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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive reasoning ca-
pabilities in complex problem-solving tasks, sparking growing interest in their
application to preference reasoning in recommendation systems. Existing methods
typically rely on fine-tuning with explicit chain-of-thought (CoT) data. However,
these methods face significant practical limitations due to (1) the difficulty of
obtaining high-quality CoT data in recommendation and (2) the high inference
latency caused by generating CoT reasoning. In this work, we explore an alternative
approach that shifts from explicit CoT reasoning to compact, information-dense
latent reasoning. This approach eliminates the need for explicit CoT generation
and improves inference efficiency, as few latent tokens can effectively capture the
entire reasoning process. Building on this idea, we propose Reinforced Latent
Reasoning for Recommendation (LatentR3), a novel end-to-end training frame-
work that leverages reinforcement learning (RL) to optimize latent reasoning
without relying on any CoT data. LatentR3 adopts a two-stage training strategy:
first, supervised fine-tuning to initialize the latent reasoning module, followed
by pure RL training to encourage exploration through a rule-based reward de-
sign. Our RL implementation is based on a modified GRPO algorithm, which
reduces computational overhead during training and introduces continuous re-
ward signals for more efficient learning. Extensive experiments demonstrate
that LatentR3 enables effective latent reasoning without any direct supervision
of the reasoning process, significantly improving performance when integrated
with different LLM-based recommendation methods. Our codes are available at
https://anonymous.4open.science/r/R3-A278/.

1 INTRODUCTION

Enhancing the reasoning capabilities of Large Language Models (LLMs) has been a central research
objective since the LLMs’ emergence, with recent advances—such as DeepSeek-R1 (Guo et al.,
2025) and OpenAI-o1 (OpenAI, 2024)—fueling a surge of interest in this direction. By being trained
or architected to reason more deliberately through techniques like chain-of-thought (CoT) (Wei et al.,
2022) reasoning, LLMs have demonstrated remarkable progress in tackling complex real-world
problems (Xu et al., 2025; Shao et al., 2024), rivaling or even surpassing human PhD-level perfor-
mance in certain cases (OpenAI, 2024). These developments have generated growing enthusiasm
for applying LLM reasoning to downstream tasks, including one key AI application for information
access—recommender systems (Tsai et al., 2024; Bismay et al., 2025). For recommendation, the core
lies in reasoning user preferences from historical behaviors (Tsai et al., 2024), which only implicitly
indicate preference. This is well aligned with the strengths of LLM reasoning, offering the potential
to unlock new paradigms for personalized recommendation.

Existing approaches to LLM reasoning for recommendation typically rely on explicit textual reasoning
(i.e., chain-of-thought, CoT) data to fine-tune models and enhance their reasoning capabilities (Bismay
et al., 2025; Tsai et al., 2024; Fang et al., 2025), following trends in general LLM reasoning
tasks. However, applying this paradigm in recommendation presents fundamental challenges. First,
these methods necessitate generating explicit CoT reasoning during inference, which would incur
prohibitive computational costs and latency—critical concerns for real-world deployment. Second,
collecting high-quality supervision CoT data for effective tuning is difficult: 1) user feedback in
recommendation is usually limited to final outcomes, with no access to underlying reasoning; and

1

https://anonymous.4open.science/r/R3-A278/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2) the subjective, personalized nature of preferences (Tsai et al., 2024) makes manual annotation or
synthesis to obtain CoT data both costly and unreliable. All these limitations restrict the practical
applicability of current explicit COT methods. To address this, we pose a central question: Can we
eliminate the need for explicit CoT reasoning at both the tuning and inference, while still unleashing
the reasoning potential of LLM for recommendation?

A promising direction is to move from natural language reasoning to latent reasoning (Hao et al.,
2024), where LLMs reason directly in their hidden representation space, eliminating the need for
explicit textual CoT reasoning. Moreover, because hidden states have much higher information
density than textual tokens, compact latent representations can encode complex reasoning processes.
This alleviates the need for lengthy reasoning chains (Su et al., 2025) and thus enables more efficient
inference. Yet, existing latent reasoning methods in general domains are not directly applicable to
our goal, as they still rely on explicit CoT supervision to learn latent reasoning (Hao et al., 2024),
such as by distilling CoT reasoning into latent reasoning.

This work explores learning latent reasoning without relying on any explicit CoT data, in an end-to-
end optimization manner. Achieving this is challenging, as the only available signal for reasoning
supervision is weak, coming solely from final user feedback, with no direct guidance on the reasoning
process itself. Inspired by the recent success of reinforcement learning (RL) in learning explicit
CoT reasoning strategies without CoT supervision, such as DeepSeek-R1-Zero (Guo et al., 2025),
we investigate the use of RL to achieve this goal. However, directly applying RL training1 can be
unstable and prone to collapse, particularly given the vast, high-dimensional space of latent reasoning.
To mitigate this, we adopt a two-stage training strategy inspired by DeepSeek-R1 (Guo et al., 2025).
In the first stage, we apply supervised fine-tuning to warm up the latent reasoning module, providing
a strong initialization. In the second stage, we conduct pure RL training with a rule-based reward to
promote exploration and further improve the reasoning ability.

Taking a step further, our RL approach builds on the GRPO algorithm (Shao et al., 2024), with
task-specific modifications to the reward design. In its original main form, GRPO assigns a reward
(e.g., binary) by comparing each generated answer to ground truth, requiring full autoregressive
answer generation for each sampled reasoning path—resulting in substantial computational overhead.
To address this, we modify the reward to use the perplexity of the target item as a proxy, thereby
eliminating the need for costly answer generation during training. This also produces a continuous
reward signal, which could provide richer learning feedback and may facilitate more efficient
optimization. Furthermore, we shift from a group-relative advantage to a batch-relative advantage by
using the batch average reward as the baseline for advantage computation. This adjustment addresses
the issue in our continuous reward setting, where the group-relative method could assign unreliable
positive advantages, even if the entire group exhibits low-quality reasoning. Since our method
operates with RL, we refer to it as Reinforced Latent Reasoning for Recommendation (LatentR3).

The main contribution of this work can be summarized as follows:

• We highlight that latent reasoning provides a practical and latency-efficient method for integrat-
ing LLM reasoning into recommendation systems and propose to achieve latent reasoning in
recommendations without relying on explicit CoT data.

• We propose LatentR, a new method that enables latent reasoning with zero-shot CoT examples
through a carefully designed RL framework. It features a novel reward formulation and an improved
advantage computation mechanism to guide the optimization process of latent reasoning.

• We conduct extensive experiments on real-world datasets, demonstrating that without explicit CoT
data, our latent reasoning approach can yield significant performance improvements.

