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Abstract

Large Language Models (LLMs) have achieved001
great success in various reasoning tasks. How-002
ever, their capacity for graph reasoning remains003
poorly understood. Although recent theoretical004
analyses suggest that LLMs can, in principle,005
perform complex graph tasks, empirical evalu-006
ations reveal numerous failures. To bridge this007
gap, we revisit the graph reasoning ability by in-008
troducing a new, balanced, and comprehensive009
benchmark. Through systematic experimenta-010
tion, we identify key factors influencing per-011
formance, including node connectivity types,012
graph sizes, graph descriptions, and node nam-013
ing methods. Moreover, we also demonstrate014
the impact of training data, model size and fine-015
tuning on graph reasoning. All the implemen-016
tations and datasets are publicly available1.017

1 Introduction018

Large Language Models (LLMs) have shown re-019

markable achievements in a multitude of reasoning020

tasks, ranging from mathematical, commonsense021

and symbolic problem-solving (Luo et al., 2023;022

Creswell et al., 2023), to more specialized applica-023

tions like dialogue systems (Ouyang et al., 2022),024

program debugging (Surameery and Shakor, 2023)025

and scientific discovery (Boiko et al., 2023). In026

this work, we focus on graph reasoning capability,027

where LLMs employ an explicit graph, sourced028

either from the input data or external resources, to029

infer the outcome. This reasoning ability is cru-030

cial and can be applied across various domains,031

such as improving question-answering system by032

a domain-specific knowledge graph (Huang et al.,033

2022), facilitating planning in autonomous agents034

through the tool relation graph (Liu et al., 2024),035

1codes available: https://anonymous.4open.science/
r/LLM-graph-evaluation-5E2C
datasets available: https://drive.google.com/file/
d/1tBQVW1ThflqdAV7iGW9oCpeHhwB8xghK/view?usp=
sharing.

Figure 1: The overview of datasets in accuracy and dis-
tribution across different connectivity types. We evalu-
ate GPT-3 on determining whether a path exists between
two nodes. Previous work (Wu et al., 2024) primarily
focused on 1-hop and 2-hop connections, resulting in
high accuracy. However, it overlooked the fact that ac-
curacy tends to drop when extending to 3, 4, and 5-hop
connections.

and enhancing robot navigation via physical maps 036

(Creswell et al., 2022). 037

There are recent studies initially exploring the 038

LLM’s graph reasoning capability. On the one 039

hand, the theoretical work (Feng et al., 2024) 040

proved that LLMs have the ability to mimic a pow- 041

erful decision-making framework (i.e., dynamic 042

programming), to solve the complex tasks. This 043

suggests that LLMs are capable of handling certain 044

graph reasoning tasks that can be formulated as 045

decision-making problems, including breadth-first 046

search for graph connectivity, and the Dijkstra for 047

shortest path problem. On the other hand, recent 048

empirical studies, such as GPT4Graph (Guo et al., 049

2023) and NLGraph (Wang et al., 2024a), found 050

that LLMs could fail in these graph tasks. This 051

discrepancy between theoretical expectations and 052

practical observations indicates a critical gap in our 053

comprehension of LLMs’ graph reasoning abili- 054

ties. In light of this, we aim to delve deeper into 055
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fundamental graph tasks to uncover the limitations056

inherent in LLMs, assess the impact of these limi-057

tations in real-world graphs, and propose possible058

explanations to understand the discrepancy.059

In this work, we re-evaluate three fundamental060

graph reasoning tasks: graph description transla-061

tion, graph connectivity, and the shortest path prob-062

lem. First, we check whether LLMs can compre-063

hend graph structures through the translation of var-064

ied graph descriptions (See Section 3.1). We sum-065

marize the three most popular graph description066

methods and evaluate the translation tasks among067

them. Although it is a simple reasoning task and068

LLMs could achieve high performance, LLMs are069

not entirely error-free. Then, we explore graph070

connectivity and examine LLMs systematically by071

considering varying connectivity lengths between072

nodes, diverse types of disconnections and differ-073

ent graph descriptions (See Section 4). Existing074

works (Wang et al., 2024a; Luo et al., 2024) pri-075

marily focus on the influence of graph size while076

considering only a limited range of connectivity077

types, leading to biased evaluations in connectivity078

tasks, as demonstrated in Figure 1. To address this,079

we construct a balanced and comprehensive dataset.080

Our investigations on this dataset indicate that in081

addition to graph size, node connectivity types and082

graph descriptions also play significant roles, and083

we extend those insights to the shortest path and084

real-world application tasks. In Section 5, we fur-085

ther explore the effects of model size and training086

data scale on graph reasoning, demonstrating that087

LLMs have the potential to excel in reasoning tasks088

given sufficient data and large-scale parameters.089

Finally, we reveal that LLMs may adopt different090

reasoning approaches depending on the form of the091

graph descriptions provided.092

2 Related work and Background093

2.1 Evaluation on graph reasoning tasks094

Recent efforts have been made on graph reason-095

ing evaluations (Guo et al., 2023; Fatemi et al.,096

2023; McLeish et al., 2024). NLGraph (Wang097

et al., 2024a) evaluates LLMs across the 8 fun-098

damental graph reasoning tasks, suggesting that099

LLMs have preliminary graph reasoning abilities.100

GraphInstruct (Luo et al., 2024) extends the graph101

reasoning benchmark to 21 classical graph tasks102

and introduces a step masking method to enhance103

the graph reasoning abilities of LLMs. Addition-104

ally, VisionGraph (Li et al., 2024) provides a multi-105

modal version of the graph reasoning task bench- 106

mark, extending its applicability beyond text. 107

2.2 Graph connectivity in theory 108

LLMs, through their transformer architecture, have 109

demonstrated essential capabilities for reasoning 110

tasks (Giannou et al., 2023; Yang et al., 2023; San- 111

ford et al., 2024b). Specifically, for the graph rea- 112

soning tasks, de Luca and Fountoulakis (2024) sug- 113

gest that looped transformers are able to simulate 114

every step in a graph algorithm. Sanford et al. 115

(2024a) reveal that a single-layer transformer is 116

sufficient for a naive graph connectivity task. 117

2.3 LLMs for graphs in the applications 118

Despite LLMs having capabilities in graph reason- 119

ing tasks in theory, there remains a gap between 120

text understanding and graph reasoning (Chai et al., 121

2023; Zhao et al., 2023). Therefore, some recent 122

work approves the use of additional tools to help 123

LLMs understand graphs. Recent studies have vali- 124

dated the use of extra tools to enhance LLMs’ com- 125

prehension of graphs. GraphEmb (Perozzi et al., 126

2024) employs an encoding function to augment 127

prompts with explicit structured information. Ad- 128

ditionally, GraphWiz (Chen et al., 2024) fine-tunes 129

LLMs using graph reasoning datasets to achieve 130

higher performance in graph tasks. However, when 131

LLMs are pretrained using text data, their limita- 132

tions in graph reasoning tasks remain unclear. In 133

this work, we do a comprehensive study on the fail- 134

ures of LLMs in graph reasoning tasks. We summa- 135

rize and analyze the potential reasons why LLMs 136

fail in graph reasoning only using text prompts. 137

2.4 Theoretical support for graph reasoning 138

tasks 139

Feng et al. (2024) prove that if a task can be decon- 140

structed into subtasks, it can be solved by LLMs. 141

Based on this, Wu et al. (2024) offer insights into 142

transforming message-passing processes among 143

graphs into subtasks of message-passing among 144

nodes using transition functions, suggesting that 145

LLMs are capable of handling graph decision tasks. 146

Specifically, it can be theoretically proven that 147

graph connectivity and shortest-path tasks are two 148

examples of problems solvable by LLMs. 149

Suppose that the structure of a graph can be 150

represented as G = (X,E, E), where X is the 151

set of nodes, E is the edge set, and E is the fea- 152

ture set of the edges. For the graph connectiv- 153

ity task, we start from node ni and end at node 154
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nj . The transition function F (i, j) for the graph155

connectivity task can be formulated as: F (i, j) =156

1k∈Nvj
(F (i−1, k)∩F (k, j)), where Nvj denotes157

the neighbors of node node vj and 1 means whether158

the connection is existing. Consequently, we can159

deconstruct the graph connectivity tasks into sub-160

tasks, which have been proven to be solved by161

LLMs in Feng et al. (2024).162

Theoretical results suggest that LLMs are capa-163

ble of solving fundamental graph reasoning tasks,164

such as graph connectivity and shortest-path tasks.165

However, we find that they fail in practice.166

3 Limitations of LLMs in graph167

reasoning168

In this section, we empirically revisit the graph169

reasoning ability via case studies. In particular,170

we introduce three fundamental graph tasks: graph171

description translations in Section 3.1, graph con-172

nectivity in Section 4, and the shortest path task in173

Section 4.5. Finally, we summarize and analyze174

our findings in Section D.3.175

3.1 Graph description translation176

3.1.1 Graph Descriptions177

To begin with, we first describe the graph proper-178

ties denoted as: G describes a [attribute] graph179

among x ∈ X, where [attribute] defines the graph180

types, such as undirected, directed, or knowledge181

graphs. Then, we use different graph descriptions182

to introduce their structures.183

We summarize three types of graph structure de-184

scription methods that have been widely used by185

the previous works (Fatemi et al., 2023; McLeish186

et al., 2024) as shown in Figure 2. They are (1) Ad-187

jacency Matrix: describing the adjacency matrix of188

a graph; (2) Node List: referring to the neighbors189

of a central node on a graph, and (3) Edge List:190

listing every edge of a graph. Adjacency Matrix191

is denoted as A ∈ RN×N , where N is the num-192

ber of nodes. In the text description, it encodes a193

paragraph by N ×N binary tokens.194

Node List uses the neighbors of a central node to195

describe a graph. For instance, consider the set of196

sentences SN = {s1, s2, . . . , sN}, which describes197

the graph via the neighbors [u] of node vi with the198

edge feature ϵ. A single sentence is as follows:199

si = Node vi [relation] Nodes {[u, ϵ]u∈Nvi ,ϵ∈E(vi,u)}.200

Note that the [relation] varies across different types201

of graphs. In undirected graphs, we use the rela-202

tion "is connected to," whereas in directed graphs,203

Figure 2: Three types of graph descriptions. A graph
can be described by an adjacency matrix, edge list, and
neighborhood node sets.

