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ABSTRACT

Recent text-to-image diffusion models leverage cross-attention layers, which have
been effectively utilized to enhance a range of visual generative tasks. However,
our understanding of cross-attention layers remains somewhat limited. In this
study, we present a method for constructing Head Relevance Vectors (HRVs) that
align with useful visual concepts. An HRV for a given visual concept is a vec-
tor with a length equal to the total number of cross-attention heads, where each
element represents the importance of the corresponding head for the given visual
concept. We develop and employ an ordered weakening analysis to demonstrate
the effectiveness of HRVs as interpretable features. To demonstrate the utility of
HRVs, we propose concept strengthening and concept adjusting methods and ap-
ply them to enhance three visual generative tasks. We show that misinterpretations
of polysemous words in image generation can be corrected in most cases, five
challenging attributes in image editing can be successfully modified, and catas-
trophic neglect in multi-concept generation can be mitigated. Overall, our work
provides an advancement in understanding cross-attention layers and introduces
new approaches for fine-controlling these layers at the head level.

1 INTRODUCTION

Recent advancements in Text-to-Image (T2I) models have demonstrated an unprecedented ability to
generate high-quality images with strong image-text alignment. These models often leverage power-
ful pre-trained text encoders; for instance, Stable Diffusion (Rombach et al., 2022) uses CLIP (Rad-
ford et al., 2021), while Imagen (Saharia et al., 2022) uses T5 (Raffel et al., 2020). Given that
language is more expressive than previously used supervision signals (Gandelsman et al., 2023),
text representations have empowered visual generative tasks, allowing for a high degree of con-
trol over the generation process. However, our understanding of the inner workings of T2I models
remains limited, and even the latest models continue to struggle with certain failure cases.

Significant progress has been made in understanding the inner workings of deep neural networks.
Olah et al. (2018) demonstrated numerous examples showing interpretable features at various levels
in neural networks; Olah et al. (2020) expanded this analysis by exploring connections between units
in the networks. Notably, Templeton et al. (2024) identified interpretable features in the cutting-
edge large language model (LLM)–Claude 3 Sonnet–and used these features to guide the model’s
generation towards safer outcomes. Building on this line of work, we analyze T2I generative models
with a focus on their cross-attention (CA) layers. We introduce a novel method to construct head
relevance vectors (HRVs) that align with user-specified concepts. An HRV for a given visual concept
is a vector whose length equals to the total number of CA heads, with each element representing the
importance of the corresponding head for that concept. We demonstrate that these vectors reflect
human-interpretable features by using ordered weakening analysis, where we sequentially weaken
the activation of CA heads and examine the resulting generated images (Figure 1a).

To demonstrate the utility of HRVs, we propose concept strengthening and concept adjusting meth-
ods to enhance three visual generative tasks (Figure 1b). In image generation, our approach sig-
nificantly reduces the misinterpretation of polysemous words. When generating images from text
prompts containing such words, our method decreased the misinterpretation rate from 63.0% to
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(a) Ordered weakening analysis of CA heads from high to low relevance for two visual concepts.

(b) Enhancing three visual generative tasks with our head relevance vectors.

Figure 1: We develop a method for constructing head relevance vectors (HRVs) that align with useful
visual concepts. For a specified visual concept, an HRV assigns a relevance score to individual
cross-attention heads, revealing their importance for the visual concept. Our analysis shows that
the constructed HRVs can serve as interpretable features. We also demonstrate that HRV can be
effectively integrated for improving three visual generative tasks.

15.9%. In image editing, our method enhances the widely used Prompt-to-Prompt (P2P) (Hertz
et al., 2022) algorithm in modifying object attributes (color, material, geometric patterns) and image
attributes (image style, weather conditions), achieving 2.32% to 11.79% higher image-text align-
ment scores compared to state-of-the-art methods. Additionally, in human evaluations, it received
more than twice the preference scores compared to existing methods. In multi-concept generation,
our method improves upon the state-of-the-art Attend-and-Excite (Chefer et al., 2023) algorithm.
By reducing catastrophic neglect – the omission of objects or attributes in generated images – our
approach enhances performance by 2.3% to 6.3% across two benchmark types.

We use Stable Diffusion v1 (Rombach et al., 2022) as the primary model for our analysis and exper-
iments. To demonstrate that our findings are not limited to a single model, we also show that they
are consistent in Stable Diffusion XL (Podell et al., 2024). Furthermore, we show that our approach
allows for flexible adjustment of human-specified concepts. These results indicate that our method
for constructing HRVs might be also useful for different model architectures and target concept.

2 RELATED WORK

Early works on interpretable neurons and interpretable features: Early works on visual gener-
ative models have trained variational autoencoders (VAEs) using specifically designed loss functions
on datasets with distinct attributes (Kulkarni et al., 2015; Higgins et al., 2017; Chen et al., 2018;
Klys et al., 2018). While these methods successfully controlled a few attributes present in the train-
ing dataset, they were limited by a lack of fine-grained control, strong dependence on training data,
and possible need for manual supervision of attributes. Another approach is to identify meaningful
features in intermediate layers of neural networks (e.g., generative adversarial networks (GANs)),
and modify those features to control the generation outputs (Plumerault et al., 2020; Shen & Zhou,
2021). Also, a seminal work by Olah et al. (2018) demonstrated that interpretable features in neural
networks can be identified at various levels: single neurons, spatial positions, channels, or groups of
neurons across different positions and channels. They presented numerous examples showing how
these interpretable features emerge at various levels within a neural network’s architecture. While
these efforts successfully revealed meaningful features, they were limited by an inability to spec-
ify user-specified concepts. Moreover, the identified features were not always directly usable for
controlling attributes in generative tasks.
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Recent works with multi-modal and generative models: Since the development of powerful
multi-modal models that can map images and text to a joint embedding space, few studies have used
text to interpret intermediate representations in vision models (Goh et al., 2021; Hernandez et al.,
2022; Yuksekgonul et al., 2023b). Most recently, Gandelsman et al. (2023) examined self-attention
heads from the last layers of CLIP-ViT (Dosovitskiy et al., 2021), identifying meaningful correla-
tions with several visual concepts. While these studies primarily focused on non-generative models,
our study shifts focus to the interpretable features within visual generative models. Regarding the
recently proposed large language model, Claude 3 Sonnet, Templeton et al. (2024) demonstrated that
identifying meaningful concepts from model activations provides valuable insights into understand-
ing model behavior. Among the various features identified, their use of safety-related features to
guide text generation towards safer outcomes is particularly relevant for large-scale text-generative
models. Our study also explores large-scale generative models, showing that user-specified visual
concepts can be captured and applied in three distinct visual generative tasks.

Text-to-image diffusion models with cross-attention layers: Building on the large-scale T2I
diffusion models, researchers have developed methods to tackle various visual generative tasks, such
as image editing (Hertz et al., 2022) and multi-concept generation (Chefer et al., 2023). Many of
these studies utilize the publicly available Stable Diffusion (Rombach et al., 2022), which efficiently
generates images through a diffusion denoising process in latent space. This model incorporates an
autoencoder and a U-Net (Ronneberger et al., 2015) with multi-head cross-attention (CA) layers that
integrate CLIP (Radford et al., 2021) text embeddings. Researchers have explored these CA layers
to enhance control over text-conditioned image generation (Feng et al., 2022; Parmar et al., 2023;
Chefer et al., 2023; Tumanyan et al., 2023; Wu et al., 2023). For example, P2P (Hertz et al., 2022)
manipulates image layout and structure by swapping CA maps between source and target prompts.
However, these methods typically update entire CA layers without offering fine-grained control over
individual attention heads. We construct head relevance vectors, which align with a human visual
concept, and uses these vectors to improve three visual generative tasks.

3 METHOD FOR CONSTRUCTING HEAD RELEVANCE VECTORS

The core idea involves selecting a set of visual concepts of interest, using a large language
model (LLM) to pre-select 10 associated words for each concept, and utilizing random image gener-
ations for updating head relevance vectors (HRVs). The key to a successful update lies in identifying
the visual concept that best matches a particular head and increasing the corresponding element of
the HRVs. Figure 2 illustrates the process of a single update. We begin by providing background on
the cross-attention (CA) layer, followed by detailed descriptions of our methodology for construct-
ing HRVs that correspond to a set of human-specified visual concepts.

Cross-attention in T2I diffusion models: Let P be a generation prompt, Zt be a noisy image at
generation timestep t, and ψ(·) be a CLIP text-encoder. In each CA head, the spatial features of the
noisy image ϕ(Zt) are projected to a query matrix Q = lQ(ϕ(Zt)), while the CLIP text embedding
ψ(P) is projected to a key matrix K = lK(ψ(P)) and a value matrix V = lV (ψ(P)), using learned
linear layers lQ, lK , and lV . Then, the CA map is calculated by measuring the correlations between
Q and K as

M = softmax
(
QKT

√
d

)
, (1)

where d is the projection dimension of the keys and queries. The CA output MV is a weighted aver-
age of the value V, with the weights determined by the CA map M. This operation is performed in
parallel across multi-heads in the CA layer, and their outputs are concatenated and linearly projected
using a learned linear layer to produce the final CA output.

