
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENTRACE: BENCHMARKING EFFICIENCY IN LLM
AGENT FRAMEWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents are rapidly gaining traction across domains
such as intelligent assistants, programming aids, and autonomous decision systems.
While existing benchmarks focus primarily on evaluating the effectiveness of
LLM agents, such as task success rates and reasoning correctness, the efficiency
of agent frameworks remains an underexplored but critical factor for real-world
deployment. In this work, we introduce AgentRace, the first benchmark specifically
designed to systematically evaluate the efficiency of LLM agent frameworks across
representative workloads. AgentRace enables controlled, reproducible comparisons
of runtime performance, scalability, communication overhead, and tool invocation
latency across popular frameworks on diverse task scenarios and workflows. Our in-
depth experiments reveal 9 insights and 12 underlying mechanisms for developing
efficient LLM agents. We believe AgentRace will become a valuable resource
for guiding the design and optimization of next-generation efficient LLM agent
systems. The platform and results are available at the anonymous website https:
//agent-race.github.io/.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2023; Touvron et al., 2023; Liu et al., 2024a; Naveed et al.,
2023; Bai et al., 2023) have rapidly gained widespread popularity due to their exceptional capabilities
in natural language understanding and generation, significantly impacting various applications
including chatbots, content creation, and programming assistants. With these advancements, LLM
agents (Wang et al., 2024; Guo et al., 2024; Zhao et al., 2024; Zhang et al., 2024; Ni & Buehler,
2024), which are autonomous entities powered by LLMs capable of executing complex tasks through
intelligent interactions, have emerged as a promising area of research and practical implementation.

To accelerate the development of LLM agents, numerous benchmarks and datasets (Andriushchenko
et al., 2024; Chang et al., 2024; Huang et al., 2023; Shen et al., 2024) have been proposed to assess
LLM agents, primarily focusing on evaluating their effectiveness and reliability in task completion.
These benchmarks typically measure task success rates, correctness of generated outputs, overall
functional capabilities, and safety of agents.

However, for LLM agents to be widely deployed in real-world scenarios in the future, the efficiency of
their frameworks is critically important. Efficient execution, scalability, and minimal communication
overhead are essential for ensuring timely responses and practical usability, particularly in resource-
constrained and latency-sensitive environments. Despite the proliferation of LLM agent frameworks,
such as LangChain (LangChain, 2025), AutoGen (Wu et al., 2023), and AgentScope (Gao et al.,
2024), a systematic benchmark evaluating these frameworks’ performance efficiency remains absent.

To bridge this significant gap, we introduce AgentRace, the first efficiency-focused benchmark
platform for LLM agent frameworks, including cost, computational, and communication efficiency.
AgentRace enables controlled, reproducible comparisons across frameworks and workflows, aiming
to answer the following key research questions:

1. What are the primary efficiency bottlenecks in current LLM agent frameworks (e.g., model
inference latency, tool calling overhead)?

2. What caused the inefficiency of existing LLM agent frameworks?

1

https://agent-race.github.io/
https://agent-race.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

3. How to improve the efficiency of agent execution?

AgentRace features a modular and extensible design. It supports 7 LLM agent frameworks, 12
types of tools, 3 commonly used workflows, 5 task scenarios, and 4 metrics. The benchmark can
be executed with a single command line, facilitating rapid experimentation and reproducibility. We
conduct a comprehensive assessment of the efficiency of popular LLM agent frameworks and reveal 9
insights and 12 underlying mechanisms for developing efficient LLM agents. The platform and results
are made available through an anonymous website https://agent-race.github.io/.

In summary, our contributions include:

• We introduce AgentRace, the first benchmark platform that systematically evaluates the
efficiency of LLM agent frameworks with modular design, filling a critical gap left by
existing benchmarks that primarily focus on task success or reasoning correctness.

• We conduct a comprehensive and in-depth assessment of efficiency across frameworks,
revealing previously undocumented sources of inefficiency.

• We provide actionable insights for both practitioners and researchers to optimize the deploy-
ment of efficient LLM-based agents.

• We release the entire benchmark suite and experimental results, providing a platform to
identify the efficiency issues of LLM agents.

2 BACKGROUND AND RELATED WORK

2.1 LLM AGENTS

LLMs agents (Yao et al., 2023; Zhao et al., 2024) are systems that combine the generative capabilities
of LLMs with additional components such as memory, planning, and tool usage to perform complex
tasks autonomously. These agents can interpret user inputs, plan actions, interact with external tools,
and adapt based on feedback, enabling more dynamic and context-aware behaviors. Many agents
have been developed, where some are generic agents that are designed to execute general tasks and
some are specialized agents for some concrete task. For example, ReAct (Yao et al., 2023) is a typical
general agent workflow, where the agent thinks and take actions interatively. MetaGPT (Hong et al.,
2023) is an agent designed for software development, where each agent plays a different role to
simulate a software company. In this work, we aim to evaluate the efficiency of different LLM agent
frameworks, thus focusing on using the widely used general agent workflows.

2.2 LLM AGENT FRAMEWORKS

The development and deployment of LLM agents have been facilitated by various frameworks that
provide tools and abstractions for building agentic systems. There have been many LLM agent
frameworks. For example, LangChain (LangChain, 2025) offers a modular framework for developing
applications with LLMs, supporting integrations with various data sources and tools. It provides a
low-level agent orchestration framework, a purpose-built deployment platform, and debugging tools.
Besides LangChain, there are also many other popular LLM agent frameworks. In our platform, we
select some popular and easy-to-use frameworks for integration. For the detailed introduction of
these frameworks, please refer to Section 3.1.

2.3 BENCHMARKS FOR LLM AGENTS

There have been many benchmarks for LLM agents (Andriushchenko et al., 2024; Chang et al.,
2024; Huang et al., 2023; Shen et al., 2024; Liu et al., 2024b). However, most of these benchmarks
usually focus on ability or trustworthiness perspectives, and do not exploit the efficiency part. For
example, AgentBench (Liu et al., 2024b) report Step Success Rate as the main metric showing the
independent accuracy of each action step, due to the current struggles for LLMs to ensure overall
task success rates. Beyond benchmarks focusing solely on success rates, AgentBoard (Chang et al.,
2024) proposes a comprehensive evaluation framework for LLM agents. It introduces a fine-grained
Progress Rate metric to track incremental advancements during task execution, along with an open-
source toolkit for multi-faceted analysis. WORFBENCH (Huang et al., 2023) introduces a unified

2

https://agent-race.github.io/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

AnalysisFramework

LangChainAgentScope

LlamaIndex

AutoGen CrewAI

Phidata PydanticAI

Agent

ReActRAG MoA

Data

GAIA Human-evalMMLU Alpaca-eval

time

token

communication size

accuracy

llm

tool

prompt-token

completion-
token

message size

package size

Thought

Action Observation
queryvector

databasequery llm

Log

OK-VQA

Figure 1: The architecture of AgentRace.

framework for evaluating workflow generation, including both linear and graph-structured workflows.
Its evaluation metric, WORFEVAL, quantifies generation performance across these tasks. Although
the benchmark measures end-to-end efficiency through Task Execution Time, it omits a detailed
breakdown of computational costssuch as tool execution latency. This lack of granularity obscures
potential bottlenecks in workflow optimization. MASArena (MAS, 2025) provides a convenient
multi-dimensional framework for agent evaluation, but it lacks a unified implementation for diverse
workflows and heterogeneous tool integrations. Moreover, its evaluation benchmarks are limited to
domains such as mathematics, code, and textual reasoning.

3 DESIGN OF AGENTRACE

3.1 MODULES

To systematically evaluate the efficiency and scalability of LLM agent frameworks, we introduce
a modular benchmark platform AgentRace. As shown in Figure 1, this platform comprises four
interconnected modules, including Data, Agent, Framework, and Analysis, designed to capture
diverse agent frameworks, execution workflows, task complexities, and performance analysis.

Data Module: Diverse Task Coverage The Data module defines the core tasks used in our bench-
mark and plays a critical role in ensuring that LLM agent frameworks are evaluated across a wide
range of real-world scenarios. Our design is guided by two key considerations: (1) task diversity in
terms of reasoning complexity, tool usage, and interaction patterns; and (2) alignment with widely
adopted benchmarks to enable meaningful and comparable evaluations. We select five represen-
tative datasets that reflect varying levels of difficulty, domain coverage, and agent requirements,
including GAIA (Mialon et al., 2023), HumanEval (Chen et al., 2021), MMLU (Hendrycks et al.,
2020), AlpacaEval (Dubois et al., 2024), and OK-VQA (Marino et al., 2019). The datasets cover
tool-intensive, structured reasoning, retrieval-augmented workflows, multi-agent, and multi-modal
scenarios. The details about the datasets are available at Appendix A.1. The above coverage enables
a holistic evaluation of agent frameworks under varied demands, including tool usage, memory
handling, retrieval integration, and inter-agent communication.

Agent Module: Workflow Diversity The Agent module captures the diversity of reasoning
patterns exhibited by modern LLM-based agents. In designing this module, our goal is to represent a
wide range of real-world task execution strategies while ensuring broad compatibility with existing
agent frameworks. We instantiate agents using three widely adopted and conceptually distinct
workflow paradigms, including ReAct (Reasoning and Acting) (Yao et al., 2023), RAG (Retrieval-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

analysis

@traced_tool(tool_name='pdf_tool')
def PDFLoader(path: str) -> str:
    """Load a PDF document from a path."""
    reader = SimpleDirectoryReader(input_files = [path])
    data = reader.load_data()
    return dataagent.py

run.pyconfig

result

frameworks:
- agentscope
- autogen
- crewai
- langchain

datasets:
- mmlu
- gaia
- ......

Specify the frameworks
and datasets to be

tested in config.yaml

ReAct RAG MoA

@weave.op()
 def omni_run(self, task: str):
        result = self.run(task, stream = False)
        return result.content

logging.info(f"omni_run start, query: {query}")
result = agent.omni_run(question)
logging.info(f"omni_run end, result: {result}")

class agent

tool

def omini_run()

call

init

llm inference

tool calling

communication

embedding retrieve

llm inference

llm inference

RAG

ReAct

MoA

monitor

Figure 2: The pipeline of AgentRace.

Augmented Generation), and MoA (Mixture of Agents) (Wang et al., 2025). These workflows
reflect sequential prompting, retrieval-grounded answering, and distributed multi-agent collaboration.
By supporting all three within our benchmark, we enable a comprehensive evaluation of agent
frameworks under varying reasoning styles and system architectures. The details about the workflows
are available at Appendix A.2.

Framework Module: Broad Ecosystem Coverage The Framework module integrates a wide
spectrum of open-source LLM agent frameworks including LangChain (LangChain, 2025), Au-
toGen (Wu et al., 2023), AgentScope (Gao et al., 2024), CrewAI (Lee, 2025), LlamaIndex (Lla-
maIndex, 2025), Phidata (agno-agi, 2025), and PydanticAI (PydanticAI, 2025), each with distinct
design philosophies, runtime environments, and abstraction layers. In selecting the frameworks, we
focus on two primary considerations: (1) their popularity and influence in the developer and research
communities, and (2) the feasibility of easy deployment and integration within our benchmarking
platform. In particular, our implementations are designed to extend functionalities absent from certain
frameworks, while leveraging native components whenever available so as not to replace or override
existing optimizations.

Analysis Module: Measuring Efficiency The Analysis module defines the core metrics used
to evaluate the system-level efficiency of LLM agent frameworks. We focus on three dimensions:
computational efficiency, cost efficiency, and communication efficiency. Specifically, we measure
the following four key metrics: (1) Execution Time: The total wall-clock time from agent invocation
to task completion. This includes the full execution pipeline, including LLM inference, tool calls,
etc. (2) Token Consumption: The total number of input and output tokens processed by the LLM
during the task. This reflects the computational cost of inference and directly impacts the monetary
cost in API-based deployments. (3) Communication Size: The total volume of data exchanged
between agents. This metric captures inefficiencies in prompt formatting, serialization, and inter-agent
message passing, particularly relevant in multi-agent setting. (4) Accuracy: To ensure correctness is
preserved during efficiency evaluation, we also include a task-specific accuracy metric. This ensures
that frameworks are functionally correct.

3.2 PIPELINE

The design of the AgentRace benchmark pipeline is illustrated in Figure 2. The pipeline is fully
modular and consists of three main stages: (1) configuration, (2) execution and monitoring, and (3)
analysis and visualization. In the configuration stage, users specify experimental parameters (e.g.,
framework, workflow, dataset, and tools) in a YAML file. The executor parses this file and instantiates

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: The supported functionalities of AgentRace. 3denotes that the functionality is implemented
in AgentRace. # denotes that the functionality is supported in the original framework.

LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI

Workflow

ReAct # 3 # 3 # 3 3

RAG # 3 # 3 # # 3

MoA 3 # 3 # # 3 3

Tools

Search # 3 # # # # 3

PDF loader # 3 3 3 # 3 3

CSV reader # 3 3 # # # 3

XLSX reader # 3 3 3 # 3 3

Text file reader # 3 3 # # # 3

doc reader # 3 3 3 # 3 3

MP3 loader # 3 # 3 # 3 3

Figure loader 3 3 # # # 3 3

Video loader 3 3 3 3 3 3 3

Code executor # # # # # # 3

data retrieval # 3 # 3 # # 3

LeetCode solver 3 3 3 3 3 3 3

the corresponding agent with unified interfaces. During execution, the agent interacts with the chosen
framework and tools under controlled settings, while a monitoring layer is dynamically attached to
capture runtime behavior. Finally, the analysis stage aggregates the collected traces into structured
logs and performance visualizations for reproducibility and cross-framework comparison.