we use "is directed to." In knowledge graphs, the 204

relation can be any specified type. 205

Edge List describes a graph by listing the edges 206

in a graph. The set of description sentences is 207

denoted as: SNE
= {s1, s2, . . . , sNE

}, where NE 208

is the number of edges and si represents an edge, 209

which is defined as: 210

si = Node vi [relation] Node vj , ϵij . 211

The examples of the graph descriptions are shown 212

in Appendix A. 213

3.1.2 Translations on graph descriptions 214

If LLMs can comprehend the structures of a graph, 215

such understanding should be independent of the 216

methods used to describe the graph. Therefore, to 217

verify the ability of LLMs to understand the struc- 218

tural information of a graph, we design a graph 219

translation description task. This task requires 220

LLMs to use the input graph description to generate 221

various descriptions. After that, we will compare 222

these descriptions to determine if they represent the 223

same graph structure. 224

Note that the number of tokens in the Adjacency 225

Matrix depends on the number of nodes. This sug- 226

gests that the Adjacency Matrix may require more 227

tokens in dense graphs than Node or Edge Descrip- 228

tions, limiting its applicability in the real world 229

when the graph size is large. Therefore, we only 230

apply the Adjacency Matrix as the target format 231

in the graph description translation task while em- 232

ploying Node List and Edge List as both source and 233

target descriptions. Similarly, we use Node List and 234

Edge List for graph connectivity and shortest-path 235

tasks in Section 4 and Section 4.5. 236
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As suggested by the previous study, such as NL-237

Graph (Wu et al., 2024) and GraphInstruct (Luo238

et al., 2024), increasing the graph size will chal-239

lenge LLMs to understand graph structures. Thus,240

following the previous work, we use node num-241

bers to indicate difficulty levels. In particular, we242

randomly generate 100 graphs with node num-243

bers ranging from 5 to 25, and divide them into244

two datasets: one containing 50 graphs with node245

counts ranging from 5 to 15, labeled as "Easy",246

and another containing 50 graphs with node counts247

from 16 to 25, labeled as "Hard".248

We employ GPT-4 and LLAMA3.0-70B with249

the zero-shot setting and 0 temperature in the ex-250

periment. As the Adjacency Matrix is constrained251

by sentence length, we only predict the Adjacency252

Matrix on the dataset with smaller graphs. In the253

evaluation, we use the accuracy metrics. If the254

translations are completely correct, we categorize255

them as correct predictions. The results are sum-256

marized in the Table 1.

Table 1: Using LLMs to predict the translation
among different descriptions. The scores are (GPT-
4/LLAMA3.0-70B)

# Graph Avg. Node Avg. EdgeDataset 1 50 10.6 33.56
Source\Target Adjacency Nodes Edges

Nodes 0.88 / 0.68 1.00 / 0.94 0.94 / 0.88
Edges 0.88 / 0.66 0.94 / 0.74 1.00 / 0.88

# Graph Avg. Node Avg. EdgeDataset 2 50 20.49 110.35
Source\Target Adjacency Nodes Edges

Nodes - 1.00 / 0.90 0.66 / 0.74
Edges - 0.50 / 0.32 0.92 / 0.70257

The results indicate that LLMs struggle with258

graph description translations. LLMs achieve re-259

liable accuracy only when the source and target260

descriptions are identical; however, they fail when261

translating between different types of descriptions.262

For example, LLMs show high accuracy in repeat-263

ing the Node description, with both the source and264

target being Node descriptions. However, their265

performance significantly declines when Edge De-266

scription is used. Similarly, while LLMs can sum-267

marize edge information effectively using Edge268

description, they struggle to summarize edge infor-269

mation from Node description. Those suggest that270

LLMs may not fully understand graph structures.271

Furthermore, performance is also related to the272

sequence length. Although LLMs perform ade-273

quately with smaller-scale graphs, their effective-274

ness decreases as the graph size increases. Ad-275

ditionally, as Adjacency Matrix descriptions re-276

Figure 3: Different types of connectivity. The directed
graph consists of 8 nodes, where solid lines represent
the existence of directed edges, and dotted lines indicate
no edge exists. Four connectivity types include: (A)
K-hop: nodes 5 and 6 connect to node 4 within 1-hop
and 2-hops, respectively. (B) Singleton: node 3 is an
isolated node and not attached to node 4; (C) Isolated
Components: nodes 2 and 4 belong to separate compo-
nents with no path-connected edge; (D) Asymmetric:
node 6 is directed towards node 7 but lacks any connec-
tion in an asymmetric configuration.

quire more tokens in the output, accuracy signif- 277

icantly decreases when predicting adjacency ma- 278

trices. These findings align with similar limita- 279

tions observed in general long-form text-generation 280

tasks (Ji et al., 2023). 281

The experiments suggest that LLMs often gen- 282

erate content that is logically inconsistent with the 283

input and the instructions, indicating that these fail- 284

ures may be due to faithfulness hallucinations. The 285

appendix I provides examples of these failures in 286

description translation, where LLMs occasionally 287

ignore certain edges or introduce non-existent ones, 288

diverging from the input. Since translation tasks 289

do not require complex reasoning but still exhibit 290

hallucinations, it is possible that more complex 291

reasoning tasks may also be prone to similar hallu- 292

cinations in graph understanding. 293

4 Revisit graph connectivity task 294

4.1 Connectivity types 295

Previous studies suggest that large language mod- 296

els (LLMs) possess essential capabilities for graph 297

connectivity tasks (Wang et al., 2024a; Luo et al., 298

2024), yet they still fail in some instances. To 299

further investigate the graph connectivity task, we 300

begin by analyzing the samples where failures oc- 301

curred based on those two baseline datasets. 302

We first categorize the types of connectivity sam- 303

ples. For the samples of connected nodes, we clas- 304

sify them according to the path length, which is 305

denoted as K-hops. Besides, for the samples of 306

unconnected nodes, we label them into three cate- 307

gories: Singleton, Isolated Components (IC), and 308
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Table 2: Connectivity evaluation on the undirected graph datasets

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton I.C. AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc

Easy
LLAMA3 Node 1.00 0.99 0.99 1.00 0.96 0.98 1.00 0.92 0.96 1.00 0.33 0.73 0.71

Edge 1.00 0.94 0.88 1.00 0.96 0.98 0.98 0.78 0.94 1.00 0.44 0.77 0.73

GPT-3 Node 1.00 0.98 0.82 0.88 0.87 0.93 0.78 0.72 0.87 0.92 0.13 0.60 0.59
Edge 1.00 0.96 0.80 0.82 0.80 0.93 0.88 0.72 0.90 0.94 0.17 0.61 0.58

GPT-4 Node 1.00 0.93 0.99 1.00 0.93 0.99 1.00 0.94 0.97 1.00 0.53 0.81 0.78
Edge 1.00 0.93 0.98 1.00 0.90 0.98 0.98 0.88 0.97 0.98 0.69 0.87 0.83

Medium
LLAMA3 Node 1.00 0.94 0.90 1.00 0.93 0.96 0.94 0.82 0.93 1.00 0.36 0.74 0.70

Edge 1.00 0.96 0.83 0.96 0.81 0.90 0.94 0.62 0.94 0.98 0.35 0.72 0.65

GPT-3 Node 1.00 0.97 0.72 0.81 0.74 0.84 0.76 0.62 0.79 0.94 0.16 0.60 0.56
Edge 1.00 0.96 0.72 0.72 0.60 0.90 0.76 0.52 0.83 0.96 0.18 0.59 0.53

GPT-4 Node 1.00 0.89 0.98 1.00 0.85 0.97 1.00 0.94 0.92 0.98 0.42 0.77 0.71
Edge 1.00 0.91 0.97 1.00 0.90 0.93 0.96 0.74 0.94 0.96 0.44 0.77 0.71

Hard
LLAMA3 Node 1.00 0.98 0.90 1.00 0.83 0.94 0.96 0.64 0.94 0.96 0.2 0.67 0.60

Edge 1.00 0.92 0.78 0.92 0.59 0.86 0.94 0.42 0.92 0.84 0.2 0.64 0.51

GPT-3 Node 1.00 0.92 0.65 0.76 0.67 0.85 0.80 0.50 0.77 0.98 0.14 0.59 0.52
Edge 1.00 0.92 0.66 0.65 0.47 0.86 0.74 0.38 0.81 1.00 0.18 0.58 0.49

GPT-4 Node 1.00 0.87 0.98 0.99 0.84 0.93 0.98 0.76 0.90 1.00 0.30 0.72 0.64
Edge 1.00 0.86 0.94 0.93 0.69 0.87 0.90 0.58 0.90 0.92 0.34 0.71 0.60

