
Falsification of Internal and External Validity in Observational Studies via
Conditional Moment Restrictions

Zeshan Hussain* Ming-Chieh Shih* Michael Oberst
MIT National Dong Hwa University MIT

Ilker Demirel David Sontag
MIT MIT

Abstract

Randomized Controlled Trials (RCT)s are relied
upon to assess new treatments, but suffer from
limited power to guide personalized treatment de-
cisions. On the other hand, observational (i.e.,
non-experimental) studies have large and diverse
populations, but are prone to various biases (e.g.
residual confounding). To safely leverage the
strengths of observational studies, we focus on the
problem of falsification, whereby RCTs are used
to validate causal effect estimates learned from
observational data. In particular, we show that,
given data from both an RCT and an observational
study, assumptions on internal and external valid-
ity have an observable, testable implication in the
form of a set of Conditional Moment Restrictions
(CMRs). Further, we show that expressing these
CMRs with respect to the causal effect, or “causal
contrast”, as opposed to individual counterfactual
means, provides a more reliable falsification test.
In addition to giving guarantees on the asymptotic
properties of our test, we demonstrate superior
power and type I error of our approach on semi-
synthetic and real world datasets. Our approach
is interpretable, allowing a practitioner to visu-
alize which subgroups in the population lead to
falsification of an observational study.

1 INTRODUCTION
Observational studies, prevalent in healthcare, economics,
and other fields, are an important source of real-world data
used to derive granular treatment effect estimates (Dagan
et al., 2021; Hernán et al., 2008; Imbens and Wooldridge,
2009; Xie et al., 2020). Indeed, there has been a rich lit-
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erature in building estimators of heterogeneous treatment
effects from observational data, particularly using modern
machine learning methods (Wager and Athey, 2018; Künzel
et al., 2019; Semenova and Chernozhukov, 2021). However,
observational studies may lack internal validity in that es-
timates of causal effects (in the observational population)
may be biased or inconsistent, e.g., due to unobserved differ-
ences between the treatment and control groups, such as in
the setting of unobserved confounding. On the other hand,
observational studies are representative of more diverse pop-
ulations, leading to more plausible external validity, i.e.,
ability to generalize estimates across wider populations. In
contrast, Randomized Controlled Trials (RCTs) have strong
internal validity, assuming sound design (e.g. a prospective
trial, a-priori definition of hypotheses to be tested) and ap-
propriate randomization. However, RCTs often have restric-
tive inclusion criteria, which can call their external validity
into question (Degtiar and Rose, 2021), and are of limited
size, limiting their ability to detect differences in treatment
effect for specific sub-populations, or detect differences in
adverse event rates (if e.g., the adverse event is rare) (Tsang
et al., 2009; Ali et al., 2018; Phillips et al., 2019). Intuitively,
we would like to leverage observational data for estimating
treatment effects that cannot be reliably estimated using
RCTs, whether due to a lack of statistical power or a lack of
patient diversity in the RCT. At the same time, we would
like to take advantage of the strong internal validity of the
RCT to increase confidence in our observational estimates.

With these considerations in mind, we study the problem
of using limited RCT data to “falsify” assumptions of in-
ternal and external validity for observational studies. Our
method can be applied even when the RCT data does not
cover the entire observational population, and hence cannot
be used on its own to estimate causal effects. Assuming that
the RCT has internal validity, we show that assumptions
of internal/external validity of the observational study have
a testable implication in the form of a set of conditional
moment restrictions (CMRs). We propose a falsification al-
gorithm that tests whether or not these CMRs hold, thereby
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providing an opportunity to reject these assumptions when
they fail to hold. This allows us to take advantage of ap-
proaches developed in the econometrics literature for test-
ing CMRs, and we use a Maximum Moment Restriction
(MMR)-based test (Muandet et al., 2020) for this purpose.

Compared to prior work, the benefits of our approach are
two-fold. First, we implicitly check across all subpopula-
tions of covariates X for disagreement between the con-
ditional average treatment effect (CATE) functions as esti-
mated in the RCT versus in the observational study. Second,
as an additional benefit, our approach provides an explana-
tion for rejection, in the form of a “witness function”, which
describes subpopulations where these estimates diverge.

Importantly, in constructing the test for our problem, we use
the insight that not all differences between observational and
experimental distributions matter. For instance, there may
be differences in unobserved baseline risk factors, which
cause estimates of individual potential outcomes to differ,
but do not impact the causal effect (the difference between
control and treated outcomes). A naive MMR-based test
would asymptotically reject in this scenario, but we demon-
strate that, by careful construction of the MMR test statistic,
we can avoid this failure case.

Our method can be compared to prior approaches to fal-
sification of observational studies. One such approach is
to check for a statistically significant difference between
estimates of the average treatment effect (ATE) from the
RCT and from the observational study (Franklin et al., 2021;
Dagan et al., 2021; Baden et al., 2020). Unfortunately, this
approach can lead to false negatives, e.g., if the ATE from
the observational study replicates the RCT ATE, despite bi-
ases on finer-grained subpopulations. Furthermore, even if
an observational study is correctly “rejected”, the approach
does not provide an explanation for why the observational
study was rejected, which is an important practical consid-
eration for both statisticians and policymakers. Another
approach is to compare subgroup-level effects instead of the
ATE. Hussain et al. (2022) adopt this approach in the context
of testing (multiple) observational estimates against RCT
estimates, essentially testing for differences in group-wise
treatment effects. However, this approach requires correc-
tion for multiple hypothesis testing across subgroups, and
a-priori specification of these subgroups, which can limit its
ability to uncover areas of disagreement.

Contributions: We have the following desiderata for our
falsification algorithm: (i) rejecting observational studies
when their underlying causal assumptions fail (high power),
(ii) accepting in cases where these casual assumptions hold
(controlled type I error), and (iii) providing an explana-
tion of why an observational study is rejected. With these
desiderata in mind, our main contributions are as follows:
(i) First, we show how to convert causal assumptions on
internal and external validity into a set of CMRs, viola-

tions of which can be detected using observational and RCT
data using existing techniques with theoretical guarantees.
(ii) Second, we demonstrate that our construction of these
CMRs avoids a potential failure mode: rejecting observa-
tional studies due to differences in unobserved covariates
that influence baseline outcomes, but not treatment effects.
(iii) Third, on semi-synthetic and real-world datasets, we
show favorable performance of our method with respect to
power and type I error, and showcase its ability to produce
informative explanations of rejections.

2 SETUP AND MOTIVATING EXAMPLES
2.1 Notation & Assumptions
Let Y ∈ Y be the outcome of interest, and A ∈ {0, 1}
denote a binary treatment variable. We let Ya denote the
potential outcome under treatment A = a, and we use
X ∈ X to denote the full set of covariates. Note that, in
our development, we operate in the setting where there is
a single observational study and RCT. We use an indicator
variable, S = {0, 1}, where S = 1 denotes data from the
observational study and S = 0 from the RCT.

To further characterize the observational study and RCT,
we let I0 and I1 be the observed indices for the RCT and
observational study, respectively. Furthermore, we let I =
I0 ∪ I1 be the total set of observed indices. We use |I|
to denote the cardinality of a set, and let |I0|= n0, |I1|=
n1, and |I|= n. Finally, E[.] and P[.] are expectations
and probabilities taken with respect to the joint distribution
P(Y,A,X, S) of the observational study and RCT.

Our goal is to discover violations of causal assumptions that
underlie the validity of conditional average treatment effect
(CATE) estimates derived from the observational study. To
that end, we first state these assumptions formally.

Assumption 2.1 (Internal Validity of Observational Data).
We assume the following in the observational study:

• Ignorability — Ya ⊥⊥ A | X, (S = 1), ∀a ∈ {0, 1}.

• Consistency — A = a, S = 1 =⇒ Ya = Y , ∀a ∈ {0, 1}.

• Positivity of Treatment — P(X = x, S = 1) > 0 =⇒
P(A = a|X = x, S = 1) > 0, ∀a ∈ {0, 1} and ∀x ∈ X .

Assumption 2.1 gives a standard set of assumptions under
which the CATE conditioned on X , E[Y1−Y0|X = x, S =
1] can be identified. However, this assumption is not testable
in isolation. In order to compare observational estimates
with those of the RCT to discover flaws, we will first need
to assume that the RCT itself provides valid estimates.

Assumption 2.2 (Internal Validity of RCT). We assume the
following in the RCT:

• Ignorability — Ya ⊥⊥ A | X, (S = 0), ∀a ∈ {0, 1}.

• Consistency — A = a, S = 0 =⇒ Ya = Y , ∀a ∈ {0, 1}.
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• Fixed probability of assignment —P (A = 1|X = x, S =
0) = p, for some p ∈ (0, 1), ∀x ∈ X .

Assumption 2.2 is a generally defensible (and standard)
set of assumptions on the validity of the RCT. However,
even if both Assumptions 2.1 and 2.2 hold, the correspond-
ing CATE functions are not necessarily comparable. For
instance, there may be unmeasured effect modifiers that
have different distributions between the RCT and observa-
tional study. Under the following additional assumption, the
CATE in the RCT (i.e., E[Y1 − Y0 | X = x, S = 0]) can be
identified using observational data.

Assumption 2.3 (External Validity: Observational Study to
RCT Transportability of CATE). We assume the following:

• Mean Exchangeability of Contrast — E[Y1 − Y0|X =
x] = E[Y1−Y0|X = x, S = s], ∀x ∈ X and ∀s ∈ {0, 1}.

• Positivity of Selection — P(X = x|S = 0) > 0 =⇒
P(X = x|S = 1) > 0, ∀x ∈ X .

The first part of this assumption is sometimes referred to
as “generalizability in effect measure” (Dahabreh et al.,
2019) or “conditional exchangeability in measure” (Da-
habreh et al., 2020). This assumption is weaker than (and
implied by) transportability of counterfactual means (e.g.,
E[Ya | X,S] = E[Ya | X])1. It is simple to show that
this assumption (along with our other assumptions) is suffi-
cient to identify the CATE in the RCT population using the
observational distribution alone.

Proposition 2.1. Under Assumptions 2.1 and 2.3, the CATE
of the RCT given X , E[Y1 −Y0|X,S = 0], is identifiable in
the observational data by

E[Y | X,A = 1, S = 1]− E[Y | X,A = 0, S = 1] (1)

Proposition 2.1 follows from substantially the same argu-
ments used by Dahabreh et al. (2019) for identification of
average treatment effects under similar assumptions, but
we include a short proof in Appendix A for completeness,
alongside all other proofs for this paper.

Remark 2.1. As we demonstrate later on, our statistical test
does not distinguish between violations of Assumption 2.1
or Assumption 2.3. However, violation of either assumption
is a meaningful finding when considering the credibility
of causal effects learned from observational data. For in-
stance, even if the observational study is free of unmeasured
confounding (i.e., Assumption 2.1 holds), there may ex-
ist unmeasured effect modifiers whose distributions differ
substantially across populations, leading to a violation of As-
sumption 2.3. In other words, if the true CATE function
varies substantially for individuals with the same covariates
X across the observational and RCT populations, then it
may not reliably generalize to future patients.

1Equality relations including random variables are to be under-
stood as “almost sure” (a.s.) relations throughout the manuscript.

2.2 Motivation: Testing for Differences in Causal
Contrasts, rather than Counterfactual Means

When it is possible to identify a causal effect from an ob-
servational study, we would prefer to avoid rejecting that
study unnecessarily. This motivates Assumption 2.3, which
holds even in the scenarios where counterfactual means
in the RCT (e.g., the expected outcome under treatment
E[Y1 | X,S = 0]) are not identifiable from observational
data, but where the causal contrast is identified.

This assumption is central to our testing methodology, as
we test for a null hypothesis that is satisfied under Assump-
tion 2.3, even when counterfactual means are not trans-
portable. We build intuition for this assumption in two ways.
First, we give a structural causal model that formalizes a
sufficient condition for this assumption to hold. Second, we
give concrete examples of where this assumption appears to
(approximately) hold in practice.

Example 2.1. Let U be a set of variables that are unob-
served in both the RCT and observational data. Suppose Y
is generated according to the following structural equation,
with binary treatment A and observed covariates X

Y = g(X,U) + τ(X) ·A+ ϵ0, (2)

where ϵ0 is an independent mean-zero random variable
(E[ϵ0] = 0 and ϵ0 ⊥⊥ X,U,A, S) and where P (U | X,S =
1) ̸= P (U | X,S = 0).

