5.

— Does the response include all required sections (Natural Language-—
Based Solution, Programming Language-Based Solution, Scrutiny,
Final Answer)?

— Does the natural language solution (if present) follow a clear, step-
by-step, and coherent process?

— Does the programming solution include executable Python code?

— Does the scrutiny section compare solutions and explain differences
in an organized manner?

- Is the final answer presented in ‘\\boxed{{}}', with no redundant
content afterward?

Issues Identified:

- List any deviations from the required format (e.g., missing sections,

incorrect labeling, unclear explanations, non-executable code).

Note if the natural language solution is missing or incomplete.

- Note if the scrutiny section fails to compare solutions or explain
differences.

- Note if the response continues with redundant or repeated content
after ‘\\boxed{{}}".

— Note if the natural language or scrutiny sections are incoherent,
disorganized, or rambling.

Suggestions for Correction:

- For each issue, suggest how the response could be revised to meet the

requirements (e.g., add missing section, clarify steps, ensure
code is executable, terminate after ‘\boxed{{}}', improve coherence
) .

Score Breakdown:

— Provide a breakdown of the score based on Completeness (60%) and
Clarity and Structure (40%).

- Justify deductions for any missing components, issues, or penalties (
including format and clarity penalties).

Overall Assessment:

- State the final score (0 to 1, rounded to two decimal places).

- Summarize whether the response complies with the format.

Output Format
Provide your evaluation in the following format:

Evaluation of Response

Co

mpliance Check:

[] All required sections included

[1] Natural language solution is step-by-step, clear, and coherent (if
present)

[1] Programming solution includes executable Python code

[] Scrutiny section compares solutions and explains differences in an
organized manner

[] Final answer in ‘\\boxed{{}} "' with no redundant content afterward

Issues Identified:

[List specific issues, e.g., "Missing natural language solution," "
Improper section labeling," "Scrutiny section lacks comparison," "
Redundant content after ‘\\boxed{{}}‘," "Incoherent reasoning in
natural language solution."]

Suggestions for Correction:

[For each issue, provide a specific suggestion, e.g., "Include a
P p g9 g

natural language solution with step-by-step reasoning," "Label
sections clearly as specified," "Terminate response after ‘\\boxed
{{}}"," "Organize reasoning to avoid rambling."]

Score Breakdown:
- Completeness (60%): [Score, e.g., 45/60, with justification, e.g., "

Missing natural language solution (-15%)"]

24

Under review as a conference paper at ICLR 2026

- Clarity and Structure (40%): [Score, e.g., 20/40, with justification, e

.g., "Clear code but improper section labeling (-10%), redundant
content after ‘\\boxed{{}}' (-20%), incoherent reasoning (-20%)"]
- Total Score: [Score, e.g., 0.65]

[NL-Based Answer]: [Extract the final answer from the natural language
solution, e.g., "28," or "None" if missing]

[PL-Based Answer]: [Extract the final answer from the programming
solution, e.g., "42"]

[Format Reward]: [Final score, e.g., 0.65]

Overall Assessment:

- [Summarize compliance, e.g., "The response partially complies due to a
missing natural language solution, improper section labeling,
redundant content after ‘\\boxed{{}}', and disorganized reasoning.
The programming solution and scrutiny section are present but need
clearer comparison and more coherent reasoning."]

Example Response to Evaluate
[Insert the response to be evaluated here, or provide a placeholder if
none is given.]

Notes for the Model

- If no response is provided, indicate that a response must be submitted
for evaluation and assign a score of 0.

- If the natural language solution is missing, report ‘[NL-Based Answer]'

as ‘None‘.

- Ensure the score is calculated systematically based on the criteria and

rounded to two decimal places.

- Extract the ‘[NL-Based Answer] ‘' and ‘[PL-Based Answer]‘ directly from
the respective sections of the response, if available.

- If the problem involves symbolic computation (e.g., finding
coefficients), ensure the programming solution uses appropriate tools

like ‘sympy‘.

- Do not evaluate the correctness of the answers (e.g., whether the
coefficients or final answer are mathematically correct); focus
solely on format compliance, completeness, and clarity/structure.