Asymmetric, as shown in Figure 3. Singleton de-309

notes that one node is isolated. Isolated Compo-310

nents indicate that these two nodes belong to sepa-311

rate components in the graph. Note that a Singleton312

is a special case of Isolated Components. The dis-313

tinction lies in the representations using Node List314

and Edge List, where the isolated node is not in-315

cluded in the descriptions of the graph structure,316

such as Node 3 in Figure 2. Asymmetric is desig-317

nated for directed graphs, highlighting situations318

where a path exists from one node to another, but319

the reverse path does not exist, indicating a one-320

way connectivity.321

We calculate the distribution of connectivity322

types in the baseline datasets, as shown in Table 11323

of Appendix C.1, and subsequently conduct the ex-324

periment on them. The results, presented in Table 6325

of Appendix C.2, indicate that the baseline datasets326

lack a balanced distribution across different con-327

nectivity types. More importantly, LLMs exhibit328

varying performances across these types. Thus, it329

is crucial to establish a balanced dataset to better330

evaluate different graph connectivities.331

4.2 Dataset Construction332

In previous work, NLGraph (Wang et al., 2024a)333

included only an undirected graph dataset for the334

connectivity task, and GraphInstruct (Luo et al.,335

2024) featured an unbalanced distribution as shown336

in Appendix C.1, Table 11. Therefore, based on337

these studies, we need to consider factors such as338

the number of nodes in graphs, edge directions, and339

types of connectivity.340

Following previous studies (Wu et al., 2024; Luo341

et al., 2024), we indicate the difficulty levels of 342

graphs based on the number of nodes, labeling 343

them as Easy, Medium, and Hard. For each level, 344

we initially generate all possible graphs with a cer- 345

tain number of nodes and then randomly select 346

graphs and corresponding node pairs to formulate 347

test pairs of the questions. For samples connected 348

within K-hops, we collect 50 samples for each k 349

where k ∈ [1, 2, 3, 4, 5]. For negative samples, 350

we selected 200 Isolated Component samples and 351

50 Singleton samples from the undirected graph 352

dataset. Similarly, for the directed graph dataset, 353

we chose 100 Connected pairs, 100 Asymmetric 354

samples, and 50 Singleton samples. The details can 355

be found in Table 11 of Appendix C.1. 356

4.3 Evaluation Metrics 357

Instead of only evaluating the accuracy of graph 358

connectivity, we also want to check if the reasoning 359

path to make the prediction can support the predic- 360

tion. Thus, the prompt is defined as follows: "If a 361

path exists, present the path formatted as "Node #1 362

-> Node #2."; If no path is found, state "No path.". 363

Therefore, to evaluate the reliability of such paths, 364

we design two novel metrics, FidelityAcc (Facc) 365

and Path Consistency Ratio (PCR), which are used 366

to analyze the correctness of reasoning paths. Facc 367

evaluates whether the reasoning path to infer the an- 368

swer is correct or not. The formulation is denoted 369

as: Facc = 1
M

∑M
i=1 (ŷi = yi) ∧ (p̂i ∈ P), where 370

ŷi denotes the predicted answer, yi the ground truth 371

answer, p̂i the predicted path, and P the set of 372

reachable paths. M is the number of data samples. 373

Facc correctly identifies the answer only when both 374
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Table 3: Connectivity evaluation on the directed graph datasets

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. Asymmetric AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc Facc

Easy
GPT-3 Node 0.99 0.92 0.88 0.85 0.58 0.93 0.92 0.36 0.95 0.96 0.13 0.37 0.66 0.53

Edge 1.00 0.93 0.94 0.89 0.47 0.95 0.92 0.30 0.96 0.94 0.15 0.36 0.67 0.51

GPT-4 Node 0.99 0.98 0.94 0.95 0.81 0.96 0.88 0.66 0.96 1.00 0.84 0.85 0.91 0.86
Edge 0.99 0.97 0.99 0.88 0.72 0.97 0.76 0.44 0.99 0.98 0.65 0.84 0.85 0.78

Medium
GPT-3 Node 1.00 0.87 0.67 0.81 0.40 0.75 0.78 0.38 0.88 1.00 0.17 0.48 0.67 0.52

Edge 0.99 0.84 0.80 0.79 0.30 0.90 0.78 0.32 0.97 1.00 0.18 0.42 0.65 0.48

GPT-4 Node 1.00 0.94 0.95 0.86 0.55 0.94 0.74 0.50 0.82 1.00 0.70 0.67 0.82 0.72
Edge 0.98 0.88 0.96 0.79 0.43 0.92 0.70 0.38 0.91 1.00 0.53 0.75 0.78 0.66

Hard
GPT-3 Node 0.98 0.81 0.53 0.65 0.25 0.71 0.80 0.26 0.77 1.00 0.10 0.55 0.64 0.47

Edge 0.93 0.75 0.74 0.64 0.19 0.86 0.84 0.16 0.89 0.98 0.18 0.57 0.65 0.45

GPT-4 Node 0.96 0.88 0.91 0.81 0.44 0.81 0.68 0.36 0.76 0.98 0.70 0.53 0.77 0.64
Edge 0.96 0.80 0.93 0.85 0.40 0.83 0.76 0.38 0.82 0.98 0.41 0.59 0.74 0.58

the connective prediction and the path prediction375

are accurate. The range of Facc is [0, 1], where376

a higher score indicates greater consistency with377

the ground truth. A high accuracy with a low Facc378

score suggests that the reasoning paths cannot well379

support connectivity predictions, which could indi-380

cate that LLMs are hallucinating.381

Multiple reachable paths exist within a graph.382

LLMs demonstrate superior reasoning abilities if383

they can identify a shorter path. To assess the paths384

LLMs select for reasoning, we introduce the Path385

Consistency Ratio (PCR): PCR = 1
M

∑M
i=1

|pi|
|p̂i| ,386

|p̂i| represents the number of nodes in the path,387

while |pi| denotes the number of nodes in the short-388

est path. We evaluate PCR only when the LLMs389

give the correct path. A higher score indicates that390

the LLMs are more adept at selecting the shortest391

path between two nodes.392

4.4 Results393

We select three representative large language mod-394

els, GPT-3 ( GPT-3.5-turbo-0301), GPT-4 (GPT-4-395

0125-preview) and LLAMA 3 (LLAMA3.0-70B).396

Undirected Graph Results We start with the397

undirected graph datasets and show the results in398

Table 2. First of all, GPT-4 has better reasoning399

ability compared with GPT-3 and LLAMA 3 across400

all cases, regardless of the graph difficulty, graph401

description or the categories of connectivity.402

Secondly, we have following observations by403

comparing different connectivity situations: (1)404

The difficulty of reasoning increases as the path405

length extends (i.e., K-hop), peaking in the isolated406

component (where K can be viewed as infinite). As407

a result, both ACC and Facc exhibit a correspond-408

ing decline. (2) The value of PCR is stable and409

almost larger than 0.9 via GPT-4, indicating a ten-410

dency of GPT-4 to find some shorter paths when411

judging the connectivity. (3) The Singleton scene is412

particular because it is not affected by the difficulty413

changes and always performs well. This suggests 414

that LLMs may have a shortcut in graph understand- 415

ing: nodes not mentioned in the graph description 416

are considered isolated and no connection with oth- 417

ers. (4) Node Lists generally perform better than 418

Edge Lists in most cases. This is because the search 419

space differs when various description methods are 420

used to search nodes within the next-token predic- 421

tion framework. For the Node Lists, it is easy to 422

find all the positions of neighbor nodes, which costs 423

O(|N |). However, it takes O(|E|) for Edge Lists. 424

Therefore, the overall algorithmic complexity is 425

different, where the Node Lists should be O(|N |2) 426

while the Edge Lists should be O(|N ||E|). 427

Interestingly, LLMs demonstrate enhanced per- 428

formance with node descriptions when k is larger, 429

e.g., 5-hops, while they perform better in the iso- 430

lated component scene when provided with edge 431

descriptions. This suggests that LLMs may not 432

consistently apply the same strategy for analyzing 433

graph connectivity. Instead, the approach adopted 434

by LLMs is shaped by the input context provided. 435

Directed Graph Results Next, we evaluate the 436

connectivity on the directed graphs shown in Table 437

3. Some key observations are similar to those of 438

undirected graph datasets. However, LLMs have 439

lower performance on directed graphs across al- 440

most all sub-datasets, yet they maintain high perfor- 441

mance on subsets with k≤2 and Singleton subsets. 442

We also note distinct performance differences 443

between GPT-3 and GPT-4 on the Asymmetric 444

dataset. GPT-3’s accuracy increased from 0.4 to 445

0.55, whereas GPT-4’s decreased from 0.8 to 0.55. 446

Given that an accuracy of 0.55 is nearly equivalent 447

to random guessing in a binary task for asymmetric 448

detection, it suggests that LLMs might engage in 449

random reasoning within the Hard dataset. Further- 450

more, descriptions using Node Lists outperform 451

those using Edge Lists. Since an Edge List sim- 452

ply describes two nodes in one sentence, LLMs 453

may meet hallucination in determining whether 454
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Table 4: Results on the shortest path problem

Dataset undirected graphs directed graphs
Subdataset Des. unweighted weighted unweighted weighted