2 PROBLEM DEFINITION

Let D denote the collected recommendation data, and let (u, h, y) ∈ D denote an instance, where u is
a user, h is the user’s historical interactions, and y is the next item the user interacts with. Both h and
y are described using textual information (e.g., item titles). To leverage the capabilities of LLMs,
we reformulate the recommendation task as a natural language problem. Specifically, for each data
point (u, h, y), we convert the historical interactions into a textual prompt x, which is then input to

1That means performing RL training from scratch.
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Figure 1: An illustration of the model architecture and training strategy of the proposed LatentR3.
On the architectural side, a LatentRATT layer is introduced to generate latent reasoning continuous
tokens. The training follows a two-stage framework: the first stage performs warm-up tuning via
supervised fine-tuning (SFT), while the second stage applies RL based on a modified GRPO, termed
LR-GRPO, to further optimize the reasoning.

the LLM to generate a next-item recommendation, denoting the token length as |x|. Thereafter, we
can also represent a data point by (x, y). Given that user preferences are implicitly and intricately
embedded in the historical data, we avoid asking the LLM to produce the recommendation directly.
Instead, we introduce a thinking process that encourages the model to first perform intermediate
reasoning before generating the final output, which can be formulated as:

x
LLM(x)−−−−−→ r

LLM(x,r)−−−−−−→ ŷ, (1)

where r denotes the LLM’s intermediate reasoning output, i.e., thoughts, and ŷ is the final predicted
item. Importantly, we aim for this reasoning process to be efficient and learnable without requiring
additional supervision in the form of explicit reasoning data (CoT annotations). In other words, we
train the LLM to perform recommendation-oriented reasoning directly from D, without relying on
externally annotated CoT data2.

3 METHODOLOGY

We propose achieving inference-efficient, explicit CoT-free reasoning through reasoning in the latent
space and leveraging RL to enable reasoning learning. This forms our method, Reinforced Latent
Reasoning for Recommendation (LatentR3). As shown in Figure 1, LatentR3 has key designs in both
the reasoning architecture and the learning strategy side:

• Latent Reasoning Architecture. To enable latent reasoning, LatentR3 adds an attention layer on
top of the LLM’s final decoding layer, denoted by "LatentRATT". This layer extracts information
from the final hidden states of the LLM to generate latent reasoning tokens (hidden states) aligned
with the LLM’s input embedding space, in an autoregressive manner. Together, the LLM and this
generation layer constitute the full reasoning model.

• Reinforced Learning. Given the lack of direct supervision for the reasoning process, the model
must learn latent reasoning from final output signals. To enable the model to effectively learn
latent reasoning, we use a reinforcement learning approach consisting of two stages: 1) Warm-up
Fine-Tuning, which warms up the latent reasoning model through supervised fine-tuning, providing
a meaningful initialization for the subsequent RL stage, and 2) RL-based Tuning, which applies
pure RL to encourage exploration of reasoning and further enhance its reasoning capabilities. The
RL stage is implemented using the GRPO method, with customized designs for sampling, reward,
and advantage estimation to align with our specific requirements.

2Although Rec-R1 (Lin et al., 2025) is similar to DeepSeek-R1-zero (learning without COT), it focuses on
learning query rewriting and summarization for recommendation rather than general reasoning.
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Next, we present the details of our latent reasoning architecture, followed by an explanation of the
reinforced learning method.

3.1 LATENT REASONING ARCHITECTURE

Before generating the final answer, we guide the LLM to first produce reasoning tokens in a continuous
latent space to simulate slow thinking. Unlike prior work that directly uses hidden states from the
LLM’s decoding layers as latent thoughts within the input embedding space, we introduce an
additional attention layer on top of the final decoding layer to explicitly generate latent thought tokens.
This layer serves two key purposes: (1) functioning as a specialized reasoning token generator that
aggregates contextual information to produce coherent latent thoughts, and (2) aligning the latent
reasoning tokens more seamlessly with the LLM’s input embedding space.

Formally, given a data point converted into the prompt format (x, y), at the i-th reasoning token
generation, we first obtain the hidden states from the LLM’s final decoding layer by inputting x along
with all previously generated latent reasoning tokens. We then apply our additional attention layer to
these hidden states and take the last-position output as the next latent reasoning token. Formally,

Hi−1 = LLM−1(x, r1, ..., ri−1), (2)
ri = LatentRATT(Hi−1)[−1], (3)

where LLM−1(·) denotes the output of the LLM’s final decoding layer; r1, . . . , ri−1 are the pre-
viously generated latent reasoning tokens; and Hi−1 ∈ R(|x|+i−1)×d represents the corresponding
sequence of hidden states produced by LLM−1(·), with dimensionality d. "LatentRATT" refers to
our additional attention layer for generating latent reasoning tokens. Finally, ri ∈ Rd denotes the i-th
generated latent reasoning token.

Final Generation. After generating N latent reasoning tokens to form the final reasoning thought
r = [r1, . . . , rN ], we concatenate x and r as the input to the LLM for next-item prediction. Here, N
is a hyperparameter controlling the length of the latent reasoning sequence, and under our framework,
a minimal N (e.g., N = 1) can achieve strong performance.

3.2 REINFORCED LEARNING

We leverage RL to facilitate the effective learning of latent reasoning. Inspired by DeepSeek-R1,
instead of performing RL from scratch, we first use supervised fine-tuning to warm up the model,
providing a strong initial model for RL tuning. We then apply the pure RL to explore better reasoning,
forming a two-stage tuning strategy. Next, we introduce each of these stages in detail.

3.2.1 WARM-UP FINE-TUNING

Training RL from scratch can lead to instability and potential collapse, especially considering the
vast, high-dimensional space of latent reasoning. To mitigate this, we first perform SFT to warm up
the reasoning model, providing a solid initialization. Specifically, we fine-tune the full model using
a standard next-token prediction task, enabling the model to generate meaningful latent reasoning
tokens that enhance recommendation performance. The tuning objective is formulated as follows:

minΩ Lwarm = −
∑

(x,y)∈D

|y|∑
i=1

logPθ(yi|x, r, y<i), (4)

where yi denotes the i-th token of y, |y| denotes the total number of tokens in y, and Pθ(yi|x, r, y<i) =
LLM(x, r, y<i) denotes the predicted probability of yi given the previous generations y<i, latent
reasoning r, and x; θ represents the total model parameters including those of the original LLM and
our "LatentRATT" layer, and Lwarm denotes the final total loss.

3.2.2 RL-BASED TUNING

Although the model may have gained some preliminary latent reasoning capabilities through SFT,
its performance remains insufficient, as it might focus solely on data fitting rather than exploring
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optimal reasoning paths, leading to suboptimal outcomes. To address this, we consider leveraging RL
training to facilitate exploration of more diverse reasoning paths, using the SFT results from the first
stage as the initialization for further learning.