Image generation prompts, visual concepts, and concept-words: To generate 2,100 random
images, we used 2,100 generation prompts. Of these, 1,000 prompts were constructed using 1,000
ImageNet classes (Deng et al., 2009), formatted as ‘A photo of a {class name}.’ The remaining 1,100
prompts were adopted from PromptHero (PromptHero) to enhance diversity. The visual concepts
can be specified as an arbitrary set. In our study, we have interacted with GPT-4o (OpenAI, 2024)
to list 34 commonly used visual concepts including object categories and image properties. While
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Figure 2: Overview of a single HRV update for a cross-attention (CA) head position h. While
generating a random image, the most relevant visual concept is identified. Then the concept’s head
relevance vector (HRV) is updated to have an increased value in position h. For illustration purpose,
we are showing only 5 visual concepts (N = 5) and 6 CA heads (H = 6). In our main experiments,
we adopt N = 34 and H = 128. This update is repeated over all the head positions h = 1, . . . ,H
and all timesteps t = 1, . . . , T for a sufficiently large number of random image generations.

our study mainly focuses on the 34 visual concepts, we demonstrate in Appendix J that a new visual
concept can be flexibly and easily added. For each of the selected visual concepts, we have generated
10 representative concept-words using GPT-4o. The full list of 34 visual concepts, along with 10
corresponding concept-words for each, can be found in Table 3 of Appendix A.

T2I models and head relevance vectors: We focus on Stable Diffusion v1, which contains H =
128 CA heads. Let C1, . . . , CN represent the specified visual concepts, where N = 34 in our
main experiments. For each visual concept Cn, we define a head relevance vector (HRV) as an
H-dimensional vector that expresses how each CA head is activated by the corresponding visual
concept. Initially, all N head relevance vectors are set to zero and are iteratively updated following
the process illustrated in Figure 2. The full iteration involved 2,100 generated images, with each
image used to iterate over all H = 128 heads and T = 50 timesteps. Extension to a larger diffusion
model, Stable Diffusion XL, is discussed in Section 6.1.

Concatenation of the N token embeddings: In each HRV update shown in Figure 2, we gener-
ate a concatenation of token embeddings for the N visual concepts and use it to identify the best
matching visual concept for the h-th head. To enhance diversity in the process, we randomly sam-
ple one concept-word for each visual concept from the list provided in Table 3 of Appendix A.
The sampled N concept-words are individually embedded using the CLIP text encoder, followed
by the learned linear key projection layer lK at the h-th CA head position. This produces N key
matrices K1,K2, . . . ,KN ∈ R77×F , each corresponding to a concept, with each key matrix con-
taining 77 token embeddings, where F is a feature dimension. For instance, if the sampled word
for the third concept C3 is ‘white,’ the corresponding key matrix K3 would be [<SOT>, <white>,
<EOT>, · · · , <EOT>], where <SOT> and <EOT> are key-projected embeddings of special to-
kens. We only extract the embedding of the semantic token <white> from K3, denoted as K̂3

∈ Rn3×F , where n3 = 1 since there is only one semantic token, <white>. Similarly, we extract
the embeddings for the other concepts, obtaining K̂1, K̂2, . . . , K̂N . These N embeddings are then
concatenated to form K̂ = [K̂1, K̂2, . . . , K̂N ] ∈ RN ′×F , where N ′ represents the total number of
semantic tokens across all N concepts (N ′ = N if each concept-word consists of a single token).

Updating of the head relevance vectors: We calculate the cross-attention (CA) maps M̂ ∈
RR2×N ′

, where R is the width or height of the image latent, by applying Eq. 1 using the con-
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catenated token embeddings K̂ ∈ RN ′×F , in place of K, and the image query Q ∈ RR2×F from
h-th head position. This measures the correlation between the visual information at h-th head posi-
tion and the textual information of the N visual concepts, resulting in N groups of CA maps. If a
word consists of multiple tokens, we average the CA maps across the token dimension so that each
word corresponds to a single CA map. This process produces a matrix of shape RR2×N . This matrix
is then averaged across spatial dimension (i.e., R2) to yield a single strength value for each visual
concept Cn, n = 1, . . . , N . We use the argmax operation on these N strength values to identify the
visual concept with the largest value, which eliminates the problem of different representation scales
across H CA heads (Appendix B.2). Then, we update that visual concept’s HRV by increasing its
h-th component by one. This update process is repeated over all head positions h = 1, . . . , 128 and
all timesteps t = 1, . . . , 50 for 2100 random image generations. At the end, each HRV is normalized
to have its L1 norm equivalent to H = 128. Pseudo-code is provided in Appendix B.1.

4 ORDERED WEAKENING ANALYSIS OF HEAD RELEVANCE VECTORS

In this section, we investigate whether the constructed HRVs can effectively and reliably serve as
interpretable features. As the primary tool of analysis, we introduce an ordered weakening across
the H cross-attention heads. Weakening of a target head is performed by multiplying −2 to the
corresponding CA maps of the head. This weakening is applied exclusively to the CA maps of
semantic tokens, leaving the CA maps of special tokens unaffected. Additionally, the weakening
is applied consistently across all timesteps. Using this simple weakening approach, we compare
images generated while following two different orderings of head weakening. In the most relevant
head positions first (MoRHF), we weakenH heads starting from the strongest to the weakest, where
the strength of head h is defined as the value of the h-th element in the HRV. In the least relevant
head positions first (LeRHF), the order is reversed, from the weakest to the strongest. If the HRV of a
visual concept is indeed effective and reliable, we expect MoRHF to impact the corresponding visual
concept in the generated images more quickly than LeRHF. The head weakening was inspired by a
rescaling technique in P2P (Hertz et al., 2022) and the ordering was inspired by the metrics defined
in Samek et al. (2016) and Tomsett et al. (2020).

Analysis results for three visual concepts are shown in Figure 3. Comparison of generated images
are shown in Figure 3a. In the top case, where the visual concept of Material is weakened, the
characteristics of copper in the generated image already disappeared when the most relevant 11
heads are weakened. In contrast, the copper remains visible until the least relevant 71 heads are
weakened. A similar observation can be made for the visual concepts of Animals and Geometric
Patterns. An additional 33 examples can be found in Figures 11 and 13–15 of Appendix C. It is
noted that a caution is required when analyzing the results, especially for LeRHF. For the HRV of a
given visual concept, the least relevant heads have little effect on the concept of interest but could be
significantly relevant to other visual concepts. Therefore, interpreting the changes observed in the
LeRHF-generated images requires careful consideration of other visual concepts.

We have also plotted the trends of CLIP image-text similarity in Figure 3b. CLIP similarity was
measured between the generated images and the concept-words used in the prompts. For each data
point in the CLIP score plots, we used between 30 and 150 images, depending on the specific
visual concept. The prompt templates and concept-words used for each visual concept are detailed
in Appendix C.1. These plots clearly show that relevant concepts are removed significantly faster
during MoRHF weakening, while they are preserved for a longer duration in LeRHF weakening.
Additional similarity plots for six more visual concepts can be found in Figure 12 of Appendix C.2.

5 STEERING VISUAL CONCEPTS IN THREE VISUAL GENERATIVE TASKS

Head relevance vectors are not only valuable as interpretable features but can also be used to steer
visual concepts in generative tasks. In this section, we demonstrate that polysemous word challenges
can be addressed and that state-of-the-art methods, such as P2P (Hertz et al., 2022) for image editing
and Attend-and-Excite (A&E) (Chefer et al., 2023) for multi-concept generation, can be enhanced.
All of our experiments are conducted using Stable Diffusion v1.4, 50 timesteps with PNDM sam-
pling (Liu et al., 2022), and classifier-free guidance at a scale of 7.5. All CLIP-based metrics are
calculated using the OpenCLIP ViT-H/14 model (Ilharco et al., 2021).
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(a) Generated images as weakening progresses in either MoRHF or LeRHF order.

(b) Change in CLIP image-text similarity score as weakening progresses in either MoRHF or LeRHF order.

Figure 3: Ordered weakening analysis for three visual concepts: The visual concept of interest
disappears significantly faster with MoRHF, where the most relevant heads in the corresponding
HRV are weakened first. Note that 128 corresponds to the weakening of all heads.

Figure 4: Two rescaling vectors for visual concept steering. Left: Concept strengthening uses HRV
of a desired visual concept as the head rescaling vector, Concept adjusting uses HRVs of a desired
and an undesired visual concepts to define the head rescaling vector, where H = 128 denotes the
number of CA heads. Right: For both concept steering methods, the h-th CA map of a target token
is rescaled using rh, where L = 77 denotes the token length.

Two rescaling vectors for visual concept steering – concept strengthening and concept adjust-
ing: We define two head rescaling vectors as illustrated in Figure 4, both utilizing pre-constructed
HRVs. In our experiments, we explore the 34 HRVs constructed for the 34 visual concepts listed
in Table 3 of Appendix A. We utilize the pre-constructed HRVs to steer the corresponding visual
concepts. For some visual generative tasks, only a desired visual concept can be identified, and we
apply concept strengthening. In other tasks, both a desired and an undesired visual concept can be
identified, typically in cases where the generative model fails to meet the user’s intention. In such
cases, we apply concept adjusting.
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5.1 IMAGE GENERATION – CORRECTING MISINTERPRETATION OF POLYSEMOUS WORDS

Figure 5: Examples of image generation with pol-
ysemous words.

