Under review as a conference paper at ICLR 2026

AGENTRACE: BENCHMARKING EFFICIENCY IN LLM
AGENT FRAMEWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents are rapidly gaining traction across domains
such as intelligent assistants, programming aids, and autonomous decision systems.
While existing benchmarks focus primarily on evaluating the effectiveness of
LLM agents, such as task success rates and reasoning correctness, the efficiency
of agent frameworks remains an underexplored but critical factor for real-world
deployment. In this work, we introduce AgentRace, the first benchmark specifically
designed to systematically evaluate the efficiency of LLM agent frameworks across
representative workloads. AgentRace enables controlled, reproducible comparisons
of runtime performance, scalability, communication overhead, and tool invocation
latency across popular frameworks on diverse task scenarios and workflows. Our in-
depth experiments reveal 9 insights and 12 underlying mechanisms for developing
efficient LLM agents. We believe AgentRace will become a valuable resource
for guiding the design and optimization of next-generation efficient LLM agent
systems. The platform and results are available at the anonymous website https :
//agent-race.github.10/.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAll[2023; Touvron et al.|[2023; |Liu et al., 20244} Naveed et al.,
2023} Bai et al.,|2023) have rapidly gained widespread popularity due to their exceptional capabilities
in natural language understanding and generation, significantly impacting various applications
including chatbots, content creation, and programming assistants. With these advancements, LLM
agents (Wang et al., 2024} |Guo et al., 2024; [Zhao et al., [2024; [Zhang et al., 2024}; Ni & Buehler,
2024), which are autonomous entities powered by LLMs capable of executing complex tasks through
intelligent interactions, have emerged as a promising area of research and practical implementation.

To accelerate the development of LLM agents, numerous benchmarks and datasets (Andriushchenko
et all,|2024; Chang et al., 2024; Huang et al.,|2023} |Shen et al.,|[2024) have been proposed to assess
LLM agents, primarily focusing on evaluating their effectiveness and reliability in task completion.
These benchmarks typically measure task success rates, correctness of generated outputs, overall
functional capabilities, and safety of agents.

However, for LLM agents to be widely deployed in real-world scenarios in the future, the efficiency of
their frameworks is critically important. Efficient execution, scalability, and minimal communication
overhead are essential for ensuring timely responses and practical usability, particularly in resource-
constrained and latency-sensitive environments. Despite the proliferation of LLM agent frameworks,
such as LangChain (LangChainl [2025)), AutoGen (Wu et al., [2023)), and AgentScope (Gao et al.
2024), a systematic benchmark evaluating these frameworks’ performance efficiency remains absent.

To bridge this significant gap, we introduce AgentRace, the first efficiency-focused benchmark
platform for LLM agent frameworks, including cost, computational, and communication efficiency.
AgentRace enables controlled, reproducible comparisons across frameworks and workflows, aiming
to answer the following key research questions:

1. What are the primary efficiency bottlenecks in current LLM agent frameworks (e.g., model
inference latency, tool calling overhead)?

2. What caused the inefficiency of existing LLM agent frameworks?

https://agent-race.github.io/
https://agent-race.github.io/

Under review as a conference paper at ICLR 2026

3. How to improve the efficiency of agent execution?

AgentRace features a modular and extensible design. It supports 7 LLM agent frameworks, 12
types of tools, 3 commonly used workflows, 5 task scenarios, and 4 metrics. The benchmark can
be executed with a single command line, facilitating rapid experimentation and reproducibility. We
conduct a comprehensive assessment of the efficiency of popular LLM agent frameworks and reveal 9
insights and 12 underlying mechanisms for developing efficient LLM agents. The platform and results
are made available through an anonymous website https://agent—-race.github.io/.

In summary, our contributions include:

* We introduce AgentRace, the first benchmark platform that systematically evaluates the
efficiency of LLM agent frameworks with modular design, filling a critical gap left by
existing benchmarks that primarily focus on task success or reasoning correctness.

* We conduct a comprehensive and in-depth assessment of efficiency across frameworks,
revealing previously undocumented sources of inefficiency.

* We provide actionable insights for both practitioners and researchers to optimize the deploy-
ment of efficient LLM-based agents.

* We release the entire benchmark suite and experimental results, providing a platform to
identify the efficiency issues of LLM agents.

2 BACKGROUND AND RELATED WORK

2.1 LLM AGENTS

LLMs agents (Yao et al.| [2023} Zhao et al.,|2024) are systems that combine the generative capabilities
of LLMs with additional components such as memory, planning, and tool usage to perform complex
tasks autonomously. These agents can interpret user inputs, plan actions, interact with external tools,
and adapt based on feedback, enabling more dynamic and context-aware behaviors. Many agents
have been developed, where some are generic agents that are designed to execute general tasks and
some are specialized agents for some concrete task. For example, ReAct (Yao et al.| 2023 is a typical
general agent workflow, where the agent thinks and take actions interatively. MetaGPT (Hong et al.|
2023) is an agent designed for software development, where each agent plays a different role to
simulate a software company. In this work, we aim to evaluate the efficiency of different LLM agent
frameworks, thus focusing on using the widely used general agent workflows.

2.2 LLM AGENT FRAMEWORKS

The development and deployment of LLM agents have been facilitated by various frameworks that
provide tools and abstractions for building agentic systems. There have been many LLM agent
frameworks. For example, LangChain (LangChain| [2025) offers a modular framework for developing
applications with LL.Ms, supporting integrations with various data sources and tools. It provides a
low-level agent orchestration framework, a purpose-built deployment platform, and debugging tools.
Besides LangChain, there are also many other popular LLM agent frameworks. In our platform, we
select some popular and easy-to-use frameworks for integration. For the detailed introduction of
these frameworks, please refer to Section @

2.3 BENCHMARKS FOR LLM AGENTS

There have been many benchmarks for LLM agents (Andriushchenko et al.l 2024} |(Chang et al.,
2024; Huang et al., 2023} |Shen et al., [2024; [Liu et al., |2024b)). However, most of these benchmarks
usually focus on ability or trustworthiness perspectives, and do not exploit the efficiency part. For
example, AgentBench (Liu et al.,[2024b) report Step Success Rate as the main metric showing the
independent accuracy of each action step, due to the current struggles for LLMs to ensure overall
task success rates. Beyond benchmarks focusing solely on success rates, AgentBoard (Chang et al.,
2024) proposes a comprehensive evaluation framework for LLM agents. It introduces a fine-grained
Progress Rate metric to track incremental advancements during task execution, along with an open-
source toolkit for multi-faceted analysis. WORFBENCH (Huang et al., [2023) introduces a unified

https://agent-race.github.io/

Under review as a conference paper at ICLR 2026

Framework Analysis

[%Agenﬁcop% [AutoGen] [@ CrewAl] LangChai%
[Llamalndex] [Phidata] P% PydanticAl]

time

L

(token \

Agent prompt-token
> []
O >
[RAG ReAct MoA \ _g)
I —| Thought [€— E token /
vector ¢ I v
T gy D ' - . — query T
| ’ Action [Observatiol ’ g accuracy
_ __ Y,
(communication siza
oete
e N\ —>|
MMLU ’ [GAIA J Human-eval [Alpaca-eval ‘ OK-VQA
| J \ /

Figure 1: The architecture of AgentRace.

framework for evaluating workflow generation, including both linear and graph-structured workflows.
Its evaluation metric, WORFEVAL, quantifies generation performance across these tasks. Although
the benchmark measures end-to-end efficiency through Task Execution Time, it omits a detailed
breakdown of computational costssuch as tool execution latency. This lack of granularity obscures
potential bottlenecks in workflow optimization. MASArena (MAS| [2025) provides a convenient
multi-dimensional framework for agent evaluation, but it lacks a unified implementation for diverse
workflows and heterogeneous tool integrations. Moreover, its evaluation benchmarks are limited to
domains such as mathematics, code, and textual reasoning.

3 DESIGN OF AGENTRACE

3.1 MODULES

To systematically evaluate the efficiency and scalability of LLM agent frameworks, we introduce
a modular benchmark platform AgentRace. As shown in Figure |1} this platform comprises four
interconnected modules, including Data, Agent, Framework, and Analysis, designed to capture
diverse agent frameworks, execution workflows, task complexities, and performance analysis.

Data Module: Diverse Task Coverage The Data module defines the core tasks used in our bench-
mark and plays a critical role in ensuring that LLM agent frameworks are evaluated across a wide
range of real-world scenarios. Our design is guided by two key considerations: (1) task diversity in
terms of reasoning complexity, tool usage, and interaction patterns; and (2) alignment with widely
adopted benchmarks to enable meaningful and comparable evaluations. We select five represen-
tative datasets that reflect varying levels of difficulty, domain coverage, and agent requirements,
including GAIA (Mialon et al.} 2023), HumanEval (Chen et al., 2021), MMLU (Hendrycks et al.,
2020), AlpacaEval (Dubois et al.| 2024), and OK-VQA (Marino et al.,[2019). The datasets cover
tool-intensive, structured reasoning, retrieval-augmented workflows, multi-agent, and multi-modal
scenarios. The details about the datasets are available at Appendix [A.T] The above coverage enables
a holistic evaluation of agent frameworks under varied demands, including tool usage, memory
handling, retrieval integration, and inter-agent communication.

Agent Module: Workflow Diversity The Agent module captures the diversity of reasoning
patterns exhibited by modern LLM-based agents. In designing this module, our goal is to represent a
wide range of real-world task execution strategies while ensuring broad compatibility with existing
agent frameworks. We instantiate agents using three widely adopted and conceptually distinct
workflow paradigms, including ReAct (Reasoning and Acting) (Yao et al.,[2023), RAG (Retrieval-

Under review as a conference paper at ICLR 2026

monitor \
logging.info(f"omni_run start, query: {query}") 1
result = agent.omni_run(question) 1

logging.info(f"omni_run end, result: {result}")

config

Specify the frameworks
and datasets to be
tested in config.yaml

@weave.op()
def omni_run(self, task: str):

frameworks: result = self.run(task, stream = False)
- agentscope return result.content |
- autogen] R
- crewai ; @traced_tool(tool_name="'pdf_tool") \
- langchain *.| | def PDFLoader(path: str) -> str:

datasets: init | S Load a PDF document from a path.™"

-mml
o ReAct)| RAG | Moa |

data = reader.load_data()
return data

agent.py

RAG [embeddinglretrieve]llm inference]

/ijeAchllm inferencel tool calling] <

oo i as® i MoA [IIm inferencel communicaﬁon]

,,,,,,, result analysis

Figure 2: The pipeline of AgentRace.

Augmented Generation), and MoA (Mixture of Agents) (Wang et al., 2025). These workflows
reflect sequential prompting, retrieval-grounded answering, and distributed multi-agent collaboration.
By supporting all three within our benchmark, we enable a comprehensive evaluation of agent
frameworks under varying reasoning styles and system architectures. The details about the workflows
are available at Appendix [A.2]

Framework Module: Broad Ecosystem Coverage The Framework module integrates a wide
spectrum of open-source LLM agent frameworks including LangChain (LangChain, [2025), Au-
toGen (Wu et al., [2023)), AgentScope (Gao et al., 2024), CrewAl (Lee} 2025), Llamalndex (Lla-
malndex, |2025), Phidata (agno-agi, 2025), and PydanticAl (PydanticAl[2025), each with distinct
design philosophies, runtime environments, and abstraction layers. In selecting the frameworks, we
focus on two primary considerations: (1) their popularity and influence in the developer and research
communities, and (2) the feasibility of easy deployment and integration within our benchmarking
platform. In particular, our implementations are designed to extend functionalities absent from certain
frameworks, while leveraging native components whenever available so as not to replace or override
existing optimizations.

Analysis Module: Measuring Efficiency The Analysis module defines the core metrics used
to evaluate the system-level efficiency of LLM agent frameworks. We focus on three dimensions:
computational efficiency, cost efficiency, and communication efficiency. Specifically, we measure
the following four key metrics: (1) Execution Time: The total wall-clock time from agent invocation
to task completion. This includes the full execution pipeline, including LLM inference, tool calls,
etc. (2) Token Consumption: The total number of input and output tokens processed by the LLM
during the task. This reflects the computational cost of inference and directly impacts the monetary
cost in API-based deployments. (3) Communication Size: The total volume of data exchanged
between agents. This metric captures inefficiencies in prompt formatting, serialization, and inter-agent
message passing, particularly relevant in multi-agent setting. (4) Accuracy: To ensure correctness is
preserved during efficiency evaluation, we also include a task-specific accuracy metric. This ensures
that frameworks are functionally correct.

3.2 PIPELINE

The design of the AgentRace benchmark pipeline is illustrated in Figure 2] The pipeline is fully
modular and consists of three main stages: (1) configuration, (2) execution and monitoring, and (3)
analysis and visualization. In the configuration stage, users specify experimental parameters (e.g.,
framework, workflow, dataset, and tools) in a YAML file. The executor parses this file and instantiates

Under review as a conference paper at ICLR 2026

Table 1: The supported functionalities of AgentRace. v denotes that the functionality is implemented
in AgentRace. O denotes that the functionality is supported in the original framework.

LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAl

ReAct @) v O v O v v
Workflow RAG O 4 O 4 O @] v
MoA v O 4 O O v v
Search O v O O O O 4
PDF loader @) v v Ve O v v
CSV reader O v v @) O O v
XLSX reader @) v v v O v v
Text file reader @) v v O @) O v
Tools doc reader @) v 4 4 O v v
MP3 loader @] 4 O v @] v v
Figure loader v v O O O v v
Video loader v v v v v v v
Code executor O O O O O O 4
data retrieval @) v O Ve @) O v
LeetCode solver v 4 v 4 v v v

the corresponding agent with unified interfaces. During execution, the agent interacts with the chosen
framework and tools under controlled settings, while a monitoring layer is dynamically attached to
capture runtime behavior. Finally, the analysis stage aggregates the collected traces into structured
logs and performance visualizations for reproducibility and cross-framework comparison.

Tracer and Logger The monitoring layer is designed to provide fine-grained yet low-overhead
instrumentation. We implement two complementary components: a logger for recording high-level
events and a tracer for intercepting fine-grained tool calling operations. The logger tracks each LLM
inference call, data retrieval request, and inter-agent communication, capturing metadata such as
token count, latency, and payload size. To address the scalability challenge of monitoring diverse tool
invocations, we introduce a generic tracer wrapper, t raced_tool, that instruments tool execution
transparently. Developers can annotate a tool with a single wrapper, after which its statistics are
automatically recorded. This design allows AgentRace to maintain both extensibilitynew tools can
be integrated without modifying the core frameworkand reproducibility, as all traces are stored in a
standardized log format compatible with downstream analysis modules.