Given the demonstrated success of GRPO in DeepSeek-R1 (Guo et al., 2025), we adopt it as the
foundation for implementing our RL training. Generally, GRPO operates in four steps: (1) sampling
a set of textual outputs from the old policy model; (2) computing a binary reward for each output; (3)
calculating the advantage by comparing the group average reward; and (4) performing policy updates
based on the advantage. To better align with our latent reasoning approach and enhance training
efficiency, we introduce specific modifications to the first three steps, resulting in our new GRPO
variant, termed LR-GRPO. In short, (1) we sample latent reasoning tokens in continuous space via
the reparameterization trick rather than in textual space, (2) employ perplexity-based rewards, and (3)
compute advantages relative to the batch-level average reward instead of the group-level to enhance
learning under the new reward design. We now elaborate on these modifications:

• Sampling. Since our latent reasoning operates in a continuous space, it cannot be directly sampled
like discrete textual tokens in standard GRPO. To address this, we leverage the Reparameterization
Trick (Kingma et al., 2013; 2015), treating the generated latent reasoning vector as the mean of a
Gaussian distribution. For each training sample (x, y) with its corresponding latent reasoning vector
r, we draw K samples of reasoning. Formally, the k-th sampled reasoning (k ̸= 1) is sampled as:

rk = r + ϵ, ϵ ∼ N (0, σ2), (5)

where N (0, σ2) is a Gaussian distribution with zero mean and variance σ2, ϵ denotes the sampled
noise, and σ can be thought of as a hyperparameter controlling the noise strength. Additionally, we
include the original r as the 1-st sample, i.e., r1 = r.

• Reward Design. After obtaining multiple latent reasoning samples in diverse directions, we
evaluate which direction yields better outcomes by computing a reward for each. In the original
GRPO, autoregressive decoding is used to generate the final output for each sample, and rewards are
computed based on the quality of these outputs. However, this process is computationally expensive
due to the need for full autoregressive decoding. To improve training efficiency, we instead propose
using the model’s perplexity (PPL) on the ground-truth answer as a proxy for the reward. This
approach allows for faster evaluation.

Specifically, we construct the LLM input by combining the original prompt, each sampled latent
reasoning vector, and the ground-truth answer. We then compute the model’s perplexity for predicting
the ground-truth tokens and use its negative value as the reward to evaluate the quality of each latent
reasoning. Formally, the reward for the k-th sampled latent reasoning rk is defined as:

sk = −exp(− 1

|y|

|y|∑
i=1

logπθ(yi|x, rk, y<i)). (6)

Here, πθ represents the current policy model (i.e., the current reasoning model), and πθ(yi|x, rk, y<i)
denotes the predicted probability for the i-th token in y. The rewards corresponding to the group of
sampled reasoning instances are denoted as S = [s1, . . . , sK ]. Notably, the rewards are continuous
rather than discrete.

• Advantage Design. After obtaining the reward scores, we compute the advantage. In the original
GRPO, the advantage for each sampled reasoning instance is computed by comparing its reward to
the average reward within the same sampling group. However, since our rewards are continuous, this
approach may still yield positive advantages even when all samples in the group are of low quality,
thus producing unreliable advantage signals. To mitigate this issue, we instead compute the advantage
by comparing each reward to the batch-level average reward. Specifically, for a sampled reasoning rk

with reward score sk, the advantage is computed as:

Ak =
sk − s̄batch

∥Sbatch − s̄batch∥
, (7)

where Sbatch denotes the batch of sampling groups, and s̄batch represents the batch-level average
reward, computed over the 1-st sample (i.e., the original reasoning before adding noise) from each
group. Formally, it is given by s̄batch = 1

Ngroup

∑
S=[s1,...,sK ]∈Sbatch

s1, where Ngroup denotes the
number of groups in this batch. Lastly, ∥ · ∥ denotes the L2 norm.

5
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• Policy Update. After obtaining the advantage, we update our model in a way similar to GRPO.
The optimization objective is formulated as follows:

LGRPO =
∑

(x,y)∈D

− 1

K

K∑
k=1

1

|y|

|y|∑
i=1

πθ(yi | x, rk, y<i)

πold(yi | x, rk, y<i)
·Ak − βDKL(πθ||πref ). (8)

Notably, to reduce computational cost, we update only the "LatentRATT" layer while keeping the
original LLM layers frozen. As a result, the second KL-divergence term, DKL(πθ|πref ), becomes
zero in the GRPO implementation.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions: RQ1: How
does the overall recommendation performance of our proposed LatentR3 method compare to existing
recommendation methods? RQ2: Where do the improvements of LatentR3 come from? RQ3: How
do different design choices and reasoning hyperparameters affect the effectiveness of our method?

4.1 EXPERIMENTAL SETTINGS

Dataset. In line with prior LLM-based recommendation studies, we evaluate our method on several
Amazon domain-specific datasets, including Toys, CDs, Games and Instruments. We adopt the
standard preprocessing procedure that preserves chronological order for data filtering and splitting,
with detailed steps and dataset statistics provided in Appendix A.

Compared Methods. We consider the top-N recommendation task and compare our LatentR3

with: (1) traditional sequential models, including Caser (Tang & Wang, 2018), GRU4Rec (Hidasi
& Karatzoglou, 2018), and SASRec (Kang & McAuley, 2018); and (2) LLM-based approaches,
including Base (direct LLM recommendation), COT (Tsai et al., 2024), AlphaRec (Sheng et al.,
2025), BIGRec (Bao et al., 2025), and D3 (Bao et al., 2024). AlphaRec is a state-of-the-art embedding-
enhanced model, while D3 is a state-of-the-art generative recommender. We implement LatentR3

on both BIGRec and D3. Details on baselines and implementation are provided in Appendix B.
Here, for explicit reasoning, we only include the direct CoT baseline. Other reasoning methods for
recommendation mainly focus on rating prediction and require CoT supervision, so we exclude them.
We have tried learning explicit reasoning without CoT supervision via RL, but it performed poorly
(Appendix D), and we thus also omit it here. We also exclude general latent reasoning methods since
they rely on CoT data, but include a no-RL variant in ablation study as their adaptation to our setting.

Evaluation settings. We evaluate the top-N recommendation effectiveness using Hit Ratio (HR@N)
and Normalized Discounted Cumulative Gain (NDCG@N), with N set to 5 and 10. For brevity, we
denote HR@5 and NDCG@5 as H@5 and N@5, respectively, similarly for ‘@10’ cases.

4.2 MAIN RESULTS (RQ1)

Table 1 presents the overall performance comparison between our method and the baselines, including
both traditional (Caser, GRU4Rec, SASRec) and LLM-based (w/o tuning: Base, COT; w/ tuning:
AlphaRec, BIGRec, D3) approaches. From the results, we draw the following findings:

• The best version of our method (LatentR3 applied to D3) demonstrates superior performance
compared to all existing approaches across all metrics on all three datasets, consistently validating
the effectiveness of our proposed methodology.