1≤k≤2 hops
Node 0.88 0.80 0.93 0.76
Edge 0.89 0.70 0.91 0.71

3≤k≤4 hops
Node 0.87 0.52 0.64 0.45
Edge 0.81 0.47 0.51 0.38

5-hops
Node 0.88 0.54 0.48 0.40
Edge 0.76 0.44 0.42 0.26

Singleton
Node 1.00 0.98 0.98 0.96
Edge 0.98 0.98 0.94 0.96

Isolated C.
Node 0.46 0.47 0.63 0.67
Edge 0.61 0.51 0.52 0.69

Asymmetric
Node - - 0.59 0.62
Edge - - 0.65 0.66

AVG
Node 0.72 0.60 0.70 0.64
Edge 0.76 0.58 0.65 0.61

the relationship "A is B" is equivalent to "B is A"455

(Berglund et al., 2023).456

4.5 The shortest-path problem457

The shortest-path problem is another essential task458

theoretically proven to be achievable by LLMs, yet459

it fails in practice. Compared to the graph con-460

nectivity task, it is more challenging because it461

requires not only determining whether nodes are462

connected but also calculating edge weights to iden-463

tify the shortest path among multiple potential so-464

lutions. Next, we explore if the varied performance465

of LLMs across different connectivity types is also466

applicable to the shortest-path problem. The details467

of experiment settings are in Appendix D.1.468

We use GPT-4 to illustrate an example of the469

shortest-path problem. Table 4 displays the results470

of LLMs’ performance. The findings for the short-471

est path problem align with our observations from472

graph connectivity, where performance diminishes473

as the path length (k-hop) increases. Moreover,474

undirected graphs consistently outperform directed475

graphs. We observe a significant difference in LLM476

performance between datasets with weighted edges477

and those without. This suggests that LLMs might478

overlook or misrepresent edge weights in the text.479

4.6 Entity connection on the knowledge graph480

To determine whether our findings can apply to481

real-world applications, we performed the en-482

tity connection on the knowledge graph using483

WN18RR (Shang et al., 2019) dataset. The details484

of dataset construction are provided in Appendix A.485

We use GPT-4 to evaluate the connections, and486

summarize the results in Table 5. The perfor-487

mance trends align with Section 4.4 and Section 4.5.488

Specifically, the performance declines with K in-489

creasing in the K-hop setting, and Node List de-490

scriptions outperform Edge List descriptions. No-491

tably, LLMs demonstrate improved performance492

with meaningful node naming. Furthermore, incor-493

porating BFS into the prompt results in significant494

improvements. Detailed analyses are provided in 495

Appendix D.3.2 and Appendix D.3.1. 496

5 Other factors for graph reasoning 497

5.1 Impact of training data and model scale 498

To explore the impact of training data and model 499

scale on LLMs’ graph reasoning, we train GPT-2 500

from scratch to perform k-hop reasoning. Specifi- 501

cally, we use the Medium (M), Small (S), and Baby 502

(B) versions, as statistics are outlined in Table 15. 503

We create a new dataset different from the previous 504

sections, focusing on K-hop connections within 505

directed graphs consisting of 5 to 15 nodes. The 506

training dataset contains 210,000 unique question- 507

answer pairs, with 20,000 reserved for validation 508

and 10,000 for testing. 509

We focus on 3-hop and 5-hop connections, re- 510

quiring GPT-2 to solve the shortest path problem 511

using simplified graph descriptions. An example is 512

shown in Table 14. Additional training details are 513

provided in Appendix G.1. 514

To analyze the effect of the training data scale, 515

we vary the amount of training data from 1,000 516

to 180,000 and report the test loss on the test set. 517

Besides, we also evaluate various versions of GPT- 518

2 and different graph descriptions. The results are 519

shown in Figure 4 and Figure 5. 520

Figure 4: 3-hop results Figure 5: 5-hop results

We observe that the reasoning ability of LLMs 521

is strongly correlated with both the scale of the 522

training data and the models, regardless of using 523

Node List or Edge List. The test loss decreases 524

significantly for both 3-hop and 5-hop reasoning 525

tasks, demonstrating that GPT-2 architectures can 526

perform reasoning tasks with sufficient model size 527

and training data. The final test accuracy achieved 528

about 80%. Moreover, Node List is more stable 529

than Edge List, likely because the Edge List con- 530

tains longer sentences (up to 400 characters) com- 531

pared to the Node List (up to 200 characters). This 532

increased length may hinder the transformer’s abil- 533

ity to process the long context (Tay et al., 2020). 534
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Table 5: Entity connection on the knowledge graph

Node Naming Des. 1-hop 2-hop 3-hop 4-hop k-hop, k>5 Asymmetric AVG. scores

ID names
Edge ACC 1.0000 1.0000 0.9808 0.7805 0.6538 0.1750 0.7166

Facc 0.6400 0.6489 0.4808 0.1220 0.0000 0.1750 0.3810

Node ACC 1.0000 0.9892 0.8868 0.6429 0.5167 0.3216 0.7369
Facc 0.7664 0.7849 0.4906 0.2143 0.0000 0.3126 0.4981

Entity names
Edge ACC 1.0000 1.0000 1.0000 0.9524 0.9153 0.0754 0.7258

Facc 0.9700 0.8085 0.5283 0.3333 0.0508 0.0754 0.4685

Node ACC 1.0000 0.9681 0.9811 0.9048 0.8167 0.2374 0.7717
Facc 0.9907 0.8298 0.5472 0.2857 0.0333 0.2374 0.5416

Entity names
+ BFS COT

Edge ACC 1.0000 0.9894 0.9811 0.9048 0.9500 0.1717 0.7637
Facc 0.9907 0.8404 0.5660 0.2619 0.0333 0.1717 0.5147

Node ACC 1.0000 1.0000 0.9245 0.8571 0.8333 0.4343 0.8521
Facc 0.9813 0.8830 0.5660 0.3333 0.0333 0.4343 0.6380

Additionally, we evaluate the impact of data on535

fine-tuning. We use Llama3.2-3B as the backbone536

model, apply LoRA for fine-tuning to enhance537

shortest-path reasoning, and demonstrate a simi-538

lar effect with increasing the training data. The539

whole details are shown in Appendix G.2.540

5.2 Different reasoning processes in Node List541

and Edge List542

To gain deeper insights into how the LLM per-543

forms reasoning on a graph, we drew inspiration544

from syntax analysis in language models (Jawahar545

et al., 2019) to the reasoning tasks. Specifically, we546

applied t-SNE clustering to the outputs of various547

attention layers in a small-scale GPT-2 model at548

different reasoning steps. We define special labels549

for the nodes in the sentence. The details are il-550

lustrated in Appendix H. To analyze the reasoning551

process, we selected 200 correct samples from the552

test set. The results are presented in Figure 6. The553

Appendix Figure 10 and Figure 11 provides more554

comprehensive results.555

Figure 6: t-SNE results on the different layers and steps

The observations can be summarized as follows:556

(1) GPT-2 learns the node combination patterns557

in both Node and Edge Lists. In the final layer, 558

the model reorganizes these combinations to iden- 559

tify the source (light blue), target (deep blue), and 560

predicted nodes (red). The observed pattern com- 561

bination phenomenon suggests that, rather than 562

directly extracting path information from the given 563

sentences, the GPT model relies on learned rela- 564

tionships among different nodes. This reliance also 565

explains the accuracy drop in the connectivity task 566

when node IDs are replaced with random numbers 567

or characters, as such disruptions interfere with the 568

model’s learned combinations. (2) GPT-2 exhibits 569

different reasoning processes when using Node List 570

and Edge List as graph descriptions. With the Node 571

List, GPT-2 easily captures the source and target 572

nodes in the middle layers, subsequently identify- 573

ing path patterns based on the source and target in 574

the question. In contrast, when using the Edge List, 575

the model tends to skip this intermediate step, in- 576

stead directly matching the source and target nodes 577

to its learned node combination patterns. 578

6 Conclusion 579

In this paper, we focus on the graph reasoning abil- 580

ity of LLMs. Recently, there exists a discrepancy 581

between theoretical potential and poor empirical 582

performance. To bridge this gap, we construct a bal- 583

anced and comprehensive benchmarking, and con- 584

clude that graph reasoning ability is influenced by 585

various node connectivity types, graph sizes, graph 586

descriptions, and node naming methods. More- 587

over, we also demonstrate the impacts of training 588

data, model size and fine-tuning on graph reason- 589

ing ability. These findings offer valuable insights 590

to enhance LLMs in graph reasoning tasks. 591

Limitation: Our computational resources are lim- 592

ited, which poses challenges in fully exploring the 593

upper bounds of training or fine-tuning LLMs for 594

graph reasoning tasks. 595
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A Example of different descriptions 749

Here we list the examples of descriptions utilized 750

in the experiment. Examples are listed as node 751

descriptions and edge descriptions on directed or 752

undirected graphs, with or without weights on 753

edges. 754

755

Node Description for Undirected Graph: 756

757

Edge Description for Undirected Graph: 758

G describes an undirected graph among node 0, 1, 759
2, 3, and 4. 760
Node 0 is connected to Node 1. 761
Node 1 is connected to Node 2. 762
Node 1 is connected to Node 3. 763
Node 2 is connected to Node 3. 764
Node 3 is connected to Node 4. 765

Node Description for Directed Graph: 766

G describes a directed graph among 0, 1, 2, 3, and 767
4. 768
In this graph: 769
Node 0 is directed to Node 1. 770
Node 1 is directed to Node 2, 3. 771
Node 2 is directed to Node 3. 772
Node 3 is directed to Node 4. 773

Edge Description for Directed Graph: 774

G describes a directed graph among node 0, 1, 2, 775
3, and 4. 776
Node 0 is directed to Node 1. 777
Node 1 is directed to Node 2. 778
Node 1 is directed to Node 3. 779
Node 2 is directed to Node 3. 780
Node 3 is directed to Node 4. 781

Node Description for Undirected Weighted 782

Graph: 783

G describes an undirected graph among 0, 1, 2, 3, 784
and 4. 785
In this graph: 786
Node 0 is connected to nodes 1 787
(weight: 8), 2 (weight: 1). 788
Node 1 is connected to node 0 789
(weight: 8). 790
Node 2 is connected to node 0 791
(weight: 1). 792

Edge Description for Undirected weighted 793

Graph: 794

G describes an undirected graph among 795

node 0, 1, 2, 3, and 4. 796

Node 0 is connected to Node 1 with 797

weight 8. 798

Node 0 is connected to Node 2 with 799

weight 1. 800
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Directivity Model Difficulty Des. 1-hop 2-hop 3-hop 4-hop 5-hop 6-hop Singleton Isolated C. Asymmetric k-hop k>6

Dataset GraphInstruct

Undirected

GPT-4

Tiny Node 1.00 1.00 1.00 0.83 1.00 - - 0.60 - -
Edge 1.00 1.00 1.00 0.83 1.00 - - 0.60 - -