3.3 FUNCTIONALITIES

The core functionalities supported by AgentRace are summarized in Table [l Our benchmark
currently supports three representative agent workflows executed across seven widely used LLM
agent frameworks, utilizing a unified pool of eleven tools. While some of these capabilities are
natively supported by the frameworks, approximately 50% of the functionalities are implemented by
ourselves to ensure full compatibility and coverage. To maintain a fair comparison across frameworks,
we adopt a standardized implementation for any functionality that is not natively provided. This
ensures that differences in evaluation metrics stem from the underlying framework behavior, rather
than implementation gaps. For more implementation details, please refer to Appendix [A]

4 EXPERIMENTS AND INSIGHTS

We conduct in-depth analysis for the efficiency of LLM agent frameworks. Due to the page limit, we
present the representative results in the main paper. We present additional experimental details in
Appendix [A] accuracy comparison in Appendix [B.1] results on additional datasets in Appendix [B.2]
scalability experiments in Appendix [B.3] extended analysis between prompt token counts and exe-
cution time in Appendix experiments on additional models in Appendix reproducibility

Under review as a conference paper at ICLR 2026

12000
35000 Input Tokens Tool Time 70 Input Tokens Tool Time 25
30000 Output Tokens LLM Time Output Tokens LLM Time
Runtime Misc 160 10000 Runtime Misc 20
(%) iy wn «
< 23000 508 S 8000]
c c
< S % 5]
© 20000 S © 155
e a0y [t 9
615000 2 g >
£ o £ [}
£ PE £ 4000 e
% 10000 Il =
5
5000 10 2000
0 0 o
\ \ X\ date e in en] X, 1datd e
el roGen oP% cewh nde%dal ic i oG COP% rew nde%dat wic
LangC ™ AUEOPEL 1ot TN | mal e pice o ygan LanaCN puto®e entS fel LamaNoCpnides o
(a) GAIA (b) HumanEval
60
7000 Input Tokens Embedding Time 14 Input Tokens LLaMA Time
Output Tokens Rerank Time 14000
il output Tokens Qwen Time
6000 Retrieve Time 12 12000 DeepSeek Time 50
LLM Time — GPT-40 Time —
n m " m
£ 5000 10T $ 10000 402
(3 [
8 e B S
£ 4000 8 g L 8000 309
a 2 o o
£ 3000 62 € 6000 g
o E & 202
2000 4 4000
1000 2 2000 10
0 0
et roGet 0P€ cewh de% odatd wich et xoGen 0P€ rewh 3%y idatd e
\,af\gc Ao Aqe“tsc cre W ama\r\ Phi Py dan! _angC AUto Aqe“tsc cre’ W ar\’\a‘“ Pl Wda{\
(c) MMLU (d) AlpacaEval

Figure 3: Token consumption and execution time per query of different frameworks.

verification in Appendix [B.6] prompts in Appendix [C] bugs and features of the investigated frame-
works in Appendix [D] tool implementation in Appendix [E] and usage of LLMs in Appendix [F

4.1 EXPERIMENTAL SETUP

Setting We evaluate 7 LLM agent frameworks using our benchmarking platform, AgentRace,
ensuring a standardized and reproducible execution environment. By default, with three repeated
runs, experiments are conducted on a Linux server equipped with 12-core Intel(R) Xeon(R) Silver
4214R CPUs and a single NVIDIA RTX 3080 Ti GPU. While most of our metrics and findings are
independent of hardware setup, we have also added experiments on additional servers to demonstrate
the robustness of our results in Appendix [B.6|

Datasets We use five representative datasets across different agent workflows: GAIA, HumanEval
and OK-VQA are executed with the ReAct workflow, MMLU is evaluated using RAG, and AlpacaEval
is tested under the MoA.

Models Unless otherwise specified, GPT-40 is used as the default LLM. We also conduct exper-
iments using other models in Appendix For MoA, we instantiate the first-layer agents with
a diverse set of open models: LLaMA-3.3-70B-Instruct-Turbo, Qwen2.5-7B-Instruct-Turbo, and
DeepSeek-V3. We use TogetherAl (tog, [2024)) for querying these models. GPT-4o is used as the
aggregation agent to integrate their outputs. In the RAG setting, the MMLU test set is used to
construct the retrieval database.

4.2 EXECUTION TIME AND TOKEN CONSUMPTION

Insight 1: LLM inference usually dominates runtime across all agent frameworks, and inefficient
prompt engineering, such as appending full histories and using verbose prompts, exacerbates both
latency and cost.

Key Observations Figure 3| presents the breakdown of agent execution time across four benchmark
scenarios. The results on OK-VQA are available at Appendix[B.2} Across all settings, LLM inference
consistently dominates runtime. Even in the GAIA scenario, which is explicitly designed to be
tool-intensive and involves frequent calls to external APIs, LLM inference accounts for more than
85% of the total execution time in most frameworks. This highlights that LLM inference, due to its

Under review as a conference paper at ICLR 2026

computational demands and frequent invocation, remains the primary bottleneck in agent execution,
regardless of the complexity or type of task. Moreover, we observe that the cost of LLM inference
is further exacerbated by large variations in token efficiency across frameworks. There is a strong
positive correlation between LLM inference time and token consumption.

Underlying Mechanism-1: Appending Full History to Prompts We observe that CrewAlI and
AgentScope elevate token usage arises from their design choice. In their implementation, the LLM
stores all intermediate inputs and outputs in memory and appends this memory to each new prompt.
As a result, the prompt length grows with every step of reasoning, causing a high token consumption.

Underlying Mechanism-2: Using Verbose Prompts In the ReAct workflow, Llamalndex con-
sumes a significant amount of prompts, primarily due to the observation portion returned to the
LLM after tool invocation. Additionally, for queries that fail to execute successfully, the number of
reasoning and action iterations increases, leading to a corresponding growth in the observation-related
prompts. For a more detailed analysis of the underlying causes, please refer to Appendix B2

Potential Optimizations These findings underscore the importance of efficient prompt engineer-
ing and memory management in agent framework design. Strategies such as selective memory
summarization, compact formatting, and prompt compression are crucial for reducing token usage.

4.3 TooL CALLING

Insight 2: Tool execution efficiency varies widely across frameworks, with search and figure-related
tools introducing disproportionately high latency.

. LangChainHﬂ 0.01 H 0.03 0.02 Unused
Key Observations We analyze the

execution cost of various tool types Amee,. 003 | 0.001 | 0,02 Unused
across multiple LLM agent frame-

works, as illustrated in Figure@ The A“’“‘s“"’. B 00t 00003
results reveal substantial variation
in tool execution efficiency between
frameworks, particularly for high-cost uamaimdex
operations. Among all tool categories,
search and figure-related tools usually
incur the highest latency, often domi-
nating total tool execution time within - ‘
a workflow. For instance, the figure P N A A A & S S
loader takes 2.7 seconds to execute in g
CrewAl, but exceeds 30 seconds in
AgentScope, indicating considerable Figure 4: The execution time per call for each tool.
framework-dependent overhead. In

contrast, lightweight tools such as Text file reader and doc reader typically complete in
under a millisecond, demonstrating minimal variance.

Unused

Unused 0.001 = 0.01

0.0005 BUNZS

112
CrewAi -SSRk} 0.03 0.03 0.03

2
°
R

0.002 | 0.03 | 0.04 | 0.001

=
°
2

- ﬂnﬂ

Unused

Phidata 0.04 0.004 0.003 0.002 = 0.01 (WA

PydanticAl 0.01 0.0002 0.005 0.0003 0.0004 0.03

=
°
2

Additionally, some frameworks (e.g., AgentScope) show disproportionately high total tool processing
time, driven primarily by inefficient handling of image processing or multimedia tasks. This highlights
the importance of optimizing high-latency tools, particularly in scenarios where tool invocation is
frequent or tightly coupled with LLM inference.

Underlying Mechanism-3: Orchestration Depth and I/O Overhead The pronounced disparity
in execution times can be attributed to heterogeneous orchestration layers and I/O pathways across
frameworks. Heavy operations, especially image-centric routines in figure-related tools, trigger large
data transfers and repeated external API calls, amplifying serialization and network overhead. Frame-
works with leaner orchestration logic (e.g., CrewAl) perform these steps with fewer intermediate
abstractions, thereby reducing latency, whereas frameworks with deeper abstraction stacks (e.g.,
AgentScope) accumulate additional processing overhead. Consequently, tool latency scales not only
with the intrinsic cost of the operation but also with the efficiency of each frameworks data handling,
scheduling, and resource management pipelines.

Under review as a conference paper at ICLR 2026

Potential Optimizations While LLM inference remains the dominant bottleneck in most of our
benchmarks, more complex, tool-heavy scenarios, such as document analysis or multimodal agent
tasks, may shift the performance bottleneck toward tool execution. Frameworks aiming to support
such use cases must pay greater attention to optimizing tool orchestration and external API integration.

4.4 RAG

Insight 3: While agents usually involve external databases for information retrieval, the database
performance is overlooked in several frameworks. Vector database is recommended.

Key Observations While RAG workflows are increasingly adopted to enhance factual grounding,
our benchmarking reveals that database performance, particularly during embedding and retrieval, is
a critical yet frequently neglected factor. Figure [3c|illustrates the variation in retrieval latency across
frameworks, exposing significant performance disparities.

Underlying Mechanism-4: Embedding-Pipeline Design One notable example is AgentScope,
which demonstrates high vectorization latency. This stems from its design: during the database setup
phase, AgentScope invokes a large embedding model to compute dense vector representations. The
latency of this embedding model, often implemented as a separate LLM call, substantially increases
the overall vectorization time. Similarly, Phidata exhibits elevated vectorization latency due to its use
of a two-step pipeline. First, its built-in csv_tool loads documents row-by-row; then, it applies a
SentenceTransformer model to compute embeddings. Our benchmark confirms that Phidata’s
csv_tool itself is a relatively slow component, compounding the overall vectorization time. From
our observation, vector databases such as Faiss (Douze et al.| 2024) are good choices.

Potential Optimizations These observations highlight the need for more attention to retrieval
pipeline design, especially in frameworks that aim to support real-time or large-scale RAG deploy-
ments. Optimization opportunities include batching document embeddings, using faster embedding
models, minimizing redundant file reads, and caching frequent queries.

4.5 COMMUNICATION SIZE

Insight 4: Inefficient communication architecture and package design lead to high communication
overhead in the multi-agent setting.

Key Observations In multi-agent frameworks, communication between agents is often overlooked
as a source of inefficiency. However, our analysis reveals large discrepancies in communication size
across frameworks, as shown in Table[2] These differences arise not only from framework-specific
message formats but also from architectural design choices.

Underlying Mechanism-5: Inefficient Communication Architecture Frameworks such as Cre-
wAlI, which adopt a centralized communication pattern, exhibit significantly higher communication
costs. In these designs, a central agent coordinates multiple sub-agents by sequentially delegating
subtasks and collecting responses. For example, in CrewAI’s MoA implementation, the center agent
queries three sub-agents in sequence and aggregates their outputs. Each LLM invocation by the
center agent accumulates prior messages in memory, causing the prompt size and the communication
payload to grow linearly with the number of sub-agents.

Underlying Mechanism-6: Package Design In addition to the core message, Phidata returns a
duplicated content field that mirrors the final message. This, combined with additional metadata
fields, results in large communication sizes.

Potential Optimizations These findings indicate that communication cost is not merely a func-
tion of task complexity but also of framework design. Future agent frameworks should consider
decentralized communication protocols and agent sampling to reduce unnecessary transfer overhead.

Under review as a conference paper at ICLR 2026

Table 2: Communication size between agents (Unit: Byte). We report the content size (e.g., the
transferred outputs from the last agent) and overhead size (e.g., header), separated by /.

LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAI
From Global Agentl 165070 209084401 284078/0 51496200 1180.078/898 354.508/0 96.022/0
Agent Agent2 165.07/0 209.08/44.01 284.078/0 483.740/0 1171.078/889 341.160/0 95.425/0
Agent3 165.07/0 200.08/44.01 284.078/0 619.516/0 1164.078/882 343.219/0 97.116/0
To Aggregation Agentl 19830273 2066.04/52.4 1659318/0 2497.929/0 2022.417/33.689 6128.259/2639.113 2000.542/0
o Agent2 2011.83/3 2071.24/57.38 1511.311/0 1754.701/0 2054.878/39.118 6131.272/2629.426 1927.093/0
8 Agent3 2072.98/3 2156.04/66.81 1889.247/0 2151.097/0 2116.377/48.641 5715.126/2465.817 1892.344/0
Table 3: Scalability Evaluation of AlpacaEval.
Worker Agents LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAl
3 36.50 36.85 32.12 64.00 27.32 50.22 46.45
Time 6 37.96 4734 67.61 12054 36.87 60.42 4224
o 9 47.11 50.84 93.36 21276 43.85 63.84 110.78
(Unit: Second) 12 59.73 55.60 122.99 21834 5377 78.80 111.40
15 66.08 46.43 153.78 24526 6723 83.42 62.13
3 3516.85 3537.22 2800.75 1473243 1933.51 5398.71 3894.06
6 7430.69 721157 5143.28 34558.34 3869.52 6940.13 7172.68
Total Token 9 10401.23 1065376 7547.34 55923.96 5557.50 7785.16 9256.82
12 13801.78 13692.51 10068.83 6124479 719098 8819.67 9384.31
15 16894.12 16886.17 12480.56 80200.01 8873.19 993826 11170.89
3 6563.04 6920.56 5912.11 8021.94 9708.91 19013.54 6108.54
c cation Si 6 14029.26 1438336 10506.82 17863.90 19965.41 21684.95 12206.18
"“‘(‘[‘}‘r‘l‘l‘gc‘]‘g;‘g 1z¢ 9 20468.68 2232597 16275.87 24769.81 29936.97 21320.89 1627834
12 2754148 2878273 22032.48 26822.83 39846.67 22383.08 16394.10
15 3417820 35606.42 27526.39 30897.88 49926.39 23251.44 19198.06

4.6 SCALABILITY

Insight 5: MoA scalability is governed by agent-invocation policy.

Key Observations We evaluate the scalability of the MoA workflow by increasing the number of
worker agents from 3 to0 6, 9, 12, and 15, while keeping the additional agents identical in configuration
to the original ones. Table [3|reports the results on AlpacaEval. For frameworks such as AgentScope
and LangChain, both execution time and token consumption grow almost linearly with the number
of worker agents, reflecting sequential scheduling policies. In contrast, frameworks like PydanticAl
exhibit a significantly slower growth rate, suggesting a fundamentally different invocation strategy.

Underlying Mechanism-7: Parallel Execution In PydanticAl, the observed runtime is shorter than
the aggregate of individual tool and LLM invocation times. This efficiency stems from its parallel
execution architecture: agent calls and tool invocations are dispatched asynchronously, allowing
multiple operations to overlap in time. As a result, the end-to-end latency is effectively bounded by
the slowest operation rather than the sum of all operations.