- Do not modify the response or provide a new solution unless explicitly
asked; focus on evaluating compliance and scoring.

- Apply the format penalty (up to 20%) for responses that include
redundant or repeated content after the ‘\\boxed{{}}‘ answer, such as

restarting the solution, reiterating the answer, or adding
unnecessary explanations.

- Apply the clarity penalty (up to 25%) for responses with incoherent,
disorganized, or rambling reasoning in the natural language or
scrutiny sections, such as illogical jumps, contradictory statements,

excessive verbosity, or lack of clear progression.

Example Application
Evaluation of Response

Compliance Check:

- [x] All required sections included
[1] Natural language solution is step-by-step, clear, and coherent

- [x] Programming solution includes executable Python code
[x] Scrutiny section compares solutions and explains differences in an
organized manner

[1] Final answer in “\\boxed{{}}' with no redundant content afterward

Issues Identified:

- The natural language solution is present but disorganized, with
rambling explanations and illogical jumps (e.g., contradictory steps
in deriving coefficients).

- Section labeling is correct, but the scrutiny section could be more
concise in explaining differences.

25

Under review as a conference paper at ICLR 2026

- The response includes redundant content after ‘\\boxed{{}}‘, restarting
the explanation with an alternative approach.

Suggestions for Correction:

- Revise the natural language solution to follow a clear, logical, and
concise step-by-step process, eliminating rambling or contradictory
statements.

- Streamline the scrutiny section to focus on the key discrepancy without

redundant explanation.

— Remove the redundant content after ‘\\boxed{{}}' to adhere to the
format requirement of terminating the response.

Score Breakdown:
- Completeness (60%): 60/60
- Natural language solution included (15%).
— Programming solution included and executable (15%).
- Scrutiny section included (15%).
— Final answer in “\\boxed{{}}‘ (15%).
- Clarity and Structure (40%): 15/40
- Natural language solution is disorganized and rambling (-15%, clarity
penalty) .
- Sections are properly labeled (10%).
— Scrutiny section is thorough but slightly verbose (10%).
- Redundant content after ‘\\boxed{{}}' (-15%, format penalty).
- Total Score: (60 + 15) / 100 = 0.75

[NL-Based Answer]: 28
[PL-Based Answer]: 42
[Format Reward]: 0.75

Overall Assessment:

— The response complies with most format requirements, including all
required sections. However, the natural language solution is
disorganized and rambling, reducing clarity. The programming solution

is executable, and the scrutiny section compares approaches but is
slightly verbose. A significant deduction is made for redundant
content after ‘\boxed{{}}' and incoherent reasoning in the natural

language solution.
mnn

FILTER_PROMPT = """

You are tasked with evaluating a response to a math problem to determine
if it adheres to the specified format and requirements. You must
assign a score between 0 and 1 based on the response’s compliance
with the format, focusing on completeness and clarity/structure. Your

evaluation must check each component, identify deviations, provide
suggestions for improvement, and output the results in a structured
format that includes the natural language (NL) and programming
language (PL) answers, as well as the assigned score. If the natural
language solution is missing, report ‘[NL-Based Answer] ‘' as ‘None‘.

Expected Format and Requirements
The response must solve a math problem using the following structure:
1. Natural Language-Based Solution Process:
- Provide a step-by-step explanation in natural language, solving the
problem as a human would.
— Clearly combine terms, derive coefficients, or perform calculations
as needed.
— Identify the final values (e.g., coefficients a, b, c) and compute
the required answer.
2. Programming Language-Based Solution Process:
— Provide Python code that solves the problem step-by-step using
symbolic computation (e.g., with ‘sympy'‘') or numerical methods.

26

Under review as a conference paper at ICLR 2026

— The code must include a prisnt statement to output the final result.
— The code must be executable through a Python interpreter.
3. Scrutiny and Comparison:
- Analyze both the natural language and programming solutions.
- Compare the two solutions to determine if they align or differ in
their approach or results.
— If discrepancies exist, explain why and provide a reconciled solution

4. Final Answer:
- Present the final answer in a LaTeX box format: ‘\boxed{{}}"‘.
5. Additional Notes:

— The response must explicitly label sections (e.g., "Natural Language-
Based Solution Process," "Programming Language-Based Solution
Process," "Scrutinize," "Final Answer").