Easy Node 1.00 1.00 1.00 1.00 1.00 1.00 - 0.35 - 1.00
Edge 1.00 1.00 1.00 1.00 0.67 1.00 - 0.41 - 1.00

Med Node 1.00 1.00 1.00 1.00 1.00 1.00 - 0.12 - 1.00
Edge 1.00 1.00 1.00 1.00 1.00 1.00 - 0.71 - 0.67

Hard Node 1.00 1.00 1.00 1.00 1.00 - - 0.04 - 0.75
Edge 1.00 1.00 1.00 1.00 1.00 - - 0.36 - 0.50

GPT-3

Tiny Node 1.00 0.88 0.36 0.00 0.00 - - 0.00 - -
Edge 1.00 0.79 0.18 0.33 0.00 - - 0.40 - -

Easy Node 0.98 0.91 0.92 0.64 0.67 1.00 - 0.56 - 1.00
Edge 1.00 0.91 0.75 0.45 0.33 1.00 - 0.50 - 0.00

Med Node 1.00 0.98 0.84 0.67 1.00 0.00 - 0.67 - 0.00
Edge 0.97 0.96 0.63 1.00 1.00 0.50 - 0.42 - 0.00

Hard Node 1.00 0.98 0.85 0.80 0.50 - - 0.36 - 1.00
Edge 1.00 0.96 0.90 0.60 1.00 - - 0.30 - 0.75

Directed

GPT-4

Tiny Node 1.00 0.92 0.14 - - - - 1.00 0.95 -
Edge 1.00 0.85 0.43 - - - - 1.00 0.97 -

Easy Node 1.00 0.93 1.00 0.67 - - - - 0.91 -
Edge 1.00 0.64 0.83 0.33 - - - - 0.91 -

Med Node 0.78 0.71 0.60 1.00 1.00 - - - 0.82 -
Edge 0.89 0.71 1.00 0.50 1.00 - - - 0.78 -

Hard Node 0.90 0.88 0.60 1.00 1.00 1.00 - - 0.77 -
Edge 1.00 0.88 0.60 1.00 1.00 1.00 - - 0.83 -

GPT-3

Tiny Node 0.94 0.92 1.00 - - - - 1.00 0.26 -
Edge 1.00 1.00 0.71 - - - - 1.00 0.27 -

Easy Node 0.77 0.93 0.83 1.00 - - - - 0.19 -
Edge 1.00 0.93 0.83 1.00 - - - - 0.31 -

Med Node 1.00 1.00 1.00 0.50 1.00 - - - 0.33 -
Edge 1.00 0.79 0.80 1.00 1.00 - - - 0.42 -

Hard Node 1.00 0.88 1.00 0.00 1.00 1.00 - - 0.22 -
Edge 1.00 0.88 0.90 0.00 0.50 1.00 - - 0.37 -

Table 6: Baseline result of zero-shot accuracy on GraphInstruct dataset.

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc

Tiny
GPT-3 Node 1.00 0.99 0.90 0.82 0.82 0.95 1.00 1.00 1.00 - 0.00 0.93 0.92

Edge 1.00 0.96 0.87 0.65 0.65 0.96 1.00 1.00 1.00 - 0.00 0.91 0.87

GPT-4 Node 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 0.80 0.99 0.99
Edge 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 - 0.80 0.99 0.97

Easy
GPT-3 Node 1.00 0.97 0.85 1.00 0.91 0.95 1.00 1.00 0.94 - 0.09 0.79 0.75

Edge 1.00 0.93 0.80 0.87 0.61 0.82 1.00 0.67 0.77 - 0.00 0.75 0.66

GPT-4 Node 1.00 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 - 0.68 0.92 0.90
Edge 1.00 0.98 0.99 1.00 1.00 0.99 1.00 1.00 0.94 - 0.74 0.94 0.92

Medium
GPT-3 Node 0.99 0.98 0.69 1.00 1.00 0.90 1.00 0.00 0.00 - 0.00 0.68 0.66

Edge 0.99 0.86 0.72 0.96 0.68 0.88 1.00 0.50 1.00 - 0.02 0.68 0.57

GPT-4 Node 1.00 0.92 0.98 1.00 0.80 0.99 1.00 1.00 1.00 - 0.56 0.86 0.79
Edge 1.00 0.98 0.96 1.00 0.88 0.98 1.00 1.00 1.00 - 0.77 0.93 0.90

Hard
GPT-3 Node 1.00 0.94 0.63 1.00 0.76 0.85 1.00 0.00 0.00 - 0.10 0.71 0.63

Edge 1.00 0.78 0.56 1.00 0.56 0.81 1.00 0.00 0.00 - 0.08 0.70 0.51

GPT-4 Node 1.00 0.87 0.94 1.00 1.00 0.93 1.00 0.50 0.71 - 0.34 0.79 0.72
Edge 1.00 0.87 0.90 1.00 0.96 0.93 1.00 1.00 1.00 - 0.62 0.88 0.81

Table 7: Undirected Baseline result of ACC and Facc.

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. Asymmetric AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc Facc

Tiny
GPT-3 Node 1.00 0.05 0.62 1.00 0.00 0.00 - - - - - 0.06 0.20 0.06

Edge 1.00 0.94 0.99 1.00 0.71 0.95 - - - - 1.00 0.04 0.25 0.22

GPT-4 Node 1.00 1.00 0.96 1.00 0.86 1.00 - - - - 1.00 0.88 0.90 0.90
Edge 1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00 0.85 0.88 0.88

Easy
GPT-3 Node 1.00 0.00 0.00 1.00 0.00 0.00 - - - - - 0.04 0.17 0.03

Edge 0.96 0.89 0.93 1.00 0.78 0.83 - - - - - 0.07 0.28 0.26

GPT-4 Node 1.00 0.96 1.00 1.00 0.89 1.00 - - - - - 0.87 0.90 0.89
Edge 1.00 1.00 0.95 1.00 0.67 0.95 - - - - - 0.81 0.86 0.84

Medium
GPT-3 Node 1.00 0.00 0.00 - - - - - - - - 0.08 0.19 0.07

Edge 1.00 0.70 0.88 1.00 0.29 0.51 1.00 0.00 0.00 - - 0.10 0.32 0.22

GPT-4 Node 0.96 0.83 0.87 1.00 0.43 1.00 1.00 0.00 0.00 - - 0.67 0.74 0.68
Edge 1.00 0.87 0.91 1.00 0.57 0.97 1.00 0.00 0.00 - - 0.67 0.75 0.70

Hard
GPT-3 Node 1.00 0.00 0.00 1.00 0.00 0.00 - - - - - 0.17 0.32 0.14

Edge 1.00 0.70 0.74 1.00 0.36 0.85 1.00 0.50 1.00 - - 0.12 0.37 0.26

GPT-4 Node 1.00 0.74 0.93 0.91 0.45 0.82 1.00 0.00 0.00 - - 0.59 0.70 0.60
Edge 1.00 0.81 0.95 1.00 0.73 0.87 1.00 0.50 0.83 - - 0.67 0.76 0.70

Table 8: Directed Baseline result of ACC and Facc. ’-’ indicates no data.
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Subdataset Des. 0-shot few-shot 0-dijkstra cot-dijkstra

unweighted

1≤k≤2 hops Node 0.88 0.91 0.92 0.96
Edge 0.89 0.82 0.87 0.96

3≤k≤4 hops Node 0.87 0.90 0.87 0.94
Edge 0.81 0.86 0.83 0.85

5-hops Node 0.88 0.78 0.78 0.86
Edge 0.76 0.68 0.74 0.82

Singleton Node 1.00 1.00 0.86 1.00
Edge 0.98 1.00 0.84 0.96

I.C. Node 0.46 0.52 0.58 0.70
Edge 0.61 0.37 0.64 0.74

AVG Node 0.72 0.75 0.75 0.84
Edge 0.76 0.65 0.75 0.81

Weighted

1≤k≤2 hops Node 0.80 0.75 0.75 0.81
Edge 0.70 0.66 0.65 0.73

3≤k≤4 hops Node 0.52 0.58 0.59 0.65
Edge 0.47 0.47 0.48 0.64

5-hops Node 0.54 0.48 0.54 0.58
Edge 0.44 0.52 0.44 0.50

Singleton Node 0.98 0.92 0.80 0.84
Edge 0.98 1.00 0.76 0.98

I.C. Node 0.47 0.39 0.35 0.53
Edge 0.51 0.32 0.46 0.57

AVG Node 0.60 0.56 0.54 0.65
Edge 0.58 0.51 0.53 0.65

Table 9: Shortest path result with strategy

Connectivity types # Sample AVG. # Node AVG. # Edge
1-hop 107 82 199
2-hop 64 104 257
3-hop 53 139 347
4-hop 42 145 363

k-hop (k≥5) 60 201 521
Asymmetric 198 49 106

Table 10: Knowledge graph dataset.