Tracer and Logger The monitoring layer is designed to provide fine-grained yet low-overhead
instrumentation. We implement two complementary components: a logger for recording high-level
events and a tracer for intercepting fine-grained tool calling operations. The logger tracks each LLM
inference call, data retrieval request, and inter-agent communication, capturing metadata such as
token count, latency, and payload size. To address the scalability challenge of monitoring diverse tool
invocations, we introduce a generic tracer wrapper, traced_tool, that instruments tool execution
transparently. Developers can annotate a tool with a single wrapper, after which its statistics are
automatically recorded. This design allows AgentRace to maintain both extensibilitynew tools can
be integrated without modifying the core frameworkand reproducibility, as all traces are stored in a
standardized log format compatible with downstream analysis modules.

3.3 FUNCTIONALITIES

The core functionalities supported by AgentRace are summarized in Table 1. Our benchmark
currently supports three representative agent workflows executed across seven widely used LLM
agent frameworks, utilizing a unified pool of eleven tools. While some of these capabilities are
natively supported by the frameworks, approximately 50% of the functionalities are implemented by
ourselves to ensure full compatibility and coverage. To maintain a fair comparison across frameworks,
we adopt a standardized implementation for any functionality that is not natively provided. This
ensures that differences in evaluation metrics stem from the underlying framework behavior, rather
than implementation gaps. For more implementation details, please refer to Appendix A.

4 EXPERIMENTS AND INSIGHTS

We conduct in-depth analysis for the efficiency of LLM agent frameworks. Due to the page limit, we
present the representative results in the main paper. We present additional experimental details in
Appendix A, accuracy comparison in Appendix B.1, results on additional datasets in Appendix B.2,
scalability experiments in Appendix B.3, extended analysis between prompt token counts and exe-
cution time in Appendix B.4, experiments on additional models in Appendix B.5, reproducibility

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

LangChain
AutoGen

AgentScopeCrewAI
LlamaIndexPhidata

PydanticAI0

5000

10000

15000

20000

25000

30000

35000

Pr
om

pt
 To

ke
ns

Input Tokens
Output Tokens

0

10

20

30

40

50

60

70

Ti
m

e 
(s

ec
on

ds
)

Tool Time
LLM Time
Runtime Misc

(a) GAIA

LangChain
AutoGen

AgentScopeCrewAI
LlamaIndexPhidata

PydanticAI0

2000

4000

6000

8000

10000

12000

Pr
om

pt
 To

ke
ns

Input Tokens
Output Tokens

5

10

15

20

25

Ti
m

e 
(s

ec
on

ds
)

Tool Time
LLM Time
Runtime Misc

(b) HumanEval

LangChain
AutoGen

AgentScopeCrewAI
LlamaIndexPhidata

PydanticAI0

1000

2000

3000

4000

5000

6000

7000

Pr
om

pt
 To

ke
ns

Input Tokens
Output Tokens

0

2

4

6

8

10

12

14

Ti
m

e 
(s

ec
on

ds
)

Embedding Time
Rerank Time
Retrieve Time
LLM Time

(c) MMLU

LangChain
AutoGen

AgentScopeCrewAI
LlamaIndexPhidata

PydanticAI0

2000

4000

6000

8000

10000

12000

14000

Pr
om

pt
 To

ke
ns

Input Tokens
Output Tokens

0

10

20

30

40

50

60

Ti
m

e 
(s

ec
on

ds
)

LLaMA Time
Qwen Time
DeepSeek Time
GPT-4o Time

(d) AlpacaEval

Figure 3: Token consumption and execution time per query of different frameworks.

verification in Appendix B.6, prompts in Appendix C, bugs and features of the investigated frame-
works in Appendix D, tool implementation in Appendix E, and usage of LLMs in Appendix F.

4.1 EXPERIMENTAL SETUP

Setting We evaluate 7 LLM agent frameworks using our benchmarking platform, AgentRace,
ensuring a standardized and reproducible execution environment. By default, with three repeated
runs, experiments are conducted on a Linux server equipped with 12-core Intel(R) Xeon(R) Silver
4214R CPUs and a single NVIDIA RTX 3080 Ti GPU. While most of our metrics and findings are
independent of hardware setup, we have also added experiments on additional servers to demonstrate
the robustness of our results in Appendix B.6.

Datasets We use five representative datasets across different agent workflows: GAIA, HumanEval
and OK-VQA are executed with the ReAct workflow, MMLU is evaluated using RAG, and AlpacaEval
is tested under the MoA.

Models Unless otherwise specified, GPT-4o is used as the default LLM. We also conduct exper-
iments using other models in Appendix B.5. For MoA, we instantiate the first-layer agents with
a diverse set of open models: LLaMA-3.3-70B-Instruct-Turbo, Qwen2.5-7B-Instruct-Turbo, and
DeepSeek-V3. We use TogetherAI (tog, 2024) for querying these models. GPT-4o is used as the
aggregation agent to integrate their outputs. In the RAG setting, the MMLU test set is used to
construct the retrieval database.

4.2 EXECUTION TIME AND TOKEN CONSUMPTION

Insight 1: LLM inference usually dominates runtime across all agent frameworks, and inefficient
prompt engineering, such as appending full histories and using verbose prompts, exacerbates both
latency and cost.

Key Observations Figure 3 presents the breakdown of agent execution time across four benchmark
scenarios. The results on OK-VQA are available at Appendix B.2. Across all settings, LLM inference
consistently dominates runtime. Even in the GAIA scenario, which is explicitly designed to be
tool-intensive and involves frequent calls to external APIs, LLM inference accounts for more than
85% of the total execution time in most frameworks. This highlights that LLM inference, due to its

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

computational demands and frequent invocation, remains the primary bottleneck in agent execution,
regardless of the complexity or type of task. Moreover, we observe that the cost of LLM inference
is further exacerbated by large variations in token efficiency across frameworks. There is a strong
positive correlation between LLM inference time and token consumption.

Underlying Mechanism-1: Appending Full History to Prompts We observe that CrewAI and
AgentScope elevate token usage arises from their design choice. In their implementation, the LLM
stores all intermediate inputs and outputs in memory and appends this memory to each new prompt.
As a result, the prompt length grows with every step of reasoning, causing a high token consumption.

Underlying Mechanism-2: Using Verbose Prompts In the ReAct workflow, LlamaIndex con-
sumes a significant amount of prompts, primarily due to the observation portion returned to the
LLM after tool invocation. Additionally, for queries that fail to execute successfully, the number of
reasoning and action iterations increases, leading to a corresponding growth in the observation-related
prompts. For a more detailed analysis of the underlying causes, please refer to Appendix B.2.

Potential Optimizations These findings underscore the importance of efficient prompt engineer-
ing and memory management in agent framework design. Strategies such as selective memory
summarization, compact formatting, and prompt compression are crucial for reducing token usage.

4.3 TOOL CALLING

Insight 2: Tool execution efficiency varies widely across frameworks, with search and figure-related
tools introducing disproportionately high latency.

Se
ar

ch

PD
F l

oa
de

r

CSV
 re

ad
er

XLS
X re

ad
er

Te
xt 

file
 re

ad
er

do
c r

ea
de

r

MP3
 lo

ad
er

Fig
ur

e l
oa

de
r

Vide
o l

oa
de

r

Co
de

 ex
ec

ut
or

da
ta

 re
tri

ev
al

LangChain

AutoGen

AgentScope

CrewAi

LlamaIndex

Phidata

PydanticAI

0.56 1.00 0.01 0.82 0.03 0.02 Unused 17.64 Unused 0.05 0.06

15.27 0.05 0.06 0.03 0.001 0.02 Unused 29.01 Unused 0.001 0.01

2.07 1.12 0.05 0.04 0.001 0.0003 24.04 35.46 0.0005 0.74 0.94

1.73 0.03 0.03 0.05 0.03 0.05 0.02 2.66 0.02 0.15 0.14

1.32 0.002 0.03 0.04 0.001 0.01 1.84 9.04 Unused 0.18 0.43

1.05 0.01 0.06 0.04 0.004 0.003 1.58 21.10 0.002 0.01 6.71

1.11 0.01 0.05 0.04 0.0002 0.005 1.63 16.64 0.0003 0.0004 0.03
10 4

10 3

10 2

10 1

100

101

Figure 4: The execution time per call for each tool.

Key Observations We analyze the
execution cost of various tool types
across multiple LLM agent frame-
works, as illustrated in Figure 4. The
results reveal substantial variation
in tool execution efficiency between
frameworks, particularly for high-cost
operations. Among all tool categories,
search and figure-related tools usually
incur the highest latency, often domi-
nating total tool execution time within
a workflow. For instance, the figure
loader takes 2.7 seconds to execute in
CrewAI, but exceeds 30 seconds in
AgentScope, indicating considerable
framework-dependent overhead. In
contrast, lightweight tools such as Text file reader and doc reader typically complete in
under a millisecond, demonstrating minimal variance.

Additionally, some frameworks (e.g., AgentScope) show disproportionately high total tool processing
time, driven primarily by inefficient handling of image processing or multimedia tasks. This highlights
the importance of optimizing high-latency tools, particularly in scenarios where tool invocation is
frequent or tightly coupled with LLM inference.

Underlying Mechanism-3: Orchestration Depth and I/O Overhead The pronounced disparity
in execution times can be attributed to heterogeneous orchestration layers and I/O pathways across
frameworks. Heavy operations, especially image-centric routines in figure-related tools, trigger large
data transfers and repeated external API calls, amplifying serialization and network overhead. Frame-
works with leaner orchestration logic (e.g., CrewAI) perform these steps with fewer intermediate
abstractions, thereby reducing latency, whereas frameworks with deeper abstraction stacks (e.g.,
AgentScope) accumulate additional processing overhead. Consequently, tool latency scales not only
with the intrinsic cost of the operation but also with the efficiency of each frameworks data handling,
scheduling, and resource management pipelines.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Potential Optimizations While LLM inference remains the dominant bottleneck in most of our
benchmarks, more complex, tool-heavy scenarios, such as document analysis or multimodal agent
tasks, may shift the performance bottleneck toward tool execution. Frameworks aiming to support
such use cases must pay greater attention to optimizing tool orchestration and external API integration.

4.4 RAG

Insight 3: While agents usually involve external databases for information retrieval, the database
performance is overlooked in several frameworks. Vector database is recommended.

Key Observations While RAG workflows are increasingly adopted to enhance factual grounding,
our benchmarking reveals that database performance, particularly during embedding and retrieval, is
a critical yet frequently neglected factor. Figure 3c illustrates the variation in retrieval latency across
frameworks, exposing significant performance disparities.

Underlying Mechanism-4: Embedding-Pipeline Design One notable example is AgentScope,
which demonstrates high vectorization latency. This stems from its design: during the database setup
phase, AgentScope invokes a large embedding model to compute dense vector representations. The
latency of this embedding model, often implemented as a separate LLM call, substantially increases
the overall vectorization time. Similarly, Phidata exhibits elevated vectorization latency due to its use
of a two-step pipeline. First, its built-in csv_tool loads documents row-by-row; then, it applies a
SentenceTransformer model to compute embeddings. Our benchmark confirms that Phidata’s
csv_tool itself is a relatively slow component, compounding the overall vectorization time. From
our observation, vector databases such as Faiss (Douze et al., 2024) are good choices.

Potential Optimizations These observations highlight the need for more attention to retrieval
pipeline design, especially in frameworks that aim to support real-time or large-scale RAG deploy-
ments. Optimization opportunities include batching document embeddings, using faster embedding
models, minimizing redundant file reads, and caching frequent queries.

4.5 COMMUNICATION SIZE

Insight 4: Inefficient communication architecture and package design lead to high communication
overhead in the multi-agent setting.

Key Observations In multi-agent frameworks, communication between agents is often overlooked
as a source of inefficiency. However, our analysis reveals large discrepancies in communication size
across frameworks, as shown in Table 2. These differences arise not only from framework-specific
message formats but also from architectural design choices.

Underlying Mechanism-5: Inefficient Communication Architecture Frameworks such as Cre-
wAI, which adopt a centralized communication pattern, exhibit significantly higher communication
costs. In these designs, a central agent coordinates multiple sub-agents by sequentially delegating
subtasks and collecting responses. For example, in CrewAI’s MoA implementation, the center agent
queries three sub-agents in sequence and aggregates their outputs. Each LLM invocation by the
center agent accumulates prior messages in memory, causing the prompt size and the communication
payload to grow linearly with the number of sub-agents.

Underlying Mechanism-6: Package Design In addition to the core message, Phidata returns a
duplicated content field that mirrors the final message. This, combined with additional metadata
fields, results in large communication sizes.

Potential Optimizations These findings indicate that communication cost is not merely a func-
tion of task complexity but also of framework design. Future agent frameworks should consider
decentralized communication protocols and agent sampling to reduce unnecessary transfer overhead.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Communication size between agents (Unit: Byte). We report the content size (e.g., the
transferred outputs from the last agent) and overhead size (e.g., header), separated by /.

LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI

From Global
Agent

Agent1 165.07/0 209.08/44.01 284.078/0 514.962/0 1180.078/898 354.508/0 96.022/0
Agent2 165.07/0 209.08/44.01 284.078/0 483.740/0 1171.078/889 341.160/0 95.425/0
Agent3 165.07/0 209.08/44.01 284.078/0 619.516/0 1164.078/882 343.219/0 97.116/0

To Aggregation
Agent

Agent1 1983.02/3 2066.04/52.4 1659.318/0 2497.929/0 2022.417/33.689 6128.259/2639.113 2000.542/0
Agent2 2011.83/3 2071.24/57.38 1511.311/0 1754.701/0 2054.878/39.118 6131.272/2629.426 1927.093/0
Agent3 2072.98/3 2156.04/66.81 1889.247/0 2151.097/0 2116.377/48.641 5715.126/2465.817 1892.344/0

Table 3: Scalability Evaluation of AlpacaEval.

Worker Agents LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI

Time
(Unit: Second)

3 36.50 36.85 32.12 64.00 27.32 50.22 46.45
6 37.96 47.34 67.61 120.54 36.87 60.42 42.24
9 47.11 50.84 93.36 212.76 43.85 63.84 110.78

12 59.73 55.60 122.99 218.34 53.77 78.80 111.40
15 66.08 46.43 153.78 245.26 67.23 83.42 62.13

Total Token

3 3516.85 3537.22 2800.75 14732.43 1933.51 5398.71 3894.06
6 7430.69 7211.57 5143.28 34558.34 3869.52 6940.13 7172.68
9 10401.23 10653.76 7547.34 55923.96 5557.50 7785.16 9256.82

12 13801.78 13692.51 10068.83 61244.79 7190.98 8819.67 9384.31
15 16894.12 16886.17 12480.56 80200.01 8873.19 9938.26 11170.89

Communication Size
(Unit: Byte)

3 6563.04 6920.56 5912.11 8021.94 9708.91 19013.54 6108.54
6 14029.26 14383.36 10506.82 17863.90 19965.41 21684.95 12206.18
9 20468.68 22325.97 16275.87 24769.81 29936.97 21320.89 16278.34

12 27541.48 28782.73 22032.48 26822.83 39846.67 22383.08 16394.10
15 34178.20 35606.42 27526.39 30897.88 49926.39 23251.44 19198.06

4.6 SCALABILITY

Insight 5: MoA scalability is governed by agent-invocation policy.

Key Observations We evaluate the scalability of the MoA workflow by increasing the number of
worker agents from 3 to 6, 9, 12, and 15, while keeping the additional agents identical in configuration
to the original ones. Table 3 reports the results on AlpacaEval. For frameworks such as AgentScope
and LangChain, both execution time and token consumption grow almost linearly with the number
of worker agents, reflecting sequential scheduling policies. In contrast, frameworks like PydanticAI
exhibit a significantly slower growth rate, suggesting a fundamentally different invocation strategy.

Underlying Mechanism-7: Parallel Execution In PydanticAI, the observed runtime is shorter than
the aggregate of individual tool and LLM invocation times. This efficiency stems from its parallel
execution architecture: agent calls and tool invocations are dispatched asynchronously, allowing
multiple operations to overlap in time. As a result, the end-to-end latency is effectively bounded by
the slowest operation rather than the sum of all operations.

Potential Optimizations Our analysis indicates that task-level parallelism remains largely underex-
plored in current frameworks. Incorporating asynchronous scheduling and concurrent invocation can
substantially improve scalability in multi-agent workflows, especially under real-world conditions
where latency and throughput are critical.

5 CONCLUSION

We introduce AgentRace, a comprehensive benchmark platform for evaluating the efficiency of LLM
agent frameworks. AgentRace covers a diverse set of datasets, agent workflows, and frameworks,
enabling a fair and reproducible comparison across real-world scenarios. Through extensive and
in-depth experiments, we reveal key insights and underlying mechanisms. These findings highlight
critical optimization opportunities in the design and deployment of LLM-based agents. We hope
AgentRace provides a guideline for future work in developing efficient, scalable, and robust agent
systems, and we plan to continuously extend the benchmark as the LLM agent ecosystem evolves.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement We have provided our code on an anonymous website https://
agent-race.github.io/. We have also provided the experimental details in Appendix A and
reproducibility verification in Appendix B.6.

REFERENCES

Together.ai. https://www.together.ai/, 2024. Accessed: 2024-07-16.

Masarena, 2025. URL https://lins-lab.github.io/MASArena/. Accessed: 2025-09-
23.

agno-agi. Phidata, 2025. URL https://docs.phidata.com/introduction. Accessed:
2025-05-15.

Maksym Andriushchenko, Alexandra Souly, Mateusz Dziemian, Derek Duenas, Maxwell Lin, Justin
Wang, Dan Hendrycks, Andy Zou, Zico Kolter, Matt Fredrikson, et al. Agentharm: A benchmark
for measuring harmfulness of llm agents. arXiv preprint arXiv:2410.09024, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. Advances in Neural Information Processing Systems, 37:74325–74362, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, et al. Agentscope: A flexible yet robust multi-agent platform.
arXiv preprint arXiv:2402.14034, 2024.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as ai
research agents. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

LangChain. Langchain, 2025. URL https://www.langchain.com/. Accessed: 2025-05-15.

Zeping Lee. GB/T 7714-2015 BibTeX Style. https://github.com/zepinglee/
gbt7714-bibtex-style, 2025. GitHub repository.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

10

https://agent-race.github.io/
https://agent-race.github.io/
https://www.together.ai/
https://lins-lab.github.io/MASArena/
https://docs.phidata.com/introduction
https://www.langchain.com/
https://github.com/zepinglee/gbt7714-bibtex-style
https://github.com/zepinglee/gbt7714-bibtex-style


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. In ICLR, 2024b.

LlamaIndex. Llamaindex, 2025. URL https://www.llamaindex.ai/. Accessed: 2025-05-
15.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pp. 3195–3204, 2019.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

Bo Ni and Markus J Buehler. Mechagents: Large language model multi-agent collaborations can
solve mechanics problems, generate new data, and integrate knowledge. Extreme Mechanics
Letters, 67:102131, 2024.

OpenAI. Gpt-4 technical report, 2023.

PydanticAI. Pydanticai: A python agent framework for generative ai, 2025. URL https://ai.
pydantic.dev/. Accessed: 2025-05-15.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation.
Advances in Neural Information Processing Systems, 37:4540–4574, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Junlin Wang, Jue WANG, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=h0ZfDIrj7T.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

11

https://www.llamaindex.ai/
https://ai.pydantic.dev/
https://ai.pydantic.dev/
https://openreview.net/forum?id=h0ZfDIrj7T


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:
Large language models collaborating on long-context tasks. Advances in Neural Information
Processing Systems, 37:132208–132237, 2024.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632–19642, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 DETAILS ABOUT THE DATASETS

We select five representative datasets that reflect varying levels of difficulty, domain coverage, and
agent requirements: (1) GAIA (Mialon et al., 2023): A comprehensive benchmark for general-
purpose AI assistants. GAIA includes real-world, multi-hop queries that require reasoning over
documents, tool invocation, and web interaction. It is the most tool-intensive dataset in our suite,
designed to assess the full-stack capabilities of LLM agents. Notably, GPT-4 with plugins achieves
only 15% accuracy, while humans reach 92%, indicating significant headroom for improvement. (2)
HumanEval (Chen et al., 2021): A code generation benchmark from OpenAI consisting of Python
programming problems. Tasks require precise algorithmic reasoning and strict correctness, with
deterministic evaluation via unit tests. This dataset helps us evaluate agents capacity for structured
reasoning and program synthesis. (3) MMLU (Hendrycks et al., 2020): MMLU spans 57 academic
subjects and provides multiple-choice questions across STEM, humanities, and social sciences. We
use it to test retrieval-augmented workflows, as it simulates closed-book knowledge challenges
and supports grounding in external sources. (4) AlpacaEval (Dubois et al., 2024): An instruction-
following benchmark that evaluates natural language understanding and response quality. It consists
of 805 prompts and uses GPT-4 as a reference evaluator. This dataset is well-suited for multi-agent
settings where coordination, aggregation, and language alignment are essential. (5) OK-VQA (Marino
et al., 2019): A visual question answering benchmark that requires commonsense knowledge beyond
images. It contains 14,000 questions over 14,000 images and emphasizes reasoning with external
world knowledge. The dataset is for evaluating the efficiency of LLM agent frameworks when
handling multimodal tasks.

A.2 DETAILS ABOUT THE WORKFLOWS

AgentRace includes the following workflow paradigms: (1) ReAct (Reasoning and Acting) (Yao
et al., 2023): This paradigm interleaves natural language reasoning with tool-based actions. By
prompting the LLM to first generate intermediate thoughts and then take corresponding actions,
ReAct enables agents to dynamically plan and interact with their environment. (2) RAG (Retrieval-
Augmented Generation) (Lewis et al., 2020): RAG introduces an explicit retrieval step before
generation, allowing agents to ground their outputs in relevant external knowledge. In our benchmark,
RAG highlights the performance of agent frameworks in integrating retrieval modules, managing
memory contexts, and efficiently handling long documents. (3) MoA (Mixture of Agents) (Wang
et al., 2025): MoA represents a multi-agent architecture where multiple agents collaborate to solve a
task. Each agent is often instantiated with a different LLM. An aggregation agent then composes their
outputs to form the final answer. This setting captures the growing trend of using multiple LLMs in
coordination, and allows us to benchmark frameworks on communication, modularity, and scalability.

A.3 DETAILS ABOUT THE FRAMEWORKS

We integrate the following frameworks: (1) LangChain (LangChain, 2025) is a widely adopted
framework that offers modular components for building LLM-based applications. It emphasizes tool
chaining, prompt templating, memory integration, and external API orchestration. (2) AutoGen (Wu
et al., 2023), developed by Microsoft, facilitates the creation of advanced LLM agents through
multi-agent conversations and automated task planning. (3) AgentScope (Gao et al., 2024) supports
rapid development of multi-agent systems through a low-code interface. It emphasizes collaboration
among agent roles, enabling scalable deployment of agent collectives with minimal boilerplate. (4)
CrewAI (Lee, 2025) is a lightweight yet expressive Python framework designed for fast iteration. It
provides both high-level abstractions and low-level control. (5) LlamaIndex (LlamaIndex, 2025)
focuses on context-augmented LLM applications by connecting structured and unstructured data
sources to LLMs. (6) Phidata (agno-agi, 2025) is a framework for building multi-modal AI agents and
workflows with memory, knowledge, tools, and reasoning, enabling collaborative problem-solving
through teams of agents. (7) PydanticAI (PydanticAI, 2025) is an agent framework that is designed
for easy development of production-grade applications.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 VERSIONS OF EVALUATED FRAMEWORKS

All LLM agent frameworks employed in this study are contemporaneous, with the specific version
numbers reported in Table 4.

Table 4: Versions of the LLM Agent frameworks employed in this paper.

Framework Version Framework version

LangChain 0.3.22 LlamaIndex 0.12.30
AutoGen 0.8.2 Phidata 2.7.10
AgentScope 0.1.3 PydanticAI 0.1.0
CrewAI 0.114.0

A.5 HYPERPARAMETERS

In all experiments, the temperature was set to 0, the top k to 1 (if available), and all other parameters
were set to their default values unless otherwise specified.

Except for the cases explicitly noted below, all workflows employ the default prompts provided
by their respective frameworks, and the datasets are used without any modification to the original
queries.

B ADDITIONAL RESULTS

B.1 ACCURACY

Table 5: Accuracy of each framework on each dataset.

Dataset LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI
GAIA 0.152±0.012 0.107±0.003 0.212±0.012 0.222±0.009 0.198±0.015 0.191±0.026 0.157±0.012
HumanEval 0.573 0.884 0.884 0.872 0.872 0.902 0.921
MMLU 0.820 0.817 0.827 0.813 0.745 0.792 0.788
OK-VQA - 0.305 0.436 0.362 0.307 0.331 0.317

Table 5 presents the accuracy of each framework. In general, the accuracy differences among
frameworks are relatively small when using the same underlying LLM. However, there are still some
notable exceptions.

Insight 6: The complete absence of output constraints in LLMs may lead to tool invocation failures,
whereas excessively strict output validation can incur substantial token overhead and decrease the
response success rate.

Key Observations In our evaluation, we find that when the model skips tool invocation and instead
provides a direct answer (this happens especially with some of the simpler queries in the HumanEval
dataset), the framework retries the prompt, often multiple times. Each retry includes previous failed
attempts in the context, leading to a rapid increase in prompt length and token consumption as well
as a lower likelihood of producing a clean, valid output on later attempts.