In Example 2.1, Y0 = g(X,U) + ϵ0 is influenced by both
X and a set of unobserved baseline characteristics U . As a
result, the conditional counterfactual mean E[Y0 | X,S] =
E[g(X,U) | X,S] will generally differ across studies, due
to the fact that the distribution of U varies across studies.
The conditional average treatment effect, on the other hand,
is independent of U and S, as E[Y1−Y0 | X] = τ(X). This
quantity is purely a function ofX , satisfying our assumption
that the CATE does not depend on S.2

This scenario is plausible in real-world settings, where the
treatment effect is a function of a subset of variables that
influence the outcome Y . For a real-world example, con-
sider the SPRINT Trial (SPRINT Research Group, 2015),
which studies the impact of intensive blood pressure control
(A) on a composite outcome (Y ) that includes heart failure
and death. Here, previous chronic kidney disease (CKD)
is a variable, like U , that has a substantial impact on the
outcome Y0 under no treatment (as reported in Figure 4
of SPRINT Research Group (2015)), but does not have a
(statistically) significant influence on the treatment effect
itself (i.e., τ(X) in the example above). We discuss this
example and other examples of real-world motivation in
more detail in Appendix B.

2The constant treatment effect for individuals with the same X
is not necessary, and merely helps simplify notation. One could
make a similar observation with τ(X, ϵτ ) for an additional noise
variable ϵτ that is independent of U, S.
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3 MMR-based FALSIFICATION TESTS

Next, we observe that Assumptions 2.1 to 2.3 have observ-
able implications on the joint RCT and observational data
in the form of a (set of) conditional moment restrictions. As
a result, if these restrictions fail to hold, then this implies a
violation of the underlying causal assumptions. This sug-
gests a hypothesis-testing approach for detecting violations,
which we develop in this section. Notably, the resulting
hypothesis test looks for differences between the CATE
functions estimated from the RCT and observational stud-
ies, but does not test for equality of conditional potential
outcomes themselves. This is motivated from our prior dis-
cussion, that conditional means of potential outcomes (e.g.,
E[Y0 | X]) could differ between the RCT and observational
data, even when the CATE function itself is identified.

3.1 CATE Estimation

The crux of our methodology is to use the CATE estimate
from the RCT as a proxy for the true CATE function to
falsify or validate an observational estimate. To that end,
we first construct an unbiased CATE estimator from RCT
data. Since the probability of assignment to each treatment
is known by design in RCTs, we can use an IPW-style
estimator for the CATE. Similar estimators can be found in
standard causal inference textbooks (e.g. Ch. 2 of Hernan
and Robins (2021)). A “doubly robust” variant can be used,
but if the outcome model is misspecified, this may result in
higher variance and a loss of power in our test. Thus, we
first define the following “signal” function,

ψ0 =
1 {S = 0}

P (S = 0 | X)
Y

×
(

1 {A = 1}
P (A = 1 | S = 0)

− 1 {A = 0}
P (A = 0 | S = 0)

)
, (3)

and then observe that the conditional expectation of this sig-
nal E[ψ0 | X] is equal to the CATE in the RCT population,
using data from the RCT alone.3

Proposition 3.1 (CATE signal from the RCT). Under As-
sumption 2.2, the instance-wise CATE signal ψ0 in Eq. (3),
which uses the outcome information from the RCT, is unbi-
ased, i.e., E[ψ0|X] = E[Y1 − Y0|X,S = 0].

Next, we wish to develop a distinct estimate of the CATE in
the RCT population, but one which makes use of the obser-
vational data. The first step in building such an estimator is
to identify, under our causal assumptions, the corresponding
statistical estimand, i.e. Eq. (1) in Proposition 2.1. Our goal
is to check the validity of this estimand, which amounts to
challenging Assumptions 2.1 and 2.3. Drawing from ex-
isting literature (Dahabreh et al., 2019, 2020; Degtiar and

3Note the use of the indicator 1 {S = 0}, such that ψ0 only
depends on data from the RCT itself, even though we take the
conditional expectation over the combined sample.

Rose, 2021), we employ the following doubly robust sig-
nal, which combines response surface modeling and inverse
probability weighting (IPW):

ψ1 =
1

P (S = 0 | X)

[
1 {S = 0} (µ1(X)− µ0(X))︸ ︷︷ ︸

Response Surface Signal

+ 1 {S = 1} P (S = 0 | X)

P (S = 1 | X)

(
1 {A = 1} (Y − µ1(X))

P (A = 1 | S = 1, X)︸ ︷︷ ︸
IPW Signal

− 1 {A = 0} (Y − µ0(X))

P (A = 0 | S = 1, X)︸ ︷︷ ︸
IPW Signal

)]
, (4)

where µa(X) := E[Y | A = a,X, S = 1].

Proposition 3.2 (CATE signal from the observational data).
Under Assumptions 2.1 and 2.3, the instance-wise CATE
signal ψ1 in Eq. 4, which uses the outcome information from
the observational data, is unbiased for the CATE in the RCT
population, i.e., E[ψ1|X] = E[Y1 − Y0|X,S = 0].

We are now ready to give the core result of this section,
connecting our causal assumptions to the null hypothesis of
the statistical test that we will develop in the next section.

Corollary 3.1 (Null Hypothesis on Signal Difference). De-
fine ψ = ψ1 − ψ0 as the instance-wise signal difference
between the observational and RCT CATE estimates. Then,
under the null hypothesis, i.e. under Assumptions 2.1 to 2.3,
we have it that E[ψ|X] = 0.

Proof. If Assumptions 2.1 to 2.3 hold, then Proposi-
tions 3.1 and 3.2 imply that E[ψ0|X] = E[ψ1|X] = E[Y1−
Y0|X,S = 0].

Remark 3.1. Note that by Corollary 3.1, violation of the
conditional moment restrictions imply that one or more of
our assumptions is incorrect, including the internal validity
assumptions on the RCT. If we are willing to independently
assume that the RCT is internally valid, then violation of the
CMRs implies a violation of one or both of the internal and
external validity assumptions on the observational data.

3.2 Conditional Moment Restriction (CMR)
Formulation and Maximum Moment
Restriction-based (MMR) Tests

For a practical approach to testing, we leverage the rich
literature on conditional moment restriction (CMR) tests.
Several examples exist of CMRs being used to express re-
strictions on functions of the data. One such example is
using CMRs to reformulate instrumental variable (IV) re-
gression (Zhang et al., 2020). However, to our knowledge,
using CMRs to compare RCT and observational data as
described in this paper has not been previously explored.
We present the CMR-version of the null hypothesis in the
following proposition:
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Proposition 3.3 (Null Hypothesis, CMR). Under Assump-
tions 2.1 to 2.3, we have a set of conditional moment restric-
tions (CMRs) on the signal difference, ψ:

H0 : E[ψ|X] = 0 PX -almost surely, (5)

where PX is the distribution of X on the joint distribu-
tion of the RCT and observational study. Equation (5) im-
plies an infinite set of unconditional moment restrictions,
E[ψf(X)] = 0,∀f ∈ F , where F is the set of measurable
functions on X .

The core part of Proposition 3.3 is in showing how we can
formulate the CMR given our assumptions, while the sec-
ond part of the statement is straightforward and follows
directly from the law of iterated expectation. Testing CMRs
is challenging because an infinite number of equivalent un-
conditional moment restrictions (UMR) must be consid-
ered. Thus, we follow a method proposed by Muandet et al.
(2020), where F in Proposition 3.3 is set to be a reproduc-
ing kernel Hilbert space (RKHS). They further show that
using the maximum moment restriction (MMR) within the
unit ball of the RKHS as the test statistic fully captures the
original set of CMRs and also has a closed-form expression
that can be easily implemented. However, note that here we
are directly testing the CMRs, while Muandet et al. (2020)
consider testing hypotheses on statistical parameters that
imply CMRs, which leads to a larger set of assumptions on
the parameters. Therefore, in the following, we state the
hypothesis test with respect to the MMR test statistic and
the assumptions required for our use case. A proof showing
that these assumptions suffice for the properties of the test
to hold is provided in Appendix A. This main result will
hold for a particular class of kernels, which we define here:

Definition 3.1 (Integrally strictly positive definite (ISPD)).
A kernel k(·, ·) : W ×W → R is integrally strictly positive
definite if for all f : W → R satisfying 0 < ∥f∥22<∞,

∫

W×W
f(w)k(w,w′)f(w′)dwdw′ > 0

Now, we are ready to give an MMR-based hypothesis test
that tests the null hypothesis given in Proposition 3.3:

Theorem 3.1 (Maximum Moment Restriction-based test
for CATE function). Let F be a RKHS with reproducing
kernel k(·, ·) : X × X → R that is ISPD, continuous and
bounded. Suppose |E[ψ|X]|<∞ almost surely in PX , and
E[[ψk(X,X ′)ψ′]2] <∞ where (ψ′, X ′) is an independent
copy of (ψ,X). Let M2 = supf∈F,||f ||≤1(E[ψf(X)])2.
Then,

1. The conditional moment testing problem in Eq. 5 can
be reformulated in terms of the MMR as H

′

0 : M2 = 0,
H

′

1 : M2 ̸= 0.

Further, let the test statistic be the empirical estimate of M2,

M̂2
n =

1

n(n− 1)

∑

i,j∈I,i̸=j

ψik(xi, xj)ψj

2. Then, under H
′

0,

nM̂2
n

d−→
∞∑

j=1

λj(Z
2
j − 1)

where Zj are independent standard normal variables
and λj are the eigenvalues for ψk(x, x′)ψ′.

3. Under H
′

1,

√
n(M̂2

n −M2)
d−→ N (0, 4σ2)

where σ2 = var(ψ,X)[E(ψ′,X′)[ψk(X,X
′)ψ′]]

Remark 3.2. Intuitively, the MMR test statistic is trying
to find regions in X where the signal difference (i.e. the
difference in the CATE estimates between the observational
study and RCT) is maximized. Thus, the larger the signal
difference is, the larger the test statistic will be, and the more
likely we will be to reject the null hypothesis. This is exactly
the behavior that we want from such a test statistic. Note
as well that the test statistic is computed using the signal
difference directly and not separately for each potential
outcome mean. This theoretically-grounded choice follows
directly from our discussion in Section 2.2.

Remark 3.3. Note that these asymptotic distributions imply
that nM̂2

n converges to a distribution with finite variance un-
der the null, but diverges at a rate of

√
n under the alternative

hypothesis, which implies that the MMR test has asymp-
totic power of one. In addition, since the null distribution
does not have a closed form, to obtain the critical value for
rejection, we follow Algorithm 1 in (Muandet et al., 2020),
which uses bootstrap to simulate the null distribution.

Remark 3.4. Proposition 3.3 states that the true signal dif-
ference, ψ = ψ1 − ψ0, satisfies a set of CMRs. However,
in practice, we perform testing using an estimate of the
signal difference, ψ̂, where we plug-in estimates of the un-
derlying nuisance functions, such as the propensity score,
P (A = a|S = 1, X). As a result, we might expect our sta-
tistical test, all else being equal, to be more likely to reject an
observational study, as there are two sources of variation in
the test statistic: first, in the signals themselves through the
estimated nuisance functions, and second, through variation
in the data that exists even when the signals are perfectly
estimated. In our semi-synthetic experiments, we find that
the difference in the type I error (between using ψ and ψ̂) is
minimal for moderately large sample sizes and converges to
zero as the sample size increases.
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3.3 Explainability of MMR-based Falsification Test
Another appealing feature of using the MMR-based ap-
proach is that we may express the maximizer,

f∗ = arg sup
f∈F,||f ||≤1

(E[ψf(X)])2, (6)

in closed form (see the proof of Corollary 3.2 for details).
In turn, we may determine where the CATE function esti-
mated by the RCT and the observational study is the most
discrepant by looking at regions of X with large magnitudes
of f∗. The function f∗, known as the “witness function”,
can be found by the following corollary:

Corollary 3.2. The witness function in Eq. (6) can be esti-
mated as

f̂∗(x) = C
1

n

∑

i

ψik(xi, x)

where C is an unrelated constant so that
∫
X f

∗2(x)dx = 1.

Remark 3.5. Consider the following example where having
a witness function could be beneficial: suppose an endocri-
nologist wants to determine whether to prescribe SGLT2-
inhibitors (A = 1) or not (A = 0) for diabetic patients.
Further assume that there is an RCT and an observational
study that studies the effect of SGLT2-inhibitors on HbA1c
levels (Y ). If our MMR-based approach were to falsify the
observational study, the witness function would enable the
clinician to understand what types of patients (e.g. people
who are ≥ 60 years old and have history of heart disease)
have conflicting conclusions in the RCT versus observa-
tional study with respect to drug benefit.

