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Abstract

Recently, recurrent models based on linear state space models (SSMs) have shown
promising performance in language modeling (LM), competititve with transform-
ers. However, there is little understanding of the in-principle abilities of such
models, which could provide useful guidance to the search for better LM architec-
tures. We present a comprehensive theoretical study of the capacity of such SSMs
as it compares to that of transformers and traditional RNNs. We find that SSMs
and transformers have overlapping but distinct strengths. In star-free state track-
ing, SSMs implement length-generalizing solutions to problems that transformers
struggle to represent exactly. They can also model bounded hierarchical structure
with optimal memory even without simulating a stack. On the other hand, we
identify a design choice in current SSMs that limits their expressive power. We
discuss implications for SSM and LM research, and verify results empirically 1

on a recent SSM, Mamba.

1 Introduction

Transformers [Vaswani et al., 2017] power most large language models (LLMs) today, as they offer
the advantage of parallelized training by avoiding recurrence, compared to the previously dominant
recurrent achitectures [RNNs Elman, 1990, Hochreiter and Schmidhuber, 1997]. However, building
on a long history of continuous dynamical models [e.g. Kalman, 1960, 1963] and work on faster
RNNs [Bradbury et al., 2016, Lei et al., 2018], a recent line of work has developed state space
models (SSMs) rivaling the performance of transformers [e.g. Gu et al., 2021, Gu and Dao, 2023,
Sun et al., 2023, De et al., 2024, Yang et al., 2024, Qin et al., 2024a]. These SSMs are recurrent
models, formulated in terms of iterative state updates, while still allowing efficient parallelization.

The impressive empirical performance of such SSMs raises the question of whether they might have
capabilities that the transformer architecture might lack in principle. Simultaneously, to understand
whether SSMs may plausibly overtake the dominant role of transformers, it is an important question
whether SSMs may lack abilities present in transformers. A better understanding of these questions
may also point the way to future architectures that unite the strengths of both architectures.

One common approach to understanding the capabilities of computational architectures is through
their expressive capacity in simulating automata and modeling language classes; indeed, a sizeable
literature has studied transformers [e.g. Pérez et al., 2019, Hahn, 2020, Bhattamishra et al., 2020,
Yao et al., 2021a, Liu et al., 2023b,a, Deletang et al., 2022, Strobl et al., 2024, Chiang et al., 2023,
Sanford et al., 2024, Peng et al., 2024] and RNNs [e.g. Siegelman and Sontag, 1995, Horne and
Hush, 1993, Indyk, 1995, Weiss et al., 2018, Hewitt et al., 2020] through this lens. As the difficulty
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of many computational problems is well-understood in terms of such language classes, results about
expressive capacity directly yield results about the ability to model specific computational problems.

While a substantial number of results have been obtained for transformers and traditional RNNs,
understanding remains largely open for SSMs. In an initial step, Merrill et al. [2024] showed that
all problems computable by SSMs are contained in TC0, a circuit complexity class that is known to
also cover transformers [Merrill and Sabharwal, 2023, Strobl, 2023]. Under standard conjectures,
this suggests that certain types of state tracking are hard for both models. Jelassi et al. [2024] and
Bhattamishra et al. [2024] provided evidence of differences between these architectures, showing
that transformers outperform SSMs on copying or retrieving from long strings–tasks well within
TC0. Zubić et al. [2024] showed that multi-layer SSMs are constrained by their logarithmic space
computational capacity, limiting their ability at algorithmic tasks such as multi-digit multiplication.

However, a more fine-grained understanding of the power of SSMs, and how they compare to RNNs
and transformers, remains an open question. Our contribution in this paper is to provide rigorous
understanding of SSMs’ abilities in different classes of languages. We show that transformers and
SSMs cover overlapping but distinct fragments of TC0. For instance, SSMs can model bounded
hierarchical structure in ways similar to transformers and traditional RNNs, even without embedding
a stack-like structure (Theorem 6). For regular languages involving modular counting, such as the
PARITY function (Theorem 2), we identify a design choice that makes extant SSMs struggle in ways
similar to transformers. In other cases, we show that SSMs resolve a failure case of transformers:
they effortlessly model Flip Flop state tracking (Theorem 1). We discuss take-aways for SSM and
LLM research in Section 5; among others, our results suggest future LM architectures might need
to combine both attention and state spaces.

2 Background

2.1 State Space Models

SSM Layers We define a single layer of a state space model as a map, at input length T ,

RT×d → RT×d (xt)t=1,...,T 7→ (zt)t=1,...,T

given by the recurrence

ht =A(xt)◦ht−1 +B(xt) zt =φ(ht ,xt) (1)

where ◦ denotes elementwise product, and, for each xt ∈ Rd ,

h0 ∈Rd B(xt) ∈ Rd (increment)

A(xt) ∈Rd (gate) φ : R2d → Rd (transform)

We allow A,B to be arbitrary smooth maps. The map φ(ht ,xt) includes a cascade of channel-mixing
transformations and normalization, which we abstract as follows:

φ(ht ,xt) = Mix1(Norm(Mix2(ht ,xt)),xt) (2)

where Mix j(·) can contain linear or (Swi)GLU components [e.g. Qin et al., 2024a, Gu and Dao,
2023]. We will take Norm to implement RMSNorm Zhang and Sennrich [2019]; LayerNorm Ba
et al. [2016] can be covered by absorbing centering into Mix2.

A Full SSM Real-world SSMs typically stack several layers of the form (1–2). Where needed,
we use superscripts to indicate the layers in an SSM: h(1)t , . . . ,h(L)t , where L is the number of layers.
We consider input words w = w1...|w| over a discrete alphabet Σ, and assume an encoding in terms
of token embeddings e(σ) ∈ Rd , for σ ∈ Σ. We will also write eσ for e(σ). These feed into the
lowest layer as x(1)t := e(wt). The outputs of each layer feed into the next layer, as x(l+1)

t = z(l)t . The
transformations in (1) are specific to each layer: A(1), . . . ,A(L) and similarly for B,φ. To keep notation
simple, we will only show the superscripts where necessary for disambiguation. The activations
z(L)t at the highest layer are read out by some neural network ρ into vectors qt ∈ Rdpred describing
classification or next-token predictions. We again take ρ to be an arbitrary function; importantly, all
our constructions will allow ρ to operate correctly even at finite precision.
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Implementation Choices In Mamba, (1) directly maps onto Eqs. (2a) and (2b) in Gu and Dao
[2023]. The notation of Gu and Dao [2023] use a matrix multiplication Aht−1 instead of elementwise
multiplication A(xt)◦ht−1 in (1), but importantly, Mamba’s A is diagonal, so we can take A(xt)i =Aii.
Some SSMs assume nondiagonal A(xt), but typically this matrix is diagonalizable [e.g. Gu et al.,
2021, Sun et al., 2023], so that the SSM is still equivalent to one of the form (1). We discuss
how other SSMs instantiate (1) in Appendix A. Some models assume complex-valued activations
(Appendix A); our results largely do not depend on this distinction, but take it into account where
needed (Theorem 13). Some SSMs [e.g. Gu and Dao, 2023] use different numbers of channels in
xt and ht using state expansion; as this does not affect expressive capacity, we will simply assume a
constant dimensionality d. Local convolutions [e.g. Fu et al., 2023] can be simulated with an SSM
layer and do not increase expressive capacity (Remark 19).

We will find that two design choices have nontrivial impact on expressive capacity: The first one is
time invariance: we call an SSM TIME-INVARIANT if A(xt) does not depend on xt . Some SSMs,
such as S4 [Gu et al., 2021] and Retnet [Sun et al., 2023] are time-invariant; Mamba [Gu and Dao,
2023], Griffin [De et al., 2024], GLA [Yang et al., 2024], HGRN [Qin et al., 2024b,a], QRNN/SRU
Bradbury et al. [2016], Lei et al. [2018] are not (Appendix A). The second one is the sign of the
entries of A(xt): Across all non-time-invariant SSMs surveyed, we find that the gate is always non-
negative (Appendix A): A(xt)≥ 0 (NONNEGATIVE) due to exponential or sigmoid parameterizations
of the gate – this choice turns out to limit expressive capacity (Theorem 2).

Role of Parameterization While the abstract form (1–2) is common across the SSM literature,
differences in parameterization may have substantial effect on efficiency and training stability. In
particular, the parameterization of A(xt) has been the subject of substantial research [e.g. Gu et al.,
2020, 2021, Yu et al., 2023, Wang and Li, 2023]. However, studying expressiveness allows us to
abstract away from these differences to a remarkable degree: We will allow A,B,ρ to be arbitrary
functions with the given input-output properties. Our negative results are based on abstract prop-
erties of the setup (1–2), which fundamentally bottlenecks SSMs through elementwise linear state
updates. For our positive results, will use empirical learnability experiments to verify that learnable
solutions instantiating them (though not necessarily implementing the same constructions as used in
the proofs) do exist in a recent SSM [Mamba, Gu and Dao, 2023].

We contrast SSMs with traditional RNNs such as simple RNNs or LSTMs: for these, the recurrence
in Eq. (1) is replaced by ht = ψ(ht−1,xt) where ψ could be linear, an MLP [Elman, 1990], or a more
complex gated function [Hochreiter and Schmidhuber, 1997].

Finite Precision Assumption While Eq.(1) assumes arbitrary real-valued activations, real-world
implementations can only represent numbers with bounded precision. Formally, we adopt the finite
precision notion used by Weiss et al. [2018] in a study of the expressive power of traditional RNNs:
We allow an unbounded number of integer bits, but only p fractional bits, independent of the length
of the input. See Appendix E for discussion.

2.2 Modeling Formal languages

We study three foundational types of data structures needed for modeling formal languages
[Hopcroft et al., 2001]: finite state automata (Theorem 1, 2, 4), counters (Theorem 5), and stacks
(Theorem 6). These data structures can be understood in two equivalent forms: One is to track a
state sequence over an input, where each input symbol engenders a specific transformation on the
state. The other one, more commonly considered in research on expressive capacity, considers for-
mal languages—sets of finite strings that are defined by the property that an automaton reaches one
of a pre-specified set of “accepting” states after traversing the word. We focus on the latter, enabling
easy comparison with existing results on transformers and RNNs.

A finite-state-automaton (see Definition 7) represents a general state tracking problem over a finite
state space, without imposing further structure on the state space: The automaton keeps track of a
single state from a finite state space; when reading a string from left to right, each symbol engenders
a specific transformation of the state. At each position, the current state determines which symbols
can come next; membership in a formal language is determined by the state reached after reading
the full string. Finite-state-automata are equivalent in expressivity to regular expressions, and define
the regular languages [Kleene, 1951].
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Figure 1: Three key formal languages: prefixes with the sets of possible next characters: Flip Flop
(Theorem 1), PARITY (Theorem 2), bounded-depth Dyck (Theorem 6). In Flip Flop, after a r (read)
instruction, the bit must match what came after the last w (write) instruction (here, 0). For PARITY,
EOS can only follow when the number of ones in the prefix is even. For bounded-depth Dyck, a
closing bracket can only appear if it matches the last unclosed opening bracket (here, “)” matches
“(”)). Opening brackets can appear as long as the maximum depth (here, 5) hasn’t been reached.