The same word can have different meanings de-
pending on the context. Stable Diffusion (SD)
models are known for misinterpreting such pol-
ysemous words, often generating images that
do not comply with the user’s intended mean-
ing. Two examples are shown in Figure 5. SD
fails to recognize that ‘lavender’ clearly refers
to a color and ‘Apple’ to an electronic device.
This misinterpretation by SD may arise from
limitations in the CLIP text encoder, which
has been reported to exhibit bag-of-words is-
sues (Yuksekgonul et al., 2023a). The problem
can be resolved by adopting concept adjusting
to SD as shown in Figure 5, where we name our
method as SD-HRV. For the lavender case, SD-HRV resolves this issue by applying concept adjust-
ing to the token ‘lavender,’ using Color as the desired visual concept and Plants as the undesired
visual concept. For the Apple case, concept adjusting is applied to the token ‘Apple,’ using Brand
Logos as the desired and Fruits as the undesired. Examples of 10 cases, including the 2 cases shown
in Figure 5, can be found in Figures 18–19 of Appendix D.1. There, we provide 10 images gener-
ated with 10 random seeds for each case. Additionally, we investigated the performance of concept
strengthening compared to concept adjusting and found, as expected, that concept strengthening
performs worse. The details can be found in Appendix D.3.

We have also performed a human evaluation over the 10 cases, each with 10 random seeds, and
the details can be found in Appendix D.2. Based on the human evaluation, we have found that the
human perceived misinterpretation rate dropped significantly from 63.0% to 15.9% when SD-HRV
was adopted.

5.2 IMAGE EDITING – SUCCESSFUL EDITING FOR FIVE CHALLENGING VISUAL CONCEPTS

Image editing involves generating an image that aligns with the target prompt while minimizing
structural changes from the source image. Although recently developed methods excel at image
editing, certain visual concepts remain challenging to edit. For example, concepts related to mate-
rials, geometric patterns, image styles, and weather conditions are known to be particularly difficult
to edit. To address this problem, we propose applying concept strengthening to P2P (Hertz et al.,
2022). We refer to our method as P2P-HRV. The key idea is to apply concept strengthening to
the edited token, the token that describes how the attribute of the source image should be changed,
thereby strengthening the concept related to the editing target. The detailed explanations of P2P-
HRV method are provided in Appendix E.1.

Experimental settings: We focus on five challenging visual concepts as editing targets, includ-
ing three object attributes (Color, Material, and Geometric Patterns) and two image attributes (Im-
age Styles and Weather Conditions). We compare P2P-HRV with SDEdit (Meng et al., 2021),
P2P (Hertz et al., 2022), PnP (Tumanyan et al., 2023), MasaCtrl (Cao et al., 2023), and FPE (Liu
et al., 2024). For each method, we generate 500 edited images for each editing target (250 for
Weather Conditions) using the prompts described in Appendix E.2. For object attributes (Color, Ma-
terial, and Geometric Patterns), we evaluated performance using both CLIP (Radford et al., 2021)
and BG-DINO scores. The CLIP score evaluates CLIP image-text similarity between the edited
image and the target prompt. The BG-DINO score assesses structure preservation using Grounded-
SAM-2 (Ravi et al., 2024; Ren et al., 2024) for extracting non-object parts from the source and
edited images and then comparing them with DINOv2 (Oquab et al., 2023) embeddings. For im-
age attributes (Image Styles and Weather Conditions), we conducted a human evaluation to assess
human preference (HP) scores. This was necessary because evaluating structure preservation using
BG-DINO is not meaningful for Image Styles and Weather Conditions, which require editing across
the entire image. In the human evaluation, we compared P2P-HRV with the other methods by asking
‘Which edited image better matches the target description, while maintaining essential details of the
source image?’ The HP-score was normalized so that P2P-HRV’s preference score was set to 100.
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Figure 6: Examples of image editing for the five challenging visual concepts. In these examples, all
comparison methods frequently fail to make the desired edits, whereas our P2P-HRV successfully
achieves the intended modifications.

Figure 7: Quantitative comparison of image editing methods for three object attributes using CLIP
and BG-DINO scores.

Table 1: CLIP scores and human evaluation scores
for two image attributes. The best and second-best
results are highlighted in bold and underlined, re-
spectively.

Method
Image Attribute

Image Style Weather Conditions
CLIP HP-score CLIP HP-score

SDEdit (0.5) 0.2938 - 0.2817 -

SDEdit (0.7) 0.3217 15.8 0.2908 39.5

P2P 0.3120 30.6 0.2788 33.9

PnP 0.3286 41.9 0.3046 35.0

MassaCtrl 0.2722 - 0.2524 -

FPE 0.3236 25.7 0.2962 35.5

P2P-HRV (Ours) 0.3424 100 0.3348 100

Experimental results: Figure 6 presents five
exemplary cases of image editing across the
five challenging visual concepts. The figure
demonstrates that our approach significantly
improves image-text alignment compared to the
previously known methods. While only five
cases are shown in this figure, an extensive list
of additional examples can be found in Fig-
ures 24–34 of Appendix E.5. For the edit-
ing of three object attributes, CLIP similar-
ity and BG-DINO scores are presented in Fig-
ure 7. P2P-HRV achieves Pareto-optimal per-
formance compared to previous SOTA methods
across all three object attributes. For the edit-
ing of two image attributes, CLIP similarity and
human preference performance are presented in
Table 1. Our P2P-HRV improves CLIP perfor-
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mance by 4.20% on Image Style and 9.91% on Weather Conditions compared to the previous SOTA,
PnP. In the human evaluation, we have found that P2P-HRV received 2.39 and 2.53 times more votes
in HP-scores for Image Style and Weather Conditions, respectively, compared to the second-best
methods.

5.3 MULTI-CONCEPT GENERATION – REDUCING CATASTROPHIC NEGLECT

T2I generative models often struggle with multi-concept generation, failing to capture all the spec-
ified visual concepts in a prompt. Attend-and-Excite (A&E) (Chefer et al., 2023) tackles this issue,
known as catastrophic neglect, by gradient updating the CA maps of selected tokens during image
generation. To improve A&E further, we propose applying our concept strengthening to A&E. We
refer to this enhancement method as A&E-HRV.

Experimental settings: We investigated A&E-HRV using two types of prompts: (i) ‘a {Animal
A} and a {Animal B}’ (Type 1) and (ii) ‘a {Color A} {Animal A} and a {Color B} {Animal B}’ (Type
2), originally examined in the A&E work (Chefer et al., 2023). Type 1 evaluates multi-object gen-
eration, while Type 2 adds the challenge of binding color attributes to each animal. In these ex-
periments, we used 12 animals and 10 colors, as detailed in Appendix F. We assessed 66 prompts
for Type 1 and 150 for Type 2, with 30 random seeds applied across all methods. Following A&E,
we adopted three evaluation metrics. Full prompt similarity measures the CLIP similarity between
the generated image and the full prompt. Minimum object similarity is calculated by measuring
the CLIP image-text similarity between the image and two sub-prompts, which are created by split-
ting the original prompt at ‘and.’ The lower similarity score between the two sub-prompts is then
reported. BLIP-score measures the CLIP text-text similarity between the prompt and the image
caption generated with BLIP-2 (Li et al., 2023).

Experimental results: Table 2 presents the quantitative comparisons, while Figure 8 shows qual-
itative results. As shown in Table 2, A&E-HRV outperforms other methods across all metrics and
prompt types. In Figure 8, the top row shows results for Type 1 prompt, while the bottom row shows
results for Type 2 prompt. The existing methods either neglect key visual concepts or fail to generate
realistic images. In contrast, our approach captures all concepts and generates realistic images for
both prompt types. Additional comparisons are provided in Figure 36 of Appendix F.2.

Table 2: Quantitative results of multi-concept generation. The best and second-best results are
highlighted in bold and underlined, respectively. The percentage in parentheses indicates the im-
provement over the second best result, A&E.

Method
Type1: a {Animal A} and a {Animal B} Type2: a {Color A} {Animal A} and a {Color B} {Animal B}

Full Prompt Min. Object BLIP-score Full Prompt Min. Object BLIP-score

Stable Diffusion 0.3000 0.1611 0.5934 0.3420 0.1458 0.5633

Structured Diffusion 0.2831 0.1545 0.5626 0.3307 0.1424 0.5508

Attend-and-Excite (A&E) 0.3544 0.2017 0.7049 0.3883 0.1972 0.6373

A&E-HRV (Ours) 0.3702 (+4.5%) 0.2078 (+3.0%) 0.7491 (+6.3%) 0.3971 (+2.3%) 0.2073 (+5.1%) 0.6580 (+3.2%)

Figure 8: Examples of multi-concept generation for Type 1 and Type 2 prompts. We compare
Stable Diffusion (Rombach et al., 2022), Structured Diffusion (Feng et al., 2022), and Attend-and-
Excite (Chefer et al., 2023) with ours.
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6 DISCUSSION

6.1 EXTENSIONS TO A LARGER ARCHITECTURE

The recently introduced Stable Diffusion XL (SDXL) (Podell et al., 2023) adopts a U-Net backbone
that is three times larger than its predecessors, scaling up to 1300 cross-attention (CA) heads. To
investigate the generalization capability of HRV, we have performed an extended study with SDXL.
Using SDXL, we conducted the ordered weakening analysis to evaluate whether HRVs can serve as
interpretable features. An exemplary result for the visual concept Furniture is shown in Figure 9.
The sofa disappeared when the most relevant 211 heads were weakened. In contrast, the sofa re-
mained visible until the least relevant 711 heads were weakened. Additional 45 examples and the
similarity plots for nine visual concepts can be found in Figures 37–42 of Appendix G.1. For SDXL
experiments, we utilize the SD-XL 1.0-base model.