Underlying Mechanism-8: Structured Output Misalignment Some frameworks, such as Lla-
maIndex, require tool inputs to conform to a strict dictionary format. However, GPT-4o does not
consistently produce structured outputs that align with these expectations, leading to frequent tool
invocation failures. This issue can be partially mitigated if the framework explicitly enforces the
format requirement during the registration phase or input schema definition. In contrast, other
frameworks such as LangChain adopt stricter enforcement mechanisms. ReAct-style agents in these
systems perform rigid output validation and initiate automatic retries when the model’s response
deviates from the expected invocation structure. While such mechanisms increase robustness against
malformed outputs, they may backfire in certain scenarios.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

LangChain
AutoGen

AgentScopeCrewAI
LlamaIndexPhidata

PydanticAI0

1000

2000

3000

4000

Pr
om

pt
 To

ke
ns

Input Tokens
Output Tokens

0

5

10

15

20

25

30

Ti
m

e 
(s

ec
on

ds
)

Tool Time
LLM Time
Runtime Misc

Figure 5: OK-VQA

An additional point to clarify is that the GAIA dataset exhibits relatively low accuracy. This is
primarily because GAIA tasks often require complex task planning and the use of multiple tools,
posing significant challenges for all evaluated frameworks. It is important to note that the primary
focus of this study is not on accuracy, but rather on comparing the performance overhead (e.g., time,
token usage) across different frameworks. Therefore, we ensure that the accuracy across frameworks
remains broadly comparable, without conducting detailed task-level progress analysis as seen in
some related work. By carefully controlling experimental parameters, the fairness of our comparisons
remains valid, even in the presence of lower absolute accuracy.

B.2 DETAILED EVALUATION RESULTS

Figure 5 presents the token and time consumption of OK-VQA.

Table 6, 7, 8, 9 and 10 presents the detailed results obtained in this experiment. Unless stated
otherwise, the times reported in the table are in seconds per query. The missing data corresponds
to instances where the LLM failed to invoke the required tool correctly during the experimentfor
example, by not returning outputs in the expected format or by not selecting the appropriate tool for
invocation. The following are some noteworthy observations.

Table 6: GAIA Detailed Results

LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI

Token
Prompt 9358.35 1159.48 23520.479 33621.857 20935.364 6386.667 14459.17
Output 637.92 180.66 785.891 664.511 304.976 323.558 320.588
Total 9996.27 1340.15 24306.37 34286.369 21240.339 6710.224 14779.758

Time

llm 29.491 8.464 41.17 67.68 27.244 14.375 23.779
Search 1.58856 9.4219 7.291 4.031 1.4399 1.83012 1.2275

PDF loader 0.02423455 0.0009297 0.217 0.00965 0.0001352 0.001147 0.001395
CSV reader 0.00003333 0.000336 0.000297 0.000196 0.00016616 0.0007207 0.0003148

XLSX reader 0.06422606 0.002387 0.00405 0.00422 0.004254 0.003858 0.003795
Text file reader 0.0004194 0.00002909 0.0000193 0.00123 0.000034839 0.0002107 8.6865E-06

Doc reader 0.00009758 0.0002212 0.00000883 0.000278 0.0001135 0.000073355 0.000056241
MP3 loader - - 0.729 0.000346 0.03341 0.03821 0.02965

Figure loader 0.5345976 1.05489 4.083 0.03164 0.8767 1.4065 1.2104
Video loader - - 0.0000271 0.000999 - 1.38445E-05 3.1952E-06

Code executor 0.0152988 0.00005333 0.752 0.09565 0.05782 0.003035 0.0001414
Total tool time 2.22746732 10.4807 13.076 4.18 2.4126 3.2839 2.4732

Total time 32.492 20.76 55.092 72.195 29.795 20.396 26.238

Insight 7: Token consumption may vary across frameworks even when executing the same workflow,
owing to differences in implementation strategies.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: HumanEval Detailed Results

Token Time

Framework Prompt Output Total LLM Code executor Total

LangChain 6326.36 617.13 6943.49 23.221 0.0034 23.968
AutoGen 767.45 106.34 873.79 5.822 0.0002 5.846
AgentScope 3180.689 561.518 3742.207 11.738 0.131 11.906
CrewAI 10817.65 892.798 11710.45 24.22 0.0258 25.24
LlamaIndex 1985.6 342.793 2328.152 9.52 0.003069 9.611
Phidata 967.329 354.427 1321.756 7.181 - 9.692
PydanticAI 812.951 352.543 1165.494 5.258 0.000007158 5.276

Table 8: MMLU Detailed Results

Token Time

Framework Prompt Output Total LLM Embedding Retrieve Total

LangChain 701.514 4.035 705.55 1.677 11.833 0.055 1.79
AutoGen 679.788 3.956 683.744 2.171 6.526 0.015 2.182
AgentScope 2664.315 2.878 2667.193 3.893 92.472 0.935 4.931
CrewAI 884.536 13.189 897.724 2.51 7.718 0.14 5
LlamaIndex 2079.702 50.339 2130.042 3.125 4.931 0.4303 3.575
Phidata 2797.441 37.347 2834.788 7.849 341.611 6.708 17.014
PydanticAI 6996.242 170.135 7166.378 9.685 5.977 0.03454 9.824

Key Observations In the results of ReAct workflow, it can be observed that even when using
the same ReAct workflow, AgentScope exhibits a significant discrepancy in token usage between
the GAIA and HumanEval datasets, with exceptionally high token consumption on GAIA. This is
primarily because AgentScope includes the entire memory of the agent in the prompt during every
LLM invocation. As the number of reasoning steps increases, the prompt length grows rapidly. While
this issue is less apparent in the relatively simple HumanEval dataset, it becomes prominent in the
more complex GAIA tasks.

The high token usage observed in CrewAI’s ReAct workflow can be attributed to the same reason. In
fact, this issue is even more pronounced in CrewAI than in AgentScope, with significantly elevated
token consumption observed across both the GAIA and HumanEval datasets.

Underlying Mechanism-9: Overly Detailed Observations In contrast, the majority of token
consumption in LlamaIndex and Pydantic arises from the observation segments returned to the LLM
after tool invocations. In the GAIA dataset, where tasks are complex and involve frequent tool usage,
this results in substantial prompt token overhead.

There are also some issues observed in the MoA workflow. For example, PydanticAI does not require
the invocation of all sub-agents during MoA execution, thereby reducing token consumption and
runtime overhead. For further details, please refer to the Insight 8 in Appendix B.3.1.

Another example is that in the CrewAI framework, MoA is centrally managed by a global agent,
which also plays the role of aggregation agent. The global agent receives the task and sequentially
assigns it to sub-agents (e.g., agent1, agent2, agent3). Each sub-agent completes its part and returns
the result to the global agent, which then decides the next step. After all agents have responded, the
global agent summarizes the results and outputs the final answer. In this setup, the global agent calls
the LLM multiple timesonce after each sub-agents response. Because LLMs retain the full context of
previous inputs and outputs in a single session, each new call includes all prior interactions. This
leads to token accumulation, especially by the third or fourth step, where the prompt becomes much
longer. As a result, total token usage becomes higher than in frameworks with different coordination

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: AlpacaEval Detailed Results

LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI

Token

llama
prompt 70.49 70.49 85.451 298.25 70.49 118.846 61.347
output 428.55 431.96 382.45 518.95 430.216 438.078 429.543
total 499.04 502.45 467.901 817.201 500.707 556.924 490.889

qwen
prompt 64.84 64.85 61.815 258.083 64.81 93.899 41.217
output 446.05 447.45 311.109 398.618 441.738 463.795 433.739
total 510.91 512.31 372.924 656.702 506.548 557.694 474.957

deepseek
prompt 38.5 38.5 52.478 313.01 38.485 83.391 31.802
output 501.11 503.37 416.639 571.79 495.306 440.691 434.81
total 539.61 541.87 469.117 884.808 533.791 524.082 485.612

gpt
prompt 1522.48 1529.96 1138.243 11694.576 42.083 3003.319 1845.724
output 444.81 450.63 352.564 679.15 350.386 756.689 596.876
total 1967.29 1980.59 1490.807 12373.72 392.47 3760.009 2442.6

Time

llama 8.275 7.812 6.063 8.835 6.069 6.152 6.503
qwen 4.48 3.977 3.415 3.837 4.787 4.707 3.441

deepseek 23.084 26.745 13.726 21.946 20.829 16.456 17.79
aggregator 10.699 8.274 8.89 23.114 5.849 14.208 27.486

total 36.502 36.854 32.119 64 27.318 50.217 46.45

Communication

prompt to agent1 165.07/0 209.08/44.01 284.078/118 514.962/0 1180.078/898 354.508/0 96.022/0
prompt to agent2 165.07/0 209.08/44.01 284.078/118 483.740/0 1171.078/889 341.160/0 95.425/0
prompt to agent3 165.07/0 209.08/44.01 284.078/118 619.516/0 1164.078/882 343.219/0 97.116/0

agent1 to aggregator 1983.02/3 2066.04/52.24 1659.318/124 2497.929/0 2022.417/33.689 6128.259/2639.113 2000.542/0
agent2 to aggregator 2011.83/3 2071.24/57.38 1511.311/122 1754.701/0 2054.878/39.118 6131.272/2629.426 1927.093/0
agent3 to aggregator 2072.98/3 2156.04/66.81 1889.247/126 2151.097/0 2116.377/48.641 5715.126/2465.817 1892.344/0

Table 10: OK-VQA Detailed Results

token time

Framework prompt output total llm code executor total

LangChain 261.033 ± 0.462 52.567 ± 0.473 313.633 ± 0.058 2.948 ± 0.354 4.716 ± 0.115 7.664 ± 0.426
AutoGen 791.133 ± 0.635 89.467 ± 1.882 880.600 ± 1.609 6.197 ± 0.060 5.171 ± 0.233 11.368 ± 0.240
AgentScope 2621.367 ± 30.029 283.433 ± 3.355 2902.567 ± 30.346 15.537 ± 5.753 9.043 ± 3.031 24.580 ± 8.779
CrewAI 4510.933 ± 254.635 269.600 ± 120.951 4780.600 ± 318.263 4.657 ± 0.121 5.578 ± 1.236 10.990 ± 1.536
LlamaIndex 1219.300 ± 1.682 83.833 ± 0.208 1303.167 ± 1.909 5.548 ± 1.486 5.476 ± 0.627 11.024 ± 0.998
Phidata 2019.167 ± 2.401 88.500 ± 0.600 2107.500 ± 2.193 4.132 ± 0.054 3.930 ± 0.403 9.039 ± 0.027
PydanticAI 1728.367 ± 1.674 92.100 ± 0.608 1820.433 ± 2.223 3.034 ± 0.012 3.352 ± 0.057 6.390 ± 0.025

or memory strategies. This phenomenon will become more apparent in Scalability part as the number
of sub agents increases. For further details, please refer to the Insight 4 in Section 4.5.

B.3 SCALABILITY

B.3.1 THE NUMBER OF WORKER AGENTS

To evaluate the scalability of the MoA workflow, we increase the number of worker agents from 3
to 6, 9, 12, and 15, while keeping the newly added agents identical in configuration to the original
ones. Metrics from agents using the same LLM are aggregated for reporting. To clearly illustrate
how efficiency evolves with increasing numbers of worker agents, we list separate tables (Table 11,
12, 13, 14, 15, 16, 17) for each framework.

B.3.2 THE NUMBER OF TOOLS

Insight 8: Increasing the number of tools has only a minimal impact on execution time across
frameworks, but it leads to a noticeable variation in LLM token usage and can cause execution
failures when the input exceeds the LLMs maximum context length.

Key Observations We conduct scalability experiments on the GAIA dataset, examining the effect
of varying the number of tools across different frameworks. In addition to each frameworks original
tool set, we introduce extra LeetCode-solving tools, which are irrelevant for solving the GAIA dataset.
The results in Table 18 and 19 show that while increasing the number of tools has only a minimal
impact on execution time, it leads to a noticeable increase in LLM token usage. In addition, it
can be observed that as the number of tools increases, some test samples encountered execution
failures because the input exceed the LLMs maximum context length (see Table 20). Notably, in

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Scalability Evaluation of AlpacaEval Using AgentScope

Number of Worker Agent 3 6 9 12 15

Token

llama
prompt 85.451 137.84 206.76 275.68 344.6
output 382.45 796.68 1204.91 1641.18 2021.9
total 467.901 934.52 1411.67 1916.86 2366.5

qwen
prompt 61.815 89.92 134.88 179.84 224.8
output 311.109 555.47 848.94 1139.47 1497.77
total 372.924 645.39 983.82 1319.31 1722.57

deepseek
prompt 52.478 71.74 107.61 143.48 179.35
output 416.639 841.37 1253.25 1704.54 2100.42
total 469.117 913.11 1360.86 1848.02 2279.77

gpt
prompt 1138.243 2237.83 3351.55 4542.02 5677.57
output 352.564 412.43 439.44 442.62 434.15
total 1490.807 2650.26 3790.99 4984.64 6111.72

Time

llama 6.063 12.76 19.307 25.547 35.311
qwen 3.415 6.523 10.819 13.866 18.237

deepseek 13.726 32.81 48.833 67.114 84.318
gpt 8.89 15.468 14.33 14.373 15.813

total 32.119 67.607 93.357 122.987 153.784

Communication

prompt to agent1 284.078/118 389.8/236 584.7/354 779.6/472 974.5/590
prompt to agent2 284.078/118 389.8/236 584.7/354 779.6/472 974.5/590
prompt to agent3 284.078/118 389.8/236 584.7/354 779.6/472 974.5/590

agent1 to aggregator 1659.318/124 3256.270/250 4960.120/375 6718.820/500 8266.330/625
agent2 to aggregator 1511.311/122 2375.700/246 4051.120/369 5477.260/492 7080.860/615
agent3 to aggregator 1889.247/126 3705.450/254 5510.530/381 7497.600/508 9255.700/635