Node Description for Directed weighted801

Graph:802

G describes a directed graph among node 0, 1, 2,803
3, and 4.804
In this graph:805
Node 0 is directed to Node 1 (weight: 8), 2806
(weight: 1).807

Edge Description for Directed weighted808

Graph:809

G describes a directed graph among node 0, 1, 2,810
3, and 4.811
Node 0 is directed to Node 1 with812
weight 8.813
Node 0 is directed to Node 2 with814
weight 1.815

Knowledge graph Node:816

G describes a knowledge graph among entity:817
"hairpiece", "wig", "dress", "overdress", "attire",818
"clothing", and "clothing".819

Entity "hairpiece" is directed to entity "attire"820
(relation hypernym).821

Entity "wig" is directed to entity "hairpiece" (re-822
lation hypernym).823

Entity "dress" is directed to entity "attire" (rela-824
tion derivationally related form), "dress" (relation825
verb group), "overdress" (relation also see), and826
"clothing" (derivationally related form) .827

Entity "overdress" is directed to entity "attire"828
(relation derivationally related form), "dress" (re-829
lation verb group).830

Entity "attire" is directed to entity "overdress" (re- 831
lation derivationally related form), "clothing" (re- 832
lation hypernym), "dress" (derivationally related 833
form). 834

Entity "clothing" is directed to entity "dress" (re- 835
lation derivationally related form). 836

Knowledge graph Edge: 837

G describes a knowledge graph among entity: 838
"hairpiece", "wig", "dress", "overdress", "attire", 839
"clothing", and "clothing". Entity "hairpiece" is 840
hypernym of entity "attire". 841

Entity "wig" is hypernym of entity "hairpiece". 842

Entity "dress" is derivationally related form of 843
entity "attire". 844

Entity "dress" is verb group of entity "dress". 845

Entity "dress" is also see of entity "overdress". 846

Entity "dress" is derivationally related form of 847
entity "clothing". 848

Entity "overdress" is derivationally related form 849
of entity "attire". 850

Entity "overdress" is verb group of entity "dress". 851

Entity "attire" is derivationally related form of 852
entity "overdress". 853

Entity "attire" is hypernym of entity "clothing". 854

Entity "attire" is derivationally related form of 855
entity "dress". 856

Entity "clothing" is derivationally related form of 857
entity "dress". 858

B Few-shot and CoT examples 859

Here are examples of how to use few-shot and CoT 860

prompting in graph connectivity and shortest path 861

tasks. 862

B.1 Connectivity examples 863

Few-shot: 864

Q: Given a directed graph: G describes a directed 865
graph among 0, 1, 2, 3, and 4. 866
In this graph: 867
Node 0 is directed to nodes 1, 3. 868
Node 1 is directed to nodes 2, 0, 4. 869
Node 2 is directed to nodes 3. 870
Node 3 is directed to nodes 4, 0, 1. 871
Is there a directed path from node 0 to node 3 If 872
the path exist, give "Exist path" the path in the 873
form of "Node #1 -> Node #2". Otherwise, give 874
"No path" 875
A: Exist path: 0 -> 3. 876

BFS-CoT: 877

Q: Determine if there is a path between two nodes 878
in the graph. The graph is: G describes an undi- 879
rected graph among 0, 1, 2, 3, 4, and 5. In this 880
graph: Node 0 is connected to node 1. Node 1 881
is connected to nodes 0, 2. Node 2 is connected 882
to nodes 1, 3. Node 3 is connected to nodes 2, 883
4. Node 4 is connected to nodes 3, 5. Node 5 is 884
connected to node 4. The question is: Does a path 885
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1-hop 2-hop 3-hop 4-hop 5-hop Singleton Isolated C. Asymmetric

Dataset GraphInstruct Dataset (Tiny/Easy/Med/Hard)

Undirected
# Sample 51 / 41 / 37 / 29 43 / 45 / 50 / 49 11 / 12 / 19 / 20 6 / 11 / 6 / 5 1 / 3 / 2 / 2 - / - / - / - 5 / 34 / 52 / 50 -

AVG. # Node 6 / 12 / 21 / 30 6 / 12 / 21 / 30 6 / 12 / 20 / 31 6 / 11 / 22 / 31 7 / 14 / 20 / 28 - / - / - / - 7 / 12 / 20 / 31 -
AVG. # Edge 8 / 24 / 77 / 181 7 / 22 / 68 / 125 5 / 14 / 37 / 62 6 / 10 / 33 / 49 7 / 14 / 20 / 28 - / - / - / - 7 / 12 / 20 / 31 -

Directed
# Sample 18 / 13 / 9 / 10 13 / 14 / 14 / 17 7 / 6 / 5 / 10 - / 3 / 2 / 1 - / - / 1 / 2 - / - / - / - 1 / - / - / - 144 / 116 / 98 / 100

AVG. # Node 6 / 12 / 21 / 30 6 / 12 / 21 / 31 7 / 12 / 20 / 29 - / 15 / 20 / 31 - / - / 19 / 32 - / - / - / - 6 / - / - / - 6 / 11 / 21 / 31
AVG. # Edge 15 / 44 / 117 / 194 15 / 38 / 123 / 220 14 / 30 / 80 / 140 - / 28 / 50 / 56 - / - / 47 / 70 - / - / - / - 4 / - / - / - 10 / 24 / 45 / 73

Dataset NLGraph Dataset (Easy/Med/Hard)

Undirected
# Sample 137 / 417 / 163 36 / 146 / 152 3 / 30 / 21 - / 5 / 4 - / 2 / - 51 / 106 / 42 125 / 494 / 298 -

AVG. # Node 7 / 19 / 31 8 / 19 / 31 9 / 19 / 30 - / 17 / 32 - / 20 / - 7 / 17 / 31 7 / 19 / 31 -
AVG. # Edge 11 / 78 / 138 8 / 47 / 103 7 / 26 / 56 - / 24 / 44 - / 20 / - 7 / 49 / 127 11 / 71 / 103 -

Dataset Our Dataset with Unweighted Edge Graphs (Easy/Med/Hard)

Undirected
# Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 200 / 200 / 200 -

AVG. # Node 10 / 21 / 30 10 / 21 / 31 11 / 21 / 30 11 / 20 / 31 11 / 20 / 30 11 / 20 / 31 11 / 21 / 31 -
AVG. # Edge 32 / 104 / 229 33 / 112 / 215 26 / 83 / 158 21 / 51 / 146 17 / 43 / 90 35 / 93 / 198 20 / 60 / 113 -

Directed
# Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 100 / 100 / 100 100 / 100 / 100

AVG. # Node 10 / 20 / 30 10 / 20 / 31 10 / 20 / 31 10 / 20 / 31 11 / 20 / 30 10 / 21 / 31 11 / 21 / 31 11 / 21 / 31
AVG. # Edge 64 / 191 / 514 57 / 191 / 479 49 / 170 / 409 38 / 131 / 251 32 / 89 / 185 45 / 162 / 466 35 / 102 / 188 57 / 120 / 279

Dataset Our Dataset Wtih Positive Weighted Edge Graphs (Easy/Med/Hard)

Undirected
# Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 200 / 200 / 200 -

AVG. # Node 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30 11 / 20 / 30 11 / 20 / 30 11 / 20 / 30 11 / 20 / 30 -
AVG. # Edge 32 / 104 / 231 33 / 109 / 221 26 / 81 / 192 21 / 54 / 119 19 / 42 / 96 30 / 91 / 233 18 / 56 / 115 -

Directed
# Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 100 / 100 / 100 100 / 100 / 100

AVG. # Node 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30 11 / 20 / 30 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30
AVG. # Edge 55 / 184 / 386 55 / 205 / 503 49 / 173 / 356 36 / 97 / 222 31 / 99 / 177 46 / 192 / 437 32 / 91 / 194 47 / 121 / 250

Dataset Ours Dataset with Directed Negative Weighted Edge Graphs (Easy)

Directed
# Sample 50 50 50 50 50 50 100 100

AVG. # Node 10 10 10 10 10 10 10 10
AVG. # Edge 30 30 28 27 25 22 20 26

Table 11: The summary table of datasets used in the connectivity task including the baseline dataset NLGraph and
GraphInstruct. Our dataset is generated for various types of node connections

exist between node 1 and node 5? If a path exists,886
present the BFS path formatted as "Node #1 ->887
Node #2." If no path is found, state "No path."888
This problem will be addressed using Breadth-889
First Search (BFS). Let’s think step by step. A:890
1. Node 1 is directely connected with nodes 0, 2.891
2. From node 0, we can reach nodes 1. 3. From892
node 2, we can reach nodes 1, 3. 4. From node893
3, we can reach nodes 2, 4. 5. From node 4, we894
can reach nodes 3, 5. 6. From node 5, we have895
reached our target. So a path from node 1 to node896
5 does exist. The BFS path taken in this search is:897
Node 1 -> Node 2 -> Node 3 -> Node 4 -> Node898
5.899

Dijkstra-CoT:900

Q: Given a directed graph: G describes a directed901
graph among 0, 1, 2, 3, and 4.902
In this graph:903
Node 0 is directed to nodes 1 (weight: 6), 4904
(weight: 6), 3 (weight: 6), 2 (weight: 1).905
Node 1 is directed to nodes 2 (weight: 4), 4906
(weight: 3).907
Node 2 is directed to nodes 3 (weight: 7), 1908
(weight: 4), 0 (weight: 5).909
Node 3 is directed to nodes 4 (weight: 6), 0910
(weight: 6).911
Node 4 is directed to nodes 1 (weight: 6), 3912
(weight: 9), 0 (weight: 5).913
Does a path exist from node 4 to node 2? If so,914
provide the shortest path formatted as "Node #1915
-> Node #2." If not, state "No path.". Let’s think916
step by step using Dijkstra’s Algorithm.917
A: To determine if there is a path from node 4918
to node 2 and find the shortest path if it exists,919
we can use Dijkstra’s Algorithm. Let’s apply the920
algorithm step by step:921

922
Initialization923

- Start with node 4. 924
- Set the distance to node 4 (the starting node) to 925
0 and to all other nodes to infinity. 926
- Keep a priority queue to select the node with 927
the smallest tentative distance that hasn’t been 928
permanently set yet. 929
- Mark all nodes as unvisited. 930

931
Step by Step Process 932
1. Select node 4 (smallest distance in the priority 933
queue). From node 4, we can reach nodes 1, 3 934
and 0. We update the distances to nodes 1, 3 and 935
0. 936
- Distance to node 1 (from node 4) is 6, which 937
is better than the previous, update the priority 938
queue. 939
- Distance to node 3 (from node 4) is 9, which 940
is better than the previous, update the priority 941
queue. 942
- Distance to node 0 (from node 4) is 5, which is 943
better than the previous, update the priority queue. 944