Allowing an automaton to keep track of one or more counters [Fischer et al., 1968b]—integers
that are incremented or decremented at each symbol read—turns the state space infinite, but in
a highly structured manner. SSMs can model this datastructure (Theorem 5), as can RNNs and
transformers [Weiss et al., 2018, Bhattamishra et al., 2020]. Stacks, a first-in-first-out datastructure,
enable automata to keep track of hierarchical structure, foundational to natural language [Chomsky,
1957]. We show that SSMs can implement shortcut solutions to bounded hierarchical structure even
without implementing a stack (Theorem 6) – these are likely to be most useful to natural language
given the boundedness of human memory [Miller, 1963, Karlsson, 2007].

2.3 Formal Language Prediction and Recognition

We fix a finite alphabet Σ. Its elements are called characters or symbols. The set of all finite strings
w over Σ is denoted Σ∗; such strings are often referred to as words. The length of w is denoted |w|.
A formal language L is a subset of Σ∗. Techically, we assume that the alphabet includes BOS and
EOS symbols, which occurs at the beginning and end of each element of L and nowhere else.

We next need to define what it means for an SSM to model a formal language. The notion of
recognition, where the task is to classify a full string as belonging to the language or not. Formally,
for an SSM with dpred = 1, we say that it recognizes a language L if the output ρ(z(L)|w|) equals—when
the SSM is run on w ∈ Σ∗—1 if w ∈ L and 0 else.

However, such a classification task is arguably not always matched to dominant use cases in pre-
dictive sequence modeling, where the task is to predict the next token at each step. Thus, we also
cast formal languages into a language modeling and sequence prediction framework. We adopt the
task of Bhattamishra et al. [2020], where the model is asked to output at each step in a sequence the
set of possible next symbols. Let Prefix(L) := {w : w ∈ Σ∗,wΣ∗ ∩L ̸= /0} the set of valid prefixes
of L. We then say that a model predictively models a language L if (Figure 1), given a valid prefix
w ∈ Prefix(L), it outputs the finite set

{σ ∈ Σ : wσΣ
∗∩L ̸= /0} (3)

We think of each such set as an atomic label; the set of possible labels is the power set of the finite
alphabet Σ (here, dpred = 2|Σ|). Importantly, in both recognition and predictive modeling, we test
the SSMs’ ability across arbitrary input lengths, i.e. the choice of input length does not affect the
inherent capability to recognize or predictively model the language. Predictive modeling can be
easily converted into recognition by checking whether any symbol in the sequence is not in the
predictive set at the preceding position; this can be done by adding 1 SSM layer. Conversely, if we
can show that SSMs cannot recognize a language, this proves they also cannot perform predictive
modeling for it, as they then cannot correctly predict where EOS can appear. To get the strongest
results, we thus prove positive results for predictive modeling, and negative results for recognition.
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Figure 2: (a) Visualizing the SSM equations 1, 2: The hidden state H is updated by a combination of
its previous values, transformed by matrix A, and the input X , modulated by matrix B. The updated
hidden state and input are then processed through a Mix(.) layer, which can incorporate components
like (Swi)GLU or Linear layers, with an optional RMSNorm for normalization. (b) An intuitive
construction for recognizing PARITY with SSMs is achieved by setting B = 0 and A = −1 when
the input is 1, and A = 1 otherwise. However, this construction violates both NONNEGATIVE and
TIME-INVARIANT properties. We show that one of these properties is provably required to recognize
PARITY at arbitrary lengths using an SSM (Theorem 2). (c) Modeling anbn: the matrix A adds the
previous hidden state to the update, and depending on whether the input symbol requires counting
up or down, matrix B is set to 1 or −1, thus making the SSM simulate a counter (Theorem 5)

3 Theoretical Results

3.1 Length-Generalizing Representations for Flip-Flop State Tracking

Flip Flop languages [Liu et al., 2023a] are a simple instance of state tracking defined in terms of
write, read, and ignore instructions. Each write instruction comes with a piece of information;
whenever a read instruction is encountered, the information written by the last write instruction
is recalled. Formally, LFF is the set of finite strings x over Σ = {r,w,i,0,1}, where x1,x3, · · · ∈
{r,w,i}, x2,x4, · · · ∈ {0,1}, and where the bit following any r matches the bit following the last
preceding occurrence of w. Liu et al. [2023b] show that the Flip Flop language, as an abstraction,
is a fundamental ingredient of many long-range reasoning settings. It can be represented with a
small finite-state-automaton, and LSTMs learn LFF well [Liu et al., 2023a]. Transformers can in
principle represent it [Liu et al., 2023b,a], though known constructions are not inherently length-
generalizing, a fact confirmed empirically; intuitively, this may happen because attention heads
aggregate information in a commutative manner, and reliably attending to the last write instruction
requires strong position dependence in the attention weights. SSMs, similar to traditional RNNs can
easily represent Flip Flop at arbitrary input lengths and thus avoid a failure mode of self attention:

Theorem 1. There is a two-layer SSM that predictively models LFF at all lengths, at finite precision.

In the construction (Figure 3), the first layer records the last instruction token, achieved in (1) by set-
ting A(e(r))=A(e(w))=A(e(i))= 0, and A(e(0)=A(e(1))= 1, and setting B(e(0))=B(e(1))= 0.
Additional dimensions forward the current token to h(1)t . In the output of the first layer z(1)t , when-
ever the input is 0 or 1, the model now has access both to the current token wt and the preceding
token wt−1, which must have been an instruction. Based on this information, the model can set
the gate to overwrite the state h(2)t−1 with the current input token when the preceding token was w,

and pass along the state h(2)t−1 unaltered otherwise. This, together with z(1)t , is sufficient for always
identifying the legal next symbols in LFF . The formal proof is in Appendix B.1.

3.2 Difficulty of PARITY

PARITY, the language of bitstrings with an even number of ones, is recognized by a finite-state
automaton with 2 states, and is straightforwardly encoded into a traditional RNN, even a linear one,
with finite precision. It is in principle expressible for transformers [Chiang and Cholak, 2022], but
is empirically hard for transformers to learn [Bhattamishra et al., 2020, Deletang et al., 2022], as it
can provably only be represented in sharp minima [Hahn and Rofin, 2024]. A sufficiently general
SSM could easily recognize it at d = 1 by setting h0 = 1, A(e1) =−1, A(e0) = 0, B ≡ 0, so that the
sign of the single entry of ht indicates the parity (Figure 2). Such an SSM would need to be non-
time-invariant and require negative or complex gate values; i.e., satisfy neither TIME-INVARIANT
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Figure 3: (a) Construction for Flip-Flop (Theorem 1): The first layer stores instruction bits to the
hidden state, while data bits are forwarded to the output. Hence, the output always contains both
the latest instruction and the associated data bit. In the second layer, if the instruction bit is w, the
corresponding data bit is written to the hidden state, else the old value persists. This allows the
model to consistently output the correct data bit. (b) Construction for Dyck(K, h) (Theorem 6):
The first layer tracks the depth by counting up for each opening bracket, and down for each closing
bracket. The second layer builds on the Flip-Flop construction to find the last opening bracket at
the current depth; the next symbol can be either the matching closing bracket or – if the maximum
depth has not been reached – an arbitrary opening bracket.

nor NONNEGATIVE. Thus, these design choices necessitated by optimization, limit the power of an
SSM in emulating finite-state-automata, establishing an even stronger separation between existing
SSM variants and traditional RNNs than the circuit complexity arguments in Merrill et al. [2024]
Theorem 2. No SSM satisfying NONNEGATIVE can recognize PARITY at arbitrary input lengths
with finite precision. In particular, this applies to Mamba.

The proof is in Appendix B.2; it examines inputs of the form 1N and shows that the activations
zN converge as N → ∞, and thus cannot reliably encode the parity of N. It should be noted that we
require the layer-wise operations used in the SSM to be either linear or based on the GLU or SwiGLU
activation functions, as seen for instance in Mamba (Remark 15). As we show in Theorem 13, the
same result holds even for SSMs evading NONNEGATIVE when they are TIME-INVARIANT, at least
when the coefficients have rational angles in the complex planes. All extant SSMs we surveyed
(Appendix, Section A) satisfy either NONNEGATIVE or TIME-INVARIANT. Hypothetical SSMs
evading both NONNEGATIVE and TIME-INVARIANT would be strictly stronger and can represent
not only PARITY, but all regular languages known to be in TC0 (Theorem 22).

3.3 Exact characterization of Regular Languages modeled by SSMs

We combine Theorems 1 and 2 to derive an exact characterizations of the regular languages that
modern non-time-invariant SSMs such as Mamba can recognize or predictively model – the two
notions coincide here – in the finite-precision setting. The key insight is that LFF and PARITY
are fundamental building blocks of two classes of regular languages: star-free languages and their
complement, non-star-free languages [Schützenberger, 1965, McNaughton and Papert, 1971]:
Definition 3. A regular language is star-free if it can be defined using regular expressions involving
only the empty set, the empty string, individual symbols, concatenation, and Boolean combinations
– avoiding the Kleene star operation.

LFF is star-free: there is a way to define it without Kleene star. PARITY is not star-free; any regular
expression for it must involve the Kleene star. Some languages that are intuitively defined with
Kleene stars may still be star-free.2 A language is star-free if and only if it can be defined logically
using only first-order quantifiers and the order relation [Schützenberger, 1965]. Also, L is non-star-
free if and only if recognizing it involves counting modulo some finite integer K [McNaughton and
Papert, 1971]; Modern non-time-invariant SSMs such as Mamba cannot perform modulo counting,
but they can model all star-free languages:
Theorem 4. Let L be a regular language. The following are equivalent:

2For example, (01)∗ is star free. It is the union of ε with the intersection of 0Σ∗, Σ∗1, with the complements
of Σ∗00Σ∗ and Σ∗11Σ∗.
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1. There is an SSM satisfying NONNEGATIVE that predictively models L at all input lengths,
at finite precision

2. L is star-free.

The proof in Appendix B.3 uses the Krohn-Rhodes theorem [Krohn and Rhodes, 1965] to reduce
all star-free languages to flip flop-like state tracking. Importantly, there are well-known constructive
criteria for deciding whether a given automaton defines a star-free language [Schützenberger, 1965];
hence, we have a decidable criterion for the finite-state tracking problems that such SSMs satisfying
NONNEGATIVE can solve.

This is much simpler than the situation for transformers, where an exact characterization of their
power within the regular languages is complicated: Angluin et al. [2023] show that a certain for-
mal abstraction of transformers (masked unique hard attention) also recognizes exactly the star-free
languages, but constructions of realistic transformers via Krohn-Rhodes in Liu et al. [2023b] do not
inherently length generalize. Both theoretical [Huang et al., 2024] and empirical research indicate
difficulties in generalizing even for some simple star-free languages [Bhattamishra et al., 2020, Liu
et al., 2023a]. Known length-generalizing constructions are limited to very simple subclasses such
as the piecewise testable languages [Yang and Chiang, 2024]. In contrast, for SSMs we have a
single model per language, at finite precision and for arbitrarily long inputs. Thus, we expect that
the SSM architecture confers an advantage in star-free state tracking problems when compared to
transformers – a prediction we will find supported experimentally (Figure 5).