Figure 9: Ordered weakening analysis for SDXL: generated images are shown as weakening pro-
gresses in either MoRHF or LeRHF order.

6.2 DO GENERATION TIMESTEPS AFFECT HOW HEADS RELATE TO VISUAL CONCEPT?

Figure 10: t-SNE plot of 1700 head rel-
evance vectors across visual concepts
and generation timesteps.

Diffusion models generate images by iteratively process-
ing an image latent through the same U-Net network.
A natural question is whether the patterns of head rel-
evance vectors change across different timesteps during
generation. To explore this, we calculated head relevance
vectors for each visual concept at every timestep, result-
ing in 1700 vectors (34 visual concepts×50 timesteps).
Figure 10 presents a t-SNE (Van der Maaten & Hinton,
2008) plot of these 1700 vectors. In the t-SNE plot, vi-
sual concepts are clearly separated, while timesteps are
not. This indicates that generation timesteps do not sig-
nificantly alter the patterns of head relevance vector of
each visual concept. Further analysis, including cosine
similarity plots, is provided in Appendix I.

7 CONCLUSION

In this work, we present findings from our exploration of cross-attention layers in T2I models.
We demonstrate that head relevance vectors (HRVs) can be effectively and reliably constructed
for human-specified visual concepts without requiring any modifications or fine-tuning of the T2I
model. Furthermore, we show that HRVs can be successfully applied to improve performance of
three visual generative tasks. Our work provides an advancement in understanding cross-attention
layers and introduces novel approaches for exploiting these layers.

8 REPRODUCIBILITY STATEMENT

We provide our core codebase, which includes the methodology implementation, settings, genera-
tion prompts, and benchmarks for image editing and multi-concept generation, in the supplementary
materials.
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9 ETHIC STATEMENT

Our work presents new techniques for controlling and refining text-to-image diffusion models, en-
hancing both image generation and editing capabilities. While these advancements hold significant
potential for creative and practical applications, they also raise ethical concerns about the possible
misuse of generative models, such as creating manipulated media for disinformation. It is important
to recognize that any image editing or generation tool can be used for both positive and negative pur-
poses, making responsible use essential. Fortunately, various research in detecting harmful content
and preventing malicious editing are making significant progress. We believe our detailed analysis
of cross-attention layers will contribute to these efforts by providing a deeper understanding of the
mechanisms behind image generation and editing.
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A 34 VISUAL CONCEPTS AND FULL LIST OF CONCEPT-WORDS

In this paper, we use 34 visual concepts, each paired with 10 concept-words, as shown in Table 3.

Table 3: 34 visual concepts and full list of concept-words.

Visual Concept Concept-words

Color red, blue, green, yellow, black, white, purple, gray, pink, brown

Animals dog, cat, elephant, lion, bird, fish, butterfly, bear, horse, cow

Plants tree, flower, grass, bush, cactus, vine, oak tree, moss, tulip, rose

Fruits and Vegetables apple, banana, carrot, tomato, broccoli, strawberry, potato, orange, lettuce, grapes

People child, woman, man, elderly person, teenager, athlete, farmer, doctor, teacher, tourist

Vehicles car, bicycle, airplane, train, boat, motorcycle, bus, truck, scooter, helicopter

Buildings skyscraper, house, church, library, museum, school, hospital, warehouse, apartment, castle

Furniture chair, table, sofa, bed, bookshelf, desk, wardrobe, dresser, cabinet, coffee table

Electronics
smartphone, laptop, television, camera, tablet, headphones, microwave, refrigerator, printer,

smartwatch

Clothing t-shirt, jeans, jacket, dress, skirt, sweater, shorts, coat, blouse, pants

Accessories hat, scarf, sunglasses, watch, belt, necklace, earrings, bracelet, gloves, handbag

Tools hammer, screwdriver, wrench, drill, saw, pliers, tape measure, chisel, level, shovel

Toys doll, teddy bear, puzzle, action figure, toy car, lego, ball, kite, yo-yo, board game

Food and Beverages pizza, salad, burger, pasta, soup, coffee, tea, juice, cake, sandwich

Books and Documents novel, dictionary, textbook, magazine, newspaper, journal, notebook, manual, report, brochure

Sports Equipment
soccer ball, tennis racket, basketball, baseball glove, hockey stick, golf club, surfboard, ski poles,

boxing gloves, cricket bat

Musical Instruments guitar, piano, violin, drum, flute, saxophone, trumpet, harp, cello, clarinet

Written Characters
latin alphabet, greek alphabet, english alphabet, punctuation marks, mathematical symbols,

uppercase letters, lowercase letters, digits, consonants, vowels

Shape circle, square, triangle, rectangle, oval, hexagon, octagon, star, heart, diamond

Texture smooth, rough, fuzzy, slippery, sticky, soft, hard, bumpy, grainy, glossy

Size small, medium, large, tiny, huge, miniature, gigantic, petite, bulky, massive

Counting one, two, three, four, five, six, seven, eight, nine, ten

Image style abstract, realistic, minimalist, cartoon, vintage, modern, black and white, sepia, surreal, pop art

Material wood, metal, plastic, glass, fabric, paper, stone, rubber, leather, ceramic

Lighting Conditions bright, dim, dark, natural light, artificial light, backlit, soft light, harsh light, spotlight, twilight

Facial Expressions happy, sad, angry, surprised, confused, laughing, crying, smiling, frowning, disgusted

Facial Features eyes, nose, mouth, ears, eyebrows, lips, cheeks, chin, forehead, teeth

Poses and Gestures standing, sitting, running, jumping, waving, clapping, pointing, hugging, dancing, kneeling

Nature Scenes forest, beach, mountain, river, desert, meadow, waterfall, jungle, lake, canyon

Weather Conditions windy, sunny, cloudy, stormy, foggy, rainy, snowy, hail, thunderstorm, drizzle

Time of Day morning, noon, afternoon, evening, night, sunrise, sunset, midnight, dusk, dawn

Geo-locations New York, Beijing, Paris, Tokyo, London, Sydney, Cairo, Rome, Moscow, Rio de Janeiro

Brand Logos Nike, McDonald’s, Coca-Cola, Google, Microsoft, Amazon, Adidas, Samsung, Starbucks, BMW

Geometric Patterns stripes, polka dots, chevron, plaid, argyle, houndstooth, lattice, hexagons, spirals, waves
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B DETAILS OF HRV CONSTRUCTION

B.1 PSEUDO-CODE FOR HRV CONSTRUCTION

Algorithm 1 HRV construction

Require: N : Number of human-specified visual concepts
Require: T : Total number of generation timesteps
Require: H: Total number of CA heads
Require: P: Set of prompts for random image generation
Require: S: Set of concept-words covering N visual concepts
Require: ψ: CLIP text-encoder
Require: l(h)K : Key projection layer for the h-th cross-attention (CA) head
Require: ξ: Function to extract for semantic token embeddings
Require: Q(t,h): Image query matrix at timestep t and the h-th CA head

1: Initialize HRV matrix V as a zero matrix 0 ∈ RN×H

2: for each prompt P ∈ P do
3: while generating a random image with prompt P do
4: for all t = 1, 2, . . . , T do
5: for all h = 1, 2, . . . ,H do
6: for all n = 1, 2, . . . , N do
7: Sample a concept-word Wn for visual concept Cn from S
8: Compute key-projected embedding of Wn: Kn = l

(h)
K (ψ(Wn)) ∈ R77×F

9: Extract semantic token embeddings: K̂n = ξ(Kn)
10: end for
11: Concatenate K̂1, K̂2, . . . , K̂N along the token dimension:

K̂ = [K̂1, K̂2, . . . , K̂N ] ∈ RN ′×F (2)

12: Calculate the CA map M̂ using K = K̂ and Q = Q(t,h) ∈ RR2×F :

M̂ = softmax

(
Q(t,h) · K̂T

√
d

)
∈ RR2×N ′

(3)

13: Average M̂ along the token dimension for multi-token concept-words, resulting in a
matrix of shape RR2×N

14: Average the resulting matrix over the spatial dimension (R2), producing M̃ ∈ RN

15: Apply an argmax operation over the token dimension (N ):

M̃← argmax(M̃) (4)

16: Update the h-th column of the HRV matrix V by adding M̃:

V[:, h]← V[:, h] + M̃ (5)

17: end for
18: end for
19: end while
20: end for
21: Return: HRV matrix V ∈ RN×H
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B.2 ROLE OF THE ARGMAX OPERATION IN HRV CONSTRUCTION

During HRV construction, we apply the argmax operation to the averaged CA maps before using
them to update the HRV matrix (see Eq. 4). This step addresses the varying representation scales
across H CA heads. To demonstrate these scale differences, we compute the averaged L1-norm of
the CA maps before applying the softmax operation (refer to Eq. 3 for notations):

L(t,h) =
1

R2 ·N ′ ·
∑

R2,N ′

∥∥∥∥∥
(
Q(t,h) · K̂T

√
d

)∥∥∥∥∥
1

(6)

In Table 4, we show the mean and standard deviation of L(t,h) across 2100 generation prompts
and 50 timesteps for each CA head in Stable Diffusion v1.4. The CA heads exhibit variation in
their representation scales, with the head having the largest scale showing a mean value 8.1 times
higher than that of the smallest scale. Since the softmax operation maps large-scale values closer to
a Dirac-delta distribution and small-scale values closer to a uniform distribution, it is necessary to
align the scales between CA heads before accumulating the information into the HRV matrix. We
achieve this by simply applying the argmax operation, as shown in Eq. 4, which resolves the issue
of differing representation scales across the CA heads.