With this information, they may seek to understand and
do follow-up analyses on what violations of the causal as-
sumptions led to the discrepancy in the “older with prior
heart disease” patient population. For example, there may
be a violation of internal validity of the observational data
(e.g. ignorability), where there are still some unmeasured
confounders in the observational study for this particular pa-
tient group. Alternatively, there could be an external validity
violation (e.g. mean exchangeability of contrast), whereby
the causal effects themselves are unbiased, but the standard
of care of this patient population may be different between
the two studies (i.e. unmeasured effect modifiers). Overall,
the witness function can provide a window for clinicians to
look for possible violations in a specific patient population,
allowing for a richer view into observational study results.

Remark 3.6. A practitioner may interpret or visualize the
witness function in a couple of different ways, which we out-
line here. A simple method, appropriate for domain experts
(e.g. clinicians), is to use domain knowledge to pre-select a
subset of covariates on which one can do low-dimensional
projections for each pair. We provide an example of this
method in our experimental results. Another method is to
take the top or bottom 10% of witness function values over
X and then look at characteristics of these populations. This

approach can guide the choice of low-dimensional parame-
ters to examine (e.g., for major differences across age, the
witness function projected onto age can be plotted).

The MMR-based testing framework is useful both because
it affords a closed-form expression of the test statistic used
to test the CMR in Proposition 3.3 and gives an explainable
view into the rejections of the test via the witness func-
tion. We argue that both are crucial for our problem of
falsification of causal assumptions in observational studies,
specifically internal and external validity. Several other
approaches exist in the literature for testing CMRs, and we
point the reader to Muandet et al. (2020) for an overview.
In the following two sections, we will tease out empirically
the benefits of our testing approach against several baselines
and provide an example of how the witness function can be
used in practice on a real-world dataset.

4 SEMI-SYNTHETIC EXPERIMENTS

4.1 Setup

For this set of experiments, we use covariates from the In-
fant Health and Development Program (IHDP), an RCT run
on premature infants assessing the treatment effect of pro-
fessional home visits on future cognitive function (Brooks-
Gunn et al., 1992). We generate an RCT and observational
dataset (with simulated outcomes) from the partial IHDP
dataset used in Hill (2011), which contains 985 observations,
28 covariates, and one binary treatment variable.

A “simulated” dataset in our experiments consists of a sin-
gle RCT and a single observational dataset. Our simulation
strategy for the data draws largely on the approach taken
by Hussain et al. (2022). In particular, to generate the RCT,
we resample the rows of the IHDP dataset to n0 = 2955.
For the observational dataset, we first resample the rows
of the IHDP dataset to the desired sample size, n = s · n0.
Then, we induce a difference in the covariate distribution
between the observational component and the RCT by do-
ing weighted resampling in the observational data, such
that male infants, infants whose mothers smoked, and in-
fants with working mothers are less prevalent. To introduce
explicit violations of our assumptions in the observational
data, we generate m confounders so that we can later con-
ceal some of them to simulate unmeasured confounding.
Then, in both the RCT and the observational dataset, we
simulate outcomes according to a response surface detailed
in Appendix C. Finally, we conceal cz confounders in order
of “confounding strength”, which is determined by a vector,
γ ∈ Rm. For more information on confounder generation,
outcome simulation, and bias simulation via confounder
concealment, see Appendix C. For parameters m, cz , and
α (significance level), we default to m = 7, cz = 0, and
α = 0.05 unless otherwise specified.
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4.2 Evaluation
We evaluate our algorithm based on our original desiderata.
Namely, we measure power, i.e. the rate of rejecting the
null hypothesis when the CATE function estimates from
the RCT and observational study do not converge to the
same function and type I error: rate of rejecting the null
hypothesis given that they do converge to the same function.

We use the following two baselines. Average Treatment
Effect (ATE) – in the RCT, we compute the difference of
mean outcomes between the treatment and control groups;
in the observational data, we obtain an ATE estimate by
leveraging recent techniques in the double machine learn-
ing (DML) and transportability literature, akin to the esti-
mator in Dahabreh et al. (2020). Group Average Treat-
ment Effect (GATE) – in the RCT, we compute the differ-
ence of mean outcomes between the treatment and control
groups in pre-specified subgroups defined by the infant’s
birth weight and maternal marital status4; in the observa-
tional data, we use a transportable, doubly-robust estimator
(see Appendix C in Hussain et al. (2022)), to estimate the
GATE for each subgroup. Both baselines use hypothesis
testing based on asymptotic normality of ATE or subgroup
estimates. Note that this approach requires pre-specification
of the subgroups.

Both baselines reflect the idea of “falsifying” the observa-
tional study by looking at a pre-specified group (subgroups,
in the GATE case) to detect differences in the causal effect
estimates. Our method, labeled as MMR-Contrast, re-
quires no pre-specification and automatically finds “highly-
discrepant” regions where the causal effect estimate is dif-
ferent between the RCT and the observational study.

4.3 Results
MMR-Contrast largely maintains the desired type I error of
0.05 while having more power compared to baselines. As
conjectured in Remark 3.4, MMR-Contrast tends to slightly
over-reject, which is reflected in Fig. 1 by the marginally
elevated type I error. Furthermore, MMR-Contrast enjoys
greater power than GATE and ATE, particularly in settings
where the confounding bias is more subtle. We conjecture
that the gain in power is due to MMR-Contrast implicitly
checking across all subpopulations of X for disagreements
in CATE estimates. Indeed, we see that when the concealed
confounder has a weight of 1 (as opposed to 2.75), the
difference in power between MMR and ATE is much larger.

When computing MMR-Contrast with ψ versus ψ̂, the em-
pirical gap in type I error shrinks with increasing sample
size of the observational study (see Fig. 2a). Reassuringly,
we see that the level of the test is maintained at α = 0.05
when the true signal difference, ψ, is used, which supports
our theoretical results. Secondly, using the estimated signal

4We specify the following four subgroups: (≥ 2000g, married),
(< 2000g, married), (≥ 2000g, single), (< 2000g, single)
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Figure 1: Type I error and power of MMR-Contrast, GATE and
ATE under different confounder strengths. The left panels in a) and
(b) show that the level of all three approaches generally retains the
nominal level of 0.05. The right panels show the superior power
of MMR-Contrast. Particularly, when the confounder strength is
lower (as in (a)), the difference of CATE estimates between the
observational study and the RCT is more difficult to detect, leading
to a larger difference of power between MMR-Contrast and ATE.
The GATE approach, since it is based on random subgroups, has
minimal power, even under the high confounder strength scenario.

difference, ψ̂, achieves the appropriate type I error when
the observational study size at least matches the RCT, i.e.
sample size ratio is 1, which one might expect in practice.

Visualizing the witness function in Fig. 2b demonstrates the
covariate regions in which the observational effect estimates
are increased or decreased compared to the RCT. We largely
see that the witness function yields positive values, imply-
ing that the observational study is generally estimating a
larger treatment effect (i.e. professional visits benefit child
cognitive development) than the RCT. However, there are
certain subgroups, e.g. children with high birth order whose
mothers do not drink and children with high neonatal health
index, for which the observational study estimates lower
treatment effects than the RCT. The MMR test is able to
discover these subgroup differences, leading to better power
than testing for ATE or GATE. Another potential use case of
the witness function is for development of treatment guide-
lines, where subgroups with high witness function values
may be “flagged” as having conflicting evidence.
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Figure 2: Panel (a) demonstrates the relative performance of tests using test statistics computed with true signals (ψ) and estimated
signals (ψ̂). The sample size of the RCT study is fixed (n0 = 2955) and the sample size ratio between the observational study and the
original IHDP data ranges from 0.01 to 3.33. The blue line shows that the test using ψ achieves the nominal level (0.05). The red line
shows that under small sample sizes of the observational study, the test using ψ̂ over-rejects due to errors in nuisance function estimation,
which is consistent with our conjecture. Nevertheless, its level promptly converges to 0.05 as the number of samples in the observational
study matches or exceeds the RCT. Panel (b) demonstrates the witness functions produced as a byproduct of our test, which show mostly
positive values and certain negative regions.

Selection Bias MMR-Contrast ATE GATE

p = 0 0.29 0.32 0.17
p = 0.05 0.67 0.58 0.40
p = 0.10 0.94 0.88 0.67
p = 0.15 1.0 0.98 0.91

Table 1: Rejection rate when introducing different amounts of
selection bias into the observational data in WHI study. p stands
for the strength of selection introduced in the the data (refer to
Section 5 for details).

5 WOMEN’S HEALTH INITIATIVE (WHI)
EXPERIMENTS

To assess our method in a practical setting, we use obser-
vational and clinical trial data from the Women’s Health
Initiative (WHI). These studies broadly investigate the im-
pact of hormone therapy and vitamin D supplementation
on several clinical outcomes. Conceptually, our analysis
consists of first taking B bootstrapped datasets from either
the original WHI observational study or a “biased” version,
then selecting a subset of covariates (to generate subgroups
for the GATE baseline), and finally running GATE, ATE,
and MMR-Contrast on each bootstrap iteration. We eval-
uate the methods by reporting the rejection rate in each
“bias” setting. To induce different amounts of selection bias
into the observational study, we drop patients who were
not exposed to the intervention and did not experience the
event with some probability p. For further details on data
preprocessing, setup, and evaluation, see Appendix D.

5.1 Setup
We use the Postmenopausal Hormone Therapy (PHT) trial as
the RCT in our analysis, which was run on postmenopausal
women aged 50-79 years with an intact uterus. The trial

investigated the effect of hormone therapy on several types
of cancers, cardiovascular events, and fractures, measuring
the “time-to-event” for each outcome. In the WHI setup,
the observational study component was run in parallel and
tracked similar outcomes to the RCT. Our processing of this
dataset follows closely to the pre-processing steps taken by
Hussain et al. (2022). We binarize a composite outcome,
called the “global index”, in our analysis, where Y = 1 if
coronary heart disease, stroke, pulmonary embolism, en-
dometrial cancer, colorectal cancer, hip fracture, or death
due to other causes was observed in the first seven years of
follow-up, and Y = 0 otherwise. Note that Y = 0 could
also occur from censoring. To establish treatment and con-
trol groups in the observational study, we use questionnaire
data in which participants confirm or deny usage of com-
bination hormones (i.e. both estrogen and progesterone)
in the first three years. For other covariates, we use only
those measured in both the RCT and observational study to
simplify the analysis.

5.2 Results

MMR-Contrast has superior power compared to the base-
lines in real-world data. As shown in Table 1, MMR-
Contrast has the best ability to reject studies that have se-
lection bias. Note, as well, that GATE always has lower
rejection probability compared to ATE. This result implies
that using the GATE approach without prior knowledge on
which subgroups lead to different effect estimates using ob-
servational versus RCT data is highly disadvantageous in
terms of statistical power. Though the MMR approach is
conceptually similar to GATE, it finds discrepant covari-
ate regions in a data-driven fashion instead of requiring
pre-specified groups, thus achieving better power.
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6 RELATED WORK

Transportability of causal effects: A long line of work
gives assumptions under which causal effect estimates can
be transported from one population to another. This includes
work in statistics on generalizing average effects from one or
more RCTs to broader target populations (Cole and Stuart,
2010; Hartman et al., 2015; Dahabreh et al., 2019, 2020),
and work in computer science on giving graphical criteria
for determining when effects can be transported in more
general scenarios (Pearl and Bareinboim, 2011, 2014; Pearl,
2015). Hartman et al. (2015) similarly consider hypothesis
testing as a “placebo” test to check assumptions, though
their assumptions differ from the ones we consider here.
They focus on transporting effects from RCTs to a target
population, and do not assume internal validity on observa-
tional data. In particular, their assumptions have a testable
implication, that the average treated outcome in the target
population will match the average treated outcome under a
reweighting of the RCT population. Meanwhile, our focus
is on testing assumptions of both transportability / external
validity, as well as internal validity of observational studies.

Combining experimental and observational data for im-
proved estimation: There is a recent line of work on com-
bining observational and experimental data to yield more
precise estimates of causal effects, even when the obser-
vational data may be biased (Rosenman et al., 2020; Yang
et al., 2020; Cheng and Cai, 2021; Chen et al., 2021). We
focus on hypothesis testing as a means of falsification as
our primary goal rather than merging data. While Yang
et al. (2020) use hypothesis testing as a part of their ap-
proach, their test depends on the parametric form of the
CATE function that they seek to estimate, while our test is
nonparametric in nature.