Table 12: Scalability Evaluation of AlpacaEval Using AutoGen

Number of Worker Agent 3 6 9 12 15

Token

llama
prompt 70.49 104.14 158.76 211.68 264.6
output 431.96 1004.94 1526.56 2028.21 2529.62
total 502.45 1109.08 1685.32 2239.89 2794.22

qwen
prompt 64.85 93.18 140.88 187.84 234.8
output 447.45 993.87 1532.12 1940.46 2419.98
total 512.31 1087.05 1673 2128.3 2654.78

deepseek
prompt 38.5 40.68 62.61 83.48 104.35
output 503.37 1109.77 1686.42 2249.68 2802.48
total 541.87 1150.45 1749.03 2333.16 2906.83

gpt
prompt 1529.96 3194.7 4830 6290.22 7807.46
output 450.63 670.29 716.41 700.94 722.88
total 1980.59 3864.99 5546.41 6991.16 8530.34

Time

llama 7.812 14.667 25.424 34.833 37.816
qwen 3.977 12.653 21.064 28.736 35.71

deepseek 26.745 46.011 71.345 71.98 104.207
gpt 8.274 19.816 22.41 30.398 17.817

total 36.854 47.339 50.843 55.6 46.428

Communication

prompt to agent1 209.08/44.01 236.48/86.04 359.7/129.06 479.6/172.08 599.5/215.1
prompt to agent2 209.08/44.01 236.48/86.04 359.7/129.06 479.6/172.08 599.5/215.1
prompt to agent3 209.08/44.01 236.48/86.04 359.7/129.06 479.6/172.08 599.5/215.1

agent1 to aggregator 2066.04/52.24 4618.13/103.41 7069.64/156.52 9297.61/208.1 11541.91/258.55
agent2 to aggregator 2071.24/57.38 4450.9/112.37 6777.28/172.84 8661.68/217.75 10768.69/271.29
agent3 to aggregator 2156.04/66.81 4604.89/128.62 7399.95/204.09 9384.64/258.11 11497.32/317.86

the LlamaIndex framework, the addition of the extra LeetCode-solving tools results in a significant
decrease in both token consumption and execution time.

Underlying Mechanism-10: Reduced Tool-Call Tendency Increasing the size of the tool inventory
paradoxically reduces the agents propensity to invoke tools. On the same test set, adding 10 or 20
LeetCode-solving tools raises the number of queries that make no tool calls from 17 (no extras) to 27
and 25, respectively. Consistent with this shift, the total tool-call counts drop from 630 (0 extra tools)
to 454 and 467 (10 and 20 extra tools). These patterns indicate a shallower ReAct trajectory, which
in turn reduces LLM token consumption and overall execution time.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 13: Scalability Evaluation of AlpacaEval Using LangChain

Number of Worker Agent 3 6 9 12 15

Token

llama
prompt 70.49 105.84 158.76 211.68 264.60
output 428.55 1054.54 1518.52 2037.28 2537.08
total 499.04 1160.38 1677.28 2248.96 2801.68

qwen
prompt 64.84 93.92 140.88 187.84 234.80
output 446.05 1007.95 1446.68 2017.43 2436.53
total 510.91 1101.87 1587.56 2205.27 2671.33

deepseek
prompt 38.50 41.74 62.61 83.48 104.35
output 501.11 1132.22 1677.97 2224.98 2792.75
total 539.61 1173.96 1740.58 2308.46 2897.10

gpt
prompt 1522.48 3300.82 4734.44 6353.31 7823.07
output 444.81 693.66 661.37 685.78 700.94
total 1967.29 3994.48 5395.81 7039.09 8524.01

Time

llama 8.275 12.061 19.123 23.213 34.437
qwen 4.480 10.838 16.584 24.812 29.335

deepseek 23.084 40.801 66.156 73.476 115.888
gpt 10.699 13.741 17.592 33.688 32.068

total 36.502 37.958 47.112 59.725 66.075

Communication

prompt to agent1 165.07/0 153.76/0 230.64/0 307.52/0 384.4/0
prompt to agent2 165.07/0 153.76/0 230.64/0 307.52/0 384.4/0
prompt to agent3 165.07/0 153.76/0 230.64/0 307.52/0 384.4/0

agent1 to aggregator 1983.02/3 4703.67/6 6787.84/9 9117.26/13 11314.20/17
agent2 to aggregator 2011.83/3 4334.61/6 6286.30/9 8621.19/13 10546.46/17
agent3 to aggregator 2072.98/3 4529.70/6 6702.62/9 8880.47/13 11164.34/17

Table 14: Scalability Evaluation of AlpacaEval Using PydanticAI

Number of Worker Agent 3 6 9 12 15

Token

llama
prompt 61.347 95.5 126.29 139.77 161.71
output 429.543 938.08 1273.35 1327.71 1559.8
total 490.889 1033.58 1399.64 1467.48 1721.51

qwen
prompt 41.217 58.39 76.32 80.85 94.52
output 433.739 939.44 1213.31 1257.55 1608.87
total 474.957 997.83 1289.63 1338.4 1703.39

deepseek
prompt 31.802 41.44 50.5 50.88 58
output 434.81 931.31 1210.15 1150.95 1311.62
total 485.612 972.75 1260.65 1201.83 1369.62

gpt
prompt 1845.724 3531.53 4673.28 4739.51 5684.52
output 596.876 636.99 633.62 637.09 691.85
total 2442.6 4168.52 5306.9 5376.6 6376.37

Time

llama 6.503 15.15 16.68 19.71 21.15
qwen 3.441 8.38 11.2 11.59 13.41

deepseek 17.79 33.34 42.14 40.71 47.19
gpt 27.486 22.05 90.94 91.35 41.02

total 46.45 42.24 110.78 111.4 62.13

Communication

prompt to agent1 96.022/0 88.12/0 113.86/0 124.09/0 134.34/0
prompt to agent2 95.425/0 93.84/0 118.13/0 119.19/0 131.11/0
prompt to agent3 97.116/0 94.73/0 108.99/0 103.12/0 113.92/0

agent1 to aggregator 2000.542/0 4154.19/0 5693.77/0 6003.71/0 6851.79/0
agent2 to aggregator 1927.093/0 4002.04/0 5302.46/0 5314.6/0 6682.15/0
agent3 to aggregator 1892.344/0 3773.26/0 4941.13/0 4729.39/0 5284.75/0

Potential Optimizations Building on these findings, agent frameworks should emphasize relevance-
aware tool-set curation and dynamic exposure to tools to contain prompt growth and reduce the risk
of context-length failures. Regulating ReAct depth and enforcing explicit token budgets can curb

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 15: Scalability Evaluation of AlpacaEval Using CrewAI

Number of Worker Agent 3 6 9 12 15

Token

llama
prompt 298.25 536.95 706.39 760.54 795.95
output 518.95 1186.13 1495.89 1597.78 1741.84
total 817.201 1723.09 2202.26 2358.31 2537.63

qwen
prompt 258.083 432.87 565.05 571.23 589.12
output 398.618 862.44 1123.05 1088.7 1119.49
total 656.702 1309.12 1688.11 1650.93 1708.61

deepseek
prompt 313.01 432.87 526 544.75 668.04
output 571.79 1007.86 1147.04 1181.72 1436.84
total 884.808 1440.73 1673.04 1726.48 2104.88

gpt
prompt 11694.576 28948.53 49040.19 54145.65 72234.23
output 679.15 1136.86 1320.35 1363.42 1614.66
total 12373.72 30085.4 50360.55 55509.07 73848.9

Time

llama 8.835 20.9 32.04 44.25 27.61
qwen 3.837 7.7 16.64 13.84 14.61

deepseek 21.946 32.49 48.37 50.72 45.43
gpt 23.114 53.26 101.92 102.374 159.36

total 64 120.54 212.76 218.34 245.26

Communication

prompt to agent1 514.962/0 925.12/0 1425.23/0 1724.32/0 1963.23/0
prompt to agent2 483.740/0 912.35/0 1252.74/0 1328/0 1456.32/0
prompt to agent3 619.516/0 900.54.5/0 1386.75/0 1327.32/0 1587.73/0

agent1 to aggregator 2497.929/0 5921.52/0 7929.36/0 8623.56/0 9765.36/0
agent2 to aggregator 1754.701/0 4421.22/0 6342.21/0 7021.42/0 8126.57/0
agent3 to aggregator 2151.097/0 4783.14/0 6433.52/0 6798.21/0 7998.67/0

Table 16: Scalability Evaluation of AlpacaEval Using LlamaIndex

Number of Worker Agent 3 6 9 12 15

Token

llama
prompt 70.49 105.84 158.76 211.68 264.6
output 430.216 1007.91 1502.61 2012.48 2501.66
total 500.707 1113.75 1661.37 2224.16 2766.26

qwen
prompt 64.81 93.92 140.88 187.84 234.8
output 441.738 972.25 1431.39 1914.73 2420.34
total 506.548 1066.17 1572.27 2102.57 2655.14

deepseek
prompt 38.485 41.74 62.61 83.48 104.35
output 495.306 1107.88 1695.19 2216.87 2794.66
total 533.791 1149.62 1757.8 2300.35 2899.01

gpt
prompt 42.083 24.68 24.68 24.68 24.68
output 350.386 515.31 541.38 539.22 528.1
total 392.47 539.99 566.06 563.9 552.78

Time

llama 6.069 12.44 18.98 25.65 35.58
qwen 4.787 10.69 14.77 22.23 27.49

deepseek 20.829 41.18 61.97 81.83 93.12
gpt 5.849 9.39 9.66 10.4 16.06

total 27.318 36.87 43.85 53.77 67.23

Communication

prompt to agent1 1180.078/898 2181.8/1796.0 3272.7/2694.0 4363.6/3592.0 5454.5/4490.0
prompt to agent2 1171.078/889 2163.8/1778.0 3245.7/2667.0 4327.6/3556.0 5409.5/4445.0
prompt to agent3 1164.078/882 2149.8/1764.0 3224.7/2646.0 4299.6/3528.0 5374.5/4410.0

agent1 to aggregator 2022.417/33.689 4585.09/67.1 6813.56/99.75 9126.32/133.64 11342.05/169.22
agent2 to aggregator 2054.878/39.118 4372.32/72.31 6456.6/106.13 8647.86/143.64 10907.85/181.15
agent3 to aggregator 2116.377/48.641 4512.6/90.07 6923.71/137.8 9081.69/180.66 11437.99/227.25

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 17: Scalability Evaluation of AlpacaEval Using Phidata

Number of Worker Agent 3 6 9 12 15

Token

llama
prompt 118.846 114.5 110.58 116.61 118.06
output 438.078 555.91 551.62 576.04 603.61
total 556.924 670.41 662.2 692.65 721.67

qwen
prompt 93.899 87.57 83.21 90.21 91.97
output 463.795 634.08 621.29 663.48 707.2
total 557.694 721.65 704.5 753.69 799.17

deepseek
prompt 83.391 76.54 72.94 77.18 78.63
output 440.691 505.74 525.82 527.8 545.07
total 524.082 582.28 598.76 604.98 623.7

gpt
prompt 3003.319 4180.34 5040.94 5973.25 6991.86
output 756.689 785.45 778.76 795.1 801.86
total 3760.009 4965.79 5819.7 6768.35 7793.72

Time

llama 6.152 6.55 6.55 9.12 10.33
qwen 4.707 6.75 5.27 6.09 6.56

deepseek 16.456 15.43 16.6 19.32 22.07
gpt 14.208 23.13 25.68 31.67 31.7

total 50.217 60.42 63.84 78.8 83.42

Communication

prompt to agent1 354.508/0 325.7/0 310.63/0 329.16/0 334.87/0
prompt to agent2 341.160/0 309.01/0 293.84/0 319.17/0 326.58/0
prompt to agent3 343.219/0 304.15/0 288.79/0 307.71/0 314.94/0

agent1 to aggregator 6128.259/2639.113 7105.44/3163.16 6961.87/3105.45 7291.8/3252.42 7582.27/3388.25
agent2 to aggregator 6131.272/2629.426 7475.54/3354.1 7269.53/3267.58 7792.87/3505.45 8121.06/3656.93
agent3 to aggregator 5715.126/2465.817 6165.11/2699.97 6196.23/2734.51 6342.37/2791.33 6571.72/2891.08

unnecessary tool exploration, while compact, standardized tool specifications help decouple token
usage from catalog size.