Table 4: Mean and standard deviation of the averaged L1-norm, L(t,h), of CA maps before applying
the softmax operation. The statistics are calculated over 2100 generation prompts and 50 timesteps.
The largest and smallest mean values are highlighted in bold.

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8
Layer 1 1.16 ± 0.16 1.58 ± 0.19 1.08 ± 0.26 1.45 ± 0.18 1.73 ± 0.36 1.75 ± 0.39 1.89 ± 1.26 0.92 ± 0.22

Layer 2 1.24 ± 0.21 1.19 ± 0.29 1.30 ± 0.24 1.43 ± 0.20 0.99 ± 0.34 1.08 ± 0.24 0.89 ± 0.12 1.07 ± 0.28

Layer 3 1.48 ± 0.12 2.42 ± 0.35 1.33 ± 0.14 1.95 ± 0.38 2.25 ± 0.47 1.69 ± 0.29 1.51 ± 0.20 1.69 ± 0.38

Layer 4 1.79 ± 0.25 2.10 ± 0.32 1.10 ± 0.28 1.13 ± 0.14 1.39 ± 0.16 2.18 ± 0.70 1.57 ± 0.24 1.14 ± 0.16

Layer 5 1.38 ± 0.16 1.55 ± 0.20 1.57 ± 0.36 1.44 ± 0.18 1.35 ± 0.21 1.46 ± 0.33 1.72 ± 0.48 1.30 ± 0.28

Layer 6 1.65 ± 0.20 1.87 ± 0.56 1.41 ± 0.27 1.50 ± 0.17 2.30 ± 0.29 2.05 ± 0.63 1.65 ± 0.21 1.84 ± 0.62

Layer 7 1.64 ± 0.52 1.79 ± 0.70 1.30 ± 0.19 1.34 ± 0.22 2.37 ± 0.36 2.37 ± 0.30 3.04 ± 1.33 1.90 ± 0.54

Layer 8 1.24 ± 0.14 2.06 ± 0.26 1.53 ± 0.20 1.64 ± 0.19 1.28 ± 0.21 1.66 ± 0.22 1.82 ± 0.20 2.14 ± 0.31

Layer 9 2.10 ± 0.26 2.19 ± 0.29 1.74 ± 0.22 2.10 ± 0.25 1.56 ± 0.21 1.32 ± 0.15 1.61 ± 0.19 2.00 ± 0.28

Layer 10 1.89 ± 0.23 1.14 ± 0.12 1.47 ± 0.18 2.17 ± 0.21 1.39 ± 0.16 1.50 ± 0.19 2.12 ± 0.21 1.95 ± 0.29

Layer 11 2.19 ± 0.20 1.64 ± 0.19 2.38 ± 0.25 2.15 ± 0.22 2.36 ± 0.26 2.37 ± 0.38 2.18 ± 0.21 2.15 ± 0.29

Layer 12 1.26 ± 0.13 2.36 ± 0.62 1.49 ± 0.21 1.49 ± 0.15 1.44 ± 0.18 1.78 ± 0.33 1.26 ± 0.14 2.10 ± 0.28

Layer 13 1.46 ± 0.21 1.40 ± 0.25 1.65 ± 0.22 1.44 ± 0.18 1.66 ± 0.47 1.51 ± 0.22 1.47 ± 0.22 1.27 ± 0.16

Layer 14 1.17 ± 0.30 1.19 ± 0.34 1.59 ± 0.49 2.10 ± 1.05 0.98 ± 0.29 1.51 ± 0.34 1.02 ± 0.47 2.35 ± 0.55

Layer 15 1.20 ± 0.38 2.16 ± 0.46 1.88 ± 0.40 4.11 ± 1.65 1.62 ± 0.39 0.76 ± 0.13 1.84 ± 0.28 1.48 ± 0.37

Layer 16 0.51 ± 0.04 1.80 ± 0.33 1.14 ± 0.31 1.84 ± 0.33 0.91 ± 0.38 1.15 ± 0.18 1.17 ± 0.11 1.06 ± 0.21
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C DETAILS AND ADDITIONAL RESULTS ON ORDERED WEAKENING ANALYSIS

In this section, we present the generation prompts used for the ordered weakening analysis intro-
duced in Section 4. Additionally, we provide MoRHF and LeRHF plots for 6 more visual concepts,
along with more detailed qualitative results.

C.1 PROMPTS USED FOR ORDERED WEAKENING ANALYSIS

We conducted the ordered weakening analysis across 9 visual concepts: Animals, Color, Fruits
and Vegetables, Furniture, Geometric Patterns, Image Style, Material, Nature Scenes, and Weather
conditions. The prompt templates and words for each concept are listed in Table 5. For each prompt,
we use 3 random seeds to generate images. For instance, the concept Color used the prompt template
“a {Color} {Objects A}” with 3 random seeds, covering 10 colors and 5 objects. This results in 150
generated images per data point in the line plot shown in Figure 3b of the manuscript.

Table 5: Prompt and word list for ordered weakening analysis. Visual concepts marked with an
asterisk(∗) use words that do not overlap with the concept-word list in Table 3.

Visual Concept
Prompt Template

Words

Animals∗
photo of a {Animals}

• {Animals}: rabbit, frog, sheep, pig, chicken, dolphin, goat, duck, deer, fox

Color∗
a {Color} {Objects}

• {Color}: coral, beige, violet, cyan, magenta, indigo, orange, turquoise, teal, khaki

• {Objects}: car, bench, bowl, balloon, ball

Fruits and Vegetables∗
photo of {Fruits and Vegetables}

• {Fruits and Vegetables}: lemons, blueberries, onions, raspberries, pineapples, cherries,

cucumbers, bell peppers, cauliflowers, mangoes

Furniture
photo of a {Furniture}

• {Furniture}: bed, table, chair, sofa, recliner, bookshelf, dresser, wardrobe, coffee table,

TV stand

Geometric Patterns
a {Objects} with a {Geometric Patterns} pattern

• {Objects}: T-shirt, pillow, wallpaper, umbrella, blanket

• {Geometric Patterns}: polka-dot, leopard, stripe, greek-key, plaid

Image Style
a {Image Style} style painting of a {Landscapes}

• {Image Style}: cubist, pop art, steampunk, impressionist, black-and-white, watercolor,

cartoon, minimalist, sepia, sketch

• {Landscapes}: castle, mountain, cityscape, farmland, forest

Material∗
a {Objects} made of {Material}

• {Objects}: bowl, cup, table, ball, teapot

• {Material}: copper, marble, jade, gold, basalt, silver, clay, steel, tin, bronze

Nature Scenes∗
photo of a {Nature Scenes}

• {Nature Scenes}: glacier, coral reef, swamp, pond, fjord, rainforest, grassland, marsh,

creek, island

Weather Conditions
a {Animals} on a {Weather Conditions}

• {Animals}: cat, dog, rabbit, frog, bird

• {Weather Conditions}: snowy, rainy, foggy, stormy
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C.2 ADDITIONAL RESULTS ON ORDERED WEAKENING ANALYSIS

Figure 11 presents the randomly selected examples of the ordered weakening analysis for 6 addi-
tional visual concepts: Animals, Fruits and Vegetables, Furniture, Material, Nature Scenes, and
Weather Conditions. The MoRHF weakening rapidly removes concept-relevant content, whereas
the LeRHF weakening either preserves the original image longer or removes irrelevant content first.
Figure 12 shows changes in CLIP image-text similarity scores for MoRHF and LeRHF weakening
across these six visual concepts, showing consistent trends. Overall, these results demonstrate how
the head relevance vector (HRV) effectively prioritizes heads based on their relevance to each visual
concept. Additional qualitative examples are provided in Figure 13–15.

C.3 COMPARISON WITH RANDOM ORDER WEAKENING

As an additional analysis, we compare HRV-based ordered weakening with random weakening. To
facilitate this comparison, we calculate the area between the LeRHF and MoRHF line plots. A
larger area indicates that the ordering of CA heads aligns more closely with the relevance of the
corresponding concept. Table 6 presents a comparison of HRV-based ordered weakening and three
random weakening approaches across six visual concepts. The results show that HRV-based ordered
weakening achieves a higher (LeRHF − MoRHF) area, demonstrating its effectiveness in ordering
heads based on their relevance to the given concept.

Table 6: Comparison of (LeRHF − MoRHF) areas between HRV-based ordered weakening and
three random weakening cases across six visual concepts. Larger values indicate better alignment
of CA head ordering with the relevance of the corresponding concept. Random Order - Mean rep-
resents the average value across the three random order cases. The highest value for each concept is
highlighted in bold.