Minimax and variational methods for parameter estima-
tion via CMRs: In addition, there is a growing literature
of minimax algorithms that aim to find a well-specified set
of model parameters that fulfill a set of CMRs. For ex-
ample, one line of work looks at constructing a minimax
formulation of the generalized method of moments (GMM)
framework that aims to estimate highly non-linear model
parameters that are also solutions to the moment conditions
implied by the problem at hand, e.g. IV regression (Lewis
and Syrgkanis, 2018; Dikkala et al., 2020; Bennett et al.,
2019; Bennett and Kallus, 2020). Metzger (2022) also gives
asymptotic theory for minimax estimators of functionals
in CMRs. Another line of work tackles the case where a
set of CMRs may only weakly identify the nuisance func-
tions, though the target parameter may still be efficiently and
uniquely estimable under some conditions on the estimator
(Kallus et al., 2021; Bennett et al., 2022).This literature fo-
cuses on the problem of parameter estimation, while we use
the CMR formulation for hypothesis testing of transporta-
bility and internal validity assumptions.

7 DISCUSSION & LIMITATIONS
We have proposed a novel approach for falsifying the as-
sumptions of observational studies using experimental data.
These causal assumptions, stating the internal and external
validity of observational and experimental data, imply that
the conditional average treatment effect is equivalent across
all observed subpopulations of X in both the observational
and experimental data. This in turn gives rise to testable
restrictions on the combined data distribution, implying, as
we show, that the difference between two functions of the
data is zero-mean for any subset of X . Recent advances in
the econometrics literature allow us to test such restrictions.
Our approach implicitly searches for regions of X where
the CATE estimates disagree between the observational and
experimental data, without the need for pre-specifying these
subpopulations. Moreover, this approach yields a function
that characterizes the regions where disagreement is large.
Finally, we design our test to avoid rejecting studies due
to differences in baseline factors that do not influence the
treatment effect.

However, our approach shares certain limitations with some
methods in the literature on testing for violation of causal
assumptions. In particular, while violations of the CMRs
imply violations of causal assumptions, this does not directly
tell us which assumptions are violated (e.g., whether the
observational study is subject to hidden confounding, or
whether there is simply an unobserved difference between
the RCT and observational populations). Finally, due to
the fact that policy guidelines can be formed from such
RCTs and observational studies in society, it is important
for practitioners to consider the biases in the data as well as
the aforementioned limitation of our method.
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APPENDIX

A Proofs

A.1 Proof of Proposition 2.1
Proposition 2.1. Under Assumptions 2.1 and 2.3, the CATE of the RCT given X , E[Y1 − Y0|X,S = 0], is identifiable in
the observational data by

E[Y | X,A = 1, S = 1]− E[Y | X,A = 0, S = 1] (1)

Proof.

E[Y1 − Y0 | X,S = 0]

= E[Y1 − Y0 | X,S = 1]

= E[Y1 | X,S = 1]− E[Y0 | X,S = 1]

= E[Y | X,A = 1, S = 1]− E[Y | X,A = 0, S = 1]

The first equality follows from the mean exchangeability of the contrast (Assumption 2.3) and the second from the linearity
of the expectation operator. The final equality follows from ignorability and consistency (Assumption 2.1).

A.2 Proof of Proposition 3.1
Proposition 3.1 (CATE signal from the RCT). Under Assumption 2.2, the instance-wise CATE signal ψ0 in Eq. (3), which
uses the outcome information from the RCT, is unbiased, i.e., E[ψ0|X] = E[Y1 − Y0|X,S = 0].

Proof. Here, we show that the signal

ψ0 =

(
1 {A = 1}

P (A = 1 | S = 0)
− 1 {A = 0}
P (A = 0 | S = 0)

)
· 1 {S = 0}
P (S = 0 | X)

Y

is an unbiased estimator of the CATE in RCT population under consistency and fully randomized treatment assignment (i.e.,
P (A | X,S = 0) = P (A | S = 0), and Ya ⊥⊥ A as in Assumption 2.2). In particular, we can observe that

E[ψ0(A, Y, S,X) | X] =
∑

A,Y,S

ψ0(A, Y, S,X) · P (A, Y, S | X)

=
∑

A,Y,S

1 {A = 1}
P (A = 1 | S = 0)

· 1 {S = 0}
P (S = 0 | X)

Y · P (A, Y, S | X)

−
∑

A,Y,S

1 {A = 0}
P (A = 0 | S = 0)

· 1 {S = 0}
P (S = 0 | X)

Y · P (A, Y, S | X) (7)

We focus on the first term, observing that the second term can be handled similarly. We first re-write the first term as

∑

A,Y,S

P (Y | S,A,X)P (A | S,X)P (S | X)

P (A = 1 | S = 0)P (S = 0 | X)
· 1 {A = 1, S = 0} · Y

=
∑

Y

Y · P (Y | S = 0, A = 1, X)
((((((((((
P (A = 1 | S = 0, X)(((((((

P (S = 0 | X)

((((((((
P (A = 1 | S = 0)(((((((

P (S = 0 | X)
(8)

= E[Y | S = 0, A = 1, X]

= E[Y1 | S = 0, A = 1, X]

= E[Y1 | X,S = 0]

Repeating the similar arguments for the second term in Eq. 7, we have E[ψ0(A, Y, S,X) | X] = E[Y1 − Y0 | X,S = 0],
which completes the proof.
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A.3 Proof of Proposition 3.2
Proposition 3.2 (CATE signal from the observational data). Under Assumptions 2.1 and 2.3, the instance-wise CATE
signal ψ1 in Eq. 4, which uses the outcome information from the observational data, is unbiased for the CATE in the RCT
population, i.e., E[ψ1|X] = E[Y1 − Y0|X,S = 0].

Proof. We have,

ψ1 =
1

P (S = 0 | X)

[
1 {S = 0} (µ1(X)− µ0(X))

+1 {S = 1} P (S = 0 | X)

P (S = 1 | X)

(
1 {A = 1} (Y − µ1(X))

P (A = 1 | S = 1, X)
− 1 {A = 0} (Y − µ0(X))

P (A = 0 | S = 1, X)

)]

E[ψ1(A, Y, S,X) | X] =
1

(((((((
P (S = 0 | X)

[∑

A,Y

(µ1(X)− µ0(X))P (Y | S = 0, A,X)P (A | S = 0, X)(((((((
P (S = 0 | X)

+((((((P (S = 0 | X)

(((((((
P (S = 1 | X)

(∑

Y

Y − µ1(X)

((((((((((
P (A = 1 | S = 1, X)

P (Y | S = 1, A = 1, X)
((((((((((
P (A = 1 | S = 1, X)(((((((

P (S = 1 | X)

−
∑

Y

Y − µ0(X)

((((((((((
P (A = 0 | S = 1, X)

P (Y | S = 1, A = 0, X)
((((((((((
P (A = 0 | S = 1, X)(((((((

P (S = 1 | X)

)]

=
∑

A,Y

(µ1(X)− µ0(X))P (Y | S = 0, A,X)P (A | S = 0, X)

+
∑

Y

(Y − µ1(X))P (Y | S = 1, A = 1, X)

−
∑

Y

(Y − µ0(X))P (Y | S = 1, A = 0, X)

= (µ1(X)− µ0(X))
∑

A,Y

P (Y,A | S = 0, X)

︸ ︷︷ ︸
=1

+ E[Y | S = 1, A = 1, X]− µ1(X) ·
∑

Y

P (Y | S = 1, A = 1, X)

︸ ︷︷ ︸
=1

− E[Y | S = 1, A = 0, X]− µ0(X) ·
∑

Y

P (Y | S = 1, A = 0, X)

︸ ︷︷ ︸
=1

(9)

= E[Y | S = 1, A = 1, X]− E[Y | S = 1, A = 0, X] (10)
= E[Y1 − Y0 | X,S = 0] (11)

Note that we have Eq. 9 and Eq. 10 since µa(X) = E[Y | S = 1, A = a,X]. Eq. 11 follows from Proposition 2.1.

A.4 Proof of Proposition 3.3
We restate Proposition 3.3 here for convenience.

Proposition 3.3 (Null Hypothesis, CMR). Under Assumptions 2.1 to 2.3, we have a set of conditional moment restrictions
(CMRs) on the signal difference, ψ:

H0 : E[ψ|X] = 0 PX -almost surely, (5)

where PX is the distribution of X on the joint distribution of the RCT and observational study. Equation (5) implies an
infinite set of unconditional moment restrictions, E[ψf(X)] = 0,∀f ∈ F , where F is the set of measurable functions on X .

Proof. Under Assumptions 2.1 to 2.3, we have E[ψ0|X] = E[Y1 − Y0|X,S = 0] and E[ψ1|X] = E[Y1 − Y0|X,S = 0] by
Propositions 3.1 and 3.2 as discussed in Section 3.1. That is, E[ψ|X] = 0 where ψ = ψ1 = ψ0 is the signal difference given
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two CATE signals. Let F be the set of measurable functions on X . Then, by the Law of Iterated Expectations we have

E[ψf(X)] = EX [E[ψf(X)|X]] = EX [E[ψ|X]f(X)], PX -a.s., ∀f ∈ F

We see that Eq. 5 implies the following infinite set of unconditional moment restrictions,

E[ψf(X)] = 0, PX -a.s., ∀f ∈ F

A.5 Proofs for Theorem 3.1 and Corollary 3.2
We restate the theorem and corollary here for convenience.

Theorem 3.1 (Maximum Moment Restriction-based test for CATE function). Let F be a RKHS with reproducing ker-
nel k(·, ·) : X × X → R that is ISPD, continuous and bounded. Suppose |E[ψ|X]|< ∞ almost surely in PX , and
E[[ψk(X,X ′)ψ′]2] <∞ where (ψ′, X ′) is an independent copy of (ψ,X). Let M2 = supf∈F,||f ||≤1(E[ψf(X)])2. Then,

1. The conditional moment testing problem in Eq. 5 can be reformulated in terms of the MMR as H
′

0 : M2 = 0,
H

′

1 : M2 ̸= 0.

Further, let the test statistic be the empirical estimate of M2,

M̂2
n =

1

n(n− 1)

∑

i,j∈I,i̸=j

ψik(xi, xj)ψj

2. Then, under H
′

0,

nM̂2
n

d−→
∞∑

j=1

λj(Z
2
j − 1)

where Zj are independent standard normal variables and λj are the eigenvalues for ψk(x, x′)ψ′.

3. Under H
′

1,
√
n(M̂2

n −M2)
d−→ N (0, 4σ2)

where σ2 = var(ψ,X)[E(ψ′,X′)[ψk(X,X
′)ψ′]]

Corollary 3.2. The witness function in Eq. (6) can be estimated as

f̂∗(x) = C
1

n

∑

i

ψik(xi, x)

where C is an unrelated constant so that
∫
X f

∗2(x)dx = 1.

The following proof follows (Muandet et al., 2020). Let us define the following operator,

Mf = E[ψf(X)] (12)

where f ∈ F . Since |E[ψ|X]|<∞ almost surely in PX , M is a bounded linear operator. By Riesz representation theorem,
there exists a unique g ∈ F such that

Mf = ⟨f, g⟩

where
g = E[ψk(X, ·)].

g is called the conditional moment embedding (CMME) of the CMR, E[ψ|X], in F w.r.t. PX . Therefore, it follows that

M2 = sup
f∈F,∥f∥≤1

(E[ψf(X)])
2
= sup
f∈F,∥f∥≤1

⟨f, g⟩2 =

〈
g

∥g∥
, g

〉2

= ∥g∥2

Note that the above implies that the witness function f∗ = arg supf∈F,∥f∥≤1(E[ψf(X)])2 = g
∥g∥ . Since g is defined as

E[ψk(X, .)], it can be empirically estimated as 1
n

∑n
i=1 ψik(xi, .), which leads to Corollary 3.2.
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Since M2 = ∥g∥2, the first statement in Theorem 3.1 is essentially

E[ψ|X] = 0, PX -almost surely ⇔ ∥g∥2= 0

That is, g ∈ F fully captures the information of the CMR for all x ∈ X . This equivalence, which we will now prove, is
crucial since our statistical test is based on ∥g∥2 and its estimates, while Proposition 3.3 is directed to the CMR:

(⇒) We note that since F is a Hilbert space, it follows that g ∈ F , and ∀f ∈ F , ⟨f, g⟩ = E[ψf(X)] = 0 (Proposition 3.3).
g can now only be a zero vector. Therefore, ∥g∥2= 0.