3.4 SSMs can perform unbounded counting

Having characterized the regular languages modeled by SSMs, we now consider languages requir-
ing unbounded counting [Fischer et al., 1968b], specifically, languages recognized by keeping track
of one or more counters, where each character causes a specific increment or decrement to each
counter [Krebs et al., 2015, Hahn et al., 2015, Weiss et al., 2018, Kutrib et al., 2021]. A prime ex-
ample is the Dyck-1 language of well-formed strings over “(” and “)”; here a counter is incremented
(decremented) whenever an opening (closing) bracket is encountered; a string is well-formed if and
only if the counter is 0 at the end of the string. Some other relevant formal languages are Shuffle-
Dyck-k (the shuffles of multiple Dyck-1 languages), anbn – here, a increments the counter and b
decrements it, and anbncn – here, there are two counters, one keeping track of anbn and one of bncn

(See Appendix C.2). Such counter languages are fundamental as basic context-free (Dyck-1, anbn)
or context-sensitive (e.g., anbncn) languages [Hopcroft et al., 2001], and have been the subject of
studies of both transformers [Bhattamishra et al., 2020] and RNNs [Weiss et al., 2018].

Theorem 5. The languages Dyck-1, Shuffle-Dyck-k, n-ary Boolean Expressions, anbn, anbncn, and
anbncndn, (defined in Appendix C.2) can each be predictively modeled by an SSM.

The proof is in Appendix B.4. Intuitively (Figure 2), an SSM can directly implement the required
counters by setting A ≡ 1 and by defining B(eσ) to be the increment or decrement cased by σ.
In modeling such languages, SSMs pattern with both transformers [Bhattamishra et al., 2020] and
LSTMs [Weiss et al., 2018].

It may seem counterintuitive that NONNEGATIVE SSMs can perform unbounded counting but (by
Theorem 2) not modular counting—the latter would seem to just require reading out the value of
an unbounded counter. What is key is that, even though ht can encode unbounded counts, reading
out the modular value of an unbounded integer is a formidable problem for typical neural network
nonlinearities, in particular when the information has been pushed through normalization (2).

We should note that there is a qualitative difference between this result and the preceding positive
results about finite-state languages (Theorems 1 and 4), in that the construction in Theorem 5 uses
unboundedly large entries in the state ht , whereas Theorems 1 and 4 use bounded values at finite
precision. Indeed, we will find better length generalization in the finite-state case (Figure 5).

A consequence of Theorem 5 is that SSMs can recognize some languages transcending the context-
free languages, as anbncn is not context-free. A second application of the theorem, of great linguistic
interest, is to bounded hierarchical structure, as we discuss next.
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3.5 Bounded Hierarchical Structure without Stacks

It is generally agreed that hierarchical structure is a key aspect of language, and comprehending lan-
guage at a human-like level requires the computational ability to process such structures [Chomsky
and Schützenberger, 1963, Linzen et al., 2016, Everaert et al., 2015]. The fundamental data structure
for the same is a stack, where information is stored and removed as one traverses to higher and lower
levels of hierarchical embedding [Hopcroft et al., 2001]. We now show that SSMs’ counting ability
can offer shortcuts on languages modeling hierarchical structure, eschewing the need for a stack.

A useful abstraction of hierarchical structure as relevant to natural language is the family of Dyck
languages. The bounded-depth Dyck language DyckK,h with K types of parentheses and depth h is
the language of well-bracketed strings over (1, )1, . . . , (K , )K , such that the number of yet unclosed
brackets never exceeds h in any prefix [Hewitt et al., 2020, Yao et al., 2021b]. The Chomsky-
Schützenberger theorem [Chomsky and Schützenberger, 1963] asserts that any context-free lan-
guage can be expressed as a homomorphic image of the intersection between a Dyck language and
a regular language. Specifically, the Dyck language in question refers to the classical unbounded-
depth Dyck language, where h → ∞, underscoring its fundamental role as the structural backbone of
context-free languages. Bounding the depth reflects the fact that deep embedding is rare in natural
language [Karlsson, 2007, Blasi et al., 2019]. Prior work has found that two-layer transformers [Yao
et al., 2021a] and traditional RNNs [Hewitt et al., 2020, Bhattamishra et al., 2020] both model all
DyckK,h languages. The same turns out to hold for SSMs:

Theorem 6. There is a two-layer SSM with d = O(h logK) that predictively models DyckK,h at all
input lengths, at finite precision.
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Figure 4: As predicted by Theo-
rem 6, Mamba with 2 layers can model
Dyck(K, h). Results for test set with
strings of length 700 ≤ n ≤ 1400.

The proof is in Appendix B.5. Intuitively (Figure 3), the
first layer records the depth of each parenthesis using the
ideas from Theorem 5, and the second layer keeps track of
the last open bracket at each depth using Theorem 1. We
note that, since DyckK,h is star-free, Theorem 4 already
guarantees the existence of representing SSMs, but the
depth and width guaranteed by Theorem 6 is likely to be
much better than what would be obtained by a black-box
application of Theorem 4: As Hewitt et al. [2020] show,
h logK units is optimal up to constants and is attained by
traditional RNNs and LSTMs. The SSM construction is
very different from that of Hewitt et al. [2020] for tra-
ditional RNNs (both simple RNNs and LSTMs), which
directly simulates a stack. Our construction is similar to
the transformer construction in Theorem 4.2 in Yao et al.
[2021a], which however has to rely on specific positional
encodings, unlike the SSM construction. This highlights
that stacks are not the only way of simulating bounded
hierarchical structure in recurrent architectures, and non-
stack-based strategies can even attain the same optimal
scaling of hidden units. Probing whether such stack-free shortcuts are learned by SSM-based LLMs
is an exciting problem for future research.

4 Experiments

We have derived a fine-grained theoretical characterization of expressiveness strengths and limita-
tions of SSMs. We now show that our positive results can be instantiated and learned in a realistic
SSM implementation, by evaluating a recent highly successful SSM, Mamba [Gu and Dao, 2023].

FlipFlop We empirically instantiate Theorem 1 using the dataset of Liu et al. [2023a], reflecting
the language LFF as defined in Section 3.1. Matching Figure 2 in Liu et al. [2023a], we evaluated
both on in-distribution data, and on out-of-distribution data where the distance between read and
write instructions tended to be larger. We evaluate for predicting the bits following r instructions3,

3Predictive modeling is trivial at other positions, as only the input symbols need to be considered there.
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Figure 5: Results on 27 formal languages, comparing our Mamba results (blue) with transformer
results reported by Bhattamishra et al. [2020] (orange), on in-distribution lengths (solid) and out-
of-distribution lengths (dotted). As predicted by Theorem 4, Mamba performs strongly on star-free
languages, and even shows perfect length generalization. Again as predicted by Theorem 4, it per-
forms poorly on non-star-free languages. Results for transformers from Bhattamishra et al. [2020]
are mixed. Mamba also succeeds on learning the counter languages from Theorem 5, showing
perfect accuracy at in-distribution lengths at in-distribution lengths, but length generalization lags
behind transformers.

matching the “deterministic/clean” mode of Liu et al. [2023a], and considered predictions to be
correct only if all predictions within a sequence were correct. (Further details in Appendix D.2).
A small one-layer4 Mamba model converged to 0 error in both validation sets after ∼ 1400 steps
(Figure 6), compared to 500 steps for an LSTM reported by Liu et al. [2023a]. In contrast, Liu et al.
[2023a] found that transformers kept making occasional mistakes despite training for 10K steps.
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Figure 6: Test error on the validation set
for LFF , following Liu et al. [2023a].
Mamba shows near-zero test error in
both In- (green) and Out-of-distribution
(orange) settings, consistent with The-
orem 1, and avoids the failure seen in
transformers [Liu et al., 2023a]

Test Suite from Bhattamishra et al. [2020] To test
our theoretical results on regular and counter languages
(Theorems 2, 4, 5), we test Mamba on 27 formal lan-
guages, including 18 regular languages and 9 counter lan-
guages, based on a prior study comparing transformers
and RNNs [Bhattamishra et al., 2020]. The regular lan-
guages include a popular benchmark [Tomita, 1982] and
various regular expressions; 11 are star-free. The counter
languages include the languages covered by Theorem 5.
(Definitions in Appendix C). We chose this test suite as it
precisely covers Theorems 4 and 5, and we have proven
(in)expressibility results for each language in the set.

Following Bhattamishra et al. [2020], we trained the
model for predictive modeling, i.e., at each step, the
model outputs a label indicating the set of possible next
characters (3), including EOS when required. Following
Bhattamishra et al. [2020], we count the model’s response
on an input string as correct if and only if predictive mod-
elling was successful at all positions in the input. Such
a evaluation setup makes random baselines low, where a
random predictor would have an accuracy exponentially
small in N in each of the N positions. Training inputs have length in [1,50]; the model is evaluated
on held-out bins with length [1,50] and [51,100]. Further experimental details are in Appendix D.1.

We show our Mamba results, together with Transformer results reported by Bhattamishra et al.
[2020], in Figure 5. LSTMs perform perfectly on all languages, and are thus not shown. In a
striking confirmation of Theorem 4, Mamba learns all star-free languages with strong length gener-
alization but performs poorly on non-star-free languages. Transformers show more mixed results,
often failing to length-generalize even on star-free languages. Consistent with Theorem 5 , Mamba,
like Transformers, learns counter languages but struggles more with length generalization. The dif-
ferences in Mamba’s performance between star-free and counter languages may stem from the fact

4Theorem 1 constructs a two-layer SSM. We hypothesize that Mamba uses its local convolution (Remark 19)
to replace the lower layer from the construction in Theorem 1.
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that the construction for the former class (Theorem 4) is able to use finite precision and bounded
state values at arbitrary input lengths, while the latter (Theorem 5) uses unbounded state values.

Bounded Hierarchical Structure To test Theorem 6, we recreate the experimental setup from
Yao et al. [2021b]. Matching their Figure 4, we trained Mamba to predictively model DyckK,h at
K = 8 and h = 10. The training and the validation set contained samples of length ≤ 700, while the
test set contained samples of length 700 ≤ n ≤ 1400. Yao et al. [2021b] found both transformers
and LSTMs achieved strong performance on this setup. We provide further details in Appendix D.3.
Recall that Theorem 6 shows that two-layer SSMs can predictively model DyckK,h. We trained
Mamba with 1 or 2 layers and varying dimensionality, finding that two layers can achieve essentially
perfect performance across model sizes, even on the test set (Figure 4 and 7).

5 Discussion

Related Work Our work belongs to an incipient line of research into the expressiveness of SSMs
[Jelassi et al., 2024, Merrill et al., 2024]. It is closely related to a long string of work studying the
expressive capacity of neural sequence models, which has so far focused on recurrent networks [e.g.
Siegelman and Sontag, 1995, Bhattamishra et al., 2020, Hewitt et al., 2020] and, more recently, self
attention [e.g. Chiang et al., 2023, Merrill and Sabharwal, 2023, Strobl et al., 2024]. A second link
is to the classical and long-standing study of linear dynamical systems and control theory [Kalman,
1960]. For instance, Theorem 2 relies the asymptotic convergence of an SSM on certain inputs,
establishing a link to the asymptotics of linear systems [e.g. Phillips and Solo, 1992].