Potential Optimizations Our analysis indicates that task-level parallelism remains largely underex-
plored in current frameworks. Incorporating asynchronous scheduling and concurrent invocation can
substantially improve scalability in multi-agent workflows, especially under real-world conditions
where latency and throughput are critical.

5 CONCLUSION

We introduce AgentRace, a comprehensive benchmark platform for evaluating the efficiency of LLM
agent frameworks. AgentRace covers a diverse set of datasets, agent workflows, and frameworks,
enabling a fair and reproducible comparison across real-world scenarios. Through extensive and
in-depth experiments, we reveal key insights and underlying mechanisms. These findings highlight
critical optimization opportunities in the design and deployment of LLM-based agents. We hope
AgentRace provides a guideline for future work in developing efficient, scalable, and robust agent
systems, and we plan to continuously extend the benchmark as the LLM agent ecosystem evolves.

Under review as a conference paper at ICLR 2026

Reproducibility Statement We have provided our code on an anonymous website https://
agent-race.qgithub.1io/. We have also provided the experimental details in Appendix [A]and
reproducibility verification in Appendix

REFERENCES
Together.ai. https://www.together.ai/}, 2024. Accessed: 2024-07-16.

Masarena, 2025. URL https://lins—lab.github.io/MASArena/. Accessed: 2025-09-
23.

agno-agi. Phidata, 2025. URL https://docs.phidata.com/introduction. Accessed:
2025-05-15.

Maksym Andriushchenko, Alexandra Souly, Mateusz Dziemian, Derek Duenas, Maxwell Lin, Justin
Wang, Dan Hendrycks, Andy Zou, Zico Kolter, Matt Fredrikson, et al. Agentharm: A benchmark
for measuring harmfulness of 1lm agents. arXiv preprint arXiv:2410.09024, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. Advances in Neural Information Processing Systems, 37:74325-74362, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, et al. Agentscope: A flexible yet robust multi-agent platform.
arXiv preprint arXiv:2402.14034, 2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as ai
research agents. In NeurlPS 2023 Foundation Models for Decision Making Workshop, 2023.

LangChain. Langchain, 2025. URL https://www.langchain.com/l Accessed: 2025-05-15.

Zeping Lee. GB/T 7714-2015 BibTeX Style. https://github.com/zepinglee/
gbt7714-bibtex—stvyle, 2025. GitHub repository.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459-9474, 2020.

10

https://agent-race.github.io/
https://agent-race.github.io/
https://www.together.ai/
https://lins-lab.github.io/MASArena/
https://docs.phidata.com/introduction
https://www.langchain.com/
https://github.com/zepinglee/gbt7714-bibtex-style
https://github.com/zepinglee/gbt7714-bibtex-style

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In ICLR, 2024b.

Llamalndex. Llamaindex, 2025. URL https://www.llamaindex.ai/. Accessed: 2025-05-
15.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vga: A visual
question answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pp. 3195-3204, 2019.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

Bo Ni and Markus J Buehler. Mechagents: Large language model multi-agent collaborations can
solve mechanics problems, generate new data, and integrate knowledge. Extreme Mechanics
Letters, 67:102131, 2024.

OpenAl. Gpt-4 technical report, 2023.

PydanticAl. Pydanticai: A python agent framework for generative ai, 2025. URL https://ai.
pydantic.dev/. Accessed: 2025-05-15.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation.
Advances in Neural Information Processing Systems, 37:4540-4574, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Junlin Wang, Jue WANG, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=h0ZfDIrj7/T.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

11

https://www.llamaindex.ai/
https://ai.pydantic.dev/
https://ai.pydantic.dev/
https://openreview.net/forum?id=h0ZfDIrj7T

Under review as a conference paper at ICLR 2026

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:

Large language models collaborating on long-context tasks. Advances in Neural Information
Processing Systems, 37:132208-132237, 2024.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LIm

agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632-19642, 2024.

12

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 DETAILS ABOUT THE DATASETS

We select five representative datasets that reflect varying levels of difficulty, domain coverage, and
agent requirements: (1) GAIA (Mialon et al., [2023): A comprehensive benchmark for general-
purpose Al assistants. GAIA includes real-world, multi-hop queries that require reasoning over
documents, tool invocation, and web interaction. It is the most tool-intensive dataset in our suite,
designed to assess the full-stack capabilities of LLM agents. Notably, GPT-4 with plugins achieves
only 15% accuracy, while humans reach 92%, indicating significant headroom for improvement. (2)
HumanEval (Chen et al.,[2021)): A code generation benchmark from OpenAl consisting of Python
programming problems. Tasks require precise algorithmic reasoning and strict correctness, with
deterministic evaluation via unit tests. This dataset helps us evaluate agents capacity for structured
reasoning and program synthesis. (3) MMLU (Hendrycks et al., 2020): MMLU spans 57 academic
subjects and provides multiple-choice questions across STEM, humanities, and social sciences. We
use it to test retrieval-augmented workflows, as it simulates closed-book knowledge challenges
and supports grounding in external sources. (4) AlpacaEval (Dubois et al.,[2024): An instruction-
following benchmark that evaluates natural language understanding and response quality. It consists
of 805 prompts and uses GPT-4 as a reference evaluator. This dataset is well-suited for multi-agent
settings where coordination, aggregation, and language alignment are essential. (5) OK-VQA (Marino
etall,2019): A visual question answering benchmark that requires commonsense knowledge beyond
images. It contains 14,000 questions over 14,000 images and emphasizes reasoning with external
world knowledge. The dataset is for evaluating the efficiency of LLM agent frameworks when
handling multimodal tasks.

A.2 DETAILS ABOUT THE WORKFLOWS

AgentRace includes the following workflow paradigms: (1) ReAct (Reasoning and Acting) (Yao
et all, 2023): This paradigm interleaves natural language reasoning with tool-based actions. By
prompting the LLM to first generate intermediate thoughts and then take corresponding actions,
ReAct enables agents to dynamically plan and interact with their environment. (2) RAG (Retrieval-
Augmented Generation) (Lewis et al., |2020): RAG introduces an explicit retrieval step before
generation, allowing agents to ground their outputs in relevant external knowledge. In our benchmark,
RAG highlights the performance of agent frameworks in integrating retrieval modules, managing
memory contexts, and efficiently handling long documents. (3) MoA (Mixture of Agents) (Wang
et all,|2025): MoA represents a multi-agent architecture where multiple agents collaborate to solve a
task. Each agent is often instantiated with a different LLM. An aggregation agent then composes their
outputs to form the final answer. This setting captures the growing trend of using multiple LLMs in
coordination, and allows us to benchmark frameworks on communication, modularity, and scalability.

A.3 DETAILS ABOUT THE FRAMEWORKS

We integrate the following frameworks: (1) LangChain (LangChain, 2025) is a widely adopted
framework that offers modular components for building LLM-based applications. It emphasizes tool
chaining, prompt templating, memory integration, and external API orchestration. (2) AutoGen (Wu
et all, |2023)), developed by Microsoft, facilitates the creation of advanced LLM agents through
multi-agent conversations and automated task planning. (3) AgentScope (Gao et al.,[2024) supports
rapid development of multi-agent systems through a low-code interface. It emphasizes collaboration
among agent roles, enabling scalable deployment of agent collectives with minimal boilerplate. (4)
CrewAl (Lee, 2025) is a lightweight yet expressive Python framework designed for fast iteration. It
provides both high-level abstractions and low-level control. (5) Llamalndex (Llamalndex| [2025)
focuses on context-augmented LLM applications by connecting structured and unstructured data
sources to LLMs. (6) Phidata (agno-agi,2025) is a framework for building multi-modal Al agents and
workflows with memory, knowledge, tools, and reasoning, enabling collaborative problem-solving
through teams of agents. (7) PydanticAl (PydanticAll 2025) is an agent framework that is designed
for easy development of production-grade applications.

13

Under review as a conference paper at ICLR 2026

A.4 VERSIONS OF EVALUATED FRAMEWORKS

All LLM agent frameworks employed in this study are contemporaneous, with the specific version
numbers reported in Table]

Table 4: Versions of the LLM Agent frameworks employed in this paper.

Framework Version Framework version

LangChain 0.3.22 Llamalndex 0.12.30

AutoGen 0.8.2 Phidata 2.7.10
AgentScope 0.1.3 PydanticAI 0.1.0
CrewAl 0.114.0

A.5 HYPERPARAMETERS

In all experiments, the temperature was set to 0, the top k to 1 (if available), and all other parameters
were set to their default values unless otherwise specified.

Except for the cases explicitly noted below, all workflows employ the default prompts provided
by their respective frameworks, and the datasets are used without any modification to the original
queries.

B ADDITIONAL RESULTS
B.1 ACCURACY

Table 5: Accuracy of each framework on each dataset.

Dataset LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAl
GAIA 0.152+0.012 0.1074+0.003 0.2124+0.012 0.222+0.009 0.198+0.015 0.1914+0.026 0.157+0.012
HumanEval 0.573 0.884 0.884 0.872 0.872 0.902 0.921
MMLU 0.820 0.817 0.827 0.813 0.745 0.792 0.788
OK-VQA - 0.305 0.436 0.362 0.307 0.331 0.317

Table [5 presents the accuracy of each framework. In general, the accuracy differences among
frameworks are relatively small when using the same underlying LLM. However, there are still some
notable exceptions.

Insight 6: The complete absence of output constraints in LLMs may lead to tool invocation failures,
whereas excessively strict output validation can incur substantial token overhead and decrease the
response success rate.

Key Observations In our evaluation, we find that when the model skips tool invocation and instead
provides a direct answer (this happens especially with some of the simpler queries in the HumanEval
dataset), the framework retries the prompt, often multiple times. Each retry includes previous failed
attempts in the context, leading to a rapid increase in prompt length and token consumption as well
as a lower likelihood of producing a clean, valid output on later attempts.

Underlying Mechanism-8: Structured Output Misalignment Some frameworks, such as Lla-
malndex, require tool inputs to conform to a strict dictionary format. However, GPT-40 does not
consistently produce structured outputs that align with these expectations, leading to frequent tool
invocation failures. This issue can be partially mitigated if the framework explicitly enforces the
format requirement during the registration phase or input schema definition. In contrast, other
frameworks such as LangChain adopt stricter enforcement mechanisms. ReAct-style agents in these
systems perform rigid output validation and initiate automatic retries when the model’s response
deviates from the expected invocation structure. While such mechanisms increase robustness against
malformed outputs, they may backfire in certain scenarios.

14

Under review as a conference paper at ICLR 2026

Input Tokens Tool Time 30
4000 Output Tokens LLM Time
Runtime Misc 25
2 m
c
3000 °
g 20 €
S o
2 9
a 152
€ 2000 (0]
o €
o 10f=
1000
5
0

\—a\,\gC\’\a\nP\UtOGexgentSCopecre\N N\,\a ma\\'\deé\q‘\data?\! dan{\cp\\

Figure 5: OK-VQA

An additional point to clarify is that the GAIA dataset exhibits relatively low accuracy. This is
primarily because GAIA tasks often require complex task planning and the use of multiple tools,
posing significant challenges for all evaluated frameworks. It is important to note that the primary
focus of this study is not on accuracy, but rather on comparing the performance overhead (e.g., time,
token usage) across different frameworks. Therefore, we ensure that the accuracy across frameworks
remains broadly comparable, without conducting detailed task-level progress analysis as seen in
some related work. By carefully controlling experimental parameters, the fairness of our comparisons
remains valid, even in the presence of lower absolute accuracy.

B.2 DETAILED EVALUATION RESULTS

Figure [5| presents the token and time consumption of OK-VQA.

Table [6] [9) and [I0] presents the detailed results obtained in this experiment. Unless stated
otherwise, the times reported in the table are in seconds per query. The missing data corresponds
to instances where the LLM failed to invoke the required tool correctly during the experimentfor
example, by not returning outputs in the expected format or by not selecting the appropriate tool for
invocation. The following are some noteworthy observations.

Table 6: GAIA Detailed Results

‘ LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAl
Prompt 9358.35 1159.48 23520.479 33621.857 20935.364 6386.667 14459.17
Token Output 637.92 180.66 785.891 664.511 304.976 323.558 320.588
Total 9996.27 1340.15 24306.37 34286.369 21240.339 6710.224 14779.758
1Im 29.491 8.464 41.17 67.68 27.244 14.375 23.779
Search 1.58856 9.4219 7.291 4.031 1.4399 1.83012 1.2275
PDF loader 0.02423455 0.0009297 0.217 0.00965 0.0001352 0.001147 0.001395
CSV reader 0.00003333 0.000336 0.000297 0.000196 0.00016616 0.0007207 0.0003148
XLSX reader 0.06422606 0.002387 0.00405 0.00422 0.004254 0.003858 0.003795

Text file reader 0.0004194 0.00002909 0.0000193 0.00123 0.000034839 0.0002107 8.6865E-06
Doc reader 0.00009758 0.0002212 0.00000883 0.000278 0.0001135 0.000073355 0.000056241

Time MP3 loader - - 0.729 0.000346 0.03341 0.03821 0.02965
Figure loader | 0.5345976 1.05489 4.083 0.03164 0.8767 1.4065 1.2104
Video loader - - 0.0000271 0.000999 - 1.38445E-05 3.1952E-06
Code executor | 0.0152988 0.00005333 0.752 0.09565 0.05782 0.003035 0.0001414
Total tool time | 2.22746732 10.4807 13.076 4.18 2.4126 3.2839 24732
Total time 32.492 20.76 55.092 72.195 29.795 20.396 26238

Insight 7: Token consumption may vary across frameworks even when executing the same workflow,
owing to differences in implementation strategies.

15

Under review as a conference paper at ICLR 2026

Table 7: HumanEval Detailed Results

| Token | Time
Framework | Prompt Output Total | LLM Codeexecutor Total
LangChain 6326.36 617.13 6943.49 23.221 0.0034 23.968
AutoGen 767.45 106.34 873.79 5.822 0.0002 5.846
AgentScope 3180.689 561.518 3742.207 11.738 0.131 11.906
CrewAl 10817.65 892.798 11710.45 24.22 0.0258 25.24
Llamalndex 1985.6 342.793 2328.152 9.52 0.003069 9.611
Phidata 967.329 354.427 1321.756 7.181 - 9.692
PydanticAl 812.951 352.543 1165.494 5.258 0.000007158 5.276

Table 8: MMLU Detailed Results

| Token | Time

Framework | Prompt Output Total | LLM Embedding Retrieve Total

LangChain 701.514 4.035 705.55 1.677 11.833 0.055 1.79
AutoGen 679.788 3.956 683.744 2.171 6.526 0.015 2.182
AgentScope 2664.315 2.878 2667.193 | 3.893 92.472 0.935 4.931
CrewAl 884.536 13.189 897.724 2.51 7.718 0.14 5
Llamalndex 2079.702 50.339 2130.042 | 3.125 4.931 0.4303 3.575
Phidata 2797.441 37.347 2834.788 | 7.849 341.611 6.708 17.014
PydanticAl 6996.242 170.135 7166.378 | 9.685 5977 0.03454 9.824

Key Observations In the results of ReAct workflow, it can be observed that even when using
the same ReAct workflow, AgentScope exhibits a significant discrepancy in token usage between
the GAIA and HumanEval datasets, with exceptionally high token consumption on GAIA. This is
primarily because AgentScope includes the entire memory of the agent in the prompt during every
LLM invocation. As the number of reasoning steps increases, the prompt length grows rapidly. While
this issue is less apparent in the relatively simple HumanEval dataset, it becomes prominent in the
more complex GAIA tasks.