(⇐)

∥g∥2= 0

⇒ ∥E[ψk(X, .)]∥2 = 0

⇒ ∥E[E[ψ|X]k(X, .)]∥2 = 0

⇒
∥∥∥∥
∫

X
k(x, .)E[ψ|x]pX(x)dx

∥∥∥∥
2

= 0

⇒
∫∫

X×X
pX(x)E[ψ|x]k(x, x

′
)E[ψ|x′]pX(x

′
)dxdx′ = 0

⇒ ∥E[ψ|x]pX(x)∥2= 0 (∵ k(·, ·) is ISPD)

⇒ E[ψ|x] = 0, PX -almost surely

Finally, we move to the second and third statements of Theorem 3.1, which define the estimator and its statistical properties.
Since M2 = ∥g∥2= ∥E[ψk(X, .)]∥2= E[E[ψk(X,X ′)ψ′]] where (X,ψ) and (X ′, ψ′) are independently and identically
distributed, we may use a U -statistic to estimate M2, which is exactly

M̂2
n =

1

n(n− 1)

∑

i,j∈I,i̸=j

ψik(xi, xj)ψj

The asymptotic distribution of U -statistics has been investigated intensively in the literature. Specifically, from Section 5.5
of Serfling (2009), taking the special case of kernels with two inputs, we have the following lemma:

Lemma A.1 ((Serfling)). Given a kernel h(., .) : W×W → R where E(W,W ′)[h(W,W
′)] = θ and E(W,W ′)[h

2(W,W ′)] <

∞, the asymptotic distribution of the U -statistic Un = 1
n(n−1)

∑
i ̸=j h(wi, wj) can be categorized into two cases based on

ζ1 = varW (EW ′ [h(W,W ′)]):
{ √

n(Un − θ)
d−→ N(0, 4ζ1), ζ1 > 0

n(Un − θ)
d−→
∑∞
j=1 λj(Z

2
j − 1), ζ1 = 0

where Zj are independent standard normal variables and λj are the eigenvalues of h, i.e. the solutions for
EW ′ [h(W ′, w)v(w)]− λv(w) = 0

Note that if we set W = (ψ,X), h(W,W ′) = ψk(X,X ′)ψ′, θ = M2, ζ1 = σ2, the second and third statements of
Theorem 3.1 holds as long as M2 = 0 ⇔ σ2 = var(ψ,X)[E(ψ′,X′)[ψk(X,X

′)ψ′]] = 0, which we will now show:

(⇒)

E(ψ′,X′)[ψk(X,X
′)ψ′] = ⟨ψk(X, .),E(ψ′,X′)[ψ

′k(X ′, .)]⟩ = ∥ψk(X, .)∥
〈

ψk(X, .)

∥ψk(X, .)∥
, g

〉

Now since
ψk(X, .)

∥ψk(X, .)∥
∈ F ,

∥∥∥∥
ψk(X, .)

∥ψk(X, .)∥

∥∥∥∥ = 1

and
M2 = 0 ⇒ sup

f∈F,∥f∥≤1

⟨f, g⟩ = 0 ⇒ ⟨f, g⟩ = 0,∀f ∈ F , ∥f∥≤ 1

We conclude M2 = 0 ⇒
〈

ψk(X,.)
∥ψk(X,.)∥ , g

〉
= 0 ⇒ E(ψ′,X′)[ψk(X,X

′)ψ′] = 0 ⇒ var(ψ,X)[E(ψ′,X′)[ψk(X,X
′)ψ′]] = 0
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(⇐)

We first note that var(ψ,X)(E(ψ′,X′)[ψk(X,X
′)ψ′]) = 0 implies that E(ψ′,X′)[ψk(X,X

′)ψ′] is a constant P(ψ,X)-almost
surely. We denote this constant as c so we have

E(ψ′,X′)[ψk(X,X
′)ψ′] = c, P(ψ,X)-almost surely (13)

From the definition of ψ, let X = x∗ be in the support of the observational study, then

E[ψ|S = 1, X = x∗] =
1

P (S = 1|X = x∗)
E
[

1(A = 1)(Y − µ1(x
∗))

P (A = 1|S = 1, X = x∗)

− 1(A = 0)(Y − µ0(x
∗))

P (A = 0|S = 1, X = x∗)
|S = 1, X = x∗

]

=
1

P (S = 1|X = x∗)

[
E[Y − µ1(x

∗)|A = 1, S = 1, X = x∗]

− E[Y − µ0(x
∗)|A = 0, S = 1, X = x∗]

]

= 0,

where the last equality stems from the definition of µ1 and µ0. Now note that

Eψ[E(ψ′,X′)[ψk(X,X
′)ψ′|S = 1, X = x∗]] = Eψ[E(ψ′,X′)[ψk(x

∗, X ′)ψ′|S = 1, X = x∗]]

= Eψ[ψ|S = 1, X = x∗]E(ψ′,X′)[k(x
∗, X ′)ψ′]

= 0 · E(ψ′,X′)[k(x
∗, X ′)ψ′] = 0

But also we have, from (13),

Eψ[E(ψ′,X′)[ψk(X,X
′)ψ′|S = 1, X = x∗]] = Eψ[c] = c

Therefore, we have c = 0 and thus

M2 = E(ψ,X)[E(ψ′,X′)[ψk(X,X
′)ψ′]] = E(ψ,X)[0] = 0

so this side of the arrow is also proven.

B Motivating Empirical Examples of Generalization of Treatment Effects rather than
Counterfactual Means

In Fig. 3 we plot data that is publicly available in SPRINT Research Group (2015) and Franklin et al. (2021). The former is
a randomized trial that reports on outcomes across subgroups, where we observe that subgroups often have larger differences
in their baseline outcomes than in their treatment effects. The latter is a study that attempts to replicate ten RCTs using
observational data. For each observational study and trial, they report on not only the resulting differences in rates (between
treatment and control), but also the marginal rates under each of treatment and control. This is done for both the observational
studies and the original RCTs. We can observe that the estimated “treatment effects” tend to be closer together (between the
observational studies and RCTs) than the estimated “counterfactual means”, such as the marginal rate under control. We can
view this empirical example as one where Assumption 2.3 approximately holds in practice, i.e. the treatment effect appears
to generalize across observational and RCT populations, but the counterfactual means do not.

C IHDP Experiment Details
For both the semi-synthetic and real-world experiments, we follow closely the setup proposed by Hussain et al. (2022), with
a few differences highlighted below.

C.1 Confounder Generation & Outcome Simulation
We generate one RCT and one observational study in each of our 100 simulations, with the randomness appearing in our
confounder generation, simulation of the potential outcomes, and the amount of noise in each. In the RCT, we retain the
original IHDP data, i.e. the covariates and the binary treatment variable, but resample the dataset with equal probability to
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Figure 3: (a) For each binary group indicator I in the SPRINT Trial, we compare the absolute difference between E[Y0 | I = 1] versus
E[Y0 | I = 0], and similarly for Y1 and Y1 − Y0, where Y is a binary variable indicating the observation of the primary composite
outcome. The data supporting this plot is taken from Figure 4 of SPRINT Research Group (2015). Generally, the latter difference is smaller
(sometimes by an order of magnitude) than the differences for individual potential outcomes. (b) For each attempted replication of an
RCT by an Observational study, we compare the differences in the reported incidence rates under treatment, under the control/comparator,
and the difference between the two (analogous to the treatment effect). The latter tends to be smaller than both of the differences in
counterfactual means in 6 / 10 replications, and smaller than at least one of the differences in counterfactual means in all 10 replications.
This data is taken from Table 2 of Franklin et al. (2021), where we use the reported statistics in Table 2.

generate a final dataset of size, n0 = 2955. For generation of the observational dataset, we first resample the rows of the
IHDP dataset to the desired sample size, n = s · n0, but do the resampling in a weighted fashion, such that male infants,
infants whose mothers smoked, and infants with working mothers are less prevalent. The weights are set as,

w =
1

1 + exp(−0.2(1(male infant) + 1(mother smoked) + 1(mother worked during pregnancy)))

Note that this differs from the reweighting scheme used in Hussain et al. (2022) in that we use a non-linearity in the
reweighting, since we wish for the covariates used in the reweighting (i.e. sex, smoking status, working status) to be effect
modifiers.

Next, we generate confounders for the observational dataset. Each confounder, z, is a function of a subset of the covariates,
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Xs, and the treatment, A:

z = X⊤
s ξ +X⊤

s δ ⊙A+N (0, 1),

where Xs ∈ R4 and the coefficients ξ and δ are set as: ξ = (0.1,−0.1, 0.2,−0.3, 0.4) and δ = (1.,−.1, .5,−3, 4). Xs

consists of the following covariates — (“neonatal health index”, “birth order of infant”, “drinks alcohol or not”, “mother
finished high school”). Confounder generation for the RCT is similar but does not include any dependency on the treatment:
X⊤
s ξ +N (0, 1). We repeat this procedure m times to yield m confounders.

To detail the outcome simulation, we borrow notation from Hussain et al. (2022), where we let Z ∈ Rm denote the generated
confounder vector and X ∈ Rmx denote the covariate vector, where mx = 28 is the number of covariates in the original
IHDP dataset. Similarly, we let X̃ = (A,X⊤)⊤. Then, we set the following counterfactual outcome distributions:

Y0 ∼ N

((
X̃ +

1

2
1

)⊤

β + Z⊤γ, 1

)

Y1 ∼ N (X̃⊤β + Z⊤δ + ω, 1),

where 1 ∈ Rmx+1 is a vector of ones, β ∈ Rmx+1 is a vector where each element is randomly sampled from
(0, 0.1, 0.2, 0.3, 0.4) with probabilities (0.6, 0.1, 0.1, 0.1, 0.1), and γ ∈ Rm is a vector where each element is randomly sam-
pled from one of two vectors with uniform probability depending on the strength of confounding desired: (0.1, 0.2, .5, .75, 1.)
or (1., 1.75, 2., 2.25, 2.75). In Figure 1a, for example, we sample from the first vector to generate the confounders, and
in Figure 1b, we sample from the second vector. The observed outcome is then set as, Y := AY1 + (1 − A)Y0. Finally,
ω = 23 to bound the magnitude of the counterfactual outcome under treatment. We conceal confounders in order to simulate
unobserved confounding, letting cz be the number of confounders concealed. As alluded to in the main paper, the order of
how we conceal confounders is determined by their “confounding strength”, i.e. from highest to lowest weighted.

D Women’s Health Initiative (WHI) Experiment Details
We follow substantially the same setup as in Hussain et al. (2022), which we recounted partially in the main paper (Section 5)
but do so fully in this section. The WHI conducted several clinical trials as well as an observational study in parallel to study
the effect of various hormonal and dietary interventions on the health and quality of life of postmenopausal women. As
mentioned in the main paper, of the three clinical trials run by WHI, we use the Postmenopausal Hormone Therapy (PHT)
trial for our analysis, which looked at the effect of combination hormone therapy on postmenopausal women aged 50-79
years who had not undergone a hysterectomy (Rossouw et al., 2002). The data used in our analysis is publicly available on
BIOLINCC (https://biolincc.nhlbi.nih.gov/studies/whi_ctos).

D.1 Data
We briefly review the core characteristics of both the RCT and observational study components of the WHI study. The
RCT studies the effect of a combination of 2.5mg of medoxyprogesterone and 0.625mg of estrogen on a population of
NHT = 16608 postmenopausal women. Each patient is randomly assigned to either the treatment group (i.e. estrogen +
progesterone combination is given) or the control group, in which the placebo is given. The outcomes tracked in the RCT
are of three categories: 1) cardiovascular events, including coronary heart disease, 2) cancers (endometrial, breast, etc.), and
3) fractures (e.g. hip, bone, etc.). The observational study component studies similar outcomes in a cohort of N = 93676
women. Women were recruited for this component in 1996, and follow-up was done until 2005, which is a similar timeframe
as the RCT. Information about therapies that the patients were taking across the follow-up were tracked via questionnaires,
which were taken on a yearly basis.

D.2 Outcome and Intervention
As mentioned in Section 5 of the main paper, we define a binary outcome based on the “global index” score given to each
patient, which is a composite index derived from whether or not a patient experiences any one of the following events:
coronary heart disease, stroke, pulmonary embolism, endometrial cancer, colorectal cancer, hip fracture, or death due to
other causes. Furthermore, the we let Y = 1 if any one of these events is observed in the first seven years of follow-up and
Y = 0 otherwise. Notably, Y = 0 may also occur due to censoring.

In terms of the intervention, the RCT is run as an “intention-to-treat” trial. For the observational study component, we
determine treatment and control groups based on explicit affirmation or denial of the use of estrogen and progesterone
combination therapy in the first three years, which we glean from the annual survey data. Using this procedure, we end up

https://biolincc.nhlbi.nih.gov/studies/whi_ctos
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with a total of NOS = 33511 patients. Finally, we restrict the set of covariates used to those that are measured in both the
RCT and the observational study. Each covariate indicates the same meaning, since the same set of questionnaires are used
to gather them. The resulting number of covariates is 1576.