Take-Aways While theoretical in nature, our results have several actionable implications for SSM
and LLM research, informing the rapidly growing research on SSM-based LLMs. First, encourag-
ingly, SSMs can keep track of bounded hierarchical structure with optimal memory even without
explicitly implementing a stack (Theorem 6), suggesting that simple diagonal linear state updates
may be sufficiently powerful for modeling the hierarchical structure of language. Second, SSMs
resolve a basic failure mode of self-attention in flip-flop state tracking while being parallellizable
(Theorem 1). Overall, SSMs and attention have overlapping but distinct strengths. This lends sup-
port to the development of hybrid architectures interleaving SSM and attention layers, as instantiated
very recently by Jamba [Lieber et al., 2024]. Third, nonnegative gates as obtained by exponential
or sigmoid parameterizations provably restrict expressive capacity, even in non-time-invariant SSMs
(Theorem 2). While Gu and Dao [2023] found no evidence that complex-valued paramerizations im-
proved over real-valued ones in the language modality, our results suggest revisiting this question, at
least for tasks where periodic state-tracking abilities may be important. Fourth, while exactly char-
acterizing the capacity of transformers has proven difficult even in the finite-state case, Theorem 4
provides a decidable characterization of the regular languages – equivalently, finite-state tracking
problems – that SSMs such as Mamba can model. Such decidable characterizations may make it
easier to theoretically predict abilities and anticipate failures of LLMs; exploring the implications of
this characterization in more realistic setups is an exciting direction for future research.

Limitations The main limitation of our theoretical results is that they focus on in-principle expres-
siveness, and do not directly make statements about learning and generalization. Future work could
address this, for example, by examining whether our constructions result in reasonably flat minima,
or by studying gradient flow dynamics. While we empirically verified that our positive results can
indeed be instantiated, in a learnable manner, in one realistic SSM implementation, implementa-
tional differences might still result in practical differences between implementations. Studying the
role of such implementational differences is an interesting problem for future work; we have made
a first step by theoretically elucidating the implications of nonnegative gate values.

6 Conclusion

We have studied the expressive capacity of modern state space models (SSMs), through the lens
of automata and formal languages. We have shown theoretically that SSMs can express star-free
languages, a range of counter languages, and bounded hierarchical structure. By providing rigorous
results about the expressiveness of the SSM architecture, our results can provide guidance to work
on SSM-based language models.
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A Instantiations of General Framework in SSM Models

Here, we survey how (1) is instantiated in a range of SSMs. As stated in Section 2.1, we refer to
SSMs where the gate A does not depend on xt as time-invariant. An equivalent terminology is the
distinction between “Weak Linear Time Invariant Convolutional Models” (i.e., time-invariant) and
“Linear Time Variant Models” (i.e., non-time-invariant) in Akyürek et al. [2024].

A.1 Non-Time-Invariant Models

Approximately simultaneously with or more recently than Gu and Dao [2023], a range of non-time-
invariant SSMs have been introduced [De et al., 2024, Yang et al., 2024, Qin et al., 2024b,a]. This
category also covers highly similar earlier RNN variants [Bradbury et al., 2016, Lei et al., 2018].

Mamba In Mamba, (2) and (3) directly map onto Eqs. (2a) and (2b) in Gu and Dao [2023]. The
notation of Gu and Dao [2023] use a matrix multiplication Aht−1 instead of elementwise multiplica-
tion A(xt)◦ht−1 in (REF), but importantly, Mamba’s A is diagonal, so we can take A(xt)i = Aii. Due
to exponential parameterization, its entries are nonnegative.

Griffin The RG-LRU layer of Griffin [De et al., 2024] uses the equation

ht = at︸︷︷︸
A(xt )

◦ht−1 +

√
1−a2

t ◦ (it ◦ xt)︸ ︷︷ ︸
B(xt )

where at , it are neurally parameterized in terms of xt but not h<t ; by design, at ∈ (0,1). φ is instan-
tiated in terms of linear transformations, GeLU, and RMSNorm (Figure 2 in De et al. [2024]). The
local attention used by Griffin can be subsumed into an SSM layer (Remark 19).

Gated Linear Attention [GLA Yang et al., 2024] This model (Section 4.4 in Yang et al. [2024])
instantiates our framework using a recurrence of the form (1); while the state is two-dimensional
in this model, the update is performed by elementwise products as in (1). The gate is obtained by
applying sigmoid to a linear transformation of xt ; thus, its entries are in (0,1). φ is instantiated in
terms of SwiGLU and LayerNorm.

HGRN HGRN [Qin et al., 2024b] and HGRN2 [Qin et al., 2024a] are defined by a recurrence
of the form (1); the gate entries are ∈ (0,1) by design. φ is instantiated in terms of GLU, linear
transformations, and normalization. In HGRN, the state is complex, but crucially the gate remains
real-valued.

A.2 Time-Invariant Models

Time-invariant SSMs introduced before late 2023 are surveyed by Gu and Dao [2023, Appendix
B], such as [Mehta et al., 2023, Sun et al., 2023, Orvieto et al., 2023]. Time-invariant SSMs have
often used complex-valued states and gates; this does not have a major impact on our results: First,
as complex-valued SSMs subsume real-valued ones, our positive results carry over. Second, our
negative result about PARITY is affected by this distinction and requires a separate argument, see
Theorem 13.

Note also that Aht−1 is often described as a general matrix multiplication, but A is diagonalizable
(e.g. Lemma 3.2 in Gu et al. [2021]; Sun et al. [2023] for RetNet), which —even though imple-
mentation may be based on non-diagonalized representations [Gu et al., 2021]—renders the model
equivalent to one where A is diagonal from the start. This equivalence is shown as Lemma 3.1 in Gu
et al. [2021].

B Formal Definitions and Proofs

B.1 Flip Flop

We begin by introducing key notions of automata theory. References for automata theory include
Eilenberg [1974], Hopcroft et al. [2001], Sakarovitch [2009]. We will provide those key notions that
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are necessary to prove our results. We will focus on deterministic finite-state-automata (DFA), and
simply refer to them as finite-state-automata.5 First,
Definition 7. A (deterministic) finite-state-automaton A consists of:

• a finite alphabet Σ

• a finite state set Q

• a starting state q0 ∈ Q

• a transition function u : Q×Σ → Q

We extend u to a map u : Q×Σ∗ → Q by setting:

u(q,ε) = q
u(q,w1...i+1) = u(u(q,w1...i),wi+1)

where ε is the empty word.

Intuitively, u(q0,w) is the state that A is in after reading w.

The automaton recognizes a language L ⊆ Σ∗ if there is a recognizing set R ⊆ Q such that

L := {w : u(q0,w) ∈ R} (4)

Kleene’s Theorem [Kleene, 1951] asserts that a language L ⊆ Σ∗ is regular (i.e., defined by a regular
expression) if and only if it is recognized by some finite-state automaton.

A very fundamental automaton underlying Flip Flop is:
Definition 8. A set-reset automaton is a finite-state-automaton where (Q \{q0})⊆ Σ and

u(q,σ) =
{

q if σ ̸∈ Q
σ else

(5)

Intuitively, such an automaton keeps recording the last seen symbol from a designated set Q ⊆ Σ.
Such an automaton is easily simulated with a single non-time-invariant SSM layer:
Lemma 9. Let A = ⟨Σ,Q,q0,u⟩ by a set-reset automaton. Then there is a single-layer SSM
with finite precision and width d = 1 + logQ that maps each w1...T ∈ Σ∗ to the state sequence
u(q0,w1),u(q0,w12), . . . ,u(q0,w1...T ) ∈ QT .

Formally, there is an injective map V : Q → Rd such that ρ(zt) =V (u(q0,w1...t)) for t = 1, . . . ,T .

Proof. Let B(σ) ∈ Rlog |Q| be a binary encoding if σ ∈ Q, and 0 ∈ Rlog |Q| else. Take h0 = B(q0).
Let A(σ) = 0 if σ ∈ Q and A(σ) = 1 else. After processing a string, the state ht is B(σ) where σ

is the last symbol in Q that has occurred if any has, and B(q0) otherwise. Coming to (2, in order
to avoid division by zero when normalizing if no element of Q has been read, we add a dummy
dimension to ht whose value is always 1. We take Mix1,Mix2 to be the identity. Note that, even
though normalization will affect the numerical values, the binary encoding of σ ∈ Q can still be read
out with finite precision, as 1 ≤∥ht∥2 ≤

√
1+ log |Q|, and thus nonzero entries will remain bounded

away from zero.

Theorem 10 (Restated from Theorem 1). There is a two-layer SSM that predictively models LFF at
all lengths, at finite precision.

Proof. In the first layer, we use Lemma 9 to simulate a set-reset automaton over the input alpha-
bet Σ1 = {w,r, i,0,1} where Q1 = Σ1 ∪{q0}. This layer outputs at each position whether the last
instruction was write, read, or ignore. The layer additionally, at each position, forwards the input
symbol using additional dimensions. Formally, at the first layer, ρ(ht) allows us to read out the input
symbols xt−1,xt ∈ Σ.

5A closely related notion is the semiautomaton, which is the notion considered in the closely related work
Liu et al. [2023b]. Semiautomata lack a fixed start state q0. We include q0, but this difference is not substantial
for our formal results.
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In the second layer, we again use Lemma 9 to simulate a set-reset automaton over an extended
alphabet Σ2 := Σ1 × Σ1, where the first component indicates the input symbol xt and where the
second component indicates xt−1. In this set-reset automaton, Q2 contains, besides a start state q0,
those elements of Σ2 whose second entry is w. The second layer thus keeps track of the input bit
b ∈ {0,1} following the last write instruction. It additionally forwards the input symbol xt using
additional dimensions.

The second layer, via ρ, then predicts the possible next symbols on the basis of this information: If
xt ∈ {0,1}, any instruction in {w,r, i} is possible. If xt ∈ {w, i}, any bit in {0,1} is possible. If xt = r,
the bit stored after the last write instruction is possible; if no write instruction has appeared (hence,
the second automaton is still in its start state), any bit in {0,1} is possible.

B.2 Difficulty of Representing PARITY

Definition 11. PARITY is the regular language over Σ = {0,1} of strings where the number of ones
is even. As a regular expression, PARITY is (0∗10∗10∗)∗.

Theorem 12 (Restated from Theorem 2). No SSM satisfying NONNEGATIVE can recognize PARITY
at arbitrary input lengths with finite precision.

Proof. We consider an SSM with multiple layers, and indicate the layer in superscript: h(1)t , . . . ,h(L)t .
We write z(0)t for the input token embedding e(wt). Consider a SSM processing the word 1t , for
t → ∞. We show, by induction over the number of layers, the following claim:

(†) Each entry of z(k)t converges to a value bounded, in absolute value, by a constant.