The high token usage observed in CrewAI’s ReAct workflow can be attributed to the same reason. In
fact, this issue is even more pronounced in CrewAl than in AgentScope, with significantly elevated
token consumption observed across both the GAIA and HumanEval datasets.

Underlying Mechanism-9: Overly Detailed Observations In contrast, the majority of token
consumption in Llamalndex and Pydantic arises from the observation segments returned to the LLM
after tool invocations. In the GAIA dataset, where tasks are complex and involve frequent tool usage,
this results in substantial prompt token overhead.

There are also some issues observed in the MoA workflow. For example, PydanticAl does not require
the invocation of all sub-agents during MoA execution, thereby reducing token consumption and
runtime overhead. For further details, please refer to the Insight 8 in Appendix [B.3.1]

Another example is that in the CrewAl framework, MoA is centrally managed by a global agent,
which also plays the role of aggregation agent. The global agent receives the task and sequentially
assigns it to sub-agents (e.g., agentl, agent2, agent3). Each sub-agent completes its part and returns
the result to the global agent, which then decides the next step. After all agents have responded, the
global agent summarizes the results and outputs the final answer. In this setup, the global agent calls
the LLM multiple timesonce after each sub-agents response. Because LLMs retain the full context of
previous inputs and outputs in a single session, each new call includes all prior interactions. This
leads to token accumulation, especially by the third or fourth step, where the prompt becomes much
longer. As a result, total token usage becomes higher than in frameworks with different coordination

16

Under review as a conference paper at ICLR 2026

Table 9: AlpacaEval Detailed Results

‘ LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAI
prompt 70.49 70.49 85.451 298.25 70.49 118.846 61.347
Illama output 428.55 431.96 382.45 518.95 430.216 438.078 429.543
total 499.04 502.45 467.901 817.201 500.707 556.924 490.889
prompt 64.84 64.85 61.815 258.083 64.81 93.899 41.217
qwen output 446.05 447.45 311.109 398.618 441.738 463.795 433.739
Token total 51091 512.31 372.924 656.702 506.548 557.694 474.957
prompt 385 385 52.478 313.01 38.485 83.391 31.802
deepseek output 501.11 503.37 416.639 571.79 495.306 440.691 434.81
total 539.61 541.87 469.117 884.808 533.791 524.082 485.612
prompt 1522.48 1529.96 1138.243 11694.576 42.083 3003.319 1845.724
gpt output 444.81 450.63 352.564 679.15 350.386 756.689 596.876
total 1967.29 1980.59 1490.807 12373.72 392.47 3760.009 2442.6
llama 8.275 7.812 6.063 8.835 6.069 6.152 6.503
qwen 4.48 3.977 3.415 3.837 4.787 4.707 3.441
Time deepseek 23.084 26.745 13.726 21.946 20.829 16.456 17.79
aggregator 10.699 8.274 8.89 23.114 5.849 14.208 27.486
total 36.502 36.854 32.119 64 27.318 50.217 46.45
prompt to agent] 165.07/0 209.08/44.01 284.078/118 514.962/0 1180.078/898 354.508/0 96.022/0
prompt to agent2 165.07/0 209.08/44.01 284.078/118 483.740/0 1171.078/889 341.160/0 95.425/0
c icati prompt to agent3 165.07/0 209.08/44.01 284.078/118 619.516/0 1164.078/882 343.219/0 97.116/0
ommunication |, sentl to aggregator | 1983.02/3 2066.04/52.24 1659.318/124 2497.929/0 2022.417/33.689 6128.259/2639.113 2000.542/0
agent2 to aggregator 2011.83/3 2071.24/57.38 1511.311/122 1754.701/0 2054.878/39.118 6131.272/2629.426 1927.093/0
agent3 to aggregator 2072.98/3 2156.04/66.81 1889.247/126 2151.097/0 2116.377/48.641 5715.126/2465.817 1892.344/0
Table 10: OK-VQA Detailed Results
| token | time
Framework ‘ prompt output total ‘ 1Im code executor total
LangChain 261.033 £ 0.462 52.567 £ 0.473 313.633 4+ 0.058 2.948 £ 0.354 4716 + 0.115 7.664 £ 0.426
AutoGen 791.133 + 0.635 89.467 + 1.882 880.600 + 1.609 6.197 £ 0.060 5.171 £0.233 11.368 + 0.240
AgentScope 2621.367 £ 30.029 283.433 £ 3.355 2902.567 + 30.346 15.537 £5.753 9.043 +3.031 24.580 + 8.779
CrewAl 4510933 4+ 254.635 269.600 £ 120.951 4780.600 + 318.263 4.657 £+ 0.121 5.578 £ 1.236 10.990 + 1.536
Llamalndex 1219.300 + 1.682 83.833 +0.208 1303.167 £ 1.909 5.548 £+ 1.486 5.476 £0.627 11.024 £ 0.998
Phidata 2019.167 £ 2.401 88.500 + 0.600 2107.500 £ 2.193 4.132 £ 0.054 3.930 £ 0.403 9.039 £ 0.027
PydanticAl 1728.367 + 1.674 92.100 £ 0.608 1820.433 +2.223 3.034 £0.012 3.352 £ 0.057 6.390 £ 0.025

or memory strategies. This phenomenon will become more apparent in Scalability part as the number
of sub agents increases. For further details, please refer to the Insight 4 in Section4.3]

B.3 SCALABILITY

B.3.1 THE NUMBER OF WORKER AGENTS

To evaluate the scalability of the MoA workflow, we increase the number of worker agents from 3
t0 6,9, 12, and 15, while keeping the newly added agents identical in configuration to the original
ones. Metrics from agents using the same LLLM are aggregated for reporting. To clearly illustrate
how efficiency evolves with increasing numbers of worker agents, we list separate tables (Table [IT]

[12} [13] [14} [13] [T6}[T7) for each framework.

B.3.2 THE NUMBER OF TOOLS

Insight 8: Increasing the number of tools has only a minimal impact on execution time across
frameworks, but it leads to a noticeable variation in LLM token usage and can cause execution
failures when the input exceeds the LLMs maximum context length.

Key Observations We conduct scalability experiments on the GAIA dataset, examining the effect
of varying the number of tools across different frameworks. In addition to each frameworks original
tool set, we introduce extra LeetCode-solving tools, which are irrelevant for solving the GAIA dataset.
The results in Table [T8]and [T9]show that while increasing the number of tools has only a minimal
impact on execution time, it leads to a noticeable increase in LLM token usage. In addition, it
can be observed that as the number of tools increases, some test samples encountered execution
failures because the input exceed the LLMs maximum context length (see Table [20). Notably, in

17

Under review as a conference paper at ICLR 2026

Table 11: Scalability Evaluation of AlpacaEval Using AgentScope

Number of Worker Agent | 3 6 9 12 15
prompt 85.451 137.84 206.76 275.68 344.6
llama output 382.45 796.68 1204.91 1641.18 2021.9
total 467.901 934.52 1411.67 1916.86 2366.5
prompt 61.815 89.92 134.88 179.84 224.8
qwen output 311.109 555.47 848.94 1139.47 1497.77
Token total 372.924 645.39 983.82 1319.31 1722.57
prompt 52.478 71.74 107.61 143.48 179.35
deepseek output 416.639 841.37 1253.25 1704.54 2100.42
total 469.117 913.11 1360.86 1848.02 2279.77
prompt 1138.243 2237.83 3351.55 4542.02 5677.57
gpt output 352.564 412.43 439.44 442.62 434.15
total 1490.807 2650.26 3790.99 4984.64 6111.72
Ilama 6.063 12.76 19.307 25.547 35311
qwen 3415 6.523 10.819 13.866 18.237
Time deepseek 13.726 32.81 48.833 67.114 84.318
gpt 8.89 15.468 14.33 14.373 15.813
total 32.119 67.607 93.357 122.987 153.784
prompt to agentl 284.078/118 389.8/236 584.7/354 779.6/472 974.5/590
prompt to agent2 284.078/118 389.8/236 584.7/354 779.6/472 974.5/590
Communication prompt to agent3 284.078/118 389.8/236 584.7/354 779.6/472 974.5/590
agent] to aggregator 1659.318/124 3256.270/250 4960.120/375 6718.820/500 8266.330/625
agent2 to aggregator 1511.311/122 2375.700/246 4051.120/369 5477.260/492 7080.860/615
agent3 to aggregator 1889.247/126 3705.450/254 5510.530/381 7497.600/508 9255.700/635
Table 12: Scalability Evaluation of AlpacaEval Using AutoGen
Number of Worker Agent \ 3 6 9 12 15
prompt 70.49 104.14 158.76 211.68 264.6
Ilama output 431.96 1004.94 1526.56 2028.21 2529.62
total 502.45 1109.08 1685.32 2239.89 2794.22
prompt 64.85 93.18 140.88 187.84 234.8
qwen output 447.45 993.87 1532.12 1940.46 2419.98
Token total 512.31 1087.05 1673 2128.3 2654.78
prompt 38.5 40.68 62.61 83.48 104.35
deepseek output 503.37 1109.77 1686.42 2249.68 2802.48
total 541.87 1150.45 1749.03 2333.16 2906.83
prompt 1529.96 3194.7 4830 6290.22 7807.46
gpt output 450.63 670.29 716.41 700.94 722.88
total 1980.59 3864.99 5546.41 6991.16 8530.34
llama 7.812 14.667 25.424 34.833 37.816
qwen 3.977 12.653 21.064 28.736 35.71
Time deepseek 26.745 46.011 71.345 71.98 104.207
gpt 8.274 19.816 22.41 30.398 17.817
total 36.854 47.339 50.843 55.6 46.428
prompt to agentl 209.08/44.01 236.48/86.04 359.7/129.06 479.6/172.08 599.5/215.1
prompt to agent2 209.08/44.01 236.48/86.04 359.7/129.06 479.6/172.08 599.5/215.1
Communication prompt to agent3 209.08/44.01 236.48/86.04 359.7/129.06 479.6/172.08 599.5/215.1
agentl to aggregator 2066.04/52.24 4618.13/103.41 7069.64/156.52 9297.61/208.1 11541.91/258.55
agent2 to aggregator 2071.24/57.38 4450.9/112.37 6777.28/172.84 8661.68/217.75 10768.69/271.29
agent3 to aggregator 2156.04/66.81 4604.89/128.62 7399.95/204.09 9384.64/258.11 11497.32/317.86

the Llamalndex framework, the addition of the extra LeetCode-solving tools results in a significant
decrease in both token consumption and execution time.

Underlying Mechanism-10: Reduced Tool-Call Tendency

18

Increasing the size of the tool inventory
paradoxically reduces the agents propensity to invoke tools. On the same test set, adding 10 or 20
LeetCode-solving tools raises the number of queries that make no tool calls from 17 (no extras) to 27
and 25, respectively. Consistent with this shift, the total tool-call counts drop from 630 (0 extra tools)
to 454 and 467 (10 and 20 extra tools). These patterns indicate a shallower ReAct trajectory, which
in turn reduces LLM token consumption and overall execution time.

Under review as a conference paper at ICLR 2026

Table 13: Scalability Evaluation of AlpacaEval Using LangChain

Number of Worker Agent | 3 6 9 12 15
prompt 70.49 105.84 158.76 211.68 264.60
llama output 428.55 1054.54 1518.52 2037.28 2537.08
total 499.04 1160.38 1677.28 2248.96 2801.68
prompt 64.84 93.92 140.88 187.84 234.80
qwen output 446.05 1007.95 1446.68 2017.43 2436.53
Token total 51091 1101.87 1587.56 2205.27 2671.33
prompt 38.50 41.74 62.61 83.48 104.35
deepseek output 501.11 1132.22 1677.97 222498 2792.75
total 539.61 1173.96 1740.58 2308.46 2897.10
prompt 1522.48 3300.82 4734.44 6353.31 7823.07
gpt output 44481 693.66 661.37 685.78 700.94
total 1967.29 3994.48 5395.81 7039.09 8524.01
llama 8.275 12.061 19.123 23.213 34.437
qwen 4.480 10.838 16.584 24.812 29.335
Time deepseek 23.084 40.801 66.156 73.476 115.888
gpt 10.699 13.741 17.592 33.688 32.068
total 36.502 37.958 47.112 59.725 66.075
prompt to agentl 165.07/0 153.76/0 230.64/0 307.52/0 384.4/0
prompt to agent2 165.07/0 153.76/0 230.64/0 307.52/0 384.4/0
Communication prompt to agent3 165.07/0 153.76/0 230.64/0 307.52/0 384.4/0
agent] to aggregator 1983.02/3 4703.67/6 6787.84/9 9117.26/13 11314.20/17
agent2 to aggregator | 2011.83/3 4334.61/6 6286.30/9 8621.19/13 10546.46/17
agent3 to aggregator | 2072.98/3 4529.70/6 6702.62/9 8880.47/13 11164.34/17

Table 14: Scalability Evaluation of AlpacaEval Using PydanticAl

Number of Worker Agent | 3 6 9 12 15
prompt 61.347 95.5 126.29 139.77 161.71
llama output 429.543 938.08 1273.35 1327.71 1559.8
total 490.889 1033.58 1399.64 1467.48 1721.51
prompt 41.217 58.39 76.32 80.85 94.52
qwen output 433.739 939.44 1213.31 1257.55 1608.87
Token total 474.957 997.83 1289.63 1338.4 1703.39
prompt 31.802 41.44 50.5 50.88 58
deepseek output 434.81 931.31 1210.15 1150.95 1311.62
total 485.612 972.75 1260.65 1201.83 1369.62
prompt 1845.724 3531.53 4673.28 4739.51 5684.52
gpt output 596.876 636.99 633.62 637.09 691.85
total 2442.6 4168.52 5306.9 5376.6 6376.37
llama 6.503 15.15 16.68 19.71 21.15
qwen 3.441 8.38 11.2 11.59 13.41
Time deepseek 17.79 33.34 42.14 40.71 47.19
gpt 27.486 22.05 90.94 91.35 41.02
total 46.45 42.24 110.78 111.4 62.13
prompt to agentl 96.022/0 88.12/0 113.86/0 124.09/0 134.34/0
prompt to agent2 95.425/0 93.84/0 118.13/0 119.19/0 131.11/0
prompt to agent3 97.116/0 94.73/0 108.99/0 103.12/0 113.92/0