— The programming solution must be verifiable via Python execution.

— The scrutiny section must compare the two approaches and explain any
differences.

Scoring Criteria
Assign a score between 0 and 1 based on the following criteria:
— Completeness (60%):
- 15% for including a natural language solution.
- 15% for including a complete, executable Python code solution.
- 15% for including a scrutiny section that compares both solutions.
- 15% for including a final answer in ‘\boxed{{}}‘ format.
- Clarity and Structure (40%):
- 20% for clear, step-by-step explanations in the natural language
solution (if present).
- 10% for proper labeling of sections (e.g., "Natural Language-Based
Solution Process").
- 10% for a thorough scrutiny section that clearly compares solutions
and explains differences.
- Penalties:
— Deduct up to 15% per missing section (e.g., no natural language
solution, no scrutiny section).
- Deduct up to 10% for minor issues (e.g., unclear steps, improper
labeling) .
— Deduct up to 20% for major issues (e.g., incomplete code, vague
scrutiny section).
— A score of 0 is assigned if the response is entirely absent or
irrelevant.

Evaluation Task

Given a response to a math problem, evaluate its compliance with the
format and assign a score. Provide your assessment in the following
structure:

1. Compliance Check:
— Does the response include all required sections (Natural Language-—
Based Solution, Programming Language-Based Solution, Scrutiny,
Final Answer)?
— Does the natural language solution (if present) follow a clear, step-
by-step process?
— Does the programming solution include executable Python code?
— Does the scrutiny section compare solutions and explain differences?
- Is the final answer presented in ‘\boxed{{}}‘?
2. Issues Identified:
- List any deviations from the required format (e.g., missing sections,
incorrect labeling, unclear explanations, non-executable code).
— Note if the natural language solution is missing or incomplete.
— Note if the scrutiny section fails to compare solutions or explain
differences.
3. Suggestions for Correction:

27

Under review as a conference paper at ICLR 2026

- For each issue, suggest how the response could be revised to meet the
requirements (e.g., add missing section, clarify steps, ensure
code 1is executable).
4. Score Breakdown:
— Provide a breakdown of the score based on Completeness (60%) and
Clarity and Structure (40%).
— Justify deductions for any missing components or issues.
5. Overall Assessment:
- State the final score (0 to 1, rounded to two decimal places).
- Summarize whether the response complies with the format.

Output Format
Provide your evaluation in the following format:

Evaluation of Response

Compliance Check:

- [] All required sections included

[] Natural language solution is step-by-step and clear (if present)
[] Programming solution includes executable Python code

- [] Scrutiny section compares solutions and explains differences

[] Final answer in ‘\boxed{{}}‘

Issues Identified:
- [List specific issues, e.g., "Missing natural language solution," "
Improper section labeling," "Scrutiny section lacks comparison."]

Suggestions for Correction:

— [For each issue, provide a specific suggestion, e.g., "Include a
natural language solution with step-by-step reasoning," "Label
sections clearly as specified."]

Score Breakdown:

- Completeness (60%): [Score, e.g., 45/60, with justification, e.g., "
Missing natural language solution (-15%)"]

- Clarity and Structure (40%): [Score, e.g., 30/40, with justification, e
.g., "Clear code but improper section labeling (-10%)"]

- Total Score: [Score, e.g., 0.75]

[NL-Based Answer]: [Extract the final answer from the natural language
solution, e.g., "28," or "None" if missing]

[PL-Based Answer]: [Extract the final answer from the programming
solution, e.g., "42"]

[Format Reward]: [Final score, e.g., 0.75]

Overall Assessment:

- [Summarize compliance, e.g., "The response partially complies due to a
missing natural language solution and improper section labeling. The
programming solution and scrutiny section are present but need
clearer comparison."]