• Focusing on the comparison among the LLM-based methods with recommendation-specific tuning,
those that use LLMs as recommenders (BIGRec and D3) outperform the method that leverages
LLMs to enhance traditional models (AlphaRec) on the Toys, CDs, and Instruments, but underper-
form on Games. After applying our LatentR3, the performance of both BIGRec and D3 improves
significantly, with BIGRec achieving a relative improvement (RI) of 17.0% and D3 achieving an
RI of 8.4%. Furthermore, the enhanced models surpass AlphaRec. These results show that 1)
incorporating latent reasoning substantially improves the performance of the LLM-based methods;
2) our latent reasoning method can be applied to different existing LLM-based methods.

6
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Table 1: Top-N recommendation performance of LatentR3 versus baselines. "RI." indicates the
relative improvement of LatentR3 on D3 over each baseline (for the BIGRec column, "RI." uses
LatentR3 on BIGRec) across all datasets and metrics. Bold values denote the best results. The analysis
of statistical significance is reported in the Appendix E, and our results are statistically significant.

Dataset Methods Traditional LLM-based

Metrics Caser GRU4Rec SASRec Base COT AlphaRec BIGRec +LatentR3 D3 +LatentR3

Toys

H@5 0.0251 0.0417 0.0601 0.0203 0.0261 0.0579 0.0701 0.0821 0.0830 0.0898
H@10 0.0384 0.0564 0.0760 0.0359 0.0496 0.0893 0.0931 0.1107 0.1026 0.1152
N@5 0.0170 0.0305 0.0458 0.0128 0.0153 0.0347 0.0508 0.0600 0.0610 0.0670

N@10 0.0214 0.0352 0.0510 0.0178 0.0229 0.0448 0.0582 0.0693 0.0674 0.0752

CDs

H@5 0.0469 0.0481 0.0841 0.0195 0.0302 0.0479 0.0757 0.0934 0.1122 0.1137
H@10 0.0689 0.0669 0.1054 0.0252 0.0406 0.0774 0.0929 0.1160 0.1272 0.1327
N@5 0.0312 0.0365 0.0622 0.0148 0.0213 0.0278 0.0616 0.0754 0.0906 0.0915

N@10 0.0382 0.0425 0.0691 0.0167 0.0246 0.0373 0.0672 0.0826 0.0955 0.0977

Games

H@5 0.0324 0.0322 0.0416 0.0236 0.0120 0.0558 0.0461 0.0580 0.0608 0.0716
H@10 0.0538 0.0517 0.0633 0.0311 0.0194 0.0893 0.0709 0.0870 0.0860 0.1006
N@5 0.0211 0.0207 0.0280 0.0190 0.0082 0.0397 0.0334 0.0413 0.0423 0.0507

N@10 0.0280 0.0270 0.0350 0.0214 0.0105 0.0515 0.0414 0.0506 0.0505 0.0601

Instruments

H@5 0.0564 0.0630 0.0708 0.0296 0.0261 0.0564 0.0807 0.0882 0.0848 0.0920
H@10 0.0627 0.0692 0.0758 0.0411 0.0452 0.0640 0.0879 0.0941 0.0907 0.0973
N@5 0.0781 0.0766 0.0793 0.0154 0.0135 0.0813 0.0938 0.1029 0.0984 0.1066

N@10 0.0977 0.0960 0.0950 0.0192 0.0199 0.1051 0.1158 0.1214 0.1167 0.1229
RI 85.8% 67.8% 27.9% 266.8% 245.9% 38.8% 17.0% - 8.4% -

• Directly using LLMs for recommendation without tuning (Base) performs substantially worse than
traditional methods. Adding explicit reasoning via CoT provides slight improvements but still
largely falls short of traditional baselines. After tuning, the best-performing LLM-based baselines
outperform traditional models in nearly all cases. These results underscore the importance of
explicitly aligning LLMs—including their reasoning capabilities—with the recommendation task.

To further validate our method, Appendix F compares LatentR3 with BIGRec on a larger LLM,
showing consistent gains, and Appendix C provides additional results on a non-Amazon dataset,
where our method continues to achieve better performance.

Efficiency Comparison: Beyond accuracy, a big advantage of our method is that it needs only a
few latent tokens (one in our experiments) to represent reasoning, greatly reducing inference latency.
An empirical study on four datasets (Appendix G) shows that our method maintains a cost close to
non-reasoning LLM baselines, whereas explicit COT incurs a substantial increase (e.g., a 25-fold
increase on Toys and nearly a 30-fold increase on Games).

4.3 IN-DEPTH ANALYSIS (RQ2 & RQ3)

In this section, we first analyze the performance improvements of our method across different item
groups to understand where the gains originate. We then investigate the impact of various factors on
the method’s effectiveness, starting with ablation studies to assess the contribution of each design
component, followed by an analysis of the reasoning length. Lastly, we compare our modified GRPO
with the original GRPO method. To reduce the computational cost (RL), we limit our analysis to the
Toys and CDs datasets, except for the study analyzing the source of performance gains. Besides, we
also study the Applicability of our method to other models in Appendix L.

4.3.1 PERFORMANCE OVER POPULAR AND UNPOPULAR ITEMS
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Figure 2: Performance improvement of LatentR3 over
BIGRec on both popular and unpopular items.

For latent reasoning, it is difficult to di-
rectly demonstrate why it leads to perfor-
mance improvements, as can be done with
explicit CoT. Therefore, we consider pro-
viding indirect evidence. Intuitively, rea-
soning should be more beneficial for the
more challenging aspects of recommenda-
tion, where it is expected to deliver greater
gains. Long-tail (i.e., unpopular) items are
typically more difficult to recommend accu-
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Table 2: Ablation study results on the Toys and CDs datasets. The best results are highlighted in bold.

Method Toys CDs

H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10

LatentR3 0.0821 0.1107 0.0600 0.0693 0.0934 0.1160 0.0754 0.0826
w/o Reasoning 0.0701 0.0931 0.0508 0.0582 0.0757 0.0929 0.0616 0.0672
w/o LatentRATT 0.0772 0.1040 0.0574 0.0661 0.0705 0.0875 0.0568 0.0624
w/o RL (only SFT) 0.0804 0.1067 0.0584 0.0669 0.0830 0.1005 0.0662 0.0719
w/o Batch Advantage 0.0812 0.1083 0.0589 0.0676 0.0828 0.1002 0.0661 0.0718

rately, while existing methods already per-
form well on popular items. To test this hy-
pothesis, we examine whether our method
yields greater improvements on unpopular items. Specifically, we compare the relative performance
gains of our method over BIGRec across items with different popularity levels. The results are shown
in Figure 2 (see Appendix H for more results and experimental settings). As shown, our method
achieves significantly larger improvements on unpopular items, suggesting that the incorporation of
reasoning is particularly beneficial in more challenging recommendation scenarios.