Communication | 1"\ agoregator | 2000.542/0 41541900 5693.77/0 6003.71/0 6851.79/0

agent2 to aggregator | 1927.093/0 4002.04/0 5302.46/0 5314.6/0 6682.15/0
agent3 to aggregator | 1892.344/0 3773.26/0 4941.13/0 4729.39/0 5284.75/0

Potential Optimizations Building on these findings, agent frameworks should emphasize relevance-
aware tool-set curation and dynamic exposure to tools to contain prompt growth and reduce the risk
of context-length failures. Regulating ReAct depth and enforcing explicit token budgets can curb

19

Under review as a conference paper at ICLR 2026

Table 15: Scalability Evaluation of AlpacaEval Using CrewAl

Number of Worker Agent 3 6 9 12 15
prompt 298.25 536.95 706.39 760.54 795.95
Ilama output 518.95 1186.13 1495.89 1597.78 1741.84
total 817.201 1723.09 2202.26 2358.31 2537.63
prompt 258.083 432.87 565.05 571.23 589.12
gwen output 398.618 862.44 1123.05 1088.7 1119.49
Token total 656.702 1309.12 1688.11 1650.93 1708.61
prompt 313.01 432.87 526 544.75 668.04
deepseek output 571.79 1007.86 1147.04 1181.72 1436.84
total 884.808 1440.73 1673.04 1726.48 2104.88
prompt 11694.576 28948.53 49040.19 54145.65 72234.23
gpt output 679.15 1136.86 1320.35 1363.42 1614.66
total 12373.72 30085.4 50360.55 55509.07 73848.9
llama 8.835 20.9 32.04 44.25 27.61
qwen 3.837 7.7 16.64 13.84 14.61
Time deepseek 21.946 32.49 48.37 50.72 45.43
gpt 23.114 53.26 101.92 102.374 159.36
total 64 120.54 212.76 218.34 245.26
prompt to agentl 514.962/0 925.12/0 1425.23/0 1724.32/0 1963.23/0
prompt to agent2 483.740/0 912.35/0 1252.74/0 1328/0 1456.32/0
Communication prompt to agent3 619.516/0 900.54.5/0 1386.75/0 1327.32/0 1587.73/0
agent] to aggregator 2497.929/0 5921.52/0 7929.36/0 8623.56/0 9765.36/0
agent2 to aggregator 1754.701/0 4421.22/0 6342.21/0 7021.42/0 8126.57/0
agent3 to aggregator 2151.097/0 4783.14/0 6433.52/0 6798.21/0 7998.67/0
Table 16: Scalability Evaluation of AlpacaEval Using Llamalndex
Number of Worker Agent ‘ 3 6 9 12 15
prompt 70.49 105.84 158.76 211.68 264.6
llama | output 430216 1007.91 1502.61 2012.48 2501.66
total 500.707 111375 1661.37 2224.16 2766.26
prompt 64.81 93.92 140.88 187.84 2348
qwen output 441.738 972.25 1431.39 1914.73 242034
Token total 506.548 1066.17 1572.27 2102.57 2655.14
prompt 38.485 41.74 62.61 83.48 104.35
deepseek | output 495306 1107.88 1695.19 2216.87 2794.66
total 533.791 1149.62 1757.8 2300.35 2899.01
prompt 42,083 24.68 24.68 24.68 24.68
apt output 350.386 515.31 541.38 539.22 528.1
total 392.47 539.99 566.06 563.9 552.78
llama 6.069 12.44 18.98 25.65 35.58
qwen 4787 10.69 14.77 2223 27.49
Time deepseek 20.829 41.18 61.97 81.83 93.12
apt 5.849 9.39 9.66 104 16.06
total 27.318 36.87 4385 53.77 67.23
prompt to agent] 1180.078/898 2181.8/1796.0 3272.7/2694.0 4363.6/3592.0 5454.5/4490.0
prompt to agent2 1171.078/889 2163.8/1778.0 32457/2667.0 4327.6/3556.0 5409.5/4445.0
c icati prompt to agent3 1164.078/882 2149.8/1764.0 3224.7/2646.0 4299.6/3528.0 5374.5/4410.0
ommumcation | o .ntl to aggregator | 2022.417/33.689 4585.09/67.1 6813.56/99.75 9126.32/133.64 11342.05/169.22
agent2 to aggregator | 2054.878/30.118 4372.32/72.31 6456.6/106.13 8647.86/143.64 10907.85/181.15
agent3 to aggregator | 2116377/48.641 4512.6/90.07 6923.71/137.8 9081.69/180.66 11437.99/227.25

20

Under review as a conference paper at ICLR 2026

Table 17: Scalability Evaluation of AlpacaEval Using Phidata

Number of Worker Agent \ 3 6 9 12 15
prompt 118.846 114.5 110.58 116.61 118.06
llama output 438.078 555.91 551.62 576.04 603.61
total 556.924 670.41 662.2 692.65 721.67
prompt 93.899 87.57 83.21 90.21 91.97
qwen output 463.795 634.08 621.29 663.48 707.2
Token total 557.694 721.65 704.5 753.69 799.17
prompt 83.391 76.54 72.94 77.18 78.63
deepseek output 440.691 505.74 525.82 527.8 545.07
total 524.082 582.28 598.76 604.98 623.7
prompt 3003.319 4180.34 5040.94 5973.25 6991.86
gpt output 756.689 785.45 778.76 795.1 801.86
total 3760.009 4965.79 5819.7 6768.35 7793.72
llama 6.152 6.55 6.55 9.12 10.33
qwen 4.707 6.75 5.27 6.09 6.56
Time deepseek 16.456 15.43 16.6 19.32 22.07
gpt 14.208 23.13 25.68 31.67 31.7
total 50.217 60.42 63.84 78.8 83.42
prompt to agent] 354.508/0 325.7/0 310.63/0 329.16/0 334.87/0
prompt to agent2 341.160/0 309.01/0 293.84/0 319.17/0 326.58/0
Communication prompt to agent3 343.219/0 304.15/0 288.79/0 307.71/0 314.94/0
agentl to aggregator 6128.259/2639.113 7105.44/3163.16 6961.87/3105.45 7291.8/3252.42 7582.27/3388.25
agent2 to aggregator 6131.272/2629.426 7475.54/3354.1 7269.53/3267.58 7792.87/3505.45 8121.06/3656.93
agent3 to aggregator 5715.126/2465.817 6165.11/2699.97 6196.23/2734.51 6342.37/2791.33 6571.72/2891.08

unnecessary tool exploration, while compact, standardized tool specifications help decouple token
usage from catalog size.

Table 18: Effect of LeetCode-solving tools on execution time (seconds)

LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAl

no LeetCode-solving tools 12.86 8.41 19.57 11.87 24.26 10.23 10.31
10 LeetCode-solving tools 11.79 8.58 22.31 10.35 19.47 10.99 8.33
20 LeetCode-solving tools 10.78 8.36 21.95 11.14 20.89 10.98 9.58

Table 19: Effect of LeetCode-solving tools on Token

| no LeetCode-solving tools | 10 LeetCode-solving tools | 20 LeetCode-solving tools

| Prompt Output Total | Prompt Output Total | Prompt Output Total
LangChain 7199.33 553.2 7753 11489.89 586.61 12076.50 12779.90 502.75 13282.65
AutoGen 1195.98 185.19 1381.18 2200.19 191.82 2392.01 3011.2 182.87 3194.07
AgentScope 17161.55 828.68 17990.23 31878.31 780.23 32658.54 32464.93 804.56 33269.48
CrewAl 16475.12 582.82 17057.95 11670.07 552.16 12222.23 17398.34 557.75 17956.09
Llamalndex 101042.29 729.57 101771.86 35111.65 348.83 35460.48 32899.47 253.21 33152.68
Phidata 3293.59 270.75 3564.33 4957.96 295.79 5253.75 6104.55 267.34 6371.88

PydanticAl 1327391 373.74 13647.66 12356.90 321.95 12678.85 16682.93 324.13 17025.06

B.4 EXTENDED ANALYSIS ON INSIGHT 1

Our experiments in Section 5.2 reveal a strong correlation between prompt token counts and execution
time across frameworks (see Figure[3)). This is primarily due to two factors: 1) the frequency of LLM
calls and tool invocations per query; 2) memory accumulation across queries.

Figure[6]shows that CrewAl and AgentScope have significantly higher average LLM call frequencies
per query (5.33 and 4.78) compared to Llamalndex, PydanticAl, and Phidata (2.76, 2.79, and 3.38).
This difference explains their greater token consumption and longer runtimes, which stem from more
frequent LLM calls and the resulting memory accumulation.

During the experiments, we observed the following patterns, indicating that some frameworks invoke
tools more frequently than others:

21

Under review as a conference paper at ICLR 2026

Table 20: Number of Failed Runs

LangChain AutoGen AgentScope CrewAl Llamalndex Phidata PydanticAl

no irrelevant tools 0 0 1 1 1 0 1
10 irrelevant tools 0 0 2 1 1 1 1
20 irrelevant tools 0 0 4 3 1 0 1
80
60
40
N

2 ‘N

o>
0, r T T 2 —
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
-0 AgentScope CrewAl Llamalndex PydanticAl Phidata

Figure 6: LLM Call Frequency per Query across Different Frameworks

1) AgentScope and CrewAl frequently invoke the Web tool to obtain precise results, leading to
substantially higher token usage due to lengthy text outputs. In our tests, they called the Web tool
494 and 608 times respectively, far exceeding the maximum of 102 observed in other frameworks.

2) AgentScope often writes and executes code to solve problems, which requires returning large
code blocks that further increase token usage. It used the code execution tool 122 times, while other
frameworks did so no more than 21 times.

Moreover, AgentScope stands out for retaining conversational memory across queries by continuously
appending prior interactions to the prompt. Unlike earlier tests that re-instantiated the Agent to avoid
memory buildup, running 9 GAIA queries without resets confirmed significant memory accumulation
(see Figure[7).4

Meanwhile, in our MoA workflow experiments, we observed that some frameworks invoke worker
agents in parallel, whereas others do so serially. Specifically, we observe that CrewAls built-in MoA
workflow integrates the previous worker agents output with the initial prompt, performs a secondary
summarization, and then passes the result to the next worker agent. To further explore this behavior,
we varied the order of worker agents in CrewAl and present the results in Table @ Here, GLM,
Qwen, DS, and GPT denote GLM-Z1-Rumination-32B-0414, Qwen2.5-7B-Instruct, DeepSeek-V3,
and GPT-4o, respectively.

Table 21: The Impact of Agent Execution Order on Tokens

‘ GLMQwenDS ‘ DSQwenGLM ‘ QwenDSGLM

Order | Prompt Output Total | Prompt Output Total | Prompt Output Total

GLM 1296.82 734.62 2031.44 2953.52 1909.5 4863.02 584.74 324.9 909.64
Qwen 241.86 383.12 624.98 279.96 557.84 837.8 255.92 5253 781.22
DS 447.0 968.5 1415.5 279.36 568.14 847.5 246.38 556.64 803.02
GPT 36750.26 1119.44 37869.7 | 3673226 1129.24 37861.5 17375.24 455.8 17831.04

22

Under review as a conference paper at ICLR 2026

10,000

8,000

6,000

4,000

2,000

=~ without memory accumulation with memory accumulation

Figure 7: Memory Accumulation Impact

B.5 CLAUDE-BASED RESULTS

Table 22: Claude-Based HumanEval Results

| Token | Time | Accuracy
Framework | Prompt Output Total | LLM Codeexecutor Total |
LangChain 5568.08 675.88 6243.96 41.644 0.0140 41.932 0.585
AutoGen 920.84 292.88 1213.71 12.847 0.00047 13.182 0.823

Given that the majority of our experiments are implemented with GPT-40, and considering the
widespread adoption of open-source models, we additionally evaluate the Claude-3-Opus model on
the HumanEval dataset within the LangChain and AutoGen frameworks. The results are presented in
Table

Notably, AutoGen exhibited slightly lower accuracy compared to GPT-based agents. Upon inspection,
we found that Claude did not fabricate test data when invoking the Python execution tool, which
rendered the self-checking mechanism ineffective. In LangChain, Claude occasionally emitted tool
outputs directly, bypassing the expected format and causing execution failures.

These behaviors suggest that when using Claude-3-Opus as the underlying model for ReAct-style
agents, further prompt adaptation may be necessary to ensure compatibility with existing framework
toolchains.

B.6 REPRODUCIBILITY VERIFICATION

Table 23: HumanEval Run 2

| Token | Time
Framework \ Prompt Output Total \ LLM Code executor Total
LangChain 6769.16 695.15 7464.31 27.063 0.01267 27.82
AutoGen 790.29 108.26 898.55 5.685 0.000353 5.711
AgentScope 2429.72 530323 2960.043 13.42 0.121 13.57
CrewAl 10026.98 914.96 10941.95 29.75 0.0432 30.47
Llamalndex 2052 347.9 2399.9 19.81 0.00381 19.84
Phidata 1083.32 376.46 1459.79 11 8.99E-05 16.3
PydanticAl 903.6 353.48 1257.08 9.13 2.32E-05 9.15