Example Response to Evaluate
[Insert the response to be evaluated here, or provide a placeholder if
none is given.]

Notes for the Model

- If no response is provided, indicate that a response must be submitted
for evaluation and assign a score of 0.

If the natural language solution is missing, report ‘[NL-Based Answer]®
as ‘None‘.

- Ensure the score is calculated systematically based on the criteria and

rounded to two decimal places.
- Extract the ‘[NL-Based Answer] ‘' and ‘[PL-Based Answer]‘ directly from
the respective sections of the response, if available.

28

Under review as a conference paper at ICLR 2026

- If the problem involves symbolic computation (e.g., finding
coefficients), ensure the programming solution uses appropriate tools

like ‘sympy‘.

— Do not evaluate the correctness of the answers (e.g., whether the
coefficients or final answer are mathematically correct); focus
solely on format compliance, completeness, and clarity/structure.

- Do not modify the response or provide a new solution unless explicitly
asked; focus on evaluating compliance and scoring.

Example Application

Compliance Check:

- [x] All required sections included

x] Natural language solution is step-by-step and clear

x] Programming solution includes executable Python code

x] Scrutiny section compares solutions and explains differences
x] Final answer in “\boxed{{}}®

Issues Identified:

— The natural language solution is present but contains a minor error in
clarity (incorrectly states c = 0, though steps are clear).

- Section labeling is correct, but the scrutiny section could be more
concise in explaining differences.

Suggestions for Correction:

— Clarify the coefficient ¢ = 14 in the natural language solution to
avoid confusion.

— Streamline the scrutiny section to focus on the key discrepancy (c = 0
vs. ¢ = 14) without redundant explanation.

Score Breakdown:
- Completeness (60%): 60/60
— Natural language solution included (15%).
— Programming solution included and executable (15%).
- Scrutiny section included (15%).
— Final answer in “\boxed{{}}‘' (15%).
- Clarity and Structure (40%): 35/40
— Natural language solution is clear but has a minor error in
coefficient ¢ (-5%).
- Sections are properly labeled (10%).
— Scrutiny section is thorough but slightly verbose (10%) .
- Total Score: (60 + 35) / 100 = 0.95

[NL-Based Answer]: 28
[PL-Based Answer]: 42
[Format Reward]: 0.95

Overall Assessment:

— The response fully complies with the format, including all required
sections. The natural language solution is clear but has a minor
error in stating ¢ = 0. The programming solution is executable and
clear, and the scrutiny section effectively compares the two
approaches. A slight deduction is made for the clarity issue in the
natural language solution.

Notes on Modifications

- Scoring Structure: Changed to Completeness (60%) and Clarity and
Structure (40%), removing Correctness as requested. Each section
under Completeness is weighted equally (15%), and Clarity and
Structure is split to emphasize the natural language explanation
(20%) while maintaining weight for labeling and scrutiny (10% each).

29

Under review as a conference paper at ICLR 2026

- NL Missing Case: Explicitly instructs to report ‘[NL-Based Answer] ‘' as
‘None' if the natural language solution is absent.

— Correctness Removed: The prompt no longer evaluates the mathematical
accuracy of the answers, focusing solely on format compliance,
completeness, and clarity.

— Penalties: Adjusted to reflect the new scoring weights, with deductions

scaled to the 60/40 split.

Question: {gquestion}
Model’s Response: {response}
Ground Truth: {ground_truth}

Give your detailed Evaluation.

30

	Introduction
	Related Work
	Enhancing Mathematical Reasoning
	Self-Refine

	Methodology
	Complementarity Between Reasoning Modes
	Inference-time complementarity
	Training-time complementarity

	Experiments
	Inference-time
	Setup
	Main results
	Analysis

	Training-time
	Experimental Setup
	Main Results

	Pass@k and Maj@k

	Conclusion
	Complementary Experiments
	Pass@k on MATH500
	Ablation Study
	Remaining Results
	Dataset
	Basic Statistics of Sampled Results
	Inference-Time Case Study
	Compare with Other Methods

	The Usage of Large language models
	Prompts