By the assumption of finite precision, convergence automatically leads to the entries becoming ul-
timately constant. Once we have shown this, we know that z(L)t is constant when t is sufficiently
large; thus, the parity of the string 1t cannot be read out from z(L)t . As a consequence, the SSM
cannot recognize PARITY. Indeed, we have shwon the stronger claim that the language (11)∗ – the
language of even-length strings over one symbol – is not recognized by an SSM; we will use this
stronger statement in Corollary 14.

We proceed to proving (†). The claim (†) is trivially true at k = 0, as the input token is always the
same and we defined z(0)t := e(wt). Now consider k > 0. By hypothesis, the activations are given as

h(k)t = A(xt)◦h(k)t−1 +B(xt) (6)

where A(xt),B(xt) are constant α := A(xt), β := B(xt) when t > T0, for some T0 > 0. The solution
of the recurrence for t > T0 is

ht = α
t−T0

(
hT0 +

β

α−1

)
+

β

1−α
(7)

Each dimension j = 1, . . . ,d of this vector can be constant (if (hT0) j +
β j

α j−1 = 0), diverge exponen-
tially (α j > 1), converge exponentially (α j < 1) or diverge linearly (α j = 1).

We next need to show that zt = Mix2(Norm(Mix1(ht ,xt))) converges.

First, consider the effect of applying a linear transformation to the state ht . Each entry of the result
will be some linear combination

ut = λ1(ht)1 + · · ·+λd(ht)d (8)

If each α j < 1, then ut converges. If some |α j| ≥ 1, there may be some cancellation if αi = α j for
some i ̸= j; cancellation can only lead to full erasure of the relevant terms or to a remaining term
with the same exponent. In conclusion, each entry ut will again either converge to a finite value or
diverge towards ±∞.

We now need to understand the behavior of Mix1(ht ,xt). Recall that, based on our survey (Ap-
pendix A), we allowed it to contain linear, GLU [Dauphin et al., 2017], and SwiGLU [Shazeer,
2020] components. If Mix1(ht ,xt) implements a linear transformation only, each entry likewise may
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converge, diverge linearly, or diverge exponentially. We note that—if σ is the sigmoid function—
σ(ut) always converges, as σ simply saturates to 0 or 1 if ut diverges. Hence, if Mix1(ht ,xt) imple-
ments GLU, each entry likewise may converge, diverge linearly, or diverge exponentially. Finally,
if Mix1(ht ,xt) implements SwiGLU, each entry of the result will be a product of a linear com-
bination of the form ut , and Swishβ applied to another such linear combination. Depending on the
behavior of these two ut -like terms, the outcome will behave as a product of sequences that may con-
verge exponentially, diverge exponentially, or diverge linearly – e.g., the outcome may also diverge
quadratically, or converge as nα−n, etc.

If all dimensions of Mix1(ht ,xt) converge, then Norm(Mix1(ht ,xt)) will also converge to a scaled
version of βi

1−αi
, scaled by a bounded factor as βi ̸= 0. Now assume some dimensions of Mix1(ht ,xt)

do not converge; in this case, for any two dimensions i, j, either their ratio will converge to a constant,
or converge to 0 or ±∞. After applying Norm(·), the entries asymptotically dominating the others
will converge to a finite value bounded, in absolute value, by 1; the others will converge to zero.

In conclusion, we have found that each entry of Norm(Mix1(ht ,xt)) converges to some number
bounded, in absolute value, by 1. As Mix2 is continuous, each entry of zt likewise converges, with a
bound depending on the Lipschitz constant of Mix2.

We next show the result, referenced in the main paper text after Theorem 2, about time-invariant
SSMs with complex-valued gates:

Theorem 13. TIME-INVARIANT SSMs cannot recognize PARITY with finite precision at arbitrary
input lengths, even with complex-valued gates, as long as each entry in each A has a rational angle
in the complex plane.

Here, by a rational angle, we refer to an angle that is a rational number when expressed in degrees;
such angles are rational multiples of 2π when expressed in radians. As the rational angles are
dense in the reals, one expects that even if some irrational angles permitted modeling PARITY, such
solutions would be very hard to find – in particular given that irrational numbers are not exactly
represented in finite precision.

Proof. By assumption, any A j ∈ C in any layer can be written as

A j = r j exp(2πiq j) (9)

where q j ∈ [0,1] is rational and r j ≥ 0 is real – here, 2πq j is known as the argument of A j; it
describes the angle of A j in the complex plane in radians. Correspondingly, the angle in degrees is
described by q j ·360◦; this is rational if and only if q j is.

As a time-invariant SSM has a finite number of such values A j, across all its layers, we can select a
positive integer W such that Wq j ∈ N for each j, in each layer. Importantly, (A j)

W = (r j)
W ∈ R.

Now consider the action of any layer of the SSM on an input sequence of the form AT = (10W−1)T .

The claim is that, for each i = 1, . . . ,W , the sequence

z(k)tW+i (10)

converges as t → ∞. As in the proof of Theorem 2, in the finite-precision setting, converge entails
that the sequence becomes ultimately stationary. Note that the parity of AT equals the parity of T ;
hence, it is impossible to read out the parity from z(k)TW when T is large.
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Now consider, suppressing the index for the dimension in 1, . . . ,d:

h(k)tW =
tW

∑
i=1

AtW−iB(z(k−1)
i )

=
tW

∑
i=1

AtW−iB(z(k−1)
i )

=
t

∑
s=1

(s+1)W−1

∑
j=sW

AtW− jB(z(k−1)
sW+ j)

=
t

∑
s=1

W−1

∑
j=0

A(t−s)W− jB(z(k−1)
sW+ j)

=
t

∑
s=1

W−1

∑
j=0

(r exp(2πiq))(t−s)W− jB(z(k−1)
sW+ j)

=
t

∑
s=1

W−1

∑
j=0

r(t−s)W− j exp(−2πi jq)B(z(k−1)
sW+ j)

=
W−1

∑
j=0

exp(−2πi jq)
t

∑
s=1

r(t−s)W− jB(z(k−1)
sW+ j)

Separately considering summation beyond T0 at which z(k−1)
tW+ j has become stationary, we get

=

[
T0−1

∑
j−0

. . .

]
︸ ︷︷ ︸

U1

+


(

W−1

∑
j=T0

exp(−2πi jq)B(z(k−1)
j )r− j

)
︸ ︷︷ ︸

U2

(
t

∑
s=1

r(t−s)W

)
︸ ︷︷ ︸

U3



U1 and U2 do not depend on t. Intuitively, U2 ∈ C determines a direction in the complex plane,
whereas U3 ∈ R determines a magnitude. It remains to understand U3, which can be rewritten as:

U3 =
t

∑
s=1

r(s−1)W = r−W
t

∑
s=1

(rW )s = r−W
t

∑
s=0

(rW )s − r−W = r−W

{
1−(rW )t

1−(rW )
−1 r ̸= 1

s−1 r = 1
(11)

We have now achieved a situation like in the proof of Theorem 2: U3 can converge exponentially,
diverge linearly, or diverge exponentially. The remainder of the proof is analogous to that proof.

The following Corollary of Theorem 2 will be used in the proof of Theorem 4:

Corollary 14. Assume NONNEGATIVE, SSMs with finite precision cannot recognize any non-star-
free regular language.

Proof. For any non-star-free regular language L , there are words u,v,w such that the membership
uvnw ∈ L is determined by the value of n modulo some finite integer k (depending on L) [Mc-
Naughton and Papert, 1971]. Fix any such u,v,w ∈ Σ∗.

Now assume an SSM satisfying NONNEGATIVE can recognize L with finite precision. We can
subsume the action of u into the state h0 by taking h0, in each layer, to be the state of the SSM after
reading u. We now have an SSM that can determine the parity of t when fed a word of the form vtw.

For this SSM, we want to show

(†) When fed words of the form v,v2,v3, . . . , for each i = 0, . . . , |v|−1, and each layer k = 1, . . . ,L,
the sequence z(k)t|v|+i converges as t → ∞.
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As in the preceding two proofs in this section, convergence entails becoming ultimately constant in
the finite-precision setting.

The claim (†) is immediate at k = 0.

Now at k > 0, we write:

h(k)t|v|+i =A(z(k−1)
t|v|+i ) . . .A(z

(k−1)
(t−1)|v|+i+1)h

(k)
(t−1)|v|+i

+A(z(k−1)
t|v|+i ) . . .A(z

(k−1)
(t−1)|v|+i+2)B(z

(k−1)
(t−1)|v|+i+1)

+A(z(k−1)
t|v|+i ) . . .A(z

(k−1)
(t−1)|v|+i+3)B(z

(k−1)
(t−1)|v|+i+2)

+ . . .

+B(z(k−1)
(t−1)|v|+i)

On the RHS, as t → 0, all terms except for h(k)(t−1)|v|+i become constant by the inductive hypothesis.
Hence, there are some α,β such that, for sufficiently large t,

h(k)t|v|+i = α◦h(k)(t−1)|v|+i +β (12)

We are now, for each i, in the same situation as in the proof of Theorem 2]: each dimension of this
recurrence can converge exponentially, diverge exponentially, or diverge linearly; as in that proof, it
follows that z(k)t|v|+i converges as t → ∞.

We have shown (†).

We now follow up by showing that

(∗) When fed words of the form vtw, for each i = 1, . . . , |w|, and each layer k = 1, . . . ,L, the sequence
z(k)t|v|+i converges as t → ∞.

Again, at finite precision, convergence entails that the sequences are ultimately constant. Again, (∗)
is true at k = 0 trivially. When feeding the SSM words of the form vtw, in each layer, the final state
is in each layer k, at each i = 1, . . . , |w|:

h(k)t|v|+i =A(z(k−1)
t|v|+|w|) . . .A(z

(k−1)
t|v|+1)h

(k)
t|v|

+A(z(k−1)
t|v|+i ) . . .A(z

(k−1)
t|v|+2)B(z

(k−1)
t|v|+1)

+ . . .

+B(z(k−1)
t|v|+i )

By inductive hypothesis, for large t, there are ψi,γi such that

h(k)t|v|+i =ψi ◦h(k)t|v|+ γi

and, as shown before, each entry of h(k)t|v| converges exponentially, diverges exponentially, or diverges
linearly. Now, by assumption, one can read out, at finite precisiion, the parity of t from

z(L)t|v|+|w| = Mix1(Norm(Mix2(ψ|w| ◦h(k)t|v|+i + γ|w|)))

We now simply absorb the operation X 7→ψ|w|◦X+γ|w| into Mix2, and obtain by the same arguments

as in the proof of Theorem 2 that z(L)t|v|+|w| converges as r → ∞. This is a contradiction to the claim

that the value of t can be read out, modulo k, from z(L)t|v|+|w| at finite precision.