23

Under review as a conference paper at ICLR 2026

Table 24: HumanEval Run 3

| Token | Time

Framework | Prompt Output Total | LLM Code executor Total

LangChain 7953.34 832.63 8785.97 38.562 0.015723 39.471

AutoGen 769.72 105.78 875.5 8.027 0.000279 8.199

AgentScope 2804.341 568.36 3372.701 15.686 0.139 15.858

CrewAl 10822.16 867.08 11689.24 34.19 0.0342 34.98

Llamalndex 2017.37 362.85 2380.23 20.61 0.00293 20.64

Phidata 1258.7 393.46 1652.16 9.36 0.000227 12.4

PydanticAl 874.49 340.66 1215.15 7.73 2.44E-05 7.74

Table 25: GAIA Run 1
‘ Token ‘ Time
Frameworks \ Prompt Output Total \ LLM Search PDFloader CSVreader XLSX reader
LangChain 6493.9 562.42 7052.33 8.26 0.724 0.000713 2.73E-05 -
AutoGen 1078.7 183 1261.7 9.65 17.29 0.00347 0.00035 8.91E-05
AgentScope 19192.78 747.25 19940.02 12.03 1.32 1.48 0.000358 0.00147
CrewAl 31286.37 612.44 31898.81 34.55 4.66 0.0205 0.000138 0.00272
Llamalndex 12370.81 688.83 13059.64 38.4 1.019 0.000618 4.63E-06 0.00196
Phidata 2387.39 260.78 2648.17 13.16 4.296 0.00257 8.37E-06 8.18E-05
PydanticAl 15680.58 410.12 16090.7 10.81 0.744 0.461 0.000302 0.000111
time
Text file reader doc reader ~ MP3loader Figure loader Video loader = Code executor total tool time total time
0.0197 - - - - 0.0176 0.762 10.15
4.63E-05 5.82E-05 - - - 1.15E-05 17.294 27.04
6.32E-06 2.52E-06 0.125 0.443 2.99E-06 0.996 4.359 16.575
0.000832 0.00015 0.000375 0.105 - 0.194 4.795 39.86
0.00113 3.94E-06 3.91E-06 0.839 - 0.387 2.248 47
4.24E-05 0.000141 0.098 0.075 - 0.000427 4473 13.16
0.117 6.33E-05 0.0951 0.141 - 6.39E-05 1.558 11.68
Table 26: GAIA Run 2
‘ Token ‘ Time
Frameworks ‘ Prompt Output Total ‘ LLM Search PDFloader CSVreader XLSX reader
LangChain 6659.4 598.16 7257.56 17.61 0.78 0.000908 3.82E-05 -
AutoGen 1063.48 195.52 1259 4.206 11.477 0.000736 0.000223 0.000161
AgentScope 20787.67 785.02 21572.68 12.997 1.438 2.876 0.000248 0.000841
CrewAl 33422.3 564.65 33986.94 35.75 4.77 0.0072 0.000146 0.0023
Llamalndex 15079.24 731.95 15811.19 35.69 1.196 0.000308 2.19E-06 0.0021
Phidata 2481.73 279.04 2760.76 5.25 4.055 0.00074 1.37E-05 0.000173
PydanticAl 11306.87 259.62 11566.48 5.361 1.12 0.535 0.000261 7.93E-05
Time

Text file reader doc reader MP3loader Figure loader Video loader = Code executor Total tool time Total time
0.0103 - - - - 0.000699 0.797 18.89
3.39E-05 9.33E-05 - - - 1.58E-05 11.478 16.211
2.60E-06 2.00E-06 0.241 0.406 1.45E-06 0.285 5.248 18.55
0.000477 0.000147 0.000283 0.0314 - 0.00647 4.82 41.14
0.00042 9.75E-05 6.96E-06 0.399 - 1.196 2.794 46.28
0.000166 7.73E-05 0.144 0.108 - 0.000132 4.308 10.69
0.125 9.10E-05 0.186 0.126 - 1.75E-05 2.091 6.59

Insight 9: Experimental reproducibility is underpinned by the stability of token usage, while
variability arises from stochastic tool behaviors and fluctuating LLM invocation dynamics.

Key Observations To verify the reliability and reproducibility of our results, we conduct repeated
experiments on the HumanEval and GAIA datasets. The outcomes are reported in Table[7} 23] [24]for
HumanEval and in Table 23] Table 26| Table[27]for GAIA. As illustrated by the error bars in Figure

24

Under review as a conference paper at ICLR 2026

Table 27: GAIA Run 3

‘ Token ‘ Time
Frameworks | Prompt Output Total | LLM Search PDFloader ~ CSVreader XLSX reader
LangChain 7262.24 651.28 7913.52 16.86 1.16 0.246 2.55E-05 -
AutoGen 1067.48 186.24 1253.72 10.59 17.33 0.000685 0.000285 0.000195
AgentScope 20689.4 761.78 21451.18 21.58 2.446 2.035 0.000199 0.0019
CrewAl 33866.8 621.44 34488.23 34.15 3.446 0.00617 0.000171 0.00251
Llamalndex 19764.47 964 20728.47 61.89 2.395 0.00203 0.000678 0.00631
Phidata 2187.99 233.53 2421.52 13.81 3.92 0.000728 6.04E-06 0.000103
PydanticAl 13059.31 296.36 13355.67 15.76 0.783 0.637 3.79E-06 7.88E-05
time

Text file reader doc reader =~ MP3 loader Figure loader Figure loader = Code executor Total tool time Total time

0.00904 - - - - 0.00125 1.417 18.78
1.70E-05 2.31E-04 - - - 2.00E-05 17.33 28.71
3.24E-06 4.85E-06 0.164 0.683 4.46E-06 1.88 7.215 29.03
0.00047 0.000141 0.000283 - - 0.014 3.47 38.44
0.000464 0.000239 0.0405 0.69 - 0.307 3.443 74.998
0.000117 7.83E-05 0.0989 0.0788 - 0.000497 4.1 19.52
0.0382 5.67E-05 0.0824 0.151 - 5.66E-02 1.75 16.685
12000 4 Prompt Token | 3¢
I Output Token
Total Token
I] LLM Time
10000 Tool Time [30
Total Time

25

8000 1 I I

6000

20

Tokens
Time (s)

4000

!]

2000 4 I

= - -

0 T = = T T T 0
NN 3 e »N ek X° N
N o° o o O R S
@“Qc W e o P o 3%

Figure 8: Consistency of Token Consumption and Latency in Repeated Experiments (HumanEval)

and [9] the token consumption in our experiment is relatively stable. In general, the execution time is
usually positively related to the token consumption.

Underlying Mechanism-11: Stochastic Tool Behaviors Figure[9]indicates that the Llamalndex
framework yields a relatively high standard deviation on the GAIA dataset. This can be attributed
to the stochastic nature of tool invocations and the consequent variations in the number of LLM
invocation rounds.

Underlying Mechanism-12: Fluctuating LLM invocation dynamics The inherent randomness of
certain Llamalndex built-in toolssuch as the use of whisper in audio-visual modelsfurther amplifies
this effect, resulting in a larger standard deviation in the GAIA test results.

Nevertheless, the overall trend remains reproducible.

In addition, to examine the impact of hardware differences, we rerun the GAIA benchmark on a
machine equipped with a 40-series GPU with 48GB of memory. We then compare the results with
the average values obtained from the RTX 3080 Ti setup, by computing the ratios of key metrics.

25

S}

Under review as a conference paper at ICLR 2026

35000 A Prompt Token
I Output Token 70
Total Token
LLM Time
30000 - Tool Time 60
Total Time
25000
50
2 20000 I I 08
2 2
© I F

15000 I I 0

10000 4

NI E I

N o N R &t X2 P
foxd 5 9 © 3 S &
\,a“Q P pge“& o \)a‘(\a b 8

Figure 9: Consistency of Token Consumption and Latency in Repeated Experiments (GAIA)

Table 28: Comparison of Token and Time Ratios Across Hardware Configurations

| Token ratio | Time ratio

Framework \ Prompt Output Total \ LLM Code executor Total

LangChain 1.080 1.060 1.083 | 0.639 0.713 0.638
AutoGen 0.998 1.062 1.008 | 0.501 1.124 0.923
AgentScope 0.996 1.108 1.000 | 0.975 0.543 0.858
CrewAl 1.034 0.984 1.033 1.044 1.217 1.076
Llamalndex 1.354 1.401 1.356 1.014 1.093 1.032
Phidata 0.990 0.963 0.987 1.286 0.961 1.319
PydanticAl 0.912 0.915 0912 | 0.629 1.164 0.622

As shown in Table[28] token usage remain largely consistent across most frameworks. Intuitively,
the token consumption is independent of hardware setup. In terms of execution time, we observe
significant speedup only for LangChain and Pydantic, indicating that these two frameworks benefit
more from enhanced GPU capabilities, while others exhibit relatively stable performance regardless
of GPU configuration.

C PROMPTS

C.1 REACT

For frameworks that do not have a specific implementation of ReAct, we use the following prompt to
build the ReAct workflow:

You are a ReAct-based assistant.
You analyze the question, decide whether to call a tool or directly
answer, and then respond accordingly.
Use the following format:Question: the input question or request
Thought: you should always think about what to do\nAction: the action to
take (if any)
Action Input: the input to the action (e.g., search query)
Observation: the result of the action

(this process can repeat multiple times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question or request
Begin!
Question: {input}

26

1

Under review as a conference paper at ICLR 2026

C.1.1 LANGCHAIN

Within the ReAct workflow implemented via LangChain’s AgentExecutor, we set the max_iterations
parameter to 15 for experiments on the GAIA dataset and to 10 for those on the HumanEval dataset.

C.2 RAG

For the following frameworks, we applied specific prompts to improve their token efficiency or to
better align with the RAG workflow.

C.2.1 AUTOGEN

You are a helpful assistant. You can answer questions and provide
information based on the context provided.

C.2.2 CREWAI

You are a specialized agent for RAG tasks.You just need to give the
answer of the question. Don't need any othter word.Such as the answer is
a number 5 ,you need output '5'.0r the answer is A,you need to output 'A'.

C.2.3 PHIDATA

You are a RAG-based assistant. You analyze the question, and call the
search_knowledge_base tool to retrieve relevant documents from the
knowledge base, and then respond accordingly.

C.2.4 PYDANTICAI

You're a RAG agent. please search information from the given task to
build a knowledge base and then retrieve relevant information from the
knowledge base.

C.3 MoA

Unless otherwise specified, the following prompt is used for the aggregator agent.

C.3.1 LANGCHAIN

You have been provided with a set of responses from various open-source
models to the latest user query. Your task is to synthesize these
responses into a single, high-quality response. It is crucial to
critically evaluate the information provided in these responses,
recognizing that some of it may be biased or incorrect. Your response
should not simply replicate the given answers but should offer a refined,

accurate, and comprehensive reply to the instruction. Ensure your
response is well-structured, coherent, and adheres to the highest
standards of accuracy and reliability.

C.3.2 AGENTSCOPE

You are an assistant called Dave,you should synthesize the answers from
Alice, Bob and Charles to arrive at the final response.

For the worker agent, we used the following prompt.

You are an assistant called Alice/Bob/Charles.

27

IS}

Under review as a conference paper at ICLR 2026

C.3.3 CRrREWAI

You are an agent manager, and You need to assign the questions you
receive to each of your all agents, and summarize their answers to get a
more complete answer

You must give question to all the all agents, and you must summarize
their answers to get a more complete answer.\nYou need to be the best

For the worker agent, we used the following prompt.

You are one of the agents, you have to make your answers as perfect as
possible, there will be a management agent to choose the most perfect
answer among the three agents as output, you have to do your best to be
selected

C.3.4 PHIDATA

Transfer task to all chat agents (There are 3 agents in your team)", "
Aggreagate responses from all chat agents

C.3.5 PYDANTICAI

Your task is to aggregate all agents results to solve complex tasks.\nYou
analyze the input, input the task to all tools that can run a single
agent, and synthesize the results from all agents into a final response.

C.4 GAIA

In this experiment, we used all levels of questions from the test subset of the GAIA dataset. Below
are examples of prompts used in our system, depending on whether a file is attached:

question: A paper about AI regulation originally submitted to arXiv.org

in June 2022 features a figure with three axes, each labeled with a pair

of opposing terms. Which of these terms is used to describe a type of

society in a Physics and Society article submitted to arXiv.org on August
11, 20167

question: The attached spreadsheet contains the inventory of a movie and
video game rental store located in Seattle, Washington. What is the title

of the oldest Blu-Ray listed in this spreadsheet? Return it exactly as
it appears., file_name: 32102e3e-dl12a-4209-9163-7b3all04efebd.x1lsx,
file_path: path/to/32102e3e-d12a-4209-9163-7b3all04efebd.xlsx

C.5 HUMANEVAL

To avoid generating explanatory text or pseudo-code that hinders automated accuracy evaluation, we
slightly modify the original HumanEval queries by adding minimal prompts.Below is an example of
the prompt used for HumanEval problems:

from typing import List

def has_close_elements (numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to
each other than

given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

28

11

12

&)

Under review as a conference paper at ICLR 2026

wnnn

Complete the function. Only return code. No explanation, no comments,
no markdown.

C.6 MMLU

For the MMLU dataset, we constructed the vector database used in the RAG workflow based on
the development subset and evaluated the performance of each framework using the test subset.
Given the large number of tasks in this dataset, we used only one-quarter of them in our experiments.
Considering that tasks from the same domain tend to be spatially adjacent in the dataset, we selected
one out of every four tasks in index order. This sampling strategy ensures broader domain coverage
and maintains fairness in the evaluation.

Below is an example of the question in MMLU:

Question:Find the degree for the given field extension Q(sgrt(2), sqrt(3),
sgrt (18)) over Q.
.0

o QW
o N W

Answer with A, B, C, or D only

C.7 ALPACAEvAL

In this experiment, we used the full set of tasks for the basic MoA experiments, and the first 100 tasks
for extended experiments involving more agents. Below is an example of one such task.

D BUGS AND FEATURES

This section summarizes the bugs or features of LLM agent frameworks that we discovered during
our evaluation.

D.1 LANGCHAIN

As shown in Figure[T0] LangChain’s high level of abstraction and encapsulation posed challenges in
measuring specific metrics during our experiments.

Additionally, LangChain occasionally terminated processes prematurely after reading files from the
GAIA dataset, returning the file content directly rather than proceeding with the expected operations

(see Figure[TT).

D.2 AUTOGEN

Due to the default system prompt being relatively long and containing irrelevant instructions, the
RAG workflow may consume unnecessary tokens or produce unexpected errors (e.g., attempting to
invoke non-existent tools). Therefore, it is necessary for users to customize the system prompt.

D.3 AGENTSCOPE

AgentScopes image and audio processing tools internally rely on OpenAl models, causing their
execution time to partially overlap with that of the LLM itself. This overlap can lead to inflated or
inaccurate measurements of LLM processing time. Researchers and practitioners should be mindful
of this issue when conducting time-based evaluations involving AgentScope.

def openai_image_to_text (
image_urls: Union[str, list([str]],
api_key: str,

29

Under review as a conference paper at ICLR 2026

Trace R <P B

langchain.Chain.AgentExecutor |/ langchain.Chain.RunnableSequence | langchain.Chain.RunnableAssign<agent_sc

= Filter by op name...

v langchain.Chain.AgentExecutor
v langchain.Chain.RunnableSequence
v langchain.Chain.RunnableAssign<agent_scratchpad>
v langchain.Chain.RunnableParallel<agent_scratchpad>
langchain.Chain.RunnableLambda
langchain.Prompt.PromptTemplate
v langchain.LIm.ChatOpenAl
openai.chat.completions.create
langchain.Parser.ReActSinglelnputOutputParser
langchain.Tool.google_search
v langchain.Chain.RunnableSequence
v langchain.Chain.RunnableAssign<agent_scratchpad>
v langchain.Chain.RunnableParallel<agent_scratchpad>
langchain.Chain.RunnableLambda
langchain.Prompt.PromptTemplate
v langchain.Lim.ChatOpenAl

openai.chat.completions.create

© 0 0 ®© 0@ O O O OO @ OO0 O© 6 O 0 6

langchain.Parser.ReActSinglelnputOutputParser

Figure 10: LangChain’s high level of abstraction and encapsulation.