4.3.2 ABLATION STUDY

Our method features key innovations in both the model architecture and the learning algorithm. To
assess the contribution of each component, we conduct ablation studies on both aspects. Specifically,
we evaluate the following variants of our method: 1) w/o Reasoning, which removes the latent
reasoning component entirely. 2) w/o LatentRATT, which omits the LatentRATT layer and directly
uses the final hidden states from the LLM to construct the latent reasoning token; 3) w/o RL, which
trains the reasoning model using only SFT without RL; 4) w/o Batch Advantage, which replaces our
batch-based advantage estimation with the original GRPO setting that computes advantages with a
group average reward. Notably, regarding the reward design, we would study it later when compared
to the original GRPO. We conduct experiments on the Toys and CDs datasets.

The comparison results are summarized in Table 2. From the architectural perspective, removing
the LatentRATT layer leads to a significant performance drop. On the CDs dataset, this variant
even underperforms the "w/o Reasoning" version, underscoring the importance of LatentRATT
in generating meaningful and space-aligned reasoning outputs. From the learning algorithm side,
the "w/o RL" variant—which only uses SFT—performs better than the "w/o Reasoning" version,
indicating that SFT can partially enable latent reasoning. However, its performance remains inferior
to the full method with RL, confirming that effective latent reasoning learning relies on reinforcement
training. Furthermore, replacing the batch-based advantage with the original GRPO’s advantage (as
in "w/o Batch Advantage") results in comparable or worse performance than the "w/o RL" version,
demonstrating the necessity of batch-based reward estimation for stable RL learning under our reward
design. Overall, these findings highlight the critical roles of both our architectural and learning
algorithm designs in the method’s effectiveness. See Appendix I for training-time analysis.

4.3.3 INFLUENCE OF REASONING LENGTH
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Figure 3: Impact of Reasoning Length on LatentR3

Performance.

We next investigate how the length of latent rea-
soning affects model performance by varying
the number of generated latent tokens (K). Con-
sidering the cost of RL tuning, we just tune K
in {0,1,2}, and conducted experiments on Toys
and CDs. The results in terms of NDCG@5
(N@5) and HR@5 (H@5) are shown in Fig-
ure 3. Results for other metrics and the detailed
implementations can be found in Appendix J.
As shown, increasing the reasoning length im-
proves performance, demonstrating the potential
to achieve even better results by increasing the
reasoning length. However, the gain from K=1 to K=2 is much smaller than from K=0 to K=1,
suggesting that a few latent tokens may be sufficient to capture most of the reasoning information.
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4.3.4 COMPARISON WITH THE ORIGINAL GRPO
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Figure 4: Comparison to the original GRPO regarding
Performance (Left) and efficiency (Right).

We also compare our LR-GRPO with the
original GRPO, which relies on generating
complete answers for reward computation
for group sampling, to evaluate its effective-
ness. To improve training efficiency, we
propose using the model’s perplexity (PPL)
on the ground-truth answer as a proxy for
the reward. This yields a continuous re-
ward signal and motivates adjustments to
the advantage computation. To assess the
impact of these modifications, we imple-
ment a variant of our method using the orig-
inal GRPO. The comparison results on the
CDs dataset are shown in Figure 4, with
additional results and implementation de-
tails provided in Appendix K. In terms of
performance, our method achieves results comparable to the variant using original GRPO—slightly
outperforming it on CDs while performing slightly worse on Toys (see Appendix K). In terms of
training efficiency, our method is significantly faster, reducing the training cost to approximately 1/4
of that of the original GRPO. These findings validate the rationale of our modifications.

5 RELATED WORK

Our work relates to LLM-based recommendation and latent reasoning. Due to space limits, we briefly
cover LLM-based recommendation and reasoning methods here; a full review is in Appendix M. Ex-
isting works include three main LLM-based recommendation paradigms: (1) in-context learning (Gao
et al., 2023; Sun et al., 2024; Wang et al., 2021), (2) agent-based frameworks (Wang et al., 2023;
Zhang et al., 2024a;b), and (3) fine-tuning-based methods (Bao et al., 2025; Zhang et al., 2024c).
Among these, the fine-tuning-based solution has received the most attention due to its ability to more
effectively align LLMs with the task, and our work falls into this category. In this direction, only a
few studies have explored reasoning, with existing works primarily aiming to enhance explicit CoT
reasoning via fine-tuning, such as RecSAVER (Tsai et al., 2024), ReasoningRec (Bismay et al., 2025),
Reasoning4Rec (Fang et al., 2025), R2ec (You et al., 2025), and Exp3rt (Kim et al.). However, these
approaches rely heavily on explicit CoT, which is costly to obtain and typically leads to high inference
latency. In contrast, our work introduces latent reasoning for LLM-based recommendation, which
eliminates the need for CoT supervision and enables more efficient inference. As for latent reasoning,
only two concurrent works (Tang et al., 2025; Zhang et al., 2025) have explored it, but neither focuses
on LLM-based recommendation, and our approach to latent reasoning is fundamentally different and
specifically focused on LLM-based recommendation.

6 CONCLUSION

In this work, we proposed LatentR3, a novel LLM-based recommendation framework that replaces
explicit chain-of-thought reasoning with compact latent reasoning representations. By integrating
architectural innovations such as the LatentRATT layer with a two-stage reinforcement learning
strategy, LatentR3 enables efficient and effective preference reasoning without relying on costly CoT
supervision. Extensive experiments show that our method significantly enhances the performance of
existing LLM-based recommendation models, while introducing only minimal additional inference
cost—equivalent to generating a single extra token. These results highlight the potential of latent
reasoning as a practical and scalable alternative for LLM-based recommendation.

Limitations and Future Works. Following common practices for LLM-based recommendation
works, our current experiments are limited to relatively small datasets due to the very high cost.
In the future, we plan to explore the effectiveness of our method on diverse, large-scale datasets.
Additionally, compared to explicit CoT, latent reasoning offers less interpretability. We plan to
investigate ways to improve the explainability of latent reasoning, facilitating its wider adoption.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research does not involve human subjects or
sensitive personal data. Although we use some user interaction data, it is anonymized, publicly
available, and does not contain any personally identifiable information. Moreover, we strictly follow
the usage guidelines set by the dataset providers. However, when applying our method to broader
scenarios in the future, it would be advisable to include additional user privacy protections, such as
allowing users to control how their data is used and extending the approach to local learning settings.
The experiments presented in this paper focus on algorithmic development and theoretical analysis,
and do not entail any direct applications that could cause harm if misused. All authors have disclosed
any potential conflicts of interest, and there are no financial or institutional relationships that may
influence the objectivity of this research. The usage of LLMs is provided in Appendix N.