Material Geometric Patterns Furniture Image Style Color Animals Average

Ours (HRV) 6.63 14.75 14.42 9.46 7.33 8.13 10.12
Random Order - Case 1 -1.94 4.29 -5.48 -1.81 -1.83 3.02 -0.63

Random Order - Case 2 5.85 0.14 8.38 -1.89 -3.39 0.19 1.55

Random Order - Case 3 1.68 -3.61 2.99 2.20 5.33 -2.91 0.95

Random Order - Mean 1.86 0.27 1.96 -0.50 0.04 0.10 0.62

C.4 ORDERED RESCALING WITH VARIED RESCALING FACTORS

In the ordered weakening analysis, we selected −2 as the rescaling factor. This choice is inspired
by P2P-rescaling (Hertz et al., 2022), which uses factors in the range of [−2, 2] to adjust the CA
maps of the U-Net for image editing. To explore the impact of different rescaling factors, we present
two examples in Figures 16-17. A rescaling factor of 1 leaves the original image generation process
unchanged, while factors greater than 1 strengthen the concept and factors smaller than 1 weaken
it. Strengthening produces minimal changes, likely because the concept is already present in the
image. Weakening works effectively with factors below 0, with stronger effects observed as the
factor decreases further.
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Figure 11: Ordered weakening analysis of six additional concepts: qualitative results using Stable
Diffusion v1.
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Figure 12: Ordered weakening analysis of six additional concepts: quantitative results using Stable
Diffusion v1.
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Figure 13: Ordered weakening analysis of nine concepts with additional examples: qualitative re-
sults using Stable Diffusion v1 (Part 1 of 3).
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Figure 14: Ordered weakening analysis of nine concepts with additional examples: qualitative re-
sults using Stable Diffusion v1 (Part 2 of 3).
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Figure 15: Ordered weakening analysis of nine concepts with additional examples: qualitative re-
sults using Stable Diffusion v1 (Part 3 of 3).
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Figure 16: Ordered rescaling with varying rescaling factors, using HRV for the Color concept and
the generation prompt ‘an orange rose.’ As the rescaling factor decreases, the weakening effect
becomes more pronounced.

Figure 17: Ordered rescaling with varying rescaling factors, using HRV for the Fruits and Vegeta-
bles concept and the generation prompt ‘photo of grapes.’ As the rescaling factor decreases, the
weakening effect becomes more pronounced.
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D DETAILS ON REDUCING MISINTERPRETATION OF POLYSEMOUS WORDS

D.1 PROMPTS AND SELECTED CONCEPTS FOR REDUCING MISINTERPRETATION

We identified 10 prompts that the text-to-image (T2I) generative model frequently misinterprets and
carefully selected desired and undesired concepts from our 34 visual concepts to help reduce these
misinterpretations. Table 7 lists these 10 prompts, along with the desired and undesired concepts for
each polysemous word. For both Stable Diffusion (SD) and SD-HRV, we generated 100 images us-
ing these 10 prompts with 10 random seeds. The full set of generated images is shown in Figures 18
and 19. We categorized the misinterpretation into three types: (i) containing the undesired meaning,
(ii) missing the desired meaning, and (iii) both, and mark the images showing any of these misin-
terpretations. For the last prompt, ‘A single rusted nut,’ where ‘nut’ was misinterpreted as Food and
Beverages instead of Tools, SD-HRV only partially resolved the issue by removing ‘nut’ as Food
and Beverages but failed to generate it as Tools. This suggests that SD-HRV is not perfect, and there
is still room for improvement in addressing such misinterpretations. Our current implementation for
SD-HRV requires manual settings for the target token, as well as the desired and undesired concepts.
However, our tests with an LLM show that it effectively identifies the inputs needed for SD-HRV,
suggesting that constructing an automatic pipeline using LLMs is feasible.

Table 7: The list of prompts often misinterpreted, with polysemous words underlined.

Prompt Desired Concept Undesired Concept
A vase in lavender color Color Plants

An Apple device on a table Brand Logos Fruits and Vegetables

A rose-colored vase Color Plants

A single orange-colored plate Color Fruits and Vegetables

A crane flying over a grass field Animals Tools

A bowl in mint color on a table Color Fruits and Vegetables

An olive-colored plate on a table Color Fruits and Vegetables

A plum-colored bowl on a table Color Fruits and Vegetables

An apricot-colored bowl on a table Color Fruits and Vegetables

A single rusted nut Tools Food and Beverages
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Figure 18: Complete set of generated images used for the human evaluation (Part 1 of 2). Images
showing misinterpretations are marked with red boxes.
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Figure 19: Complete set of generated images used for the human evaluation (Part 2 of 2). Images
showing misinterpretations are marked with red boxes.
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D.2 HUMAN EVALUATION

We evaluate the human perceived misinterpretation rate using Amazon Mechanical Turk (AMT),
requiring participants to have over 500 HIT approvals, an approval rate above 98%, and live in
the US. The survey begins with a sample question accompanied by its correct answer, which is
repeated at the end without the answer. Participants who missed the sample question are excluded,
leaving 36 valid responses. The misinterpretation rate measures how often polysemous words are
misinterpreted in the generated images. We use 10 prompts from Table 7 and 10 random seeds to
generate 100 images for each T2I model. This results in 200 total images for comparison between
Stable Diffusion (SD) and SD-HRV (Ours). These images are organized into 10 problem sets, each
containing 20 images generated with the same prompt. Each problem set consists of 4 questions,
with each question presenting 5 images generated using the same T2I model but with different
random seeds. Each participant receives 3 randomly selected problem sets, containing 12 questions
and 60 images. Details of the human evaluation setup are summarized in Table 8. For each question,
participants are shown 5 images and asked to count how many depict the intended meaning of the
polysemous word without including the unintended meaning: “Count how many of the following
five images contain {intended meaning of the polysemous word} but no {unintended meaning of
the polysemous word}.” This count is then subtracted from 5 to determine the count of images
with misinterpretations. After applying concept adjusting with our head relevance vectors on Stable
Diffusion, the misinterpretation rate drops from 63.0% to 15.9%.

Table 8: Overview of human evaluation details for assessing misinterpretation.

Number of valid

responses
Type of questions Number of questions

Number of questions

per participant
Filtering process

36
Counting images that

satisfy the given condition
40

12 questions with

60 generated images
O

D.3 COMPARISON OF CONCEPT STRENGTHENING AND CONCEPT ADJUSTING

We can also apply concept strengthening, instead of concept adjusting, on Stable Diffusion to reduce
misinterpretations. While this approach resolves misinterpretations in some prompts, it is not fully
effective in others. Figure 20 shows two cases: the left column shows where concept strengthening
fails, and the right column shows where it succeeds. In contrast, concept adjusting succeeds in
both cases. This is likely because, in some instances, the undesired concepts are relatively strong,
requiring explicit redirection of the T2I model away from those concepts.

Figure 20: Comparison of concept strengthening and concept adjusting. Concept strengthening fails
in the left case, while concept adjusting succeeds in both cases.
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E DETAILS AND ADDITIONAL RESULTS ON IMAGE EDITING

E.1 DETAILED EXPLANATIONS ON P2P-HRV

Brief overview of P2P replacement. P2P generates target images using the CA maps calculated
during the source image generation. Given a source prompt P and a target prompt P ∗, P2P simulta-
neously generates images for both prompts, starting from the same Gaussian noise Z1 and the same
random seed s. The diffusion denoising process unfolds over timesteps t = 1, 2, . . . , T , where t = 1
represents pure noise and t = T the fully denoised image. Let τc denote the CA replacement steps
in P2P. During the first τc timesteps (t ≤ τc), P2P injects structural information from the source
image into the target by replacing the CA maps of the target prompt with those from the source
prompt. For the remaining timesteps (t > τc), target image is generated using its own CA maps
without replacement. At each timestep t, if Mt and M∗

t represent CA maps from the source and
target prompts, respectively, and M̃t denotes the modified CA maps used for generating the target
image, then M̃t is calculated according to the following equation:

M̃t(Mt,M
∗
t , t) =

{
Mt, if t ≤ τc
M∗

t , otherwise
(7)

In short, P2P uses these modified CA maps M̃t and the target prompt P ∗ to generate target images.

P2P-HRV. We enhance P2P by applying concept strengthening on the edited token. Consider
the source prompt P = ‘a blue car’ and the target prompt P ∗ = ‘a red car’. During the first τc
timesteps, P2P replaces the CA maps of P ∗ with those of P while generating the target image.
However, this can lead to a mismatch with the target prompt, as the CA maps for ‘blue’ may interfere
with properly changing the color from ‘blue’ to ‘red.’ To address this, we leave the CA maps for
the edited token (‘red’ in this case) unchanged during the first τc timesteps, while replacing the CA
maps for the other tokens. This ensures that the CA maps for ‘blue’ are excluded from the target
image generation. The calculation of the modified CA maps M̃t is therefore adjusted as

(M̃t(Mt,M
∗
t , t))

h
i,j∗ =


ch · (M∗

t )
h
i,j∗ , if t ≤ τc, j∗ ̸= j

(Mt)
h
i,j∗ , if t ≤ τc, j∗ = j

(M∗
t )

h
i,j∗ , otherwise,

(8)

where i represents a pixel value, j a source text token, j∗ a target text token, h a CA head position
index, and ch = 1 for all h = 1, · · · , 128. The term (M̃t)

h
i,j∗ denotes the (i, j∗)-component of the

modified h-th CA map (M̃t)
h. To further steer the model to focus on the concept being editing,

we apply concept strengthening by setting ch = rh, where rh is the h-th component of the rescale
vector defined in Figure 4 of Section 5. This is applied across all head positions h = 1, · · · , 128.
This final method is referred to as P2P-HRV.