1.145 - root - INFO - tool name: pdf tool, fool time: 3.8433|
:31.172 - root - INFO - omni run end, result: [Document(metadata={‘producer’: Project MUSE' ‘creator’: 'PyPDF’, ‘creationdate’: *, ‘author’: ‘David Greetham' ‘language’: ‘English’ 'title’: ‘Uncoupled: OR, How I Lost
My Author(s), ‘xmp-dccreator' 'David Greetham', xmp-dclanguage': English’, ‘xmp-dcititle’: 'Uncoupled: OR, How | Lost My Author(s), source®: 'https://muse jhu.edu/puby/3/article/240795/pdf, ‘total pages" 13),
page content="Uncoupled : OR, How | Lost My Author(s) \nDavid Greetham\nTextual Cultures: Texts, Contexts, Interpretation, Volume 3, Number\n1, Spring 2008, pp. 44-55 (Article)\nPublished by Society for Textual Scholarship\nDOI:
\nFor additional i about this ar 19/10.2979/tex.2008.3.1.44\nhttps://muse jhu.edu/article/240795\n[103.224.173.84] Project MUSE (2025-05-12 16:48 GMT)\n\x0cUncoupled\nOR, How | Lost My
Author(s)\nDavid Greetham\nAbstract\nThe essay traces the personal history of trying to “fi nd” an author, in the sense of a number \nof attempts to identify a “father figure” with whom an editori al and critical career might be
\nlinked. Describing such devices as the mapping out of a comprehensive series of abstract mod-\nels for charting the relationships between a translated and a translating text (in the case of \njohn Trevisa) and the construction of an
authorial i diolect where no autograph survives (in \nthe case of Thomas Hoccleve), the personal narrative now reg ards these attempts to reach \nback into the authorial psyche as hubristic, even improper. In the place of such a single
autho-\nrial identity, the essay concludes by showing how authorial ity rather than authorship took \nover in the development of a scholarly career, resulting in, for example, the founding of the in-\nterdisciplinary Society for Textual
Scholarship:\n For Speed Hill1\nl TRIEDTOFIND,ANDBELOYALTO,ANAUTHOR:IREALLYD I D.Butsomehow \nthe psychic connections” that my fellow-panelists identified, never quite \ntook with me. As a very
neophyte editor, | was co-o pted (suborned?) into \nthe Clarendon Press edition of John Trevisa’ s Middle English translation of Anglicus’ s De Propri Rerum (On the Properties of \nThings), or DPR, a
“monumental” tome, published in 1975. 2 But Trevisa, \nwhile a diligent scholar and even possibly a renegade Wycliff te (or even \n 1. Since Speed Hill (1935-2007) organised these two panels on the psychic relations \nbetween editor
and author (and also contributed a paper), but was sadly unable to \nattend the sessions, | dedicate my own paper to himAn 2. Se y m o u r 1975-1989. My textual contribution, Liber Quintus Decimus. De Prouin-\nciis, occurs in vol. 2, pp.
726-824, and | also worked on the notes for vol. 3\n[103.224.173.84] Project MUSE (2025-05-12 16:48 GMT\n\x0cDavid Greetham: Uncoupled | 45\npossibly, according to David C. Fowler,3 the author of Piers Plowman), re-\nmained
somehow determinedly faceless, basically a faithful translator (and a \nsuccessful one) of “other men' s flowers’ \nBut | did try, and, to be honest, quite enjoyed the ultimately f ailed at-\ntempt, in part because it gave me the
opportunity to delve into some of the \nmore arcane areas of textual research (based on this biographic al fact of \nTrevisa' s having devoted himself to translation), and thereby to produce \nwhat | now regard as a series of too-neat,
100 pat, and perhaps also too pre-\ntentious “models” for translation, which Fredson Bowers was generous \nenough to publish in Studies in Bibliography (see Gr e e t ham 1984). I don’ t\nthink there' s any point now (and besides
which, I would probably find it too \nembarrassing a display of my youthful idealism) to try to actua lly explicate \nwhat these fanciful models mean, ranging as they do from what | called the \n “Perfect Linear" (in which all witnesses in
the translating language are uni-\nform in using the same, or very similar, termis] to represent what appears to \nbe an “accurate” translation) to the more complex *“Parallel Variance Class” \n(in which we seem to get two or more
plausible but inconsistent translations \nof the original text). | now believe that the very titles of thes e different \ntranslation models sound pretentious, in their attempts to map out every \npossible relationship between translating and
translated text: | think they \nshow my youthful earnestness, my attempts to situate Trevisa and his text as \nan ideal form to which | could declare allegiance, and thus embrace as a fa-\nther figure.4 The models were quite wonderful in
their enthusiasm, and were \nall dedicated to the project of gaining a more direct access to my author, ob-\n 3. While | had obviously ‘repressed” this recognition in the oral delivery of this paper, \nthe recent death of David Fowler has
brought home to me more forcefully his role as \nthe missing “father figure” looming in this and other papers in this collection. It was \nFowler who read my first meagre publication in a medievalist newsletter mysteri-\nously called
Ralph, and on the strength of that and subsequent correspondence, in-\nvited me out to the University of Washington and other west coast institutions to \nlecture on Trevisa and textual studies. He became one of the first advisers to the
So-\nciety for Textual Scholarship, a contributor to TE X T and to our conferences, and a \ncontinued kindly presence in my early textual life. While this paper is formally ded-\nicated to Speed Hil, it also commemorates a generation of
such scholars (like Fred-\nson Bowers and Paul Oskar Kristeller) who showed me the textual light before | \neven acknowledged that was the path | was to take, and continued to be wise, cour-\nteous, and benevolent mentors till the end
of their lives.\n 4. The models were intended to chart every possible relatio nship between the trans-\nlated and translating text, from unambiguous to complex, including various types \nthat would cover not only variance in the witnesses
of the tra nslating text and \nunanimity in the source, but also variance in both source and translation\n\x0c46 | Textual Cultures 3.1 (2008)\nscured not by a “veil of print” but by the veil of scribal confusion and mis-\ntransmission.
Our/my author lay beyond this confusio n, immanent as the \nlodestar for my arcane models. | think I have to recognise that the project \nwas ultimately not as effective at “unveiling” the author as | had hoped and \nwas thus also not
enough to endow Trevisa with those paternal qualities | \nwas presumably looking for\nBut, what was worse, from the mid-seventies or so, and especia lly after \nthe first two volumes came out in 1975, | began to have second thoughts
\nabout the then-dominant editorial principles which we had unconsciously \nassumed were appropriate to the editing of Trevisa, and began to write a se-\nries of essays not setting up an idealised author and an idealis ed text, but
\ndistancing myself both from these essentially Formalist/New Critical princi-\nples and at the same time questioning the unexamined hegemony of any ed-\nitorial/authorial/philosophical protocols that could be emp loyed on any \ntext.
This distancing (and embarrassment) has continued down to the pres-\nent, for in an article recently published in the ltalian textual journal Ecdot-\nica, | return again to the scene of the crime and use the personal and cultural \ndistancing
as a means of showing just what was then, and what might be \nnow: that the earlier search for an immanent author (mis)represented by the \nextant, but inevitably corrupt, witnesses, has given way to a recognition \nthat the variance
shown in these witnesses is valuable evidence for the so-\ncialization of the text ((Gr e e t ha m 2006). In this case, my Ecdotica piece, \nwhile formally a response to Paul Eggert’ s generous and comprehensive re-\nview-essay (2005) of

2025-05-12 23;
2025-05-12 23;

Figure 11: LangChain occasionally terminated processes prematurely.

prompt: str = "Describe the image",

model: Literal["gpt—-4o", "gpt-4-turbo"] = "gpt-4o",
) —> ServiceResponse:

nnn

Generate descriptive text for given image(s) using a specified model,
and

return the generated text.

Args:
image_urls (“Union[str, list[str]]”):

30

16

28

63

66

69

70

Under review as a conference paper at ICLR 2026

The URL or list of URLs pointing to the images that need to
be
described.
api_key (“str7):
The API key for the OpenAI API.
prompt (“str”, defaults to “"Describe the image"”):
The prompt that instructs the model on how to describe
the image(s) .
model ("Literal["gpt-4o", "gpt-4-turbo"]", defaults to “"gpt-4o"")

The model to use for generating the text descriptions.

Returns:
“ServiceResponse’:
A dictionary with two variables: “status”™ and “content”.
If “status”™ is “ServiceExecStatus.SUCCESS™,
the “content”™ contains the generated text description(s).

Example:
code-block:: python
image_url = "https://example.com/image. jpg"

api_key = "YOUR_API_KEY"
print (openai_image_to_text (image_url, api_key))

'status': 'SUCCESS',
'content': "A detailed description of the image..."

vV V V V

wnnn

openai_chat_wrapper = OpenAIChatWrapper (
config_name="image_to_text_service_call",
model_name=model,
api_key=api_key,
)
messages = Msqg(
name="service_call",
role="user",
content=prompt,
url=image_urls,
)
openai_messages = openai_chat_wrapper.format (messages)
try:
response = openai_chat_wrapper (openai_messages)
return ServiceResponse (ServiceExecStatus.SUCCESS, response.text)
except Exception as e:
return ServiceResponse (ServiceExecStatus.ERROR, str(e))

def openai_audio_to_text (
audio_file_url: str,
api_key: str,
language: str = "en",
temperature: float = 0.2,
) —> ServiceResponse:

Convert an audio file to text using OpenAl's transcription service.

Args:
audio_file_url (“str’):
The file path or URL to the audio file that needs to be
transcribed.
api_key (“str7):
The API key for the OpenAI API.
language (“str™, defaults to ""en""):

31

88
89
90
91
92

93

Under review as a conference paper at ICLR 2026

The language of the input audio. Supplying the input language
in
[ISO-639-1] (https://en.wikipedia.org/wiki/List_of_ ISO_639-1
_codes)
format will improve accuracy and latency.
temperature (“float™, defaults to “0.27):
The temperature for the transcription, which affects the
randomness of the output.

Returns:
“ServiceResponse”:
A dictionary with two variables: “status®™ and “content’.
If “status” is ~ServiceExecStatus.SUCCESST,
the “content®™ contains a dictionary with key 'transcription'
and
value as the transcribed text.

Example:
code-block:: python

audio_file_url = "/path/to/audio.mp3"
api_key = "YOUR_API_KEY"
print (openai_audio_to_text (audio_file_url, api_key))

> |
> 'status': 'SUCCESS',
> 'content': {'transcription': 'This is the transcribed text
from
the audio file.'}
>}
nmmwn
try:
import openai
except ImportError as e:
raise ImportError (
"The “openai” library is not installed. Please install it by
"running “pip install openai”.",
) from e

client = openai.OpenAl (api_key=api_key)
audio_file_url = os.path.abspath(audio_file_url)
with open (audio_file_url, "rb") as audio_file:
try:
transcription = client.audio.transcriptions.create (
model="whisper-1",
file=audio_file,
language=language,
temperature=temperature,
)
return ServiceResponse (
ServiceExecStatus.SUCCESS,
{"transcription": transcription.text},
)
except Exception as e:
return ServiceResponse (
ServiceExecStatus.ERROR,
f"Error: Failed to transcribe audio {str(e)}",

Meanwhile, AgentScope’s vector database module, LlamalndexKnowledge, is implemented based on
the BM25Retriever from the llamaindex library. However, the original implementation relies on an

32

Under review as a conference paper at ICLR 2026

outdated version of llamaindex, and recent updates to the library introduced structural changes that
break compatibility with the original import statements.

1 ‘from llama_index.retrievers.bm25 import BM25Retriever

To ensure a consistent environment without modifying the frameworks built-in vector database logic,
we resolved the issue by duplicating the LlamalndexKnowledge module and updating the import
paths to match the newer llamaindex version.

1 ‘from llama_index.legacy.retrievers.bm25_retriever import BM25Retriever

D.4 CRrREwWAI

When our MOA invokes a large number of agents (>=12), CrewAl system occasionally fails to call
all agents completely during execution as intended. For example, when we request 12 sub-agents to
be activated, some queries may only trigger 9 or fewer agents.

D.5 LLAMAINDEX

What integer-rounded percentage of the total length of the harlequin shrimp recorded in Omar Valencfia-
Mendez 2017 paper was the sea star fed to the same type of shrimp in G. Curt Fiedler's 2002 paper?

Response

{&» Thought: The question requires specific data from two scientific papers: Omar Valencia-Mendez's 2017 paper and
G. Curt Fiedler's 2002 paper. | need to find the total length of the harlequin shrimp recorded in the 2017 paper and
the size of the sea star fed to the shrimp in the 2002 paper. Then, | can calculate the percentage and round it to the
nearest integer.

Action: google_search
Action Input: "Omar Valencia-Mendez 2017 harlequin shrimp total length"

Figure 12: Llamalndex frequently fails to invoke tools correctly.

As shown in Figure[I2] Llamalndex frequently fails to invoke tools correctly, primarily due to the
lack of prompt constraints and insufficient post-processing checks on LLM outputs. Without explicit
guidance and validation mechanisms, the LLM often produces outputs that do not conform to the
expected dictionary format, resulting in tool invocation failures.

D.6 PHIDATA

As shown in Figure[T3] in the ReAct workflow, Phidata passes the available tools to the LLM via the
"tools" field. Unlike Llamaindex, which emphasizes the functionality and usage of tools in the system
prompt, Phidata rarely invokes the code execution tool when processing queries from humaneval.

D.7 PYDANTICAI

By further visualizing the experimental data (see Figure[T4), we found that within the PydanticAl
ReAct framework, the same tool was often invoked simultaneously multiple times, potentially leading
to inefficiencies. Additionally, similar to Phidata, the code execution tool was seldom triggered (see

Figure [T3).

Furthermore, The MoA implementation in the PydanticAl framework is tool-based, and not all three
models are invoked for every query. We observe that when the number of sub-agents is 3, 6, 9, 12,
and 15, there were 232, 89, 229, 485, and 663 instances, respectively, where sub-agents were not
invoked. These skipped invocations are randomly distributed across different queries, resulting in
lower token consumption than expected.

33

Under review as a conference paper at ICLR 2026

Inputs. = 1+ v @) ##Instructions
- You are a ReAct-based assistant.
Path Value You analyze the question, decide whether to call a tool or directly answer, and then respond accordingly.

Use the following format:Question: the input question or request

self <openai.resources.chat. Completions object at e Q . N
Thought: you should always think about what to do

> messages Action: the action to take (if any)

Action Input: the input to the action (e.g., search query)

model gpt-do Observation: the result of the action

T p (this process can repeat multiple times)
Thought: | now know the final answer

tool_choice auto Final Answer: the final answer to the original input question or request
Begin!

v tools Question: {input}

>0
- Use markdown to format your answers.