REPRODUCIBILITY STATEMENT

To support reproducibility, we provide a detailed description of all experimental settings, model
architectures, and hyperparameters in Appendix B. Our code has been made available at https:
//anonymous.4open.science/r/R3-A278/, including training scripts, evaluation scripts,
and instructions for reproducing the main results. All datasets used are publicly accessible, and we
provide the dataset preprocessing process in Appendix A and the preprocessing script in our code.
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A DATASET PRE-PROCESSING

Our experiments were conducted on data from Amazon, with primary evaluations performed on three
domain-specific datasets: Toys, CDs, Games and Instruments. Following established methodology,
we preprocessed each subset to achieve 5-core data integrity. To address the computational demands
of LLM training while maintaining dataset validity, we implemented a dynamic temporal partitioning
strategy: We iteratively process the dataset within a sliding time window, starting from October
2017 to October 2018. After applying 5-core filtering, if the resulting item count falls below 5,000,
the start time is shifted back by 3 months (e.g., to July 2017). This adjustment repeats until the
processed dataset contains more than 5,000 items, with the end time fixed at October 2018 throughout
the process. Key dataset statistics are summarized in the accompanying table3. To align with real-
world scenarios, we adopt a temporal split of the processed datasets into training, validation, and
testing sets based on timestamps, following an 8:1:1 ratio. In alignment with comparative baseline
requirements across all experimental conditions, we standardized the maximum sequence length at
10 for consistency in temporal pattern analysis.
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Table 3: Dataset statistics.
Dataset Train Valid Test Item

Toys 53898 6737 6738 6299
CDs 49251 6156 6158 5841
Games 75175 9397 9397 5308
Instruments 66500 8312 8313 5030

B COMPARED METHODS AND IMPLEMENTATION DETAILS

• Baselines. We consider the top-N recommendation task. To evaluate the effectiveness of our
method, we compare it against both representative traditional sequential recommendation models and
state-of-the-art (SOTA) LLM-based recommendation approaches:

- Caser (Tang & Wang, 2018): This is a well-known sequential recommendation approach that
utilizes Convolutional Neural Networks (CNNs) to capture sequential patterns and model user
preferences.

- GRU4Rec (Hidasi & Karatzoglou, 2018): This is another widely recognized method that leverages
Gated Recurrent Units (GRUs) to encode sequential patterns and model user preferences.

- SASRec (Kang & McAuley, 2018): This is a highly representative sequential recommendation
method that utilizes a self-attention network to model user preferences, with an architecture
resembling that of the decoder-only Transformer model.

- Base: This refers to the method that directly prompts the backbone LLM to perform the recommen-
dation task.

- COT (Tsai et al., 2024): This refers to the zero-shot version of Rec-SAVER, which uses CoT
reasoning to prompt the LLM for recommendation, i.e., instructing the LLM to produce a reasoning
process before generating the final results.

- AlphaRec (Sheng et al., 2025): This is an SOTA LLM-based method that leverages LLM-generated
embeddings to enhance the recommendation model.

- BIGRec (Bao et al., 2025): This is a representative LLM-based generative recommendation method
that fine-tunes LLMs to generate next-item predictions, with specific designs to support full ranking.

- D3 (Bao et al., 2024): This is a SOTA LLM-based generative recommendation method. It follows a
similar fine-tuning process to BIGRec but differs in its inference strategy. Specifically, it introduces
debiasing techniques during inference to enhance the quality of generated recommendations.
Additionally, it includes an ensemble design with traditional models; however, we omit this
component in our implementation to ensure a fair comparison.

Our method, LatentR3, is compatible with various LLM-based generative recommendation ap-
proaches. Accordingly, we implement it on both BIGRec and D3. Notably, existing LLM reasoning
methods for recommendation cannot be selected for comparison because: (1) they are not designed
for top-N recommendation tasks, and (2) their training relies on explicit CoT supervision, which is
difficult to obtain in our setting. To align with our setting, we also attempted to learn explicit CoT
reasoning directly via RL; however, the results were very poor, as shown in Appendix D. Similarly,
we exclude general-domain latent reasoning methods for comparison, as they still depend on CoT
data for learning. However, in our ablation study, we will include a variant of our method without RL
training, which can be viewed as an adaptation of the general latent reasoning method to our setting.

• Implementation Details For traditional recommendation models, we use the Adam optimizer and
perform grid searches over learning rates 1e-2, 1e-3, 1e-4 and weight decay values 1e-4, 1e-5, 1e-6,
and all models are trained using Binary Cross-Entropy loss with randomly sampled negative items.
For LLM-based methods, we use Qwen2.5-1.5B Team (2024) as the backbone LLM. Supervised
fine-tuning (SFT) is conducted using the AdamW optimizer, with learning rates selected from {3e-3,
3e-4, 3e-5}, and early stopping is applied with a patience of 1. During the reinforcement learning
stage, we search learning rates within {1e-5, 1e-4, 5e-4}. All experiments are run on 2 NVIDIA
A100 GPUs.
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Notably, BIGRec originally uses a grounding-based (matching) method for decoding items. In our
implementation, we adopt a constrained decoding approach, as we found it yields better performance.
This is supported by the empirical results on the CDs dataset in Table 4.

Table 4: Performance of BIGRec using different decoding methods—(1) Grounding and (2) Con-
strained—on the CDs dataset.

Decoding method H@5 H@10 N@5 N@10

Grounding Decoding 0.0609 0.0670 0.0573 0.0592
Constrained Decoding 0.0757 0.0929 0.0616 0.0672

C RESULTS ON DATASET BEYOND AMAZON

We have included a new dataset, Steam, which contains about 108K users, 15K items, and 314K
interactions. The results are summarized in the Table 5, and our method continues to deliver
substantial performance improvements. Notably, many recent ID-based methods (Hou et al., 2025)
are also evaluated on datasets with item counts similar to those in this experiment. As shown in the
table, our method could still achieve large performance improvements compared to baselines.

D LEARNING EXPLICIT REASONING WITHOUT COT SUPERVISION VIA RL

We also experimented with directly optimizing CoT generation via RL, similar to DeepSeek-R1-zero,
denoted as “COT-RL.” We compare it with the following methods: Base, COT, and our LatentR3.
The results are summarized in Table 6. As shown, both COT and COT-RL outperform the base
LLM. However, applying RL to learn CoT reasoning without direct supervision fails to improve
performance and can even degrade it. This is likely due to the inherent difficulty of learning long
CoT chains: correct sampling is challenging, and the learning process requires considerations beyond
accuracy—such as output formatting—which can reduce learning efficiency and lead to reward
increases without corresponding performance gains.

E THE ANALYSIS OF STATISTICAL SIGNIFICANCE

In the main result (Table 1), we disabled the sources of randomness to ensure reproducibility. To
address your concern, we enabled random sampling during generation and conducted a t-test between
our method and the corresponding baseline (BIGRec). When reporting the averaged results, our
method remains significantly better, with a p-value < 0.001, as shown in Table 7.