D.3 Experimental Workflow
We detail our experimental setup in this section. We note the following algorithm applies to one row of Table 1 in the main
paper. Indeed, to get the remaining results, we re-apply this algorithm after “introducing” some selection bias into the
observational dataset. We have the following experimental workflow:

• Step 1: Generate B bootstrapped datasets of the base WHI observational dataset.

• Step 2: Set list of r covariate pairs X1, . . . , Xr. We use the same set of covariates as used by Hussain et al. (2022),
which can be found in Appendix E of their paper, to generate the r covariate pairs.

• Step 3: For i = 1 → B

– Apply MMR-Contrast (see Appendix E for implementation details). Set ΛMMR[i] = 1 if p-value is < 0.05, else
let ΛMMR[i] = 0.

– Apply ATE. We use the same estimator as Hussain et al. (2022), but average over the entire population to get the
ATE from the observational study and RCT, respectively (i.e. set each patient to be part of the same group). Set
ΛATE [i] = 1 if the test rejects the null hypothesis and ΛATE [i] = 0 otherwise.

– For j = 1 → r

– Apply GATE using the four subgroups derived from Xj , as in Hussain et al. (2022). Set ΛGATE [i][j] = 1 if
the test rejects the null hypothesis and ΛGATE [i][j] = 0 otherwise.

Thus, the rejection rates for MMR-Contrast, ATE, GATE are 1
B

∑
i ΛMMR[i], 1

B

∑
i ΛATE [i],

1
B·r
∑
i

∑
j ΛGATE [i][j],

respectively. We repeat the above workflow to the WHI dataset that has induced selection bias. To add selection bias to the
data, with probability p, we drop patients who were not exposed to the intervention and did not experience the event. To
obtain the results for Table 1, we run our experimental procedure for p = (0., 0.05, 0.10, 0.15).

E Details on Implementation of the MMR-Contrast Method
The implementation of the MMR-Contrast method references the workflow illustrated in (Hussain et al., 2022) and (Muandet
et al., 2020): the former for signal calculation and the latter for significance testing.

E.1 Calculation of signal difference
As elaborated in the main text, in the combined data (combining the RCT and observational study), for each observation i
producing data (yi, si, ai, xi), we define the true signal difference as,

ψi =
1

P (S = 0|X = xi)

{
1(si = 0)

[
[µ1(xi)− µ0(xi)]−

[
1(ai = 1)

P (A = 1|S = 0)
− 1(ai = 0)

P (A = 0|S = 0)

]
yi

]
+

1(si = 1)
P (S = 0|X = xi)

P (S = 1|X = xi)

[
1(ai = 1)(yi − µ1(xi))

P (A = 1|S = 1, X = xi)
− 1(ai = 0)(yi − µ0(xi))

P (A = 0|S = 1, X = xi)

]}

where µ1(xi) = E[Y |S = 0, A = 1, X = xi] and µ0(xi) = E[Y |S = 0, A = 0, X = xi]. Note that the true signal
difference includes several unknown nuisance functions that need to be estimated:

• Response surface: µ1(X), µ0(X)

• Selection propensity: P (S = 1|X), P (S = 0|X)

• Treatment propensity in the observational study: P (A = 1|S = 1, X), P (A = 0|S = 1, X)

• Treatment propensity in the RCT: P (A = 1|S = 0), P (A = 0|S = 0)

The treatment propensity in the RCT is estimated with the empirical probability of treatment within the RCT data. The
response surface, selection propensity and treatment propensity in the observational study are estimated using cross-fitting:
the combined data is randomly split intoK = 3 folds, and the nuisance functions used in each fold are estimated with data out
of that fold, using the following models with grid search for hyperparameters. Default hyperparameters in scikit-learn for the
linear regression model were used. The best hyperparameters found for the gradient boosting classifier, also in scikit-learn,
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were as follows: “learning-rate”: 0.01, “n-estimators”: 50, “max-depth”: 2, “min-samples-leaf”: 50, “min-samples-split”:
50, “max-features”: “sqrt” (Pedregosa et al., 2011).

Response surface Selection propensity Treatment propensity (observational)
IDHP Linear regression Gradient boosting classifier Gradient boosting classifier
WHI Gradient boosting classifier Gradient boosting classifier Gradient boosting classifier

As an aside, in Figure 2(a) where we compare the performance of statistics using estimated signals and true signals, we
plug in the response surface and selection propensity model implied by our simulation settings into ψi to get the true signal
difference.

E.2 Hypothesis testing
After obtaining the estimated signal difference ψ̂i by plugging in the estimated nuisance functions into ψi, the test statistic is
calculated as,

nM̂2
n =

1

(n− 1)

∑

i,j∈I,i̸=j

ψ̂ik(xi, xj)ψ̂j

where k(., .) is set as a polynomial kernel of order 3. One may also use a laplacian kernel or RBF kernel, although we found
the polynomial and laplacian kernels to work best in practice. To obtain the p-value for the test, we follow (Muandet et al.,
2020) and generate B = 100 samples of multinomials wk = (wk1, wk2, . . . , wkn)

⊤ ∼ Multinom(n, ( 1n ,
1
n , . . . ,

1
n )), k =

1, 2, . . . , B. For each k, we define the bootstrap sample of the null distribution:

nM̂2
n(k) = n

∑

i,j∈I,i̸=j

wki − 1

n
ψ̂ik(xi, xj)ψ̂j

wkj − 1

n

The p-value is then calculated as [∑B
k=1 1(nM̂2

n ≤ nM̂2
n(k))

]
+ 1

B + 1

Note that we do not re-estimate the propensity score function in each bootstrap iteration.

F Beyond Testing CATE Signals
In this section, we provide a different formulation of our falsification procedure that tests the potential outcome signals
for E[Ya|X], a ∈ {0, 1}, individually, instead of the signal for the contrast E[Y1 − Y0|X]. This demonstrates that our
formulation can be adapted to testing other functions of the potential outcome distribution, other than the one we originally
considered.

First, we modify our external validity assumption to accommodate testing individual potential outcomes:

Assumption F.1 (External Validity: Observational Study to RCT Transportability of Potential Outcomes). We assume the
following:

• Mean Exchangeability — E[Ya|X = x] = E[Ya|X = x, S = s], ∀x ∈ X , ∀s ∈ {0, 1}, and ∀a ∈ {0, 1}.

• Positivity of Selection — P(X = x|S = 0) > 0 =⇒ P(X = x|S = 1) > 0, ∀x ∈ X .

Now, we will introduce additional notation for our signal functions. Namely, we have the outcome signal from the RCT as
follows,

ψa0 =
1{S = 0}
P (S = 0|X)

· Y 1{A = a}
P (A = a|S = 0)

, a ∈ {0, 1}

ψ0 = (ψ0
0 , ψ

1
0)

⊤ (14)

Similarly, we have the following outcome signal in the RCT population, but estimated from observational data, as developed
in the main paper,

ψa1 =
1

P (S = 0|X)

[
1{S = 0}µa(X) + 1{S = 1}P (S = 0|X)

P (S = 1|X)

1{A = a}(Y − µa(X))

P (A = a|S = 1, X)

]
, a ∈ {0, 1}

ψ1 = (ψ0
1 , ψ

1
1)

⊤ (15)
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Note that the main difference here compared to the main paper is that we define signal functions individually for each
potential outcome and then let ψ0 and ψ1 be a vector of signals. Now, we have the following proposition, which shows that
the vector signals are unbiased for the potential outcomes in the RCT population:

Proposition F.1 (Potential Outcome Signals from the RCT and Observational Data). Under Assumption 2.2 (internal
validity of the RCT), the instance-wise potential outcome vector ψ0 in Eq. (14), which uses the outcome information from
the RCT, is unbiased, i.e., E[ψ0|X] = E[Y|X,S = 0] = E[(Y0, Y1)⊤|X,S = 0]. Furthermore, under Assumption 2.1
and Assumption F.1, the instance-wise potential outcome vector ψ1 in Eq. (15), which uses the outcome information from
the observational data, is unbiased for the potential outcomes in the RCT population, i.e. E[ψ1|X] = E[Y|X,S = 0] =
E[(Y0, Y1)⊤|X,S = 0].

Proof. We first show E[ψ0|X] = E[(Y0, Y1)⊤|X,S = 0], i.e. E[ψa0 |X] = E[Ya|X,S = 0], a ∈ {0, 1}

E[ψa0 |X] = E
[ 1{S = 0}
P (S = 0|X)

Y 1{A = a}
P (A = a|S = 0)

∣∣∣X
]

=
1

P (S = 0|X)P (A = a|S = 0)
E[1{S = 0, A = a}Y |X]

=
1

P (S = 0|X)P (A = a|S = 0, X)
E[1{S = 0, A = a}Y |X] (16)

=
P (S = 0, A = a|X)

P (S = 0|X)P (A = a|S = 0, X)
E[Y |X,S = 0, A = a]

= E[Y |X,S = 0, A = a]

= E[Ya|X,S = 0], (17)

where (16) is from fixed probability of assignment in Assumption 2.2, and (17) is from consistency and ignorability in
Assumption 2.2.

We then show E[ψ1|X] = E[(Y0, Y1)⊤|X,S = 1], i.e. E[ψa1 |X] = E[Ya|X,S = 1], a ∈ {0, 1}

E[ψa1 |X] = E

[
1

P (S = 0|X)

[
1{S = 0}µa(X) + 1{S = 1}P (S = 0|X)

P (S = 1|X)

1{A = a}(Y − µa(X))

P (A = a|S = 1, X)

]∣∣∣∣∣X
]

=
E[1{S = 0}|X]µa(X)

P (S = 0|X)
+

E[1{S = 1, A = a}(Y − µa(X))|X]

P (S = 1|X)P (A = a|S = 1, X)

=
P (S = 0|X)µa(X)

P (S = 0|X)
+
P (S = 1, A = a|X)E[(Y − µa(X))|X,S = 1, A = a]

P (S = 1|X)P (A = a|S = 1, X)

= µa(X) + E[(Y − µa(X))|X,S = 1, A = a]

= µa(X) + E[Y |X,S = 1, A = a]− µa(X)

= µa(X) + E[Ya|X,S = 1]− µa(X) (18)
= E[Ya|X,S = 1],

where (18) is from consistency and ignorability in Assumption 2.1. The proposition is now proven.

We can show a similar corollary to Corollary 3.1 in the main paper, where we developed the null hypothesis on the CATE
signals. Now, we do so for the potential outcome vector signals. Namely, we have,

Corollary F.1 (Null Hypothesis on Potential Outcome Difference). Define ψ = ψ1 − ψ0 as the instance-wise signal
difference between the observational and RCT potential outcome estimates. Then, under the null hypothesis, i.e. under
Assumptions 2.1 and 2.2 and Assumption F.1, we have it that E[ψ|X] = 0.

Proof. If Assumptions 2.1 and 2.2 and Assumption F.1 hold, then Proposition F.1 implies that E[ψ0|X] = E[ψ1|X] =
E[Y|X,S = 0] = E[(Y0, Y1)⊤|X,S = 0].

Our assumptions, i.e. Assumption 2.2, Assumption 2.1, and Assumption F.1, give us a set of conditional moment restrictions
(CMRs) on the signal difference, ψ, which is a difference of vector signals:

H0 : E[ψ|X] = 0 PX -almost surely (19)
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As before, PX is the distribution of X on the joint distribution of the RCT and observational study. By the law of iterated
expectations, akin to the development in Proposition 3.3, Eq. (19) implies an infinite set of unconditional moment restrictions,

E[ψ⊤f(X)] = 0,∀f ∈ F × F , (20)

where F is the set of measurable functions on X . Note that now, f is a vector-valued function, where f(X) =
(f0(X), f1(X))⊤. Now, as in the main paper, we follow the CMR testing procedure presented in Muandet et al. (2020),
where we let F be a RKHS and use the maximum moment restriction (MMR) within the unit ball of the RKHS as our test
statistic. Following this, we present the following theorem, which is a modified version of Theorem 3.1.

Theorem F.1 (Maximum Moment Restriction-based test for Potential Outcomes). Let F be a RKHS with reproducing kernel
k(·, ·) : X × X → R that is ISPD, continuous and bounded, equipped with inner product ⟨., .⟩F . Denote F2 as the product
RKHS F × F equipped with inner product ⟨f , g⟩F2 = ⟨(f1, f2)⊤, (g1, g2)⊤⟩F2 := ⟨f1, g1⟩F + ⟨f2, g2⟩F . Suppose the
elements of |E[ψ|X]|<∞ almost surely in PX , and E[[k(X,X ′)ψ⊤ψ′]2] <∞ where (ψ′, X ′) is an independent copy of
(ψ, X). Let M2 = supf∈F2,||f ||≤1(E[ψ

⊤f(X)])2. Then,

1. The conditional moment testing problem in Eq. 19 can be reformulated in terms of the MMR as H
′

0 : M2 = 0,
H

′

1 : M2 ̸= 0.