Remark 15. As outlined in our analysis, the assumptions in Theorem 2 are based on layer-wise op-
erations that are either linear or based on the GLU or SwiGLU activation functions. This assump-
tion is critical to the proof: one could design activation functions that make PARITY expressible.
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Given a sequence x = x1, . . . ,xT , consider the function f (x) = eiπ∑
n
i=1 xi+1

2 . This continuous function
is designed to satisfy the condition that, for bit-strings x, f (x) = 1 if ∑

n
i=1 xi is even, and f (x) = 0

otherwise. At first glance, it seems like this function can be approximated by a cumulative sum layer
in combination with a two-layer SSM to compute f (x) = eiπx+1

2 .

However, this construction cannot be implemented under the condition for which we prove Theorem
2. This is because computing this function f (x) inherently requires a layer-wise nonlinear operation
(such as a MLP) capable of representing sine and cosine functions over arbitrarily large input
values. Importantly, achieving a construction that works for any input length requires the ability to
handle arbitrarily large inputs within a single operation.

A single GLU or SwiGLU activation function, or even a more classical MLP with ReLU or sigmoid
activations, is not expected to represent sine and cosine functions over unbounded inputs. The
reason for this limitation lies in the universal approximation results for feedforward networks. These
results generally guarantee approximation within compact convergence on bounded sets, such as in
the compactification of R or in Lp spaces, as described in Cybenko [1989], Ito [1992], and Arora
et al. [2016]. None of these results extend to uniform approximation of sine or cosine over the entire
real line.

Recent work by van Nuland [2024] addresses the universal approximation capabilities in the space
Cb(R), which is the class of bounded continuous functions over R. This result is particularly relevant
since approximating sine and cosine functions uniformly over R would fall under this category.
According to their Proposition 5.5, sine and cosine functions cannot be uniformly approximated
using certain activation functions, limiting the feasibility of approximating f (x) = eiπx+1

2 in a typical
MLP architecture.

Thus, it is unrealistic to expect a typical MLP, with ReLU or sigmoid activations, to implement the
function f (x) = eiπx+1

2 uniformly for arbitrarily large inputs. Consequently, a construction based on
such a function would either necessitate custom activation functions, such as periodic activations
specifically designed to handle sine and cosine, or require the size of the model to scale with the
input length. Either solution removes apparent contradiction with Theorem 2, as these adjustments
fall outside the scope of the assumptions made in our proof.

Wang and Xue [2024] and Orvieto et al. [2024] provide universal approximation guarantees for
SSMs, but these guarantees depend on the size of the approximating network growing with input
length. This dependency is clearly stated in Proposition 3.6 and Proposition 3.9 of Wang and Xue
[2024], and further emphasized by Orvieto et al. [2024]. in their Remark 2. Our results, in contrast,
pertain to the existence of a single SSM capable of recognizing a formal language for any input
length, independent of network size. Thus, such universal approximation results do not undermine
Theorem 2.

B.3 Proof of Theorem 4

Our proof of Theorem 4 will rely on the algebraic theory of finite automata, specifically the cascade
product and the Krohn-Rhodes Theorem [Krohn and Rhodes, 1965]. These techniques, originally
developed in the 1960s, have recently been introduced to the theoretical study of transformers by Liu
et al. [2023b]; we provide self-contained definitions and somewhat different notation, tailored to our
proofs about state-space models. In general, we will find that the properties of state-space models
allow more natural and directly length-generalizing implementations of these algebraic notions than
what is possible for transfomers.

Recall the definition of a finite-state-automaton (Definition 7). Our construction will build on an
important operation on automata, the cascade product [Krohn and Rhodes, 1965, Eilenberg, 1974,
Ginzburg, 1968]:

Definition 16. Given two automata A1,A2 with associated alphabets Σ1,Σ2 and state sets Q1,Q2
such that

Σ2 = Q1 ×Σ1, (13)

the cascade product A2 ≀A1 is the automaton given by

• Σ = Σ1
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• Q = Q2 ×Q1

• q0 is the tuple of the starting states of A2,A1

• u(⟨q, p⟩,σ) = ⟨u2 (q,⟨p,σ⟩) ,u1(p,σ)⟩

We note that the literature usually uses “◦” for the cascade product [e.g. Eilenberg, 1974]. To avoid
collision with the elementwise product “◦” (e.g., (1)), we here instead use “≀”, usually used for the
wreath product – a product on monoids with an effect analogous to the cascade product [Almeida,
1995].

While the formal definition is cumbersome, the intuition behind it is simple: The cascade product
corresponds to first reading a word w with A1, recording the state sequence q0,q1, . . . ,q|w| ∈ Q1 and
– at each t = 1, . . . , |w| – pasting the state qt−1 together with the input symbol wt ∈ Σ1 – resulting in
a word over a new alphabet Q1 ×Σ1, and then running A2 on the resulting word. The overall state of
A2 ≀A1 after reading a word is the tuple of the states reached by A2 and A1. Note that we write A2 ≀A1,
rather than, A1 ≀A2, because the second argument of the cascade product (A1) intuitively reads the
input first, preprocessing it for the other automaton, A2 – the cascade product can thus be viewed as
a kind of function composition.

The somewhat inscrutable update rule for u(·, ·) encodes the action of A1 in the second component,
and the action of A2 on the extended alphabet in the first component. There is a close analogy to the
stacking of sequence models, and we will leverage this analogy to translate cascade products into
multilayer SSMs. The fundamental background here is the following classical fact:

Fact 17 (Consequence of Krohn-Rhodes Theorem [Krohn and Rhodes, 1965] and Schützenberger’s
Theorem [Schützenberger, 1965]). Each star-free regular language is recognized by an iterated cas-
cade product of set-reset automata, (. . .(A1 ≀ . . .) ≀An−1) ≀An, where each Ai is a set-reset automaton.

This result follows from the Krohn-Rhodes decomposition theorem [Krohn and Rhodes, 1965],
which states that any finite-state automaton can be expressed as an iterated cascade product of sim-
ple automata, specifically finite simple groups and reset automata. Moreover, Schützenberger’s
Theorem [Schützenberger, 1965] characterizes star-free regular languages as those whose syntactic
monoids are aperiodic, meaning they contain no nontrivial groups. Therefore, the decomposition for
star-free languages involves only set-reset automata, leading to the stated cascade product structure.
We now formally show that cascade products can be translated to SSM stacking. We need an auxil-
iary lemma, which provides a single-layer SSM that encodes the input wt−1 in state ht – we will use
it to forward information about the state of A1 at t −1 to A2 at t:

Lemma 18. Let Σ be an alphabet, and consider words w ∈ Σ∗. There is a one-layer SSM with
d = 4|Σ| such that, for t = 2, . . . , |w|, the character wt−1 can be read out from zt at finite precision.

To prove Lemma 18, a first idea is to use an exponential moving average with A = 1/2 to encode the
recent input characters in ht ; this effectively encodes the full history into the binary expansion of ht ,
and in particular allows reading out the second-last input in principle. However, such a construction
does not work at finite precision, because rounding may make it impossible to extract even the
second-most-significant bit.6 We avoid this problem simply by taking A = 1/4, effectively utilizing
only every two digits in the binary expansion of ht , ensuring that the second-last input can be read
out at a constant margin. We now provide the formal proof:

Proof. We begin by showing the claim in the special case Σ = {1,0}. Here, we take d = 4, and

h0 = [0,0,0,0]T

A(e0) = [1/4,1/4,0,0]T

A(e1) = [1/4,1/4,0,0]T

B(e0) = [1,0,1,0]T

B(e1) = [0,1,0,1]T

6Informally, in binary, 0.0111111...111 and 0.1 are arbitrarily close.

23



Now we separately consider the state ht depending on the form of the prefix w1...t (here w1...t refers
to first t characters in the word). If w1...t = . . .00 (the last 2 characters of the prefix are 00), then

ht =

 ∈ [1,2]
∈ [0,1/8]

1
0

 (14)

because

ht =A(e0)◦ht−1 +B(e0)

=A(e0)◦A(e0)◦ht−2 +A(e0)◦B(e0)+B(e0)

=[1/16,1/16,0,0]T ◦ht−2 +[1/16,1/16,0,0]T ◦ [1,0,1,0]T +[1,0,1,0]T

=


1
16 (ht−2)1 +

1
16 +1

1
16 (ht−2)2

1
0



By definition of A and B, each entry in ht−2 is in [0,2]; the claim (14) then follows. If w1...t = . . .10,
then, by a similar calculation

ht =

 ∈ [1,1.25]
∈ [1/4,1/2]

1
0

 (15)

In particular, assuming wt = 0, one can read off wt−1 from (ht)2 with a margin of size 1/8. As wt is
encoded in ht and due to symmetry, analogous statements hold when wt = 1.

Now, for each σ ∈ Σ, we run such a one-layer SSM where 0 represents σ and 1 represents all other
characters.7 By running these in parallel (i.e. executing these operations with the same SSM layer
simultaneously, utilising the width of the SSM layer) we obtain an SSM with d = 4|Σ| from whose
states one can read out wt−1 at finite precision. As the entries in ht are all bounded by 2, we find
∥ht∥2 ≤ 2

√
d independent of t, and the margin is still bounded away from zero after normalization,

and thus in zt , where we can assume Mix1, Mix2 to be the identity.

Remark 19. Some SSMs include local convolutions [e.g. Fu et al., 2023, Gu and Dao, 2023] or
local attention [De et al., 2024], which aggregate information from a local window of some width
∆ > 0. These do not increase the expressive capacity beyond SSMs as we have defined in (1-2),
as aggregation of local information can be simulated with a single SSM layer: Using the layer
constructed in the proof of Lemma 18, given the state ht , once one has read out wt−1 as described in
the proof, one can recover ht−1 from ht and xt ; then inductively read out wt−2 using ht−1 and xt−1,
etc. Thus, up to any given width ∆ > 0, one can read out wt−∆, . . . ,wt−1 from the state ht of this
layer at finite precision.

We are now ready to translate cascade products into SSM stacking:

Lemma 20. Let A1, A2 be two finite-state-automata, and assume that there are two SSMs with
top-level states z(L1,1) and z(L2,2) that map each w to the state sequences under A1, A2, at finite
precision.

Formally, on a word w, ρ1(z
(L1,1)
t ) and ρ2(z

(L2,2)
t ) provide the state sequences of A1, A2.

Then there is an SSM with L1 +L2 +1 layers that maps each w to the state sequence under A2 ≀A2,
again at finite precision.

We note that a conceptually related result holds for transformers [Lemma 12 in Liu et al., 2023b].
However, SSMs allow a simpler and length-independent construction, as they do not require posi-
tional encodings to implement such a construction.

7In fact, using a binary encoding of Σ, one can achieve d = 4log |Σ|.
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Proof. The lower layers are based on the SSM modeling A1. We duplicate each channel, so we now
have 2d dimensions. We further add d further dimensions that directly pass on the input embeddings,
i.e., A ≡ 0, B ≡ 1, Mix j ≡ Id on these dimensions.

In the resulting SSM, zL1
t indicates both wt itself, and the state reached by A1 after reading w1...t .

The state is redundantly indicated by two separate sets of d dimensions; the character wt is indicated
by d further state.

Note, however, that the second automaton in the cascade product requires access to the state qt−1
rather than qt .

For this, we add a layer provided by Lemma 18, of width 4|Q|. Additional 2d dimensions pass on
(1) wt , and (2) the state that A1 reaches after reading the prefix w1...t .