F PERFORMANCE ON LARGER LLM

We have further explored the effectiveness of our method on a larger LLM, Qwen2.5-3B. Considering
the high cost of LLM tuning, we focused on comparing our method with BIGRec on only one dataset
— CDs. Meanwhile, given the much higher cost of RL tuning for larger LLMs, we apply LoRA-based
tuning to control training expenses under the use of larger LLMs. The results are summarized in
Table 8. As shown, our method still delivers a more substantial relative improvement on the larger
model, achieving an average performance gain of 40.7%.

G INFERENCE COST COMPARISON

Compared to non-reasoning LLM baselines, our method introduces the extra cost of generating latent
reasoning tokens. However, since only a few tokens are used (one by default), the added cost is
minimal. In contrast, explicit reasoning methods often require a large and uncontrollable number of
tokens, leading to significant overhead. We randomly selected 100 samples from each of the four
datasets. Inference was performed using a single A100 GPU, with batch size set to 4 and beam size
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Table 5: Performance of LatentR3 and baselines on the Steam dataset.
Method H@5 H@10 N@5 N@10
Caser 0.0407 0.0685 0.0262 0.0351
GRU4Rec 0.0422 0.0721 0.0271 0.0367
SASRec 0.0390 0.0633 0.0251 0.0329
BIGRec 0.0559 0.0821 0.0405 0.0489
LatentR3 0.0630 0.0959 0.0451 0.0557

Table 6: Performance comparison of explicit reasoning learned via RL (without CoT supervision,
denoted by “COT-RL”, ) versus other methods.

Metrics H@5 H@10 N@5 N@10

Base 0.0195 0.0252 0.0148 0.0167
COT 0.0302 0.0406 0.0213 0.0246
COT-RL 0.0297 0.0390 0.0202 0.0232
Ours 0.0934 0.1160 0.0754 0.0826

set to 10 (the CoT method set to 1). Each measurement was taken three times and we report the
average values, as shown in the Figure 5. Because only a single token is added, and the length of
item titles inherently varies, our inference time is almost identical to that of non-reasoning methods.
However, explicit CoT methods are far more expensive (COT).

H PERFORMANCE ON POPULAR AND UNPOPULAR ITEMS

Based on the frequency of items in the training set, we consider the top 20% of items as popular
items and the other items as unpopular items. We then calculate the performance of BIGRec and
LatentR3 for these two groups of items, and calculate the relative performance improvement in each
group. The specific results are shown in Figure 6.

To further validate our method’s ability to recommend unpopular items, we added SASRec results
and compared the performance improvements of BIGRec and LatentR3 over SASRec. The results
on the Toys dataset are shown in Table 9, where the absolute results N@10 are also included. As
shown in the table below, for the Toys dataset, BIGRec achieves comparable relative improvements
over SASRec for long-tail and popular items (17.4% vs. 13.7%). In contrast, LatentR3 shows a
significantly larger relative improvement for long-tail items compared to popular items (53% vs.
27.5%). This indicates that while BIGRec’s gains over SASRec are similar across item popularity
levels, LatentR3 benefits much more on long-tail items.
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Figure 5: Inference time comparison across non-reasoning (BIGRec), LatentR3 (Ours), and explicit
CoT methods (COT).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: T-test results for BIGRec and LatentR3 (applied to BIGRec) on the CDs dataset over five
experimental runs. “*” indicates statistical significance with p < 0.01.

Method H@5 H@10 N@5 N@10

BIGRec 0.0725 0.0902 0.0595 0.0653
+LatentR3 0.0929∗ 0.1131∗ 0.0748∗ 0.0813∗

p-value 0.00014 0.00067 4.8e-6 1.7e-5

Table 8: Performance comparison of BIGRec and LatentR3 on the CDs dataset using larger LLMs
with LoRA tuning.

Method H@5 H@10 N@5 N@10 Impr.
BIGRec 0.0503 0.0658 0.0389 0.0439 -

+LatentR3 0.0695 0.0903 0.0566 0.0634 40.7%

Besides, we also explored the performance of our method on the fully cold-start items, with the
results shown in Table 10. As the results show, our method also has better cold-start performance
than the BIGRec baseline.

I MORE ABLATION RESULTS

Our RL designs include mainly three parts: 1) batch-level advantage, 2)the sampling change, and 3)
the PPL-based rewards. The batch-level design aims to improve performance, while the PPL-based
rewards aim to enhance efficiency. The change in sampling arises from the fact that we can no longer
follow the sampling procedure used in the GRPO paper. Reparameterization-based sampling is a
straightforward choice for handling latent reasoning. Even when implementing the original GRPO
under latent reasoning, we still need to adopt our sampling method. Here, we additionally verify
the functions of different designs, reporting the time cost. The results are shown in Table 11. As
shown, the performance improvement is mainly attributed to the batch-level advantage, and this
batch-level advantage does not contribute to efficiency improvements. Please note that, in terms of
time efficiency, our method is more efficient — it takes only about one quarter of the runtime of the
original GRPO (under the changed sampling), as reported in Figure 4 of our paper.

J INFLUENCE OF REASONING LENGTH

We investigate how length of latent reasoning affects model perfomance by varying the number
of generated latent tokens (K), with K ∈ {0, 1, 2}. When implementing, a model dedicated to
single reasoning token generation was fully trained. We directly perform reinforcement learning
to train the 2 reasoning tokens model based on this. Noise sampling was selectively applied only
to the last reasoning token, given that the first token’s generative capabilities were already robustly
established through the initial training. Experiments are conducted on the Toys and CDs datasets,
and the results in terms of NDCG@10 (denoted as N@10), HR@10 (H@10), NDCG@5 (N@5)
and HR@5 (H@5) are shown in Figure 7. As shown, increasing the reasoning length improves
performance, demonstrating the potential to achieve even better results by increasing the reasoning
length. However, the gain from K=1 to K=2 is much smaller than from K=0 to K=1, suggesting
that a few latent tokens may be sufficient to capture most of the reasoning information.

K COMPARISON WITH THE ORIGINAL GRPO

To implement the variant with the original GRPO, after sampling the latent reasoning, we leverage the
LLM to generate the final answer, and then exactly match the answer with the ground-truth to compute
0-1 reward. Lastly we leverage the group average for advantage computation. The experiments are
conducted on both the Toys and CDs datasets. The results are summarized in Figure 8. In terms of
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Figure 6: Performance improvement of LatentR3 over BIGRec on both popular and unpopular items
on four dataset.
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Table 9: Relative performance improvement comparison between popular and unpopular items

Toys Pupular RI Long-tail RI
SASRec 0.0812 - 0.0315
BIGRec 0.0923 13.7% 0.0369 17.14%
LatentR3 0.1035 27.5% 0.0479 52.1%

Table 10: Performance on the fully cold-start items.