Further, let the test statistic be the empirical estimate of M2,

M̂2
n =

1

n(n− 1)

∑

i,j∈I,i̸=j

k(xi, xj)ψ
⊤
i ψj

2. Then, under H
′

0,

nM̂2
n

d−→
∞∑

j=1

λj(Z
2
j − 1)

where Zj are independent standard normal variables and λj are the eigenvalues for k(x, x′)ψ⊤ψ′.

3. Under H
′

1,
√
n(M̂2

n −M2)
d−→ N (0, 4σ2)

where σ2 = var(ψ,X)[E(ψ′,X′)[k(X,X
′)ψ⊤ψ′]]

Proof. The proof is very similar to how we proved Therorem 3.1. Let us define the following operator,

Mf = E[ψ⊤f(X)] (21)

where f ∈ F2. Since the elements of |E[ψ|X]|< ∞ almost surely in PX , M is a bounded linear operator. By Riesz
representation theorem, there exists a unique g ∈ F2 such that

Mf = ⟨f , g⟩F2

where
g = E[ψk(X, ·)].

Therefore, it follows that

M2 = sup
f∈F2,∥f∥≤1

(
E[ψ⊤f(X)]

)2
= sup
f∈F2,∥f∥≤1

⟨f , g⟩2F2 =

〈
g

∥g∥
, g

〉2

F2

= ∥g∥2

Since M2 = ∥g∥2, the first statement in Theorem F.1 is essentially

E[ψ|X] = 0, PX -almost surely ⇔ ∥g∥2= 0

That is, g ∈ F2 fully captures the information of the CMR for all x ∈ X . This equivalence, which we will now prove, is
crucial since our statistical test is based on ∥g∥2 and its estimates, while Corollary F.1 is directed to the CMR:



Zeshan Hussain*, Ming-Chieh Shih*, Michael Oberst, Ilker Demirel, David Sontag

(⇒) We note that since F2 is a Hilbert space, it follows that g ∈ F2, and from (20), ∀f ∈ F2, ⟨f , g⟩F2 = E[ψ⊤f(X)] = 0.
g can now only be a zero vector. Therefore, ∥g∥2= 0.

(⇐)

∥g∥2= 0

⇒ ∥E[ψk(X, .)]∥2 = 0

⇒ ∥E[E[ψ|X]k(X, .)]∥2 = 0

⇒
∥∥∥∥
∫

X
k(x, .)E[ψ|x]pX(x)dx

∥∥∥∥
2

= 0

⇒
∫∫

X×X
pX(x)E[ψ⊤|x]k(x, x

′
)E[ψ|x′]pX(x

′
)dxdx′ = 0

⇒ ∥E[ψ|x]pX(x)∥2= 0 (∵ k(·, ·) is ISPD)

⇒ E[ψ|x] = 0, PX -almost surely

Finally, we move to the second and third statements of Theorem F.1, which define the estimator and its statistical properties.
Since M2 = ∥g∥2= ∥E[ψk(X, .)]∥2= E[E[ψ⊤k(X,X ′)ψ′]] where (X,ψ) and (X ′,ψ′) are independently and identically
distributed, we may use a U -statistic to estimate M2, which is exactly

M̂2
n =

1

n(n− 1)

∑

i,j∈I,i̸=j

ψ⊤
i k(xi, xj)ψj

Now note that in Lemma A.1, if we set W = (ψ, X), h(W,W ′) = ψ⊤k(X,X ′)ψ′, θ = M2, ζ1 = σ2, the second and
third statements of Theorem 3.1 holds as long as M2 = 0 ⇔ σ2 = var(ψ,X)[E(ψ′,X′)[ψ

⊤k(X,X ′)ψ′]] = 0, which we
will now show:

(⇒)

E(ψ′,X′)[ψ
⊤k(X,X ′)ψ′] = ⟨ψk(X, .),E(ψ′,X′)[ψ

′k(X ′, .)]⟩F2 = ∥ψk(X, .)∥
〈
ψk(X, .)

∥ψk(X, .)∥
, g

〉

F2

Now since
ψk(X, .)

∥ψk(X, .)∥
∈ F2,

∥∥∥∥
ψk(X, .)

∥ψk(X, .)∥

∥∥∥∥ = 1

and

M2 = 0 ⇒ sup
f∈F2,∥f∥≤1

⟨f , g⟩F2 = 0 ⇒ ⟨f , g⟩F2 = 0,∀f ∈ F2, ∥f∥≤ 1

We conclude

M2 = 0 ⇒
〈
ψk(X, .)

∥ψk(X, .)∥
, g

〉

F2

= 0 ⇒ E(ψ′,X′)[ψ
⊤k(X,X ′)ψ′] = 0 ⇒ var(ψ,X)[E(ψ′,X′)[ψ

⊤k(X,X ′)ψ′]] = 0

(⇐)

We first note that var(ψ,X)(E(ψ′,X′)[ψ
⊤k(X,X ′)ψ′]) = 0 implies that E(ψ′,X′)[ψ

⊤k(X,X ′)ψ′] is a constant P(ψ,X)-
almost surely. We denote this constant as c so we have

E(ψ′,X′)[ψ
⊤k(X,X ′)ψ′] = c, P(ψ,X)-almost surely (22)
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From the definition of ψ, let X = x∗ be in the support of the observational study, then

E[ψ|S = 1, X = x∗] =
1

P (S = 1|X = x∗)
E
[(

1(A = 1)(Y − µ1(x
∗))

P (A = 1|S = 1, X = x∗)
,

1(A = 0)(Y − µ0(x
∗))

P (A = 0|S = 1, X = x∗)

)⊤∣∣∣∣S = 1, X = x∗
]

=
1

P (S = 1|X = x∗)
(E[Y − µ1(x

∗)|A = 1, S = 1, X = x∗],

E[Y − µ0(x
∗)|A = 0, S = 1, X = x∗)])⊤

= 0,

where the last equality stems from the definition of µ1 and µ0. Now note that

Eψ[E(ψ′,X′)[ψ
⊤k(X,X ′)ψ′|S = 1, X = x∗]] = Eψ[E(ψ′,X′)[ψ

⊤k(x∗, X ′)ψ′|S = 1, X = x∗]]

= (Eψ[ψ|S = 1, X = x∗])⊤E(ψ′,X′)[k(x
∗, X ′)ψ′]

= 0⊤E(ψ′,X′)[k(x
∗, X ′)ψ′] = 0

But also we have, from (22),

Eψ[E(ψ′,X′)[ψ
⊤k(X,X ′)ψ′|S = 1, X = x∗]] = Eψ[c] = c

Therefore, we have c = 0 and thus

M2 = E(ψ,X)[E(ψ′,X′)[ψ
⊤k(X,X ′)ψ′]] = E(ψ,X)[0] = 0

so this side of the arrow is also proven.

We label this alternate formulation, where we test on the potential outcomes directly instead of the contrast, as MMR-
Absolute. We give the rejection rate of MMR-Absolute under different amounts of selection bias induced in the WHI
dataset in Table 2. We find that the MMR-Absolute approach vastly over-rejects, indicating the utility of testing the causal
contrast as opposed to the absolute potential outcomes.

Selection Bias MMR-Contrast MMR-Absolute ATE GATE

p = 0 0.29 1.0 0.32 0.17
p = 0.05 0.67 1.0 0.58 0.40
p = 0.10 0.94 1.0 0.88 0.67
p = 0.15 1.0 1.0 0.98 0.91

Table 2: Rejection rate when introducing different amounts of selection bias into the observational data in WHI study. p stands for the
strength of selection introduced in the the data (refer to Section 5 for details).

G When does testing for bias across subgroups improve power?
In our experimental results, we find that the GATE approach has limited power compared to the ATE approach. Indeed,
the performance of GATE versus ATE depends in part on the choice of subgroups used for GATE. In the extreme, if
the difference in effect is identical across all subgroups, testing for differences in ATE may have higher power once
multiple-testing corrections are applied. To build intuition, we will provide a simple example for when a GATE-based test
might have higher power compared to an ATE-based test. We will then formalize this example and provably show under
what conditions a GATE-based test would have higher asymptotic power compared to an ATE-based test. When referring to
the test that tests differences of GATEs or ATEs, we will use the bold form: GATE and ATE. When referring to the causal
quantity itself, we will simply use GATE and ATE.

Toy Example: To build intuition, we will use a toy example to construct three scenarios in which the asymptotic power
between GATE and ATE may differ. Consider testing whether there is bias in a population, where the null hypothesis is that
the population mean is zero. Let there be two subgroups in the population, G1 and G2. Finally, let δ be a term denoting the
asymptotic bias. Figure 4 shows three separate scenarios:
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G1 G2 G1

G2

G1 G2

Scenario 1 
Heterogeneous Effects

Scenario 2 
Heterogeneous Effects, 

Opposite Signs

Scenario 3 
Homogenous Effects 

Figure 4: Barplot depiction of three toy scenarios, where we plot the asymptotic bias, denoted by δ (see Equations (31) and (32)), of the
observational estimator in each subgroup. Our goal is to detect, from finite samples, whether or not this asymptotic bias is non-zero for
any subgroup. In scenario 3, pooling the data and testing for the overall bias (the ATE approach) yields better power than testing for
differences across subgroups. Explicitly testing the bias in each subgroup (the GATE approach) is beneficial in scenarios like 1 and 2
where heterogeneity exists. The x-axis contains the group name, and the y-axis indicates the magnitude of δ.

• In scenario 1, the bias in G1 is significantly higher than the bias in G2. As we formalize below, GATE will have higher
power than ATE as |δ| gets larger and the sample size of G1 is reasonable. See below for precise conditions.

• In scenario 2, the bias in the two subgroups have the same magnitude but are in opposite directions. Below, we show
that GATE has better power than ATE in this scenario, given a large enough |δ| to overcome the penalty of multiple
hypothesis testing. This result is intuitive since testing differences in ATE would fail to reject the null since the average
effect over the entire population would be close to zero.

• In scenario 3, the bias is the same magnitude and direction in both subgroups. We show below that the ATE has better
power than GATE regardless of what the magnitude of δ is. Intuitively, pooling together the two subgroups would
yield a larger sample to detect the bias.

In the subsequent paragraphs, we will formalize these three scenarios in the context of our setting, where we have estimates
from observational and RCT data. Note that the theoretical framework that we introduce below covers these three scenarios
as well as others.

G.1 Notation and Assumptions
We recall some notation and definitions from (Hussain et al., 2022).

Definition G.1 (GATE, Hussain et al. (2022)). We define the group average treatment effect (GATE) as

τi := E[Y1 − Y0 | G = i, S = 0] (23)

where G is the group indicator variable taking values {1, 2}, and S = 0 indicates the RCT population.

The GATE estimator for subgroup i using RCT data will be denoted, τ̂i(0), while the estimator using observational data will
be denoted, τ̂i(1).

Definition G.2 (ATE). We define the average treatment effect (ATE) as

τ := E[Y1 − Y0 | S = 0] (24)

where S = 0 indicates the RCT population.

Akin to the GATE estimators, the ATE estimator using RCT data will be denoted, τ̂(0), while the estimator using
observational data will be denoted, τ̂(1). Writing ρi0 (ρi1) as the proportion of observations in the RCT (the obserational
study) that belongs to subgroup i, we then modify Assumption 2.4 from Hussain et al. (2022) as follows, :
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Assumption G.1. All GATE estimators are pointwise asymptotically normally distributed and independent

√
ρi0N0(τ̂i(0)− τi(0))/σ̂i(0)

d→ N (0, 1) (25)
√
ρi1N1(τ̂i(1)− τi(1))/σ̂i(1)

d→ N (0, 1) (26)

Here, d→ denotes convergence in distribution, and σ̂2
i (k) is an estimate of the variance that converges in probability to σ2

i (k),
the asymptotic variance of

√
ρikNk(τ̂i(k)− τi(k)), for k = 0 and k = 1.

In addition to assumptions on the GATE estimators, we also have assumptions on the asymptotic distributions of the ATE
estimators for both studies:

Assumption G.2. Both ATE estimators are asymptotically normally distributed and independent

√
N0(τ̂(0)− τ(0))/σ̂(0)

d→ N (0, 1) (27)
√
N1(τ̂(1)− τ(1))/σ̂(1)

d→ N (0, 1) (28)

where σ̂2(k) is an estimate of the variance that converges in probability to σ2(k), the asymptotic variance of
√
Nk(τ̂(k)−

τ(k)), for k = 0 and k = 1.