E.2 PROMPTS FOR IMAGE EDITING

We compare P2P-HRV with several state-of-the-art image editing methods across five editing tar-
gets, including three object attributes—Color, Material, and Geometric Patterns—and two image
attributes—Image Style and Weather Conditions. The prompt template and concept-words for each
visual concept are listed in Table 9. For each prompt, we generate images using 10 random seeds.
For example, in the Color editing task, 10 random seeds are used with the prompt template ‘a
{Color A} {Objects}’ (source prompt) → ‘a {Color B} {Objects}’ (target prompt), covering 10
color pairs (Color A, Color B) and 5 objects (Objects), resulting in 500 generated images for each
T2I model. The words for Color A and Color B are sampled from the concept-word set of the visual
concept Color in the first row of Table 9. The words for Objects are sampled similarly. The same
process is applied to the other editing tasks, except for Weather Conditions, which uses 5 attribute
pairs (Weather Condition A, Weather Condition B), generating 250 images for each T2I model. The
full list of prompts and attribute pairs for all five editing tasks can be found in our core codebase.
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Table 9: Prompt and word list for image editing

Visual Concept
Prompt Template

Words

Color
a {Color A} {Objects}
→ a {Color B} {Objects}

• {Color}: blue, brown, red, purple, pink, yellow, green, white, gray, black

• {Objects}: car, bench, bowl, balloon, ball

Material
a {Objects} made of {Material A}
→ a {Objects} made of {Material B}

• {Objects}: bowl, cup, table, ball, teapot

• {Material}: wood, glass, steel, copper, silver, marble, paper, jade, gold, basalt,

granite, clay, leather

Geometric Patterns
a {Objects} with a {Geometric Patterns A} pattern

→ a {Objects} with a {Geometric Patterns B} pattern

• {Objects}: T-shirt, pillow, wallpaper, umbrella, blanket

• {Geometric Patterns}: polka-dot, leopard, stripe, greek-key, plaid

Image Style
a {Image Style A} style painting of a {Landscapes}
→ a {Image Style B} style painting of a {Landscapes}

• {Image Style}: cubist, pop art, steampunk, impressionist, black-and-white, watercolor,

cartoon, minimalist, sepia, sketch

• {Landscapes}: castle, mountain, cityscape, farmland, forest

Weather Conditions
a {Animals} on a {Weather Conditions A} day

→ a {Animals} on a {Weather Conditions B} day

• {Animals}: cat, dog, rabbit, frog, bird

• {Weather Conditions}: snowy, rainy, foggy, stormy

E.3 HUMAN EVALUATION ON TWO IMAGE ATTRIBUTES

We measure human preference (HP) scores for two image attributes, Image Style and Weather Con-
ditions, using Amazon Mechanical Turk (AMT). To ensure quality, we require participants to have
over 500 HIT approvals, an approval rate above 98%, and live in the US. Each survey begins with
a sample question that includes the correct answer, which is repeated at the end without the answer
provided. After filtering out raters who missed the sample question, we collect 28 valid responses
for Image Style and 35 for Weather Conditions.

We use 50 prompt pairs for Image Style and 25 for Weather Conditions, as presented in Table 9. For
human evaluation, we randomly select a seed previously used to measure CLIP image-text similari-
ties. Images are then generated for each prompt pair using P2P-HRV and four other high-performing
methods, resulting in 250 images for Image Style and 125 for Weather Conditions. This creates 200
binary choice questions for Image Style and 100 for Weather Conditions, with each participant an-
swering 20 randomly selected questions. Details of the human evaluation setup are summarized in
Table 10. In each question, we present participants with two images—one generated using our ap-
proach and the other by a different method—and ask, ‘Which edited image better matches the target
description, while maintaining essential details of the source image?’ If participants cannot decide,
they can select the option ‘Cannot Determine / Both Equally.’ The results are shown in Table 1 of
Section 5.2. The HP-score in Table 1 is calculated by dividing the number of selections for the other
method by the number of selections for ours and multiplying by 100. For example, an HP score
of 35.0 for PnP (Tumanyan et al., 2023) in Weather Conditions editing indicates that our method
received 2.86 (= 100/35.0) times more votes than PnP in this editing task.
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Table 10: Overview of human evaluation details for two image attribute editing.

Editing Target
Number of valid

responses
Type of questions Number of questions

Number of questions

per participant
Filtering process

Image Style 28
Binary choice

question
200 20 O

Weather Conditions 35
Binary choice

question
100 20 O

E.4 TRADE-OFF EFFECT OF SELF-ATTENTION REPLACEMENT IN P2P AND P2P-HRV

While P2P primarily focuses on cross-attention (CA) map replacement, it also shows that adjust-
ing the self-attention (SA) replacement rates can enhance structural preservation. SA replacement
involves substituting the SA maps of the edited images with those of the source images during the
initial generation timesteps. Increasing these rates improves structural preservation but can nega-
tively impact image-text alignment. This trade-off effect can be found in Figure 21, where both
P2P and P2P-HRV are tested in Color editing benchmark with varying SA replacement rates. In
this figure, BG-DINO measures structural preservation, while the CLIP image-text similarity mea-
sures image-text alignment. Notably, P2P-HRV consistently achieves significantly higher image-text
alignment across all SA replacement rates compared to P2P. This result shows clear Pareto-optimal
improvements of P2P-HRV over P2P. For all editing benchmarks in this paper, we use an SA re-
placement rate of 0.4 for P2P and 0.9 for P2P-HRV, as both provide a balanced trade-off between
the two metrics. Examples of images generated with varying SA replacement rates are shown in
Figures 22 and 23.

Figure 21: Trade-off effect of self-attention replacement in P2P and P2P-HRV (Ours). Both methods
are tested on the Color editing benchmark with varying SA replacement rates from 0.0 to 1.0.
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Figure 22: Qualitative results of image editing comparing P2P (Hertz et al., 2022) and ours, based
on the variation of self-attention replacement rate (Part 1 of 2).
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Figure 23: Qualitative results of image editing comparing P2P (Hertz et al., 2022) and ours, based
on the variation of self-attention replacement rate (Part 2 of 2).
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E.5 ADDITIONAL RESULTS ON IMAGE EDITING

Figures 24–34 present additional qualitative results of image editing for three object attributes and
two image attributes.

Figure 24: Qualitative results of image editing for three object attributes and two image at-
tributes (Part 1 of 2).

Figure 25: Qualitative results of image editing for three object attributes and two image at-
tributes (Part 2 of 2).
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Figure 26: Qualitative results of image editing for the visual concept Color (Part 1 of 2). The results
were generated using 10 random seeds and were used in the quantitative evaluation.
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Figure 27: Qualitative results of image editing for the visual concept Color (Part 2 of 2). The results
were generated using 10 random seeds and were used in the quantitative evaluation.
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Figure 28: Qualitative results of image editing for the visual concept Material (Part 1 of 2). The
results were generated using 10 random seeds and were used in the quantitative evaluation.
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Figure 29: Qualitative results of image editing for the visual concept Material (Part 2 of 2). The
results were generated using 10 random seeds and were used in the quantitative evaluation.
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Figure 30: Qualitative results of image editing for the visual concept Geometric Pat-
terns (Part 1 of 2). The results were generated using 10 random seeds and were used in the quanti-
tative evaluation.
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Figure 31: Qualitative results of image editing for the visual concept Geometric Pat-
terns (Part 2 of 2). The results were generated using 10 random seeds and were used in the quanti-
tative evaluation.
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Figure 32: Qualitative results of image editing for the visual concept Image Style (Part 1 of 2). The
results were generated using 10 random seeds and were used in the quantitative evaluation.
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Figure 33: Qualitative results of image editing for the visual concept Image Style (Part 2 of 2). The
results were generated using 10 random seeds and were used in the quantitative evaluation.
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Figure 34: Qualitative results of image editing for the visual concept Weather Conditions. The
results were generated using 10 random seeds and were used in the quantitative evaluation.
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F DETAILS AND ADDITIONAL EXPERIMENTS ON MULTI-CONCEPT
GENERATION

In multi-concept generation, we used two types of prompts: (i) ‘a {Animal A} and a {Animal
B}’ (Type 1) and (ii) ‘a {Color A} {Animal A} and a {Color B} {Animal B}’ (Type 2). Table 11
lists the 12 animals and 10 colors used to generate these prompts, with the full prompt list available
in our core codebase.

Table 11: Word list for multi-concept generation

Visual Concept Words

Animals dog, cat, squirrel, fox, lion, frog, deer, penguin, bird, horse, bear, fish

Color blue, brown, red, purple, pink, yellow, green, white, gray, black

F.1 COMPARISON WITH ATTRIBUTE-BINDING METHOD

In this section, we compare A&E-HRV with the recently proposed attribute-binding method, Syn-
Gen (Rassin et al., 2024). Since SynGen requires attribute words to be included in the prompt, we
focus our comparison on Type 2 prompts. The quantitative results, shown in Table 12, show that our
approach consistently outperforms SynGen across all three metrics–full prompt similarity, minimum
object similarity, and BLIP-score–by margins of 2.8% to 5.8%. The qualitative results in Figure 35
show that SynGen often fails to generate both objects, while our approach generates object concepts
more reliably.

Table 12: Type 2 results: Multi-concept generation using SynGen and our method. The percentage
in parentheses indicates the improvement over the result of SynGen.

Method
Type2: a {Color A} {Animal A} and a {Color B} {Animal B}

Full Prompt Min. Object BLIP-score

SynGen 0.3820 0.1960 0.6398

A&E-HRV (Ours) 0.3971 (+4.0%) 0.2073 (+5.8%) 0.6580 (+2.8%)

Figure 35: Qualitative comparison of the results for Type 2 prompts between SynGen (Rassin et al.,
2024) and ours.
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F.2 ADDITIONAL RESULTS ON MULTI-CONCEPT GENERATION

Figure 36 presents additional qualitative results of multi-concept generation for both Type 1 and
Type 2 prompts.