» I

> 2 from typing import List

>3

S 4 deffilter_by_substring(strings: Listlstr], substring: str) -> Listlstr]:

""" Filter an input list of strings only for ones that contain given substring.
S e >>> filter_by_substring([], ')
e 1]
>>> filter_by_substring(['abc’, 'bacd!,'cde’, ‘array'], 'a')

s 7 ['abc’, 'bacd!, ‘array']

> 8

‘e Response

e fnction @ The provided function *filter_by_substring’ filters an input lst of strings to only include strings that contain a
specified substring
v function
Here i the complete implementation for the function:
name run_python_code

***python
from typing import List

description This function to runs Python code in the current environment. If successful, returns the value .

v parameters
deffilter_by_substring(strings: List[str], substring: str) -> List[str]:

type object " Filter an input list of strings only for ones that contain given substring.

Figure 13: Phidata passes the available tools to the LLM via the "tools" field.

—— PDF tool —— Audio tool
—— CSV tool —— Vision tool

Xlsx tool Video tool
—— Txt tool Python tool
Docx tool ‘Web browser tool
AgentScope

AutoGen

CrewAl

<2hovthoo hos .
¥ 0 (tangCham

Llamalndex

PydanticAl

Phidata

Figure 14: Visualization of the average execution time per run of different tools across different
frameworks.

E TooL IMPLEMENTATION

For frameworks that do not include the required tools, we adopted a unified implementation as
follows.

34

Under review as a conference paper at ICLR 2026

tioned in both Il
total_tokens:
total_tokens:
timestamp: 17
Timestanp: 17469

on'the alvei specie:
tinestanp: 174

t animals that were

root - INFO - omni_run start, query: question:
- root - INFO - LLM name: gpt-do, prompt_tokens

root ~ INFO - LLM name: gpt-do, prompt_tokens
- root - INFO - LLM completion start, id:019
- root - INFO {TIN completion start, id

Lagkouvardos*
5, 1d: 0196
id

completion_tokens
completion_tokens

httpx - INFO — HTTP Request: POST Rttps E ons "HTTP/1.1 200 OK
— root - INFO - LLM name otal_tokens: 815, id: 0196064-f50a-7782-ag6e eBed, fimestamp: 1746984567.12029
root - INFO ~ tool_nam
- root - INFO - tool_nam
~ root - INFO - LLM comp 0637e4d, timestamp: 17 618428, is_omni_run_trace: False, op_name: weave:///10511507/pyd

mpletions “HTTP/1.1

- httpx - INFO - HTTP Re : POST https:/ a
not provide direct access to the f

root - INFO - omni_run end, result: The search results d content of Ilias Lagkouvardos's and Olga Tapia's papers or the spe

Figure 15: PydanticAI’s simultaneous invocations of the same tool.

E.1 SEARCH

E.1.1 AUTOGGEN

nus named for Copenhag

antic-react-gaia/op/o

cific 2021 article cit

def google_search(query: str, num_results: int = 2, max_chars: int
-> list: # type: ignore[type-arg]
import os
import time
import requests
from bs4 import BeautifulSoup
from dotenv import load_dotenv
load_dotenv ()
google_api_key = os.environ['GOOGLE_KEY']
search_engine_id = os.environ|['GOOGLE_ENGINE']
if not search_engine_id or not search_engine_id:
raise ValueError ("API key or Search Engine ID not found")
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": google_api_key,
"cx": search_engine_id,
"gq": query,
"num": num_results

}

= 500)

response = requests.get (url, params=params) # type: ignorel[arg-type]

if response.status_code != 200:
print (response. json())
raise Exception (f"Error in API request: {response.status_c
results = response.json().get ("items", [])
def get_page_content (url: str) -> str:
try:
response = requests.get (url, timeout=10)
soup = BeautifulSoup (response.content, "html.parser")
text = soup.get_text (separator=" ", strip=True)
words = text.split ()
content = ""
for word in words:
if len(content) + len(word) + 1 > max_chars:
break
content += " " + word
return content.strip()
except Exception as e:
print (f"Error fetching {url}: {str(e)}")
return ""
enriched_results = []
for item in results:
body = get_page_content (item["1link"])
enriched_results.append (

{
"title": item["title"],
"link": item["1link"],
"snippet": item["snippet"],
"body": body

}

35

ode}")

50

W

16
17
18
19
20

21

23

Under review as a conference paper at ICLR 2026

time.sleep (1)
return enriched_results

E.1.2 PYDANTICAI

def google_search (query, num=None) :

Make a query to the Google search engine to receive a list of results.

Args:
query (str): The query to be passed to Google search.
num (int, optional): The number of search results to return.
Defaults to None.

Returns:
str: The JSON response from the Google search API.

Raises:
ValueError: If the 'num' is not an integer between 1 and 10.
nmwn
try:
QUERY_URL_TMPL = ("https://www.googleapis.com/customsearch/vl?key
={keyl}&cx={engine}&g={query}")
url = QUERY_URL_TMPL. format (
key=os.environ['GOOGLE_KEY'],
engine=os.environ['GOOGLE_ENGINE'],
query=urllib.parse.quote_plus (str (query))
)
if num is not None:
if not 1 <= num <= 10:
raise ValueError ("num should be an integer between 1 and
10, inclusive")
url += f"&num={num}"
response = requests.get (url)
return response.text
except Exception as e:
return f"Error: {e}"

E.2 PDF LOADER

def pdf_load(file_path: str) -> ServiceResponse:

try:
reader = PdfReader (file_path)
text o nmn
for page in reader.pages:
text += page.extract_text () + "\n"
return ServiceResponse (status=ServiceExecStatus.SUCCESS, content=
text)

except Exception as e:
return ServiceResponse (ServiceExecStatus.ERROR, str(e))

E.3 CSV READER

import pandas as pd

def csv_load(path:str)->ServiceResponse:

try:
df = pd.read_csv(path)
csv_str = df.to_string(index=False)
return ServiceResponse (status=ServiceExecStatus.SUCCESS, content=
csv_str)

36

Under review as a conference paper at ICLR 2026

except Exception as e:
return ServiceResponse (ServiceExecStatus.ERROR, str(e))

E.4 XLSX READER

def xlsx_load(path:str)->ServiceResponse:
try:
excel_file = pd.read_excel (path, sheet_name=None)
result = ""
for sheet_name, df in excel_ file.items () :
result += f"Sheet: {sheet_name}\n"
result += df.to_string(index=False) + "\n\n"
return ServiceResponse (status=ServiceExecStatus.SUCCESS, content=
result.strip())
except Exception as e:
return ServiceResponse (ServiceExecStatus.ERROR, str(e))

E.5 TEXT FILE READER

import pandas as pd

def txt_load(path:str)->ServiceResponse:
try:
with open (path, 'r', encoding='utf-8') as f:
txt_str = f.read()
return ServiceResponse (status=ServiceExecStatus.SUCCESS, content=
txt_str)
except Exception as e:
return ServiceResponse (ServiceExecStatus.ERROR, str(e))

E.6 DOCX READER

from docx import Document

def docs_load(path:str)->ServiceResponse:
try:
doc = Document (path)
docx_str = "\n".join ([para.text for para in doc.paragraphs])
return ServiceResponse (status=ServiceExecStatus.SUCCESS, content=
docx_str)
except Exception as e:
return ServiceResponse (ServiceExecStatus.ERROR, str(e))

E.7 MP3 LOADER

import whisper
from typing import cast

def load_audio (file) :
model = whisper.load_model (name="base")
model = cast (whisper.Whisper, model)
result = model.transcribe (str(file))
return result["text"]

E.8 FIGURE LOADER

37

18

Under review as a conference paper at ICLR 2026

from transformers import DonutProcessor, VisionEncoderDecoderModel
import re
from PIL import Image

def load_image (path) :
image = Image.open (path)
processor = DonutProcessor.from pretrained (
"naver—-clova-ix/donut-base-finetuned-cord-v2"
)

model = VisionEncoderDecoderModel.from_pretrained (
"naver—clova-ix/donut-base-finetuned-cord-v2"

)

device = 'cpu'

model.to (device)

prepare decoder inputs

task_prompt = "<s_cord-v2>"

decoder_input_ids = processor.tokenizer (
task_prompt, add_special_tokens=False, return_tensors="pt"

) .input_ids

pixel_values = processor (image, return_tensors="pt") .pixel values

outputs = model.generate (
pixel_values.to (device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=3,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,

)

sequence = processor.batch_decode (outputs.sequences) [0]

sequence = sequence.replace (processor.tokenizer.eos_token,

replace (

processor.tokenizer.pad_token,

H") .

nn

)

remove first task start token

text_str = re.sub(r"<.x?>", "", sequence, count=1l).strip()
return text_str

E.9 VIDEO LOADER

import whisper

from typing import cast

from pydub import AudioSegment
from pathlib import Path

def load _video (file) :
video = AudioSegment.from_file (Path(file), format=file[-3:])
audio = video.split_to_mono() [0]
file_str = str(file) [:-4] + ".mp3"
audio.export (file_str, format="mp3")
model = whisper.load_model (name="base")
model = cast (whisper.Whisper, model)
result = model.transcribe (str(file))
return result["text"]

E.10 DATA RETRIEVAL

def create_vector_db() :

38

Under review as a conference paper at ICLR 2026

import faiss
import pickle
from sentence_transformers import SentenceTransformer
from data.mmlu import merge_csv_files_in_folder
dataset=merge_csv_files_in_folder (path to MMLU/dev)
docs = []
for item in dataset:
text = item[0].replace(",please answer A,B,C,or D.",",")+£f"
answer: {item[1]}."
docs.append (text)
embed_model = SentenceTransformer ('all-MinilM-L6-v2"'")
doc_embeddings = embed_model.encode (docs)
dimension = doc_embeddings.shape[1l]
index = faiss.IndexFlatlL2 (dimension)
index.add (doc_embeddings)
faiss.write_index (index, "db/index.faiss")
with open ("db/index.pkl", "wb") as f:
pickle.dump (docs, f)

def load_vector_db():
import faiss
import pickle
from sentence_transformers import SentenceTransformer
class db:
def _ init_ (self):
self.index = faiss.read_index ("db/index.faiss")
with open ("db/index.pkl", "rb") as f:
self.docs = pickle.load(f)
self.embed_model = SentenceTransformer ('all-MiniLM-L6-v2"'")
def search(self, query, k=5):
query_embedding = self.embed_model.encode ([query])
D, I = self.index.search (query_embedding, k)
return [self.docs[i] for 1 in I[0]]
return db ()

E.11 PROBLEM SOLVER

def twoSum(nums: List[int], target: int) -> List[int]:
nmmwn
Given an array of integers nums and an integer target, return indices
of the two numbers such that they add up to target.
Args:
nums (List): an array of integers
target (Int): an integer target
Returns:
List[int]: indices of the two numbers such that they add up to
target.
nmmwn
try:
n = len (nums)
for i in range (n):
for j in range(i + 1, n):
if nums[i] + nums[j] == target:
return [i,]

return []
except Exception as e:
return str(e)

def lengthOflLongestSubstring(s: str) -> int:

Given a string s, find the length of the longest substring without
duplicate characters.

39

Under review as a conference paper at ICLR 2026

25 Arg:

26 s (String): a string

27

28 Returns:

29 Int: the length of the longest substring without duplicate
characters.

30 nmnn

31 try:

32 left = 0

33 right = 0

34 max_len = 0

36 while right < len(s):
37 if s[right] in s[left:right]:

38 max_len = max (max_len, right-left)

39 left = s.index(s[right], left, right)+1
40 max_len = max(max_len, right-left+1)

41 right += 1

42 return max_len

43 except Exception as e:

44 return str(e)

47 |def findMedianSortedArrays (numsl: List[int], nums2: List[int]) -> float:

A8 nmwn

49 Given two sorted arrays numsl and nums2 of size m and n respectively,
return the median of the two sorted arrays.

50 Args:

51 numsl (List[int]): sorted array 1

5 nums2 (List[int]): sorted array 2

53 Returns:

54 float: the median of the two sorted arrays

55 nmmwn

56 try:

57 m, n = len(numsl), len (nums2)

58

59 def kth_small (k) :

60 i=3=20

61 while True:

62 if i ==

63 return nums2[j + k - 1]

64 if j == n:

65 return numsl[i + k — 1]

66 1f k ==

67 return min (numsl[i], nums2[j])

68 pivot_i = min(i + (k >> 1) - 1, m - 1)

69 pivot_j = min(j + (k >> 1) -1, n - 1)

70 if numsl[pivot_i] < nums2|[pivot_3j]:

71 k —= pivot_1i + 1 - 1

72 i = pivot_1i + 1

73 else:

74 k —= pivot_j + 1 - J

75 Jj = pivot_j + 1

76

77 return (

78 kth_small((m + n + 1 >> 1))

79 ifm+n & 1

80 else (kth_small((m + n >> 1) + 1) 4+ kth small((m + n >> 1)))

81 * 0.5

82)

83 except Exception as e:

84 return str(e)

40

Under review as a conference paper at ICLR 2026

F USAGE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we employed large language models to assist with language refinement
and stylistic improvements. Typical prompts included instructions such as "please polish the following

academic text while preserving its technical meaning", "improve clarity and conciseness without
altering the content", or "translate the following text into fluent academic English."

The LLMs were not used for generating research ideas, designing experiments, conducting analyses,
or interpreting results. All technical content, methodology, and conclusions are the sole work of the
authors, who take full responsibility for the accuracy and validity of the presented material.

41

	Introduction
	Background and Related Work
	LLM Agents
	LLM Agent Frameworks
	Benchmarks for LLM Agents

	Design of AgentRace
	Modules
	Pipeline
	Functionalities

	Experiments and Insights
	Experimental Setup
	Execution Time and Token Consumption
	Tool Calling
	RAG
	Communication Size
	Scalability

	Conclusion
	Experimental Details
	Details about the Datasets
	Details about the Workflows
	Details about the Frameworks
	Versions of Evaluated Frameworks
	Hyperparameters

	Additional Results
	Accuracy
	Detailed Evaluation Results
	Scalability
	the Number of Worker Agents
	the Number of Tools

	Extended Analysis on Insight 1
	Claude-Based Results
	Reproducibility Verification

	Prompts
	ReAct
	LangChain

	RAG
	AutoGen
	CrewAI
	Phidata
	PydanticAI

	MoA
	LangChain
	AgentScope
	CrewAI
	Phidata
	PydanticAI

	GAIA
	HumanEval
	MMLU
	AlpacaEval

	Bugs and Features
	LangChain
	AutoGen
	AgentScope
	CrewAI
	LlamaIndex
	Phidata
	PydanticAI

	Tool Implementation
	Search
	AutogGen
	PydanticAI

	PDF loader
	CSV reader
	XLSX reader
	Text file reader
	Docx reader
	MP3 loader
	Figure loader
	Video loader
	data retrieval
	Problem Solver

	Usage of Large Language Models