G.2 Theoretical Example
Given the assumptions and definitions, we present a formal example:

Example G.1. Suppose there are two subgroups in the RCT and observational study. To reflect the consistency of the RCT
GATE estimators and quantify the bias of the GATE estimators from the observational study, we define

(RCT, group 1) τ1(0) = τ1 (29)
(RCT, group 2) τ2(0) = τ2 (30)
(OBS, group 1) τ1(1) = τ1 + δ1 (31)
(OBS, group 2) τ2(1) = τ2 + δ2 (32)

For simplicity, we assume that in both the RCT and observational study, half of the population is in group 1 and half of the
population is in group 2, i.e. ρi0 = ρi1 = 1/2 for i = 1, 2. Then we have

τ(0) =
τ1(0) + τ2(0)

2
=
τ1 + τ2

2
(33)

τ(1) =
τ1(1) + τ2(1)

2
=
τ1 + δ1 + τ2 + δ2

2
(34)

Lastly, we introduce the following shorthand notations, writing the total sample size N = N0 +N1 and letting N0 = ρN ,
N1 = (1− ρ)N :

σ =
√
N0 +N1

√
σ2(0)

N0
+
σ2(1)

N1
=

√
σ2(0)

ρ
+
σ2(1)

1− ρ
(35)

σ1 =
√
ρ10N0 + ρ11N1

√
σ2
1(0)

ρ10N0
+
σ2
1(1)

ρ11N1
=

√
σ2
1(0)

ρ
+
σ2
1(1)

1− ρ
(36)

σ2 =
√
ρ20N0 + ρ21N1

√
σ2
2(0)

ρ20N0
+
σ2
2(1)

ρ21N1
=

√
σ2
2(0)

ρ
+
σ2
2(1)

1− ρ
(37)

To simplify the development, we will make the following assumption for this example:

Assumption G.3. Assume that σ2(0) = σ2
1(0) = σ2

2(0) and σ2(1) = σ2
1(1) = σ2

2(1), so that we can write Equations (35)
to (37) as,

σ = σ1 = σ2 =

√
σ2(0)

ρ
+
σ2(1)

1− ρ
(38)
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The asymptotic power of the ATE and GATE can then be given by the following propositions:

Proposition G.1 (Asymptotic power of ATE). Under Assumption G.3, the asymptotic power of ATE as N → ∞ (holding ρ
as constant) is given by

1−

[
Φ

(
| δ1+δ22 |
σ/

√
N

+ zα/2

)
− Φ

(
| δ1+δ22 |
σ/

√
N

− zα/2

)]

Proof. From Proposition 2.1 of (Hussain et al., 2022), given the asymptotic distributions from Assumption G.2 and
Equations (33), (34), we have τ(1)− τ(0) = δ1+δ2

2 and thus

τ̂(1)− τ̂(0)− δ1+δ2
2

σ̂/
√
N

d→ N (0, 1) (39)

which allows us to construct a Z-test on the null hypothesis H0 : δ1+δ22 = 0 based on the rejection region

∣∣∣∣∣
τ̂(1)− τ̂(0)

σ̂/
√
N

∣∣∣∣∣ > zα/2

The asymptotic power of the Z-test under the alternative hypothesis distribution shown in (39) is then, from Theorems 10.4,
10.6 in (Wasserman, 2004)

1− Φ

(
| δ1+δ22 |
σ/

√
N

+ zα/2

)
+Φ

(
| δ1+δ22 |
σ/

√
N

− zα/2

)
= 1−

[
Φ

(
| δ1+δ22 |
σ/

√
N

+ zα/2

)
− Φ

(
| δ1+δ22 |
σ/

√
N

− zα/2

)]

Proposition G.2 (Asymptotic power of GATE). Under Assumption G.3, the asymptotic power of GATE is given by

1−

[
Φ

(
1√
2

|δ1|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ1|
σ/

√
N

− zα/4

)][
Φ

(
1√
2

|δ2|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ2|
σ/

√
N

− zα/4

)]

Proof. With arguments similar to Proposition G.1, since the total sample size for subgroup i is ρi0N0 + ρi1N1 = N/2, the
asymptotic power of the Z-test comparing the GATE estimates for group i would be (i ∈ {1, 2})

ξi = 1−

[
Φ

(
|δi|

σi/
√
N/2

+ zα/4

)
− Φ

(
|δi|

σi/
√
N/2

− zα/4

)]

= 1−

[
Φ

(
1√
2

|δi|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δi|
σ/

√
N

− zα/4

)]

where the last equality stems from Assumption G.3. Since we are rejecting the null hypothesis of H0 : δ1 = 0 and δ0 = 0
when the test in either subgroup shows significance, and the two tests are independent, the power of GATE is then

1− (1− ξ1)(1− ξ2)

=1−

[
Φ

(
1√
2

|δ1|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ1|
σ/

√
N

− zα/4

)][
Φ

(
1√
2

|δ2|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ2|
σ/

√
N

− zα/4

)]

We now investigate three scenarios regarding the pattern of bias for the GATE estimators from the observational study:

Scenario 1: Only the GATE estimator for subgroup 1 is biased
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This scenario can be depicted by letting δ1 = δ ̸= 0 and δ2 = 0, so that we have δ1+δ2
2 = δ

2 . The power of ATE and GATE
in this scenario can be given by, based on Propositions G.1 and G.2:

ξATE = 1−

[
Φ

(
|δ/2|
σ/

√
N

+ zα/2

)
− Φ

(
|δ/2|
σ/

√
N

− zα/2

)]
(40)

ξGATE = 1− [Φ(zα/4)− Φ(−zα/4)]

[
Φ

(
1√
2

|δ|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ|
σ/

√
N

− zα/4

)]

= 1−
(
1− α

2

)[
Φ

(
1√
2

|δ|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ|
σ/

√
N

− zα/4

)]

= 1−
(
1− α

2

)[
Φ

(
√
2

|δ/2|
σ/

√
N

+ zα/4

)
− Φ

(
√
2

|δ/2|
σ/

√
N

− zα/4

)]
(41)

Denoting δ∗ := |δ/2|
σ/

√
N

≥ 0, we may simplify the expressions as,

ξATE = 1−
[
Φ(δ∗ + zα/2)− Φ(δ∗ − zα/2)

]
(42)

ξGATE = 1−
(
1− α

2

)[
Φ(

√
2δ∗ + zα/4)− Φ(

√
2δ∗ − zα/4)

]
(43)

Before we derive sufficient conditions for ξGATE > ξATE, we state the following lemma on the properties of Φ(.) and Φ−1(.):

Lemma G.1. ∀α ∈ (0, 1),
zα/4

zα/2
<

z1/4
z1/2

≈ 1.1185.

Lemma G.2. ∀a > 1, Φ(ax)− Φ(x) is a strictly decreasing function in x as x >
√

2 log a
a2−1 .

Proof. Taking the derivative of Φ(ax)− Φ(x) with respect to x, we have

∂

∂x
[Φ(ax)− Φ(x)] = aϕ(ax)− ϕ(x) = a

1√
2π
e−

a2x2

2 − 1√
2π
e−

x2

2 =
1√
2π
e−

x2

2

[
ae−

a2−1
2 x2

− 1
]

When x >
√

2 log a
a2−1 , we have, since a > 1,

1√
2π
e−

x2

2

[
ae−

a2−1
2 x2

− 1
]
<

1√
2π
e−

x2

2

[
ae

− a2−1
2 ( 2 log a

a2−1
) − 1

]
=

1√
2π
e−

x2

2

[
a · 1

a
− 1
]
= 0

Therefore, at x >
√

2 log a
a2−1 , Φ(ax)− Φ(x) has strictly negative derivatives which implies it is strictly decreasing.

Now we may derive the sufficient condition for ξGATE > ξATE,

ξGATE > ξATE

⇔ Φ(δ∗ + zα/2)− Φ(δ∗ − zα/2) >
(
1− α

2

)[
Φ(

√
2δ∗ + zα/4)− Φ(

√
2δ∗ − zα/4)

]

⇐ Φ(δ∗ + zα/2)− Φ(δ∗ − zα/2) > Φ(
√
2δ∗ + zα/4)− Φ(

√
2δ∗ − zα/4)

⇔ Φ(
√
2δ∗ − zα/4)− Φ(δ∗ − zα/2) > Φ(

√
2δ∗ + zα/4)− Φ(δ∗ + zα/2)

⇐ Φ(
√
2δ∗ −

√
2zα/2)− Φ(δ∗ − zα/2) > Φ(

√
2δ∗ +

√
2zα/2)− Φ(δ∗ + zα/2) (Lemma G.1)

⇔ Φ[
√
2(δ∗ − zα/2)]− Φ[δ∗ − zα/2] > Φ[

√
2(δ∗ + zα/2)]− Φ[δ∗ + zα/2]

Since δ∗ − zα/2 < δ∗ + zα/2, from Lemma G.2, the last inequality holds as long as δ∗ − zα/2 >

√
2 log(

√
2)

(
√
2)2−1

=
√
log 2.

That is, a sufficient condition for ξGATE > ξATE is

δ∗ >
√
log 2 + zα/2
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or, equivalently,

|δ|> 2σ√
N

(
√
log 2 + zα/2) (44)

Intuitively, we see from the above condition that as the magnitude of the bias in subgroup 1 increases or the sample size N
increases, GATE will eventually have greater power than ATE.

Scenario 2: The GATE estimators for both subgroups are biased by the same magnitude but opposite direc-
tion

This scenario can be depicted by letting δ1 = δ and δ2 = −δ, δ ̸= 0, so that we have δ1+δ2
2 = 0. Under which the power of

ATE and GATE can be given by, based on Propositions G.1 and G.2:

ξATE = 1−
[
Φ(zα/2)− Φ(−zα/2)

]
= α (45)

ξGATE = 1−

[
Φ

(
1√
2

|δ|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ|
σ/

√
N

− zα/4

)]2
(46)

We may give a lower bound for ξGATE:

ξGATE = 1−

[
Φ

(
1√
2

|δ|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ|
σ/

√
N

− zα/4

)]2
> 1−

[
1− Φ

(
1√
2

|δ|
σ/

√
N

− zα/4

)]2
(47)

Therefore, a sufficient condition for ξGATE > ξATE, i.e. the power of GATE to be greater than ATE is,

|δ|> σ√
N/2

(zα/4 +Φ−1(1−
√
1− α)) (48)

which can be attained with a large enough bias magnitude |δ| or large enough sample size N that overcomes the penalty of
multiple testing.

Scenario 3: The GATE estimators for both subgroups are biased by the same magnitude and direction

This scenario can be depicted by letting δ1 = δ2 = δ ̸= 0, so that we have δ1+δ2
2 = δ. Under which the power of ATE and

GATE can be given by, based on Propositions G.1 and G.2:

ξATE = 1−

[
Φ

(
|δ|

σ/
√
N

+ zα/2

)
− Φ

(
|δ|

σ/
√
N

− zα/2

)]
(49)

ξGATE = 1−

[
Φ

(
1√
2

|δ|
σ/

√
N

+ zα/4

)
− Φ

(
1√
2

|δ|
σ/

√
N

− zα/4

)]2
(50)

Denoting δ∗ := |δ|
σ/

√
N

≥ 0, we may simplify the expressions as,

ξATE = 1−
[
Φ
(
δ∗ + zα/2

)
− Φ

(
δ∗ − zα/2

)]
(51)

ξGATE = 1−
[
Φ
( 1√

2
δ∗ + zα/4

)
− Φ

( 1√
2
δ∗ − zα/4

)]2
(52)

Therefore, the condition for ξATE > ξGATE is equivalent to

g(δ∗) :=
[
Φ
( 1√

2
δ∗ + zα/4

)
− Φ

( 1√
2
δ∗ − zα/4

)]2
−
[
Φ
(
δ∗ + zα/2

)
− Φ

(
δ∗ − zα/2

)]
> 0 (53)
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Figure 5: Plot of function g(.) under α = 0.005, 0.01, 0.05 and 0.1

A graph for g(δ∗) with α = 0.005, 0.01, 0.05, 0.1 is shown in Figure 5, which demonstrates that g(δ∗) > 0 is satisfied for
any δ∗ > 0. Therefore, under the scenario where a common bias is shared across subgroups, the power of ATE is greater
than GATE irrespective of the magnitude of bias.

Overall, we find that the relative asymptotic power of ATE and GATE depends on the homogeneity of bias amongst the
subgroups and the magnitude of the bias, and should be analyzed on a case-by-case basis.
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