We now have L1 +1 layers where zL1+1
t has 2d +4|Q| dimensions and indicates (1) wt , (2) the state

that A1 reaches after reading the prefix w1...t , (3) the state that A1 reaches after reading the prefix
w1...t−1.

The first and third piece of information are now fed into the second SSM; the second piece is passed
on in d additional dimensions. As we allowed A and B to be arbitrary functions, we redefine these
in the lowest layer of that second SSM to read out from the 4|Q|-dimensional component indicating
(3), providing the desired second-to-last state.

We have constructed an SSM with L1 +L2 +1 layers, where zL1+L2+1
t indicates (1) wt , (2) the state

that A1 reaches after reading the prefix w1...t , (3) the state that A2 reaches after reading the prefix
w1...t pasted with the state sequence of A1. This information is sufficient for reading out the state
sequence of A2 ≀A1.

Note that the number of channels may not be consistent, as it is 3d in the top and bottom parts, but
2d +4|Q| in the middle; we simply pad to the larger dimensionality.

We are now ready to show the existence of length-generalizing SSMs for any star-free state tracking
problem, and conclude with the theorem:

Theorem 21 (Restated from Theorem 4). Let L be a regular language. The following are equiva-
lent:

1. There is an SSM satisfying NONNEGATIVE that predictively models L at all input lengths,
at finite precision

2. L is star-free.

Proof. We need to show:

1. SSMs at finite precision can predictively model all star-free languages. For each language,
a single SSMs is applicable at arbitrary lengths.

2. Assuming NONNEGATIVE, finite-precision SSMs cannot recognize any non-star-free reg-
ular language.

The second statement is Corollary 14; it suffices to prove the first statement.

Assume L is star-free. By the Krohn-Rhodes theorem, there is an automaton A that is a cascade
product of some set-reset automata that recognizes L . By Lemmas 9 and 20, there is an SSM that
computes the state sequence of that automaton.

Now we note that, since A recognizes L , the state q after reading w is sufficient for determining the
set of characters that can follow this prefix in any element of L . For, assume otherwise, then there
are words w, w′ such that u(q0,w) = u(q0,w′) and σ ∈ Σ such that wσΣ∗∩L ̸= /0 but w′σΣ∗∩L =
/0; then u(q0,wσ) = u(q0,w′σ) but the set R (4) is reachable from u(q0,wσ) but not u(q0,w′σ),
contradiction.

Hence, the SSM’s outputs can be transformed, by composing ρ with a map from states to next-
character sets, to predictively model L .
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Theorem 22. SSMs with complex-valued coefficients evading both NONNEGATIVE and TIME-
INVARIANT can represent all regular languages known to be in TC0.

We we do not use this theorem in the main paper, due to the nonexistence (as far as we know) of
implemented SSMs with this property.

Proof. SSMs evading both NONNEGATIVE and TIME-INVARIANT can count modulo any integer k,
using d = 1 and A(e1) = e2πi/k, A(e0) = 1, B ≡ 0, h0 = 1. This is a generalization of the construction
for PARITY described in Section B.2, since e2πi/2 =−1.

The set of regular languages known to be in TC0 is the set of regular languages whose syntactic
monoid contains no non-solvable groups [Barrington et al., 1992]. These languages are recognized
by cascade products of set-reset automata and automata perfoming modular counting [Straubing,
1994]. By the remark above, together with Lemma 9 and Lemma 20, such cascade products can be
simulated by SSMs.

B.4 Maintaining Counters

As the first step in showing Theorem 5, we show that SSMs can maintain unbounded counters, and
that one can read out the values of such counters, up to finite bounds, even at finite precision:

Lemma 23. Let C > 0 be an integer. Let any function u : Σ → ZC be given. Let L ∈ N. Then a
one-layer SSM with finite precision can compute, at each position i = 1, . . . ,T :

max

(
min

(
i

∑
j=1

u(wi),L

)
,−L

)
(16)

in the sense that ρ can read this out from z(1)i with finite precision.

Proof. Define d = 2L+1. Define h0 = 0 ∈ Rd . For each x ∈ Σ, define A(ex) = 1 ∈ Rd and B(ex)i ∈
Rd by B(ex)i = u(x). In order to read out the state ht up to a limit L, we define

φ(ht ,xt) = Norm(ht +[0,1,−1,2,−2, . . . ,−L,L]) (17)

By testing which entries of the result are negative or positive, one can read out the state up to L
even after rounding φ(ht ,xt) to finite precision. The proof straightforwardly extends to multiple
counters.

We are ready to prove the theorem:

Theorem 24 (Restated from Theorem 5). The languages Dyck-1, Shuffle-Dyck, n-ary Boolean Ex-
pressions, anbn, anbncn, and anbncndn, (defined in Appendix C) can each be predictively modeled by
an SSM.
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Proof. For each of these languages, we first define an assignment u : Σ → ZC:

For anbn: (here, C=1)
u(a) = 1
u(b) =−1

For Dyck-1: (here, C=1)
u(“(”) = 1
u(“)”) =−1

For Shuffle-Dyck-k (here, C = k)
u(“(i”) = (0, . . . ,0,1,0 . . .0) where 1 is in the i-th slot
u(“)i”) = (0, . . . ,0,−1,0 . . .0) where −1 is in the i-th slot

For anbncn : (here, C=2)
u(a) = (1,0)
u(b) = (−1,1)
u(c) = (0,−1)

For anbncndn : (here, C=3)
u(a) = (1,0,0)
u(b) = (−1,1,0)
u(c) = (0,−1,1)
u(d) = (0,−1,−1)

For Boolean Expressions: (here, C=1)
u(⟨VALUE⟩) =−1
u(⟨n−ARY ⟩) = +n

For each of these mappings, we use Lemma 23 at L = 1 to construct a one-layer SSMs that can, for
each of the C counters, distinguish the values ≤−1,0,≥ 1.

In parallel, we pass on the input symbol itself in log |Σ| further dimensions.

Overall, the output zt of single SSM layer provides, at every position, both the original symbol in Σ

and an element of {≤ −1,0 ≥ 1}C.

We can thus view the output of this layer as a string over an enriched string of symbols σ1 ×σ2 ∈
Σ×{≤−1,0 ≥ 1}C. Based on this, one can predictively model these languages as follows.

For Dyck-1, the next token is EOS or “(” if σ2 = 0, and “(” or “)” after any other prefix (note that
predictive modeling assumes valid prefixes).

Shuffle-k-Dyck is similar: EOS is allowed if and only if all counters are zero. An opening bracket
is always allowed. A closing bracket is only allowed if the respective counter is > 0.

For anbn, the next token is a or b if σ1 = a; b if σ = (a,≥ 1) or (b,≥ 1); EOS if σ = (b,0).

Constructions for anbncn, anbncndn are similar.

For Boolean expressions, the next token is ⟨n−ARY ⟩ or EOS if σ2 = 0, and any other token other-
wise.

All of these constructions can be encoded using an appropriate function ρ applying to zt .
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B.5 Bounded-Depth Dyck

Definition 25. The language DyckK,h [Hewitt et al., 2020, Yao et al., 2021b] is given by the CFG
with the nonterminals {S0,S1, . . . ,Sh−1,Sh} and the following production rules:

Sh →(1Sh−1)1| . . . |(KSh−1)K |ε
Sh−1 →(1Sh−2)1| . . . |(KSh−2)K |ε

. . . . . .

S2 →(1S1)1| . . . |(KS1)K |ε
S1 →(1S0)1| . . . |(KS0)K |ε
S0 →ε

and the start symbol Sh.

Theorem 26 (Restated from Theorem 6). There is a two-layer SSM with d = O(h logK) that pre-
dictively models DyckK,h at all input lengths, at finite precision.

Proof. In the first layer, we calculate each token depth up to h using Lemma 23. After the first layer,
at each position, the activations will indicate both the depth up to h, and the identity of the symbol.
The space of activations is thus {0, . . . ,h}×{(1,)1, . . . ,(K ,)K}. We then, for each depth l = 1, . . . ,h,
define a set-reset automaton (Definition 8) given by the set Ql := {l}×{(1,)1, . . . ,(K ,)K}. Running
all of these set-reset automata will tell us, for each depth, the identity of the last bracket at that depth.
We can deduce the maximum depth h′ at which the last bracket is an opening one, and thus infer the
set of valid next symbols. The activity of these set-reset automata can, in parallel, be simulated by a
second SSM layer using Lemma 9. We need h such automata, and each SSM has width logK.

C Definitions of Languages

Here, we provide formal definitions of languages from the test suite based on Bhattamishra et al.
[2020]. Descriptions follow Bhattamishra et al. [2020], and are included here for self-containment.
In all cases, our data generation setup is directly taken from [Bhattamishra et al., 2020].

C.1 Regular Languages

Tomita Grammars. Used primarily as a benchmark language family for assessing sequence to
sequence models [Tomita, 1982], some of the languages in this family are star-free (with dot-depth
of 1) and some non-star-free. All the regular languages of the family are defined on the alphabet
Σ = {0,1}. Individual language definitions are available in Table 1.

DDDnnn. We follow the definition of Bhattamishra et al. [2020] to define the Dn family of star-free
languages. In our experiments, we only generate D2, D3, D4, and D12 languages; D1 is equivalent to
Tomita-2. All the languages of the family are defined on the alphabet of Σ= {a,b}. Dn = (aDn−1b)∗
has level n in the dot-depth hierarchy.

PARITY. PARITY is the set of all strings on the alphabet Σ = {0,1} such that the number of 1’s is
even. This language can be easily recognized by a DFA with just two states.

Others. We further have the non-star-free languages (aa)∗, (aaaa)∗ and (abab)∗, and the star-free
languages aa∗bb∗cc∗dd∗ee∗, {ab}∗d{b,c}∗, and {0,1,2}∗02∗.

C.2 Counter Languages

Dyck and Shuffle-Dyck. Dyck-1 is defined on the alphabet Σ = {[, ]} and derived using the follow-
ing CFG production rule: S → (S)|SS|ε.

We further use the family of Shuffle-k languages [Suzgun et al., 2019]. Shuffle-Dyck-k is defined
in terms of Σ = {(1,)1, . . . ,(k,)k}. It is defined as the shuffle of k Dyck-1 languages, each defined in
terms of the alphabet Σi = {(i,)i} where i = 1, . . . ,k.

n-ary Boolean Expressions. This is the set of valid expressions over various operators. We focus
on up-to-3-ary expressions, defined using the following grammar:
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S → ⟨VALUE⟩
S → ⟨UNARY OPERATOR⟩ S
S → ⟨BINARY OPERATOR⟩ S S
S → ⟨TERNARY OPERATOR⟩ S S S

This language is recognized by a counter automaton [Fischer et al., 1968a].

Others We further include the languages of the forms anbn, anbncn, and anbncndn.