945
2. Select node 0 (next smallest distance 946
in the priority queue). From node 0, we can reach 947
nodes 1, 4, 3 and 2. However, nod and 4 has 948
already been selected. We update the distances to 949
nodes 1, 3 and 2. 950
- Distance to node 1 (from node 0) is 11, which is 951
not better than the previous, and will not update 952
the priority queue. 953
- Distance to node 3 (from node 0) is 11, which is 954
not better than the previous, and will not update 955
the priority queue. 956
- Distance to node 2 (from node 0) is 6, which is 957
better than the previous, update the priority queue. 958

959
3. Select node 1 (next smallest distance 960
in the priority queue). From node 1, we can reach 961
nodes 2 and 4. However, node 4 has already been 962
selected. We update the distance to node 2. 963
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- Distance to node 2 (from node 1) is 10, which is964
not better than the previous, and will not update965
the priority queue.966

967
4. Select node 2 (next smallest distance968
in the priority queue). From node 2, we can reach969
nodes 3, 1 and 0. However, nodes 1 and 0 have970
already been selected. We update the distance to971
node 3.972
- Distance to node 3 (from node 2) is 13, which is973
not better than the previous, and will not update974
the priority queue.975

976
5. Select node 3 (next smallest distance977
in the priority queue). From node 3, we can978
reach nodes 4 and 0. However, nodes 4 and 0979
have already been selected. We have nothing to980
update.981

982
Conclusion983
A path exists from node 4 to node 2.984
Answer: Node 4 -> Node 0 -> Node 2.985

986

C Graph Connectivity task987

C.1 Dataset988

Table 11 shows the dataset information for all989

datasets we used. We separated the dataset ac-990

cording to the connectivity type to ensure clear dis-991

play of whether or not the dataset is uniformly dis-992

tributed. The table helps illustrate that our dataset993

aims to balance the distribution on connectivity994

type as uniform as possible (with 50 samples for995

most types), as well as the balance of positive and996

negative cases (250 samples for both connective997

and non-connective cases).998

C.2 Results999

Table 6 shows the zero-shot accuracy result of base-1000

line datasets. The result is separated by connectiv-1001

ity type in columns. However, due to the variability1002

of distribution, significant numbers of grids remain1003

empty. Table 7 and Table 8 are novel evaluations1004

of undirected and directed baseline datasets with1005

ACC and Facc.1006

D Shortest-path task1007

D.1 Experimental setup1008

We study the shortest-path problem using the Easy1009

datasets from the unweighted graphs as mentioned1010

in Section 4. For the weighted graphs, we ap-1011

plied similar strategies that were used in undirected1012

graph generations to generate the directed and undi-1013

rected graph datasets. The directed graph datasets1014

include two types, whether there are negative edges1015

in the graphs. Appendix C.1 Table 11 shows the1016

details. The graph structure descriptions are shown 1017

in Appendix A 1018

D.2 Result 1019

Table 9 records the shortest path accuracy on var- 1020

ious prompting methods. Weighted graph in this 1021

table only have positive weights. 1022

D.3 Analysis of other factors 1023

D.3.1 Impact of the algorithm prompts 1024

In-context learning approaches, including Chain-of- 1025

Thought (CoT) (Wei et al., 2022) and zero-Chain- 1026

of-Thought (0-CoT) (Kojima et al., 2022), have 1027

been widely utilized in LLMs to enhance their 1028

reasoning capabilities. Meanwhile, specifically in 1029

graph-related tasks, previous works combined the 1030

prompts with the graph algorithms. However, they 1031

do not demonstrate consistent improvement (Wang 1032

et al., 2024a). In this subsection, we revisit these 1033

approaches in detail. 1034

We consider several graph algorithms in the ex- 1035

periments. For the graph connectivity task, we 1036

focus on the Breadth-First Search (BFS) and we 1037

employ the Dijkstra algorithms to soleve the short- 1038

est path problem. We utilize Node descriptions 1039

to search the connectivity and shortest pathes in 1040

Easy setting by GPT-4. The prompts examples are 1041

shown in Appendix B. The results are detailed in 1042

Table 12. 1043

The observations can be summarized as follows: 1044

(1) In the connectivity task, few-shot examples help 1045

LLMs recognize isolated components. This is be- 1046

cause few-shot examples enable the LLMs to cor- 1047

rectly output ’No connection’ when they do not 1048

find a connected path. (2) In the shortest path cases, 1049

few-shot examples do not consistently lead to bet- 1050

ter performance. However, performance improves 1051

when the Dijkstra-CoT method is applied. This 1052

suggests that while LLMs may use multiple strate- 1053

gies to make decisions, but a specific algorithm can 1054

guide them toward a unique solution. 1055

D.3.2 The influence of node names 1056

Fatemi et al. (2023) suggest that different naming 1057

methods for graphs can yield varied results. This 1058

variation is attributed to the graph node IDs oc- 1059

cupying the same space as the pre-trained data of 1060

LLMs. Thus, we further evaluated the impact of 1061

naming conventions on nodes for the connectivity 1062

task. Table 13 summarizes the results for GPT-4 1063

on the Easy subset of the undirected graph dataset. 1064

"Ordered ID" refers to nodes named sequentially 1065
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Table 12: Algorithm CoT applied in the graph connectivity and shortest path

Connectivity task (Facc)
Dataset prompt k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton I.C. AVG.

Undirected
0-shot 0.93 0.93 0.94 1.00 0.53 0.78

few-shot 0.92 0.93 0.96 1.00 0.87 0.92
BFS-CoT 0.95 0.98 1.00 1.00 0.88 0.93

Shortest path (ACC)

undirected
0-shot 0.88 0.87 0.88 1.00 0.46 0.72

few-shot 0.91 0.90 0.78 1.00 0.52 0.75
Dijkstra-CoT 0.96 0.94 0.86 1.00 0.70 0.84

weighted undirected
0-shot 0.80 0.52 0.54 0.98 0.47 0.60

few-shot 0.75 0.58 0.48 0.92 0.39 0.56
Dijkstra-CoT 0.81 0.65 0.58 0.84 0.53 0.65

Table 13: Results for different node ID naming methods

Naming Des. k-hops, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc

Ordered ID Node 1.00 0.93 0.99 1.00 0.93 0.99 1.00 0.94 0.97 1.00 0.53 0.81 0.78
Edge 1.00 0.93 0.98 1.00 0.90 0.98 0.98 0.88 0.97 0.98 0.69 0.87 0.83

Random ID Node 1.00 0.81 1.00 1.00 0.85 1.00 1.00 0.92 0.97 1.00 0.41 0.77 0.69
Edge 1.00 0.89 0.98 0.99 0.88 0.97 0.96 0.70 0.94 1.00 0.59 0.83 0.76

Random characters Node 1.00 0.83 0.99 1.00 0.86 1.00 1.00 0.94 0.99 0.98 0.43 0.77 0.70
Edge 1.00 0.88 0.98 0.99 0.88 0.98 0.94 0.88 0.96 0.98 0.55 0.81 0.76

as "1, 2, 3, ...", "Random ID" denotes nodes named1066

using random numbers up to 10,000, and "Random1067

character" represents nodes named with random1068

five-character strings. The results indicate that nam-1069

ing nodes in sequential order, a common practice1070

in graph descriptions, may enhance LLM perfor-1071

mance. This suggests that LLMs could leverage1072

some form of memory recognition to predict con-1073

nectivity more effectively and thus achieve higher1074

performance.1075

E Knowledge graph1076

E.1 Dataset1077

We used WN18RR (Shang et al., 2019) as the base1078

dataset, which provides both ID names and Entity1079

names. The ID names consist of strings of random1080

numbers, and Entity names are used as specific1081

and meaningful identifiers. From its training set,1082

we randomly selected 150 subgraphs based on ego1083

graphs with a depth of 3. Within each subgraph,1084

we identified two nodes with the longest paths and1085

segmented the paths into k′-hops. This strategy1086

allowed us to generate k′ question-answer pairs,1087

ranging from 1-hop to k′-hop.1088

Table 10 contains information about knowledge1089

graph dataset, Including number of samples, aver-1090

age number of nodes, average number of edges in1091

all connectivity types.1092

F K-hops influence on the connectivity 1093

task 1094

In Section 4, we have demonstrated that perfor- 1095

mance in the graph connectivity task is closely re- 1096

lated to the number of nodes and k-hops in a graph. 1097

However, it is important to note that smaller graphs 1098

inherently support shorter paths. To fairly assess 1099

the impact of k-hops on different graph sizes, we 1100

further evaluate the relations between k-hop and 1101

graph density. 1102

We create a subset with 100 undirected graphs 1103

where the graph node number is 16 - 36 and the 1104

density is in the range of (0.2,0.4) and evaluate 1105

them by Node and Edge List descriptions. The 1106

results are shown in Figure 7. 1107

The results indicate that 1-hop cases maintain 1108

a very high accuracy regardless of graph density, 1109

while 2-hop and 3-hop cases show a slight accu- 1110

racy decrease. In contrast, 4-hop and 5-hop cases 1111

exhibit high accuracy only in sparse graphs but sig- 1112

nificantly decline when graph density approaches 1113

0.38. This suggests that LLMs become confused 1114

as the graph complexity increases. 1115

Comparing the Node List and Edge List descrip- 1116

tions, it is observed that the Node List exhibits a 1117

smaller reduction in performance compared to the 1118

Edge List. This suggests that the Node List may be 1119

more effective in describing complex graphs. 1120
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Figure 7: Accuracy of K-hops across varying graph
densities (Node List)

Figure 8: Accuracy of K-hops across varying graph
densities (Edge List)