Table 18: Effect of LeetCode-solving tools on execution time (seconds)

LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI
no LeetCode-solving tools 12.86 8.41 19.57 11.87 24.26 10.23 10.31
10 LeetCode-solving tools 11.79 8.58 22.31 10.35 19.47 10.99 8.33
20 LeetCode-solving tools 10.78 8.36 21.95 11.14 20.89 10.98 9.58

Table 19: Effect of LeetCode-solving tools on Token

no LeetCode-solving tools 10 LeetCode-solving tools 20 LeetCode-solving tools

Prompt Output Total Prompt Output Total Prompt Output Total

LangChain 7199.33 553.2 7753 11489.89 586.61 12076.50 12779.90 502.75 13282.65
AutoGen 1195.98 185.19 1381.18 2200.19 191.82 2392.01 3011.2 182.87 3194.07
AgentScope 17161.55 828.68 17990.23 31878.31 780.23 32658.54 32464.93 804.56 33269.48
CrewAI 16475.12 582.82 17057.95 11670.07 552.16 12222.23 17398.34 557.75 17956.09
LlamaIndex 101042.29 729.57 101771.86 35111.65 348.83 35460.48 32899.47 253.21 33152.68
Phidata 3293.59 270.75 3564.33 4957.96 295.79 5253.75 6104.55 267.34 6371.88
PydanticAI 13273.91 373.74 13647.66 12356.90 321.95 12678.85 16682.93 324.13 17025.06

B.4 EXTENDED ANALYSIS ON INSIGHT 1

Our experiments in Section 5.2 reveal a strong correlation between prompt token counts and execution
time across frameworks (see Figure 3). This is primarily due to two factors: 1) the frequency of LLM
calls and tool invocations per query; 2) memory accumulation across queries.

Figure 6 shows that CrewAI and AgentScope have significantly higher average LLM call frequencies
per query (5.33 and 4.78) compared to LlamaIndex, PydanticAI, and Phidata (2.76, 2.79, and 3.38).
This difference explains their greater token consumption and longer runtimes, which stem from more
frequent LLM calls and the resulting memory accumulation.

During the experiments, we observed the following patterns, indicating that some frameworks invoke
tools more frequently than others:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 20: Number of Failed Runs

LangChain AutoGen AgentScope CrewAI LlamaIndex Phidata PydanticAI
no irrelevant tools 0 0 1 1 1 0 1
10 irrelevant tools 0 0 2 1 1 1 1
20 irrelevant tools 0 0 4 3 1 0 1

Figure 6: LLM Call Frequency per Query across Different Frameworks

1) AgentScope and CrewAI frequently invoke the Web tool to obtain precise results, leading to
substantially higher token usage due to lengthy text outputs. In our tests, they called the Web tool
494 and 608 times respectively, far exceeding the maximum of 102 observed in other frameworks.

2) AgentScope often writes and executes code to solve problems, which requires returning large
code blocks that further increase token usage. It used the code execution tool 122 times, while other
frameworks did so no more than 21 times.

Moreover, AgentScope stands out for retaining conversational memory across queries by continuously
appending prior interactions to the prompt. Unlike earlier tests that re-instantiated the Agent to avoid
memory buildup, running 9 GAIA queries without resets confirmed significant memory accumulation
(see Figure 7).4

Meanwhile, in our MoA workflow experiments, we observed that some frameworks invoke worker
agents in parallel, whereas others do so serially. Specifically, we observe that CrewAIs built-in MoA
workflow integrates the previous worker agents output with the initial prompt, performs a secondary
summarization, and then passes the result to the next worker agent. To further explore this behavior,
we varied the order of worker agents in CrewAI and present the results in Table 21. Here, GLM,
Qwen, DS, and GPT denote GLM-Z1-Rumination-32B-0414, Qwen2.5-7B-Instruct, DeepSeek-V3,
and GPT-4o, respectively.

Table 21: The Impact of Agent Execution Order on Tokens

GLMQwenDS DSQwenGLM QwenDSGLM

Order Prompt Output Total Prompt Output Total Prompt Output Total

GLM 1296.82 734.62 2031.44 2953.52 1909.5 4863.02 584.74 324.9 909.64
Qwen 241.86 383.12 624.98 279.96 557.84 837.8 255.92 525.3 781.22
DS 447.0 968.5 1415.5 279.36 568.14 847.5 246.38 556.64 803.02
GPT 36750.26 1119.44 37869.7 36732.26 1129.24 37861.5 17375.24 455.8 17831.04

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 7: Memory Accumulation Impact

B.5 CLAUDE-BASED RESULTS

Table 22: Claude-Based HumanEval Results

Token Time Accuracy

Framework Prompt Output Total LLM Code executor Total

LangChain 5568.08 675.88 6243.96 41.644 0.0140 41.932 0.585
AutoGen 920.84 292.88 1213.71 12.847 0.00047 13.182 0.823

Given that the majority of our experiments are implemented with GPT-4o, and considering the
widespread adoption of open-source models, we additionally evaluate the Claude-3-Opus model on
the HumanEval dataset within the LangChain and AutoGen frameworks. The results are presented in
Table 22.

Notably, AutoGen exhibited slightly lower accuracy compared to GPT-based agents. Upon inspection,
we found that Claude did not fabricate test data when invoking the Python execution tool, which
rendered the self-checking mechanism ineffective. In LangChain, Claude occasionally emitted tool
outputs directly, bypassing the expected format and causing execution failures.

These behaviors suggest that when using Claude-3-Opus as the underlying model for ReAct-style
agents, further prompt adaptation may be necessary to ensure compatibility with existing framework
toolchains.

B.6 REPRODUCIBILITY VERIFICATION

Table 23: HumanEval Run 2

Token Time

Framework Prompt Output Total LLM Code executor Total

LangChain 6769.16 695.15 7464.31 27.063 0.01267 27.82
AutoGen 790.29 108.26 898.55 5.685 0.000353 5.711
AgentScope 2429.72 530.323 2960.043 13.42 0.121 13.57
CrewAI 10026.98 914.96 10941.95 29.75 0.0432 30.47
LlamaIndex 2052 347.9 2399.9 19.81 0.00381 19.84
Phidata 1083.32 376.46 1459.79 11 8.99E-05 16.3
PydanticAI 903.6 353.48 1257.08 9.13 2.32E-05 9.15

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 24: HumanEval Run 3

Token Time

Framework Prompt Output Total LLM Code executor Total

LangChain 7953.34 832.63 8785.97 38.562 0.015723 39.471
AutoGen 769.72 105.78 875.5 8.027 0.000279 8.199
AgentScope 2804.341 568.36 3372.701 15.686 0.139 15.858
CrewAI 10822.16 867.08 11689.24 34.19 0.0342 34.98
LlamaIndex 2017.37 362.85 2380.23 20.61 0.00293 20.64
Phidata 1258.7 393.46 1652.16 9.36 0.000227 12.4
PydanticAI 874.49 340.66 1215.15 7.73 2.44E-05 7.74

Table 25: GAIA Run 1

Token Time

Frameworks Prompt Output Total LLM Search PDF loader CSV reader XLSX reader

LangChain 6493.9 562.42 7052.33 8.26 0.724 0.000713 2.73E-05 -
AutoGen 1078.7 183 1261.7 9.65 17.29 0.00347 0.00035 8.91E-05
AgentScope 19192.78 747.25 19940.02 12.03 1.32 1.48 0.000358 0.00147
CrewAI 31286.37 612.44 31898.81 34.55 4.66 0.0205 0.000138 0.00272
LlamaIndex 12370.81 688.83 13059.64 38.4 1.019 0.000618 4.63E-06 0.00196
Phidata 2387.39 260.78 2648.17 13.16 4.296 0.00257 8.37E-06 8.18E-05
PydanticAI 15680.58 410.12 16090.7 10.81 0.744 0.461 0.000302 0.000111

time

Text file reader doc reader MP3 loader Figure loader Video loader Code executor total tool time total time

0.0197 - - - - 0.0176 0.762 10.15
4.63E-05 5.82E-05 - - - 1.15E-05 17.294 27.04
6.32E-06 2.52E-06 0.125 0.443 2.99E-06 0.996 4.359 16.575
0.000832 0.00015 0.000375 0.105 - 0.194 4.795 39.86
0.00113 3.94E-06 3.91E-06 0.839 - 0.387 2.248 47
4.24E-05 0.000141 0.098 0.075 - 0.000427 4.473 13.16
0.117 6.33E-05 0.0951 0.141 - 6.39E-05 1.558 11.68

Table 26: GAIA Run 2

Token Time

Frameworks Prompt Output Total LLM Search PDF loader CSV reader XLSX reader

LangChain 6659.4 598.16 7257.56 17.61 0.78 0.000908 3.82E-05 -
AutoGen 1063.48 195.52 1259 4.206 11.477 0.000736 0.000223 0.000161
AgentScope 20787.67 785.02 21572.68 12.997 1.438 2.876 0.000248 0.000841
CrewAI 33422.3 564.65 33986.94 35.75 4.77 0.0072 0.000146 0.0023
LlamaIndex 15079.24 731.95 15811.19 35.69 1.196 0.000308 2.19E-06 0.0021
Phidata 2481.73 279.04 2760.76 5.25 4.055 0.00074 1.37E-05 0.000173
PydanticAI 11306.87 259.62 11566.48 5.361 1.12 0.535 0.000261 7.93E-05

Time

Text file reader doc reader MP3 loader Figure loader Video loader Code executor Total tool time Total time

0.0103 - - - - 0.000699 0.797 18.89
3.39E-05 9.33E-05 - - - 1.58E-05 11.478 16.211
2.60E-06 2.00E-06 0.241 0.406 1.45E-06 0.285 5.248 18.55
0.000477 0.000147 0.000283 0.0314 - 0.00647 4.82 41.14
0.00042 9.75E-05 6.96E-06 0.399 - 1.196 2.794 46.28
0.000166 7.73E-05 0.144 0.108 - 0.000132 4.308 10.69
0.125 9.10E-05 0.186 0.126 - 1.75E-05 2.091 6.59

Insight 9: Experimental reproducibility is underpinned by the stability of token usage, while
variability arises from stochastic tool behaviors and fluctuating LLM invocation dynamics.

Key Observations To verify the reliability and reproducibility of our results, we conduct repeated
experiments on the HumanEval and GAIA datasets. The outcomes are reported in Table 7, 23, 24 for
HumanEval and in Table 25, Table 26, Table 27 for GAIA. As illustrated by the error bars in Figure 8

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 27: GAIA Run 3

Token Time

Frameworks Prompt Output Total LLM Search PDF loader CSV reader XLSX reader

LangChain 7262.24 651.28 7913.52 16.86 1.16 0.246 2.55E-05 -
AutoGen 1067.48 186.24 1253.72 10.59 17.33 0.000685 0.000285 0.000195
AgentScope 20689.4 761.78 21451.18 21.58 2.446 2.035 0.000199 0.0019
CrewAI 33866.8 621.44 34488.23 34.15 3.446 0.00617 0.000171 0.00251
LlamaIndex 19764.47 964 20728.47 61.89 2.395 0.00203 0.000678 0.00631
Phidata 2187.99 233.53 2421.52 13.81 3.92 0.000728 6.04E-06 0.000103
PydanticAI 13059.31 296.36 13355.67 15.76 0.783 0.637 3.79E-06 7.88E-05

time

Text file reader doc reader MP3 loader Figure loader Figure loader Code executor Total tool time Total time

0.00904 - - - - 0.00125 1.417 18.78
1.70E-05 2.31E-04 - - - 2.00E-05 17.33 28.71
3.24E-06 4.85E-06 0.164 0.683 4.46E-06 1.88 7.215 29.03
0.00047 0.000141 0.000283 - - 0.014 3.47 38.44
0.000464 0.000239 0.0405 0.69 - 0.307 3.443 74.998
0.000117 7.83E-05 0.0989 0.0788 - 0.000497 4.1 19.52
0.0382 5.67E-05 0.0824 0.151 - 5.66E-02 1.75 16.685

Figure 8: Consistency of Token Consumption and Latency in Repeated Experiments (HumanEval)

and 9, the token consumption in our experiment is relatively stable. In general, the execution time is
usually positively related to the token consumption.

Underlying Mechanism-11: Stochastic Tool Behaviors Figure 9 indicates that the LlamaIndex
framework yields a relatively high standard deviation on the GAIA dataset. This can be attributed
to the stochastic nature of tool invocations and the consequent variations in the number of LLM
invocation rounds.

Underlying Mechanism-12: Fluctuating LLM invocation dynamics The inherent randomness of
certain LlamaIndex built-in toolssuch as the use of whisper in audio-visual modelsfurther amplifies
this effect, resulting in a larger standard deviation in the GAIA test results.

Nevertheless, the overall trend remains reproducible.

In addition, to examine the impact of hardware differences, we rerun the GAIA benchmark on a
machine equipped with a 40-series GPU with 48GB of memory. We then compare the results with
the average values obtained from the RTX 3080 Ti setup, by computing the ratios of key metrics.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Consistency of Token Consumption and Latency in Repeated Experiments (GAIA)

Table 28: Comparison of Token and Time Ratios Across Hardware Configurations

Token ratio Time ratio

Framework Prompt Output Total LLM Code executor Total

LangChain 1.080 1.060 1.083 0.639 0.713 0.638
AutoGen 0.998 1.062 1.008 0.501 1.124 0.923
AgentScope 0.996 1.108 1.000 0.975 0.543 0.858
CrewAI 1.034 0.984 1.033 1.044 1.217 1.076
LlamaIndex 1.354 1.401 1.356 1.014 1.093 1.032
Phidata 0.990 0.963 0.987 1.286 0.961 1.319
PydanticAI 0.912 0.915 0.912 0.629 1.164 0.622

As shown in Table 28, token usage remain largely consistent across most frameworks. Intuitively,
the token consumption is independent of hardware setup. In terms of execution time, we observe
significant speedup only for LangChain and Pydantic, indicating that these two frameworks benefit
more from enhanced GPU capabilities, while others exhibit relatively stable performance regardless
of GPU configuration.