Figure 36: Qualitative comparison of the results for Type 1 and Type 2 prompts. We compare
Stable Diffusion (Rombach et al., 2022), Structured Diffusion (Feng et al., 2022), and Attend-and-
Excite (Chefer et al., 2023) with ours.
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G ADDITIONAL RESULTS USING SDXL

G.1 ADDITIONAL RESULTS ON ORDERED WEAKENING ANALYSIS

Figures 37–42 present additional results from the ordered weakening analysis on Stable Diffusion
XL (SDXL) (Podell et al., 2023).

Figure 37: Ordered weakening analysis using SDXL: Change in CLIP image-text similarity score
as weakening progresses in either MoRHF or LeRHF order.
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Figure 38: Ordered weakening analysis using SDXL: Generated images as weakening progresses in
either MoRHF or LeRHF order (Part 1 of 5).
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Figure 39: Ordered weakening analysis using SDXL: Generated images as weakening progresses in
either MoRHF or LeRHF order (Part 2 of 5).
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Figure 40: Ordered weakening analysis using SDXL: Generated images as weakening progresses in
either MoRHF or LeRHF order (Part 3 of 5).
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Figure 41: Ordered weakening analysis using SDXL: Generated images as weakening progresses in
either MoRHF or LeRHF order (Part 4 of 5).
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Figure 42: Ordered weakening analysis using SDXL: Generated images as weakening progresses in
either MoRHF or LeRHF order (Part 5 of 5).

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

G.2 ORDERED WEAKENING ANALYSIS WITH MORE COMPLEX IMAGES

In this section, we present two examples of ordered weakening analysis applied to more complex
images using the prompts ‘a plastic car melting’ and ‘a metal chair rusting.’ Before starting the
analysis, we introduce a new concept, Physical and Chemical Processes, into our set of 34 concepts,
adding five corresponding concept-words: melting, rusting, boiling, freezing, and burning. We
then re-compute HRV vectors. In the top example of Figure 43, we perform ordered weakening
analysis with the generation prompt ‘a plastic car melting’ by weakening either the Physical and
Chemical Processes or the Vehicles concept. When weakening Physical and Chemical Processes
in MoRHF order, the concept of ‘melting’ is eliminated first, while the ‘car’ persists for a longer
period. In contrast, when weakening Vehicles, the concept of ‘car’ is eliminated first, and ‘melting’
is preserved longer. Notably, the entangled property ‘plastic’ is initially affected when weakening
‘melting,’ but it is removed more slowly from the image. This is even more apparent in the bottom
example of Figure 43, where weakening Physical and Chemical Processes eliminates ‘rusting’ first,
while the concept of ‘metal’ is retained longer. These examples demonstrate that our HRV and
ordered weakening analysis work well with more complex images.

Figure 43: Ordered weakening analysis with more complex images: Generated images as weakening
progresses in either MoRHF or LeRHF order using SDXL.
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G.3 REDUCING MISINTERPRETATION IN SDXL

SDXL significantly improves image generation performance compared to SD v1 models, thanks to
its three times larger U-Net backbone and two CLIP text encoders. It also reduces misinterpretation
issues with prompts from Table 7, but the problem is not entirely resolved, as undesired concepts still
appear in generated images. For instance, among 100 images generated using these prompts, nearly
all included the desired concepts, but about 35 also contained undesired concepts. Figure 44 illus-
trates this with two prompts: ‘An Apple device on a table’ and ‘A rose-colored vase.’ With SDXL,
desired concepts (Apple device or rose-colored vase) are consistently generated; however, one image
for the first prompt included the undesired concept of a fruit apple, and nine images for the second
prompt included the undesired concept of a flower rose. In both cases, SDXL-HRV (SDXL with
concept adjusting) effectively reduces misinterpretation by preventing the generation of undesired
concepts.

In Figure 44, SDXL-HRV images for ‘A rose-colored vase’ tend to exhibit rose coloring across most
parts of the images. We suspect this issue is related to the normalization of HRV vectors, which are
currently normalized to have an L1 norm equal to their length, H . This approach is based on the
fact that a vector with all elements set to one also has an L1 norm of H , and using this vector as a
rescaling factor does not alter the image generation process. For SD v1.4, H = 128, but for SDXL,
H = 1300, which may cause some HRV vector elements to become too large when rescaling CA
maps. One possible solution is to clamp each HRV element to an upper bound b, replacing any value
greater than b with b. Future work will explore this and other normalization strategies to identify
approaches better suited to high H value.

Figure 44: Two examples on misinterpretation reduction in SDXL. Images showing misinterpreta-
tions are marked with red boxes.
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H LIMITATION

We examined 34 concepts listed in Table 3 and identified two types of failure cases. The first
type stems from limitations in the underlying T2I model, where it struggles to correctly understand
certain concepts. For example, in Counting and Lighting Conditions, the model fails to generate
accurate outputs, as shown in Figure 45. The second type is related to our HRV or concept-words.
Here, the T2I model correctly understands the concept, but MoRHF and LeRHF weakening fail to
produce meaningful differences. An example of this is Facial Expression, with related failure cases
shown in Figure 46.

In Figures 45-46, we generate images using SDXL with the same random seed for three prompts
in each concept case. For the first type of failure, shown in Figure 45, the model often struggles
to understand certain concepts, failing to distinguish between words like ‘three’ and ‘four’ in the
Counting examples or ‘natural light,’ ‘spotlight,’ and ‘dark light’ in the Lighting Conditions exam-
ples. These issues make it difficult to assess whether HRVs identify appropriate CA head orderings
relevant to these concepts, as the base model, SDXL, does not reliably generate the intended out-
puts. We believe such failures could be addressed in the future with more advanced T2I models.
For the second type of failure, shown in Figure 46, SDXL correctly generates facial expressions that
match the prompts. However, HRV fails to find meaningful CA head orderings, preventing it from
distinguishing between MoRHF and LeRHF weakening. This may be due to the concept-words
used for Facial Expression being too broad to represent the concept effectively. The concept-words
for Facial Expression include Happy, Sad, Angry, Surprised, Confused, Laughing, Crying, Smiling,
Frowning, Disgusted. We will further explore this limitation in future work.
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Figure 45: First type of failure cases: The baseline T2I model, SDXL, struggles to correctly un-
derstand the concepts, making it difficult to assess whether HRVs identify appropriate CA head
orderings relevant to the corresponding concepts. The images are generated with SDXL.
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Figure 46: Second type of failure cases: Our HRV fails to identify the relevant CA head order-
ing for the corresponding concept, preventing it from distinguishing between MoRHF and LeRHF
weakening. The images are generated with SDXL.
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I ADDITIONAL ANALYSIS: THE EFFECT OF TIMESTEPS ON HEAD RELEVANCE
VECTORS

In this section, we further analyze 1700 vectors (34 visual concepts×50 timesteps) obtained from
Section 6.2. We start by reshaping these vectors into a tensor with dimensions 34×50×128, where
34 represents visual concepts, 50 represents timesteps, and 128 represents the number of CA head
positions in the T2I model. We then average this tensor over the timestep dimension to obtain 34
vectors, each with a size of 128, corresponding to the head relevance vectors (HRVs). Similarly,
averaging over the visual concept dimension yields 50 vectors, also of size 128, which we refer to
as timestep vectors. To examine directional variations in the 34 HRVs, we compute and visualize
their cosine similarities in Figure 47a. We also visualize the cosine similarities between the 50
timestep vectors in Figure 47b. Compared to Figure 47a, Figure 47b shows almost no directional
variation between the 50 timestep vectors (note the colorbar scale). This support the conclusion of
Section 6.2, where we suggested that the generation timesteps do not significantly alters the patterns
of head relevance vectors for each visual concept.

(a) Cosine similarities of 34 head relevance vec-
tors (HRVs).

(b) Cosine similarities of 50 timestep vectors.

Figure 47: Cosine similarity plots of (a) 34 head relevance vectors and (b) 50 timestep vectors.

J EXTENDING HUMAN VISUAL CONCEPTS

In this paper, we use 34 visual concepts to construct head relevance vectors (HRVs), but users
can flexibly add or remove visual concepts as needed. In this section, we explore the effect of
adding a new visual concept to the existing set of 34. To demonstrate this, we add the concept
Tableware, creating a set of 35 extended visual concepts. We then construct HRVs individually for
both the 34-concept and 35-concept sets and compare them through visualization. Stable Diffusion
v1 has 16 multi-head CA layers, each containing 8 CA heads, for a total of 128 heads, making
HRV visualization straightforward. In Figure 49, we visualize each set of HRVs, with darker colors
representing higher values. The two sets of HRVs for the original 34 visual concepts (Figure 48a
and Figure 48b) are highly similar. This indicates that adding the new concept Tableware does not
significantly alter the patterns of HRVs for each concept. Addionally, Figure 49 shows 2 examples
of ordered weakening analysis with the added concept Tableware, demonstrating that the HRV for
the new concept Tableware is effective.
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(a) Visualization of HRVs for 34 visual concepts (b) Visualization of HRVs for 35 visual concepts

Figure 48: Visualization of head relevance vectors (HRVs) for (a) 34 visual concepts used in this
paper, and (b) 35 extended visual concepts (the original 34 visual concepts plus the Tableware con-
cept). HRVs for (a) and (b) are constructed individually (Best viewed with zoom).

Figure 49: Ordered weakening analysis for Tableware concept: Generated images as weakening
progresses in either MoRHF or LeRHF order using Stable Diffusion v1.
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