Dataset Toys CDs
BIGRec 0 0
LatentR3 0.0029 0.0263

performance, our method achieves results comparable to the variant using original GRPO—slightly
outperforming it on the CDs dataset while performing slightly worse on the Toys dataset. In terms of
training efficiency, our method is significantly faster, reducing the training cost to approximately 1/4
of that of the original GRPO-based method. These findings validate the rationale and effectiveness
of our proposed modifications. Notably, the reported results for the original GRPO are based on
full-model tuning during RL, as this setting is necessary to achieve the reported performance. Tuning
only the LatentRATT layer, as done in the default LatentR3—results in significantly worse outcomes
for GRPO. However, we observe that limiting GRPO to tuning the LatentRATT layer would only
slightly reduce training cost (by approximately 50 minutes), indicating that our method remains
substantially more efficient.

L APPLICABILITY OF OUR METHOD TO OTHER MODELS

In this section, we have explored two broader applications of methods: 1) applying to traditional
ID-based recommendation, and 2) applying to the method that leverages LLM-generated embeddings
to enhance the recommendation model (AlphaRec).

Applying to SASRec: We applied our method to SASRec, and the results are reported in Table 12.
As shown, SASRec does not exhibit meaningful gains after incorporating our method. These results
align with the findings from ReaRec’s Tang et al. (2025) ablation studies — applying LLMs’ latent
reasoning into traditional methods without specifically solving problems like reasoning degradation
does not lead to effective improvements. However, our LatentR3 could bring improvements over the
vanilla latent reasoning methods.

Applying to Enhance LLM Representations: To verify whether latent reasoning can lead to better
LLM representations, we conducted additional experiments on AlphaRec, replacing the standard
embeddings with those generated by the our latent reasoning model to enhance the ID-based model.
The results presented in Table 13 demonstrate that the latent reasoning approach also exhibits
considerable value in this scenario.

M FULL RELATED WORK

LLM-based Recommendation. The recent widespread success of LLMs has sparked growing
interest in their application to recommendation systems, giving rise to three main paradigms: (1)
in-context learning (Gao et al., 2023; Sun et al., 2024; Wang et al., 2021), (2) agent-based frame-
works (Wang et al., 2023; Zhang et al., 2024a;b), and (3) fine-tuning-based methods (Bao et al., 2025;
Zhang et al., 2024c). Among these, the fine-tuning-based solution has received the most attention due
to its ability to more effectively align LLMs with recommendation objectives, and our work falls into
this category. Although significant efforts have been devoted to this direction, most existing methods
overlook the role of reasoning in recommendation—particularly latent reasoning, which remains
unexplored. Among the limited studies that investigate reasoning, existing works primarily focus on
enhancing explicit chain-of-thought (CoT) reasoning through fine-tuning. RecSAVER (Tsai et al.,
2024) and ReasoningRec (Bismay et al., 2025) leverage larger LLMs to generate CoT reasoning data
for training smaller LLMs, aiming to improve their reasoning capabilities. Reasoning4Rec (Fang
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Table 11: Detailed comparison of different designs

Ablations Performance (H@10) Train time
+sampling+PPL rewards (i.e., w/o Batch Advantage) 0.1002 76 mins
+sampling + PPL rewards+ batch-level advantage (i.e., LatentR3) 0.1160 81 mins

Table 12: The results of replacing LLMs with SASRec for LatentR3.
Method H@5 H@10 N@5 N@10
vanilla SASRec 0.0841 0.1054 0.0622 0.0691
SASRec+latent reasoning 0.0681 0.0880 0.0506 0.057
SASRec+latent reasoning+RL (LatentR3) 0.0801 0.0975 0.0635 0.0691
Ours 0.1137 0.1327 0.0915 0.0977

et al., 2025) decomposes the reasoning process into multiple steps, using user reviews as proxy
supervision. Exp3rt (Kim et al.) focuses on distilling the reasoning behavior of larger LLMs into
smaller models. However, these approaches rely heavily on CoT data, which is costly to obtain and
often difficult to ensure in quality. Moreover, the use of explicit CoT reasoning typically incurs higher
inference latency. In contrast, our work introduces latent reasoning for LLM-based recommendation,
which eliminates the need for CoT supervision and enables more efficient inference. Rec-R1 Lin
et al. (2025) investigated the use of RL to enhance LLM-based recommendation; however, it focuses
on enhancing query rewriting and summarization of LLMs rather than improving general reasoning
capabilities. As for latent reasoning, only two concurrent works (Tang et al., 2025; Zhang et al.,
2025) have explored it, but neither focuses on LLM-based recommendation, and our approach to
latent reasoning is fundamentally different and specifically focused on LLM-based recommendation.
ReaRec Tang et al. (2025) does not focus on reinforcement learning to support better exploration
of reasoning. STREAM-Rec focuses more on building a recommendation foundation model with
reasoning abilities from scratch. While STREAM-Rec Zhang et al. (2025) uses RL, it still relies on
pseudo labels to train slow-thinking abilities, and its RL stage largely follows the original GRPO
design, except that its reward computation incorporates recommendation-specific elements. Our
sampling and advantage computation are different.

Latent reasoning in LLM. Latent reasoning has been proposed to address two major limitations of
explicit CoT reasoning: (1) high inference latency and (2) the excessive generation of non-essential
tokens. Several efforts have been made to explore latent reasoning mechanisms. For example, Deng
et al. (2023) introduced the implicit CoT by encoding reasoning directly into the model’s internal
hidden states, while Hao et al. (2024) proposed treating these hidden states as thoughts in the input
space to represent reasoning. However, both methods rely on supervision from explicit CoT data.
Goyal et al. (2024) proposed using learnable <pause> tokens to represent reasoning steps, but this
approach may suffer from low expressivity (Hao et al., 2024). Among the existing works, the method
proposed in (Geiping et al., 2025) is most related to ours. It introduces a recurrent architecture for
generating deep latent reasoning, but it is not designed using reinforcement learning and requires
pertaining a LLM model with new architecture, making it incompatible with direct integration into
existing LLMs.

Table 13: The results of applying LatentR3 to enhance AlphaRec.

Datasets Cds Toys
Metrics N5 N10 H5 H10 N5 N10 H5 H10
AlphaRec 0.0278 0.0373 0.0479 0.0774 0.0347 0.0448 0.0579 0.0893
AlphaRec-latent 0.0373 0.0482 0.0629 0.0963 0.0352 0.0465 0.0577 0.0932
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N THE USE OF LARGE LANGUAGE MODELS

The use of Large Language Models (LLMs) is an integral part of our methodology. We employ LLMs
primarily to assist in the refinement of textual content, including the optimization of language and
clarity in the writing of this paper. A detailed description of how the LLM was utilized within our
methodological framework is provided in Section 3. It is important to clarify that while LLMs were
used as tools to support drafting and editing, all research ideas, conceptual design, data analysis, and
final decision-making were conducted entirely by the human authors.
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