C PROMPTS

C.1 REACT

For frameworks that do not have a specific implementation of ReAct, we use the following prompt to
build the ReAct workflow:

1 You are a ReAct-based assistant.
2 You analyze the question, decide whether to call a tool or directly

answer, and then respond accordingly.
3 Use the following format:Question: the input question or request
4 Thought: you should always think about what to do\nAction: the action to

take (if any)
5 Action Input: the input to the action (e.g., search query)
6 Observation: the result of the action
7 ... (this process can repeat multiple times)
8 Thought: I now know the final answer
9 Final Answer: the final answer to the original input question or request

10 Begin!
11 Question: {input}

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.1.1 LANGCHAIN

Within the ReAct workflow implemented via LangChain’s AgentExecutor, we set the max_iterations
parameter to 15 for experiments on the GAIA dataset and to 10 for those on the HumanEval dataset.

C.2 RAG

For the following frameworks, we applied specific prompts to improve their token efficiency or to
better align with the RAG workflow.

C.2.1 AUTOGEN

1 You are a helpful assistant. You can answer questions and provide
information based on the context provided.

C.2.2 CREWAI

1 You are a specialized agent for RAG tasks.You just need to give the
answer of the question. Don't need any othter word.Such as the answer is
a number 5 ,you need output '5'.Or the answer is A,you need to output 'A'.

C.2.3 PHIDATA

1 You are a RAG-based assistant. You analyze the question, and call the
search_knowledge_base tool to retrieve relevant documents from the
knowledge base, and then respond accordingly.

C.2.4 PYDANTICAI

1 You're a RAG agent. please search information from the given task to
build a knowledge base and then retrieve relevant information from the
knowledge base.

C.3 MOA

Unless otherwise specified, the following prompt is used for the aggregator agent.

C.3.1 LANGCHAIN

1 You have been provided with a set of responses from various open-source
models to the latest user query. Your task is to synthesize these
responses into a single, high-quality response. It is crucial to
critically evaluate the information provided in these responses,
recognizing that some of it may be biased or incorrect. Your response
should not simply replicate the given answers but should offer a refined,
accurate, and comprehensive reply to the instruction. Ensure your

response is well-structured, coherent, and adheres to the highest
standards of accuracy and reliability.

C.3.2 AGENTSCOPE

1 You are an assistant called Dave,you should synthesize the answers from
Alice, Bob and Charles to arrive at the final response.

For the worker agent, we used the following prompt.

1 You are an assistant called Alice/Bob/Charles.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.3.3 CREWAI

1 You are an agent manager, and You need to assign the questions you
receive to each of your all agents, and summarize their answers to get a
more complete answer

2 You must give question to all the all agents, and you must summarize
their answers to get a more complete answer.\nYou need to be the best

For the worker agent, we used the following prompt.

1 You are one of the agents, you have to make your answers as perfect as
possible, there will be a management agent to choose the most perfect
answer among the three agents as output, you have to do your best to be
selected

C.3.4 PHIDATA

1 Transfer task to all chat agents (There are 3 agents in your team)", "
Aggreagate responses from all chat agents

C.3.5 PYDANTICAI

1 Your task is to aggregate all agents results to solve complex tasks.\nYou
analyze the input, input the task to all tools that can run a single

agent, and synthesize the results from all agents into a final response.

C.4 GAIA

In this experiment, we used all levels of questions from the test subset of the GAIA dataset. Below
are examples of prompts used in our system, depending on whether a file is attached:

1 question: A paper about AI regulation originally submitted to arXiv.org
in June 2022 features a figure with three axes, each labeled with a pair
of opposing terms. Which of these terms is used to describe a type of
society in a Physics and Society article submitted to arXiv.org on August
11, 2016?

1 question: The attached spreadsheet contains the inventory of a movie and
video game rental store located in Seattle, Washington. What is the title
of the oldest Blu-Ray listed in this spreadsheet? Return it exactly as

it appears., file_name: 32102e3e-d12a-4209-9163-7b3a104efe5d.xlsx,
file_path: path/to/32102e3e-d12a-4209-9163-7b3a104efe5d.xlsx

C.5 HUMANEVAL

To avoid generating explanatory text or pseudo-code that hinders automated accuracy evaluation, we
slightly modify the original HumanEval queries by adding minimal prompts.Below is an example of
the prompt used for HumanEval problems:

1 from typing import List
2

3 def has_close_elements(numbers: List[float], threshold: float) -> bool:
4 """ Check if in given list of numbers, are any two numbers closer to

each other than
5 given threshold.
6 >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
7 False
8 >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
9 True

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

10 """
11

12 # Complete the function. Only return code. No explanation, no comments,
no markdown.

C.6 MMLU

For the MMLU dataset, we constructed the vector database used in the RAG workflow based on
the development subset and evaluated the performance of each framework using the test subset.
Given the large number of tasks in this dataset, we used only one-quarter of them in our experiments.
Considering that tasks from the same domain tend to be spatially adjacent in the dataset, we selected
one out of every four tasks in index order. This sampling strategy ensures broader domain coverage
and maintains fairness in the evaluation.

Below is an example of the question in MMLU:

1 Question:Find the degree for the given field extension Q(sqrt(2), sqrt(3),
sqrt(18)) over Q.

2 A.0
3 B.4
4 C.2
5 D.6
6 Answer with A, B, C, or D only

C.7 ALPACAEVAL

In this experiment, we used the full set of tasks for the basic MoA experiments, and the first 100 tasks
for extended experiments involving more agents. Below is an example of one such task.

D BUGS AND FEATURES

This section summarizes the bugs or features of LLM agent frameworks that we discovered during
our evaluation.

D.1 LANGCHAIN

As shown in Figure 10, LangChain’s high level of abstraction and encapsulation posed challenges in
measuring specific metrics during our experiments.

Additionally, LangChain occasionally terminated processes prematurely after reading files from the
GAIA dataset, returning the file content directly rather than proceeding with the expected operations
(see Figure 11).

D.2 AUTOGEN

Due to the default system prompt being relatively long and containing irrelevant instructions, the
RAG workflow may consume unnecessary tokens or produce unexpected errors (e.g., attempting to
invoke non-existent tools). Therefore, it is necessary for users to customize the system prompt.

D.3 AGENTSCOPE

AgentScopes image and audio processing tools internally rely on OpenAI models, causing their
execution time to partially overlap with that of the LLM itself. This overlap can lead to inflated or
inaccurate measurements of LLM processing time. Researchers and practitioners should be mindful
of this issue when conducting time-based evaluations involving AgentScope.

1 def openai_image_to_text(
2 image_urls: Union[str, list[str]],
3 api_key: str,

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 10: LangChain’s high level of abstraction and encapsulation.

Figure 11: LangChain occasionally terminated processes prematurely.

4 prompt: str = "Describe the image",
5 model: Literal["gpt-4o", "gpt-4-turbo"] = "gpt-4o",
6 ) -> ServiceResponse:
7 """
8 Generate descriptive text for given image(s) using a specified model,

and
9 return the generated text.

10

11 Args:
12 image_urls (`Union[str, list[str]]`):

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

13 The URL or list of URLs pointing to the images that need to
be

14 described.
15 api_key (`str`):
16 The API key for the OpenAI API.
17 prompt (`str`, defaults to `"Describe the image"`):
18 The prompt that instructs the model on how to describe
19 the image(s).
20 model (`Literal["gpt-4o", "gpt-4-turbo"]`, defaults to `"gpt-4o"`)

:
21 The model to use for generating the text descriptions.
22

23 Returns:
24 `ServiceResponse`:
25 A dictionary with two variables: `status` and `content`.
26 If `status` is `ServiceExecStatus.SUCCESS`,
27 the `content` contains the generated text description(s).
28

29 Example:
30

31 .. code-block:: python
32

33 image_url = "https://example.com/image.jpg"
34 api_key = "YOUR_API_KEY"
35 print(openai_image_to_text(image_url, api_key))
36

37 > {
38 > 'status': 'SUCCESS',
39 > 'content': "A detailed description of the image..."
40 > }
41 """
42 openai_chat_wrapper = OpenAIChatWrapper(
43 config_name="image_to_text_service_call",
44 model_name=model,
45 api_key=api_key,
46 )
47 messages = Msg(
48 name="service_call",
49 role="user",
50 content=prompt,
51 url=image_urls,
52 )
53 openai_messages = openai_chat_wrapper.format(messages)
54 try:
55 response = openai_chat_wrapper(openai_messages)
56 return ServiceResponse(ServiceExecStatus.SUCCESS, response.text)
57 except Exception as e:
58 return ServiceResponse(ServiceExecStatus.ERROR, str(e))
59

60 def openai_audio_to_text(
61 audio_file_url: str,
62 api_key: str,
63 language: str = "en",
64 temperature: float = 0.2,
65 ) -> ServiceResponse:
66 """
67 Convert an audio file to text using OpenAI's transcription service.
68

69 Args:
70 audio_file_url (`str`):
71 The file path or URL to the audio file that needs to be
72 transcribed.
73 api_key (`str`):
74 The API key for the OpenAI API.
75 language (`str`, defaults to `"en"`):

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

76 The language of the input audio. Supplying the input language
in

77 [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1
_codes)

78 format will improve accuracy and latency.
79 temperature (`float`, defaults to `0.2`):
80 The temperature for the transcription, which affects the
81 randomness of the output.
82

83 Returns:
84 `ServiceResponse`:
85 A dictionary with two variables: `status` and `content`.
86 If `status` is `ServiceExecStatus.SUCCESS`,
87 the `content` contains a dictionary with key 'transcription'

and
88 value as the transcribed text.
89

90 Example:
91

92 .. code-block:: python
93

94 audio_file_url = "/path/to/audio.mp3"
95 api_key = "YOUR_API_KEY"
96 print(openai_audio_to_text(audio_file_url, api_key))
97

98 > {
99 > 'status': 'SUCCESS',

100 > 'content': {'transcription': 'This is the transcribed text
from

101 the audio file.'}
102 > }
103 """
104 try:
105 import openai
106 except ImportError as e:
107 raise ImportError(
108 "The `openai` library is not installed. Please install it by

"
109 "running `pip install openai`.",
110 ) from e
111

112 client = openai.OpenAI(api_key=api_key)
113 audio_file_url = os.path.abspath(audio_file_url)
114 with open(audio_file_url, "rb") as audio_file:
115 try:
116 transcription = client.audio.transcriptions.create(
117 model="whisper-1",
118 file=audio_file,
119 language=language,
120 temperature=temperature,
121 )
122 return ServiceResponse(
123 ServiceExecStatus.SUCCESS,
124 {"transcription": transcription.text},
125 )
126 except Exception as e:
127 return ServiceResponse(
128 ServiceExecStatus.ERROR,
129 f"Error: Failed to transcribe audio {str(e)}",
130 )

Meanwhile, AgentScope’s vector database module, LlamaIndexKnowledge, is implemented based on
the BM25Retriever from the llamaindex library. However, the original implementation relies on an

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

outdated version of llamaindex, and recent updates to the library introduced structural changes that
break compatibility with the original import statements.

1 from llama_index.retrievers.bm25 import BM25Retriever

To ensure a consistent environment without modifying the frameworks built-in vector database logic,
we resolved the issue by duplicating the LlamaIndexKnowledge module and updating the import
paths to match the newer llamaindex version.

1 from llama_index.legacy.retrievers.bm25_retriever import BM25Retriever

D.4 CREWAI

When our MOA invokes a large number of agents (>=12), CrewAI system occasionally fails to call
all agents completely during execution as intended. For example, when we request 12 sub-agents to
be activated, some queries may only trigger 9 or fewer agents.

D.5 LLAMAINDEX

Figure 12: LlamaIndex frequently fails to invoke tools correctly.

As shown in Figure 12, LlamaIndex frequently fails to invoke tools correctly, primarily due to the
lack of prompt constraints and insufficient post-processing checks on LLM outputs. Without explicit
guidance and validation mechanisms, the LLM often produces outputs that do not conform to the
expected dictionary format, resulting in tool invocation failures.

D.6 PHIDATA

As shown in Figure 13, in the ReAct workflow, Phidata passes the available tools to the LLM via the
"tools" field. Unlike Llamaindex, which emphasizes the functionality and usage of tools in the system
prompt, Phidata rarely invokes the code execution tool when processing queries from humaneval.

D.7 PYDANTICAI

By further visualizing the experimental data (see Figure 14), we found that within the PydanticAI
ReAct framework, the same tool was often invoked simultaneously multiple times, potentially leading
to inefficiencies. Additionally, similar to Phidata, the code execution tool was seldom triggered (see
Figure 15).

Furthermore, The MoA implementation in the PydanticAI framework is tool-based, and not all three
models are invoked for every query. We observe that when the number of sub-agents is 3, 6, 9, 12,
and 15, there were 232, 89, 229, 485, and 663 instances, respectively, where sub-agents were not
invoked. These skipped invocations are randomly distributed across different queries, resulting in
lower token consumption than expected.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 13: Phidata passes the available tools to the LLM via the "tools" field.

Figure 14: Visualization of the average execution time per run of different tools across different
frameworks.

E TOOL IMPLEMENTATION

For frameworks that do not include the required tools, we adopted a unified implementation as
follows.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 15: PydanticAI’s simultaneous invocations of the same tool.