Grammar Star-Free Definition
1 Yes 1*
2 Yes (10)*
3 No strings without 12n+102m+1 substrings
4 Yes strings without any 000’s substrings
5 No strings of even length with an even number of 1’s
6 No strings where number of 0’s - number of 1’s is divisible by 3
7 Yes 0*1*0*1

Table 1: Tomita Grammars

D Experimental Details

All experiments used the Mamba reference implementation8. xUnless stated otherwise, we followed
the defaults given there ( dstate = 16, dconv = 4, expand = 2), as we found the default combination
to work better than other options. We tuned dmodel for each language.

D.1 Test Suite from Bhattamishra et al. [2020]

Data Preparation For all the languages, we use either the data prepared by Bhattamishra
et al. [2020] or—where not available—their data-generation scripts, allowing full comparabil-
ity with results they reported for transformers. We used their official code and data release at
https://github.com/satwik77/Transformer-Formal-Languages (last commit 48eea2e; MIT
license). Training sets typically consist of 10K samples, with lengths varying between 1 to 50. There
are two heldout bins: one with in-distribution lengths ([1,50]), and one testing length generalization
(lengths [51,100]). The first one was used for hyperparameter optimization. Each bin typically
contains around 2K samples. However for languages such as anbn, where the number of positive
examples in each bin was limited, all possible examples for that bin are included.

Hyperparameters For each language, we conducted extensive hyperparameter search. We varied
the dmodel parameter in Mamba across the set {16, 32, 64, 128, 256}. Additionally, we experimented
with the number of layers in our model, ranging from 1 to 3, training each configuration for 100
epochs. For languages where Mamba performed well, this number of layers was sufficient. However,
for languages where Mamba struggled, we increased the number of layers up to 12, with little to no
success.

We used the AdamW optimizer. To identify optimal learning rates, we started with a coarse hyper-
parameter search using values from the set {0.001, 0.0001, 0.00001}. If one of these learning rates
showed high performance, we conducted a more fine-grained search to find the optimal learning
rate. Finally, we varied the batch size from {16, 32, 64} for datasets with 10K training examples.
For languages like anbn with limited training size, we searched for an optimal batch size within the
set {5, 10}.

D.2 FlipFlop

We obtained the dataset of Liu et al. [2023a] from their release, https://huggingface.co/
datasets/synthseq/flipflop (MIT license). Our setup corresponds to the deterministic
(“clean”) mode in Liu et al. [2023a]. Matching Figure 2 in Liu et al. [2023a], we evaluated both with

8https://github.com/state-spaces/mamba/blob/main/README.md
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Language Model Bin-1[1, 50] Bin-2[51, 100] Bin-3[101, 150]

Dyck-1

Transformer 100.0 100.0 100.0
Mamba1 100.0 62.6 13.91
Mamba2 100.0 49.1 9.5
Mamba3 100.0 53.95 10.0

Shuffle-2

Transformer 100.0 100.0 93.0
Mamba1 100.0 49.5 2.3
Mamba2 100.0 61.5 8.2
Mamba3 100.0 65.5 9.7

Shuffle-4

Transformer 100.0 100.0 98.8
Mamba1 100.0 44.4 4.3
Mamba2 100.0 63.8 7.2
Mamba3 100.0 56.2 7.8

Shuffle-6

Transformer 100.0 99.9 94.0
Mamba1 100.0 39.4 3.4
Mamba2 100.0 61.2 6.75
Mamba3 100.0 59.6 9.85

Boolean-3

Transformer 100.0 100.0 99.8
Mamba1 99.75 65.7 7.05
Mamba2 99.95 47.25 2.3
Mamba3 100.0 73.45 8.6

Boolean-5

Transformer 100.0 99.8 99.0
Mamba1 99.9 30.05 7.6
Mamba2 100.0 80.2 14.9
Mamba3 99.25 60.7 6.25

anbn

Transformer 100.0 100.0 100.0
Mamba1 100.0 4.1 0
Mamba2 100.0 9.4 0
Mamba3 100.0 21.3 0

anbncn

Transformer 100.0 100.0 100.0
Mamba1 100.0 0 0
Mamba2 100.0 7.6 0
Mamba3 100.0 5.1 0

anbncndn

Transformer 100.0 100.0 99.4
Mamba1 100.0 4.76 0
Mamba2 100.0 0 0
Mamba3 100.0 0 0

Table 2: Accuracies on the counter Languages from the Bhattamishra et al. [2020] test suite. Trans-
former results reported based on Bhattamishra et al. [2020]. For Mamba, we report best settings
(chosen based on inputs of length [1,50]) at 1 (Mamba1), 2 (Mamba2), 3 (Mamba3) layers. Results
for the best-performing layer count, from the first two bins, are shown in Figure 5. On these lan-
guages, there is also a third bin.

in-distribution data (matching the distribution of the training dataset) with pi = 0.8, pw = 0.1, pr =
0.1, and using an out of distribution sparse tail with pi = 0.98, pw = 0.01, pr = 0.01, where pi, pw, pr
refer to the probabilities of that instruction appearing in input sequences.

We trained a one-layer Mamba with the default parameters9, setting dmodel to 16 with the AdamW
optimizer using a learning rate of 3x10−4 and a batch size of 16.

Following the evaluation criteria for LSTMs in Liu et al. [2023a], we compute the test every 100
training steps on our validation sets of choice, by randomly sampling around 103 samples from each
set in every evaluation cycle.

9From https://github.com/state-spaces/mamba/blob/main/README.md
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Language Model Bin-1[1, 50] Bin-2[51, 100]

Tomita 1

Transformer 100.0 100.0
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

Tomita 4

Transformer 100.0 92.4
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

Tomita 7

Transformer 100.0 100.0
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

Tomita 2

Transformer 100.0 100.0
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

aa∗bb∗cc∗dd∗ee∗
Transformer 100.0 100.0
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

{a,b}∗d{b,c}∗
Transformer 100.0 100.0
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

{0,1,2}∗02∗
Transformer 100.0 68.7
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

D2

Transformer 74.6 3.1
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

D3

Transformer 80.9 8.5
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

D4

Transformer 90.2 3.3
Mamba1 100.0 100.0
Mamba2 100.0 100.0
Mamba3 100.0 100.0

D12

Transformer 95.18 1.5
Mamba1 93.65 93.35
Mamba2 99.9 95.55
Mamba3 99.99 99.85

Table 3: Accuracies on the regular Languages from the Bhattamishra et al. [2020] test suite - 1st
half. Transformer results reported based on Bhattamishra et al. [2020]. For Mamba, we report best
settings (chosen based on inputs of length [1,50]) at 1 (Mamba1), 2 (Mamba2), 3 (Mamba3) layers.
Results for the best-performing layer count are also shown in Figure 5.

D.3 Bounded Hierarchical Structure

We built on the official code and data release of Yao et al. [2021b] at https://github.com/
princeton-nlp/dyck-transformer (last commit: 5d21fcf). We train a 2-layer Mamba and a
1-layer Mamba on DyckK,h with K = 8 and h = 10. The training set and the validation set contains
samples of lengths ≤ 700, while the test set contains samples of lengths 700 ≤ n ≤ 1400. We train
Mamba with a varying number of layers l ∈ {1,2} and dmodel ∈ {20,30,40,50,60,70,80,90,100}.
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Language Model Bin-1[1, 50] Bin-2[51, 100]

Parity

Transformer 68.7 0
Mamba1 26.95 0
Mamba2 80.05 4.15
Mamba3 91.15 16.7

(aa)∗
Transformer 100.0 0
Mamba1 2.1 0
Mamba2 2.1 0
Mamba3 4.2 0

(aaaa)∗
Transformer 100.0 0
Mamba1 0 0
Mamba2 0 0
Mamba3 4.0 0

(abab)∗
Transformer 100.0 2.5
Mamba1 0 0
Mamba2 0 0
Mamba3 0 0

Tomita 3

Transformer 75.4 10.8
Mamba1 25.99 12.49
Mamba2 36.88 17.05
Mamba3 60.85 29.37

Tomita 5

Transformer 29.3 0.0
Mamba1 15.94 0
Mamba2 34.5 0
Mamba3 38.4 0

Tomita 6

Transformer 88.8 0
Mamba1 7.2 0
Mamba2 37.8 0
Mamba3 54.56 0.04

Table 4: Accuracies on the regular Languages from the Bhattamishra et al. [2020] test suite - contin-
ued. Transformer results reported based on Bhattamishra et al. [2020]. For Mamba, we report best
settings (chosen based on inputs of length [1,50]) at 1 (Mamba1), 2 (Mamba2), 3 (Mamba3) layers.
Results for the best-performing layer count are also shown in Figure 5.

We use the Adam optimizer with an initial learning rate of 0.01 or 0.001, using cross-entropy loss.
After training for 100 epochs (with early stopping allowed in case of convergence), we select the
learning rate with the better training performance.

E Finite Precision Assumption

As described in Section 2.1, we adopt the finite precision notion used by Weiss et al. [2018]: We
allow an unbounded number of integer bits, but only p fractional bits, where p is a sufficiently large
constant (e.g., p = 8), independent of the length of the input.

There are a variety of related precision notions in the theoretical literature on neural sequence models
– here, we discuss the effect of other notions on our results:

1. Infinite precision Infinite precision allows any parameter and intermediate value to be
an arbitrary number. Such a setting is unrealistic, as it would allow encoding arbitrary
detail about the input into infinite precision [e.g. Siegelmann, 1999] and read these out
with sufficiently powerful functions (A, B, φ) in (4) – this would lead to the unrealistic
conclusion that any function and language could be represented. For this reason, theoretical
work has often adopted restricted precision notions.

2. Finite inventory of values, where integer and fractional bits are both restricted. Such
a setup may be justified based on the fact that any real computer has bounded memory,
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Figure 7: Mamba Accuracy on Dyck8,10, on the development set (length ≤ 700, same length range
as training set) and test set (length 700 ≤ n ≤ 1400). The latter is also plotted in Figure 4.

though such a setup precludes any positive results on non-finite-state problems for any
computational architecture.10

Such a restrictive setup would not affect our positive results on Flip-Flop, Star-Free, and
bounded-depth Dyck languages (Theorems 1, 4, 6), as these all use bounded finite-precision
activation values. As this is a more restricted setup than the one we are assuming, this also
would not affect our negative results about PARITY and non-star-free languages (Theo-
rems 2, 4). These results are thus highly robust to variations of the finite precision assump-
tion.
Such a more restrictive definition would, however, mean that, for unbounded counting
(Theorem 5), modeling is only possible up to a bound determined by the number of pos-
sible values—this is the one place where our results would be impacted. Indeed, we do
observe that Mamba learns these counter languages on training lengths but struggles with
length generalization. Transformers, on the other hand, can represent these languages with
bounded activations (due to the constructions in Bhattamishra et al. [2020]), and show
strong length generalization.
An intermediary between infinite and finite precision is notions of precision where the
number of allowed bits slowly increases with the input length, e.g., logarithmically. Such
a setup has particularly been adopted for transformers [Merrill and Sabharwal, 2023], be-
cause a finite-precision assumption leads to very low expressivity in transformers. For
SSMs, on the other hand, we find that finite precision assumptions are sufficient for show-
ing a broad range of positive results.

10For instance, a Turing machine with bounded memory and thus a bounded tape is equivalent to a finite-state
automaton.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
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