G The explanations for the reasoning1121

ability of LLMs in K-hops1122

G.1 Traing on GPT-21123

We adopt the transformer reasoning framework pro-1124

posed in (Wang et al., 2024b) to train a k-hop-1125

specific reasoning model. Specifically, we simplify1126

the edge list and node list by converting them into1127

node symbols, as shown in Table 14.1128

We select different scales of the GPT-2 model,1129

as shown in Table 15. During training, we sequen-1130

tially predict the nodes on the shortest path using1131

cross-entropy loss, following the approach outlined1132

in (Wang et al., 2024b). The models were trained1133

for 20,000 epochs on a single H100 GPU, starting1134

with a learning rate of 1e-4, which is reduced to1135

1e-5 after 20,000 epochs. We apply a dropout rate1136

of 0.2 and saved the best-performing model based1137

on the validation set. During testing, we evaluate1138

the loss across all predicted tokens.1139

G.2 Finetune on LLama1140

Furthermore, we evaluate the impact of data on1141

fine-tuning. The fine-tuning data is derived from a1142

specifically designed dataset with standard graph1143

descriptions, as illustrated in Figure 2. The test1144

data aligns with the dataset described in 11. We1145

use Llama3.2-3B as the backbone model and ap-1146

ply LoRA for fine-tuning to enhance shortest-path1147

reasoning. The results are presented in Figure 9.1148

We find that only a little finetuning data can1149

make the model have better performance. Although1150

we are limited by the computation resource, we1151

believe more data can drive model perform well,1152

which is align with our observation on the training1153

setting.1154

Figure 9: The effect of fine-tuning on the LLama.

H Reasoning process 1155

We drew inspiration from syntax analysis in lan- 1156

guage models (Jawahar et al., 2019) to the reason- 1157

ing analysis. In the graph description, <S> and 1158

<T> are designated as the source and target nodes, 1159

highlighted in green. <PATH>i in gray, denotes the 1160

i-th node on the path from the source node to the 1161

target node, while <O_N> represents other nodes, 1162

shown in yellow. In the question, the source and 1163

target nodes are labeled as <SQ> and <TQ> in blue, 1164

respectively. When the models predict the i+ 1-th 1165

nodes, they require previous information, denoted 1166

as <PREDi> in red. 1167

Figure 10 and Figure 11 provides more detail 1168

information when the GPT-2 do the reasoning with 1169

different graph descriptions. 1170

I Failed cases 1171

In this section, we will list some failed cases. We 1172

mark the added edges in Red and ignored edges in 1173

Green. 1174
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Table 14: The simplified description forms of graphs

Graph Node list Edge list

<START_Q>0: 1, 2; 2: 0 between 2,
1 <END_Q>2, 0, 1 <END>

<START_Q> 0 1 | 0 2 | 2 0 between 2,
1 <END_Q>2, 0, 1 <END>

Figure 10: The t-SNE results on the Node List.

Figure 11: The t-SNE results on the Edge List.
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Table 15: The version of GPT-2 models

# Params # head # layer # emb

Baby-GPT2 80M 6 6 384
Small-GPT2 124M 12 12 768
Medium-GPT2 350M 24 16 1024

I.1 Translation for Edge List to Node List1175

Question: Your task is giving the neighbors of1176
each node.G describes an undirected graph among1177
node 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12.1178

Node 0 is connected to Node 1. Node 0 is con-1179
nected to Node 5. Node 0 is connected to Node 9.1180
Node 0 is connected to Node 12. Node 0 is con-1181
nected to Node 3. Node 0 is connected to Node1182
10. Node 0 is connected to Node 8. Node 0 is1183
connected to Node 11. Node 0 is connected to1184
Node 7.1185

Node 1 is connected to Node 2. Node 1 is con-1186
nected to Node 4. Node 1 is connected to Node1187
3. Node 1 is connected to Node 12. Node 1 is1188
connected to Node 9. Node 1 is connected to1189
Node 11. Node 1 is connected to Node 10. Node1190
1 is connected to Node 5. Node 1 is connected to1191
Node 6.1192

Node 2 is connected to Node 3. Node 2 is con-1193
nected to Node 4. Node 2 is connected to Node 6.1194
Node 2 is connected to Node 10. Node 2 is con-1195
nected to Node 9. Node 2 is connected to Node1196
12. Node 2 is connected to Node 7. Node 2 is1197
connected to Node 11.1198

Node 3 is connected to Node 4. Node 3 is con-1199
nected to Node 11. Node 3 is connected to Node1200
5. Node 3 is connected to Node 10. Node 3 is1201
connected to Node 12. Node 3 is connected to1202
Node 8.1203

Node 4 is connected to Node 5. Node 4 is con-1204
nected to Node 9. Node 4 is connected to Node 8.1205
Node 4 is connected to Node 10. Node 4 is con-1206
nected to Node 6. Node 4 is connected to Node1207
11. Node 4 is connected to Node 7.1208

Node 5 is connected to Node 6. Node 5 is con-1209
nected to Node 9. Node 5 is connected to Node1210
10. Node 5 is connected to Node 7. Node 5 is1211
connected to Node 8.1212

Node 6 is connected to Node 7. Node 6 is con-1213
nected to Node 9. Node 6 is connected to Node1214
12. Node 6 is connected to Node 8.1215

Node 7 is connected to Node 8. Node 7 is con-1216
nected to Node 10. Node 7 is connected to Node1217
9. Node 7 is connected to Node 12.1218

Node 8 is connected to Node 9. Node 8 is con-1219
nected to Node 12. Node 8 is connected to Node1220
10. Node 8 is connected to Node 11.1221

Node 9 is connected to Node 10. Node 9 is con-1222
nected to Node 11. Node 9 is connected to Node1223
12.1224

Node 10 is connected to Node 11. Node 10 is1225
connected to Node 12. Node 11 is connected to1226
Node 12. For each node, the neighboring nodes1227
are listed as follows: "Node #1: [] Node #2: []"1228

Answer: Given the connections in the undirected 1229
graph, the neighbors of each node can be summa- 1230
rized as follows: 1231

- Node 0: [1, 5, 9, 12, 3, 10, 8, 11, 7] - Node 1: [0, 1232
2, 4, 3, 12, 9, 11, 10, 5, 6] - Node 2: [1, 3, 4, 6, 1233
10, 9, 12, 7, 11] - Node 3: [0, 1, 2, 4, 11, 5, 10, 12, 1234
8] - Node 4: [1, 2, 3, 5, 9, 8, 10, 6, 11, 7] - Node 1235
5: [0, 1, 3, 4, 6, 9, 10, 7, 8] - Node 6: [1, 2, 4, 5, 1236
7, 9, 12, 8] - Node 7: [0, 2, 4, 5, 6, 8, 10, 9, 12] - 1237
Node 8: [0, 3, 4, 5, 6, 7, 9, 12, 10, 11] - Node 9: 1238
[0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12] - Node 10: [0, 1, 1239
2, 3, 4, 5, 7, 8, 9, 11, 12] - Node 11: [0, 1, 2, 3, 4, 1240
8, 9, 10, 12] - Node 12: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1241
10, 11] 1242

I.2 Translation for Node List to Edge List 1243

Question: Your task is to identify all the edges 1244
in a graph and represent them in sparse form.G 1245
describes an undirected graph among 0, 1, 2, 3, 4, 1246
5, 6, 7, 8, 9, 10, 11, 12, and 13. In this graph: 1247

Node 0 is connected to nodes 1, 11, 2. 1248

Node 1 is connected to nodes 0, 2, 3, 4, 9, 11, 7. 1249

Node 2 is connected to nodes 0, 1, 3, 9, 8, 10. 1250

Node 3 is connected to nodes 1, 2, 4, 8, 6, 13, 12. 1251

Node 4 is connected to nodes 1, 3, 5, 10, 9. 1252

Node 5 is connected to nodes 4, 6, 9, 7. 1253

Node 6 is connected to nodes 3, 5, 7. 1254

Node 7 is connected to nodes 1, 5, 6, 8, 12, 9, 11. 1255

Node 8 is connected to nodes 2, 3, 7, 9, 12, 10. 1256

Node 9 is connected to nodes 1, 2, 4, 5, 7, 8, 10. 1257

Node 10 is connected to nodes 2, 4, 8, 9, 11. 1258

Node 11 is connected to nodes 0, 1, 7, 10, 12. 1259

Node 12 is connected to nodes 3, 7, 8, 11, 13. 1260

Node 13 is connected to nodes 3, 12. 1261

The edges should be list as: (Node #1, Node #2), 1262
... 1263

Answer: To represent the edges of the given 1264
undirected graph in sparse form, we’ll list each 1265
connection between nodes as a tuple ‘(Node #1, 1266
Node #2)‘. Since the graph is undirected, each 1267
edge is bidirectional, meaning if ‘(Node A, Node 1268
B)‘ is listed, ‘(Node B, Node A)‘ is not listed 1269
again to avoid redundancy. We’ll go through each 1270
node’s connections as provided, ensuring to list 1271
each edge only once. 1272

Here are the edges in sparse form: 1273

“‘ (0, 1), (0, 11), (0, 2), (1, 2), (1, 3), (1, 4), (1, 9), 1274
(1, 7), (2, 3), (2, 9), (2, 8), (2, 10), (3, 4), (3, 8), 1275
(3, 6), (3, 13), (3, 12), (4, 5), (4, 10), (5, 6), (5, 9), 1276
(5, 7), (6, 7), (7, 8), (7, 12), (7, 9), (7, 11), (8, 9), 1277
(8, 12), (8, 10), (9, 10), (10, 11), (11, 12), (12, 13) 1278
“‘ 1279

This list includes all unique edges in the graph, 1280
ensuring that each connection is represented once, 1281
respecting the undirected nature of the graph. 1282
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