E.1 SEARCH

E.1.1 AUTOGGEN

1 def google_search(query: str, num_results: int = 2, max_chars: int = 500)
-> list: # type: ignore[type-arg]

2 import os
3 import time
4 import requests
5 from bs4 import BeautifulSoup
6 from dotenv import load_dotenv
7 load_dotenv()
8 google_api_key = os.environ['GOOGLE_KEY']
9 search_engine_id = os.environ['GOOGLE_ENGINE']

10 if not search_engine_id or not search_engine_id:
11 raise ValueError("API key or Search Engine ID not found")
12 url = "https://www.googleapis.com/customsearch/v1"
13 params = {
14 "key": google_api_key,
15 "cx": search_engine_id,
16 "q": query,
17 "num": num_results
18 }
19 response = requests.get(url, params=params) # type: ignore[arg-type]
20 if response.status_code != 200:
21 print(response.json())
22 raise Exception(f"Error in API request: {response.status_code}")
23 results = response.json().get("items", [])
24 def get_page_content(url: str) -> str:
25 try:
26 response = requests.get(url, timeout=10)
27 soup = BeautifulSoup(response.content, "html.parser")
28 text = soup.get_text(separator=" ", strip=True)
29 words = text.split()
30 content = ""
31 for word in words:
32 if len(content) + len(word) + 1 > max_chars:
33 break
34 content += " " + word
35 return content.strip()
36 except Exception as e:
37 print(f"Error fetching {url}: {str(e)}")
38 return ""
39 enriched_results = []
40 for item in results:
41 body = get_page_content(item["link"])
42 enriched_results.append(
43 {
44 "title": item["title"],
45 "link": item["link"],
46 "snippet": item["snippet"],
47 "body": body
48 }
49 )

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

50 time.sleep(1)
51 return enriched_results

E.1.2 PYDANTICAI

1 def google_search(query, num=None):
2 """
3 Make a query to the Google search engine to receive a list of results.

4 Args:
5 query (str): The query to be passed to Google search.
6 num (int, optional): The number of search results to return.

Defaults to None.
7

8 Returns:
9 str: The JSON response from the Google search API.

10

11 Raises:
12 ValueError: If the 'num' is not an integer between 1 and 10.
13 """
14 try:
15 QUERY_URL_TMPL = ("https://www.googleapis.com/customsearch/v1?key

={key}&cx={engine}&q={query}")
16 url = QUERY_URL_TMPL.format(
17 key=os.environ['GOOGLE_KEY'],
18 engine=os.environ['GOOGLE_ENGINE'],
19 query=urllib.parse.quote_plus(str(query))
20 )
21 if num is not None:
22 if not 1 <= num <= 10:
23 raise ValueError("num should be an integer between 1 and

10, inclusive")
24 url += f"&num={num}"
25 response = requests.get(url)
26 return response.text
27 except Exception as e:
28 return f"Error: {e}"

E.2 PDF LOADER

1 def pdf_load(file_path: str) -> ServiceResponse:
2 try:
3 reader = PdfReader(file_path)
4 text = ""
5 for page in reader.pages:
6 text += page.extract_text() + "\n"
7 return ServiceResponse(status=ServiceExecStatus.SUCCESS,content=

text)
8 except Exception as e:
9 return ServiceResponse(ServiceExecStatus.ERROR, str(e))

E.3 CSV READER

1 import pandas as pd
2

3 def csv_load(path:str)->ServiceResponse:
4 try:
5 df = pd.read_csv(path)
6 csv_str = df.to_string(index=False)
7 return ServiceResponse(status=ServiceExecStatus.SUCCESS,content=

csv_str)

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

8 except Exception as e:
9 return ServiceResponse(ServiceExecStatus.ERROR, str(e))

E.4 XLSX READER

1 def xlsx_load(path:str)->ServiceResponse:
2 try:
3 excel_file = pd.read_excel(path, sheet_name=None)
4 result = ""
5 for sheet_name, df in excel_file.items():
6 result += f"Sheet: {sheet_name}\n"
7 result += df.to_string(index=False) + "\n\n"
8 return ServiceResponse(status=ServiceExecStatus.SUCCESS,content=

result.strip())
9 except Exception as e:

10 return ServiceResponse(ServiceExecStatus.ERROR, str(e))

E.5 TEXT FILE READER

1 import pandas as pd
2

3 def txt_load(path:str)->ServiceResponse:
4 try:
5 with open(path, 'r', encoding='utf-8') as f:
6 txt_str = f.read()
7 return ServiceResponse(status=ServiceExecStatus.SUCCESS,content=

txt_str)
8 except Exception as e:
9 return ServiceResponse(ServiceExecStatus.ERROR, str(e))

E.6 DOCX READER

1 from docx import Document
2

3 def docs_load(path:str)->ServiceResponse:
4 try:
5 doc = Document(path)
6 docx_str = "\n".join([para.text for para in doc.paragraphs])
7 return ServiceResponse(status=ServiceExecStatus.SUCCESS,content=

docx_str)
8 except Exception as e:
9 return ServiceResponse(ServiceExecStatus.ERROR, str(e))

E.7 MP3 LOADER

1 import whisper
2 from typing import cast
3

4 def load_audio(file):
5 model = whisper.load_model(name="base")
6 model = cast(whisper.Whisper, model)
7 result = model.transcribe(str(file))
8 return result["text"]

E.8 FIGURE LOADER

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

1 from transformers import DonutProcessor, VisionEncoderDecoderModel
2 import re
3 from PIL import Image
4

5 def load_image(path):
6 image = Image.open(path)
7 processor = DonutProcessor.from_pretrained(
8 "naver-clova-ix/donut-base-finetuned-cord-v2"
9 )

10 model = VisionEncoderDecoderModel.from_pretrained(
11 "naver-clova-ix/donut-base-finetuned-cord-v2"
12 )
13 device = 'cpu'
14 model.to(device)
15 # prepare decoder inputs
16 task_prompt = "<s_cord-v2>"
17 decoder_input_ids = processor.tokenizer(
18 task_prompt, add_special_tokens=False, return_tensors="pt"
19 ).input_ids
20 pixel_values = processor(image, return_tensors="pt").pixel_values
21 outputs = model.generate(
22 pixel_values.to(device),
23 decoder_input_ids=decoder_input_ids.to(device),
24 max_length=model.decoder.config.max_position_embeddings,
25 early_stopping=True,
26 pad_token_id=processor.tokenizer.pad_token_id,
27 eos_token_id=processor.tokenizer.eos_token_id,
28 use_cache=True,
29 num_beams=3,
30 bad_words_ids=[[processor.tokenizer.unk_token_id]],
31 return_dict_in_generate=True,
32 )
33 sequence = processor.batch_decode(outputs.sequences)[0]
34 sequence = sequence.replace(processor.tokenizer.eos_token, "").

replace(
35 processor.tokenizer.pad_token, ""
36 )
37 # remove first task start token
38 text_str = re.sub(r"<.*?>", "", sequence, count=1).strip()
39 return text_str

E.9 VIDEO LOADER

1 import whisper
2 from typing import cast
3 from pydub import AudioSegment
4 from pathlib import Path
5

6 def load_video(file):
7 video = AudioSegment.from_file(Path(file), format=file[-3:])
8 audio = video.split_to_mono()[0]
9 file_str = str(file)[:-4] + ".mp3"

10 audio.export(file_str, format="mp3")
11 model = whisper.load_model(name="base")
12 model = cast(whisper.Whisper, model)
13 result = model.transcribe(str(file))
14 return result["text"]

E.10 DATA RETRIEVAL

1 def create_vector_db():

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

2 import faiss
3 import pickle
4 from sentence_transformers import SentenceTransformer
5 from data.mmlu import merge_csv_files_in_folder
6 dataset=merge_csv_files_in_folder(path to MMLU/dev)
7 docs = []
8 for item in dataset:
9 text = item[0].replace(",please answer A,B,C,or D.",",")+f"

answer:{item[1]}."
10 docs.append(text)
11 embed_model = SentenceTransformer('all-MiniLM-L6-v2')
12 doc_embeddings = embed_model.encode(docs)
13 dimension = doc_embeddings.shape[1]
14 index = faiss.IndexFlatL2(dimension)
15 index.add(doc_embeddings)
16 faiss.write_index(index, "db/index.faiss")
17 with open("db/index.pkl", "wb") as f:
18 pickle.dump(docs, f)
19

20 def load_vector_db():
21 import faiss
22 import pickle
23 from sentence_transformers import SentenceTransformer
24 class db:
25 def __init__(self):
26 self.index = faiss.read_index("db/index.faiss")
27 with open("db/index.pkl", "rb") as f:
28 self.docs = pickle.load(f)
29 self.embed_model = SentenceTransformer('all-MiniLM-L6-v2')
30 def search(self, query, k=5):
31 query_embedding = self.embed_model.encode([query])
32 D, I = self.index.search(query_embedding, k)
33 return [self.docs[i] for i in I[0]]
34 return db()

E.11 PROBLEM SOLVER

1 def twoSum(nums: List[int], target: int) -> List[int]:
2 """
3 Given an array of integers nums and an integer target, return indices

of the two numbers such that they add up to target.
4 Args:
5 nums (List): an array of integers
6 target (Int): an integer target
7 Returns:
8 List[int]: indices of the two numbers such that they add up to

target.
9 """

10 try:
11 n = len(nums)
12 for i in range(n):
13 for j in range(i + 1, n):
14 if nums[i] + nums[j] == target:
15 return [i, j]
16

17 return []
18 except Exception as e:
19 return str(e)
20

21

22 def lengthOfLongestSubstring(s: str) -> int:
23 """
24 Given a string s, find the length of the longest substring without

duplicate characters.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

25 Arg:
26 s (String): a string
27

28 Returns:
29 Int: the length of the longest substring without duplicate

characters.
30 """
31 try:
32 left = 0
33 right = 0
34 max_len = 0
35

36 while right < len(s):
37 if s[right] in s[left:right]:
38 max_len = max(max_len, right-left)
39 left = s.index(s[right], left, right)+1
40 max_len = max(max_len, right-left+1)
41 right += 1
42 return max_len
43 except Exception as e:
44 return str(e)
45

46

47 def findMedianSortedArrays(nums1: List[int], nums2: List[int]) -> float:
48 """
49 Given two sorted arrays nums1 and nums2 of size m and n respectively,

return the median of the two sorted arrays.
50 Args:
51 nums1 (List[int]): sorted array 1
52 nums2 (List[int]): sorted array 2
53 Returns:
54 float: the median of the two sorted arrays
55 """
56 try:
57 m, n = len(nums1), len(nums2)
58

59 def kth_small(k):
60 i = j = 0
61 while True:
62 if i == m:
63 return nums2[j + k - 1]
64 if j == n:
65 return nums1[i + k - 1]
66 if k == 1:
67 return min(nums1[i], nums2[j])
68 pivot_i = min(i + (k >> 1) - 1, m - 1)
69 pivot_j = min(j + (k >> 1) - 1, n - 1)
70 if nums1[pivot_i] < nums2[pivot_j]:
71 k -= pivot_i + 1 - i
72 i = pivot_i + 1
73 else:
74 k -= pivot_j + 1 - j
75 j = pivot_j + 1
76

77 return (
78 kth_small((m + n + 1 >> 1))
79 if m + n & 1
80 else (kth_small((m + n >> 1) + 1) + kth_small((m + n >> 1)))
81 * 0.5
82 )
83 except Exception as e:
84 return str(e)
85

86 ...

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

F USAGE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we employed large language models to assist with language refinement
and stylistic improvements. Typical prompts included instructions such as "please polish the following
academic text while preserving its technical meaning", "improve clarity and conciseness without
altering the content", or "translate the following text into fluent academic English."

The LLMs were not used for generating research ideas, designing experiments, conducting analyses,
or interpreting results. All technical content, methodology, and conclusions are the sole work of the
authors, who take full responsibility for the accuracy and validity of the presented material.

41


	Introduction
	Background and Related Work
	LLM Agents
	LLM Agent Frameworks
	Benchmarks for LLM Agents

	Design of AgentRace
	Modules
	Pipeline
	Functionalities

	Experiments and Insights
	Experimental Setup
	Execution Time and Token Consumption
	Tool Calling
	RAG
	Communication Size
	Scalability

	Conclusion
	Experimental Details
	Details about the Datasets
	Details about the Workflows
	Details about the Frameworks
	Versions of Evaluated Frameworks
	Hyperparameters

	Additional Results
	Accuracy
	Detailed Evaluation Results
	Scalability
	the Number of Worker Agents
	the Number of Tools

	Extended Analysis on Insight 1
	Claude-Based Results
	Reproducibility Verification

	Prompts
	ReAct
	LangChain

	RAG
	AutoGen
	CrewAI
	Phidata
	PydanticAI

	MoA
	LangChain
	AgentScope
	CrewAI
	Phidata
	PydanticAI

	GAIA
	HumanEval
	MMLU
	AlpacaEval

	Bugs and Features
	LangChain
	AutoGen
	AgentScope
	CrewAI
	LlamaIndex
	Phidata
	PydanticAI

	Tool Implementation
	Search
	AutogGen
	PydanticAI

	PDF loader
	CSV reader
	XLSX reader
	Text file reader
	Docx reader
	MP3 loader
	Figure loader
	Video loader
	data retrieval
	Problem Solver

	Usage of Large Language Models

