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Abstract

Dyslexia is a neurodivergence that impacts one’s ability to process and produce1

textual information. While previous research has identified unique patterns in2

the writings of people with dyslexia - such as letter swapping and homophone3

confusion - that differ themselves from the text typically used in the training and4

evaluation of common natural language processing (NLP) systems such as machine5

translation (MT), it is unclear how current state-of-the-art NLP systems perform6

for users with dyslexia. In this work, we explore this topic through a systematic7

audit of the performance of commercial MT services using synthetic dyslexia data.8

By injecting common dyslexia-style writing errors into popular benchmarking9

datasets, we benchmark the performance of three commercial MT services and one10

large language model (LLM) with various types and quantities of dyslexia-style11

errors and show a substantial disparity in MT quality for dyslexic and non-dyslexic12

text. While people with dyslexia often rely on modern NLP tools as assistive13

technologies, our results shed light on the fairness challenges experienced by this14

demographic with popular NLP services, highlighting the need to develop more15

inclusive and equitable NLP models for users with diverse language use patterns.16

1 Introduction17

Dyslexia is one of the most common learning disabilities, estimated to affect 10% to 17% of English18

speaking population [33, 3]. As a neuro-cognitive condition with no known cure, dyslexia impacts19

one’s ability to process and produce textual information [29, 28], and can lead to long-term social,20

emotional, and economic challenges such as less peer acceptance, poor self-image, lower educational21

attainment, and reduced employment opportunities [11, 27].22

The rapid development and adoption of neural language technologies - such as the ChatGPT - makes23

them an important part of the information ecosystem and a promising assistive tool for people24

with dyslexia [35, 8]. However, most of existing neural language models have been developed and25

evaluated over typical text (e.g. WikiText [15], CommonCrawl1), with little consideration of dyslexia26

use case. The fairness and inclusivity of neural language technologies for users with dyslexia is thus27

largely underexplored.28

In this paper, we present an evaluation of the current state-of-the-art machine translation (MT)29

models available via popular cloud services on dyslexia-style text. To evaluate potential biases30

1https://commoncrawl.org/overview
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presented in machine translation against dyslexia text, we perturbed the source text in WMT1431

(en2fr) dataset [2] with synthetic dyslexia style writing errors, and benchmark the performance of32

four commercial machine translation systems using the perturbed data. Our results show all audited33

models - including advanced LLMs - struggle with dyslexia-style input text, making substantially34

more lexical and semantic mistakes. By varying the quantity and the types of dyslexia style errors35

injected into the original text, we also observe a near linear relationship between the amount of36

dyslexia errors and the decrease in performance for all services, especially for real-word errors such37

as the confusion of homophones [23, 24]. Our contribution to language technology, AI fairness,38

and accessibility research is two-fold: 1) Our findings uncover the disparities in the performance of39

commercial machine translation systems to translate dyslexia style text; 2) Our systematical approach40

in generating synthetic dyslexia datasets provides an useful instrument to further investigate the41

potential sources and mechanism for such disparities in typically “black-boxed” systems when real42

dyslexia datasets are scarce. As an early exploration in AI fairness and dyslexia, our work invites43

further investment and urgent attention from NLP researchers and commercial companies to develop44

inclusive and fair NLP models with people with dyslexia, a community deeply impacted by and45

highly experienced with language technologies.46

2 Background and Related Work47

2.1 Dyslexic Writing Style48

There are many spellcheckers available that try to correct spelling errors but most are not specifically49

designed to address dyslexic-style writing. General use spell-checkers perform poorly when it comes50

to real-word errors [18] (e.g. form v.s. from). [25] found that this comprises of 17% of the errors51

made by English dyslexic people. The have been some efforts to create a dyslexia-style writing52

support tool from [21], [18] and [25]. Unfortunately, these systems are designed in an academic53

fashion and are not the most appropriate for a widespread writing style that is used in an everyday54

life. Previous work from [35] utilized data and writing from social media to give more relevance to55

everyday text. More recently, Goodman et al. [8] utilized a Large Language Model (LLM) to create56

an email-writing interface tool for users with dyslexia. In this study, we do not try to “correct” any57

dyslexic-style typographical errors, but to understand the capacity of commercial machine translation58

systems at handling text that contains this style of writing.59

Dyslexia-style text has been categorized in previous works from [22]. The typographical errors60

presented were broken down into four categories. Substitutions were identified as letters that are61

changed with one another (reelly v. really). Insertions were counted where a letter is inserted62

(situartion v. situation) or where a word that was incorrectly split (sub marine v. submarine).63

Deletions was when a letter is omitted (approch v. approach). Transpositions were considered as two64

letters that were swapped and adjacent (artcile v. article). Using these categories [23] found that the65

substitutions were by far the most common type of dyslexic-style typographical error. It is to note66

that this was found on a Spanish corpus of hand written text by students with dyslexia.67

Work from [19]created a large confusion set of words. This set consists of real word errors collected68

from dyslexic text [18] and also synthetically created samples that were used to test spell checkers.69

The set is a mix of homophones, substitutions, insertions, omissions (deletions) an transpositions.70

This is the most exhaustive set of dyslexic related errors that we were able to find. Previous work71

utilized synthetic dyslexia writing for neural translation models and demonstrated success in creating72

an assistive writing tool for dyslexic users on social media [35].73

2.2 Subgroup Performance Disparities in AI Systems74

Previous work from [4] and [5] has brought to light racial disparities in AI. Inequalities are often75

caused by lack of awareness in training data, fairness in training [31, 16] and other inclusive consid-76

erations. They found that people of the minority classes are the ones who suffer from shortcomings77
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of the machine learning models. Lack of data of different groups leads to the use of synthetic data78

like in [12] for stutter data.79

Object-recognition systems displayed disparities in terms of income levels and geographies [7,80

9]. Smaller subgroups are more at risk for poorer performances. Work from [10] identified key81

components (texture, occlusion and darker lighting) that lead to performance degradation of object-82

recognition systems in lower income levels/geographical areas and show that it is possible to mitigate83

these disparities.84

Work from [30] spotlights the issue of the utilization of the English language when training models85

creating disparities. These disparities range from people being unable to utilize the models due to a86

language barrier to the models existing but not performing to par. Inequalities for resources, variation87

and performances is seen as the industry norm when we apply NLP to underrepresented communities.88

Unfortunately, there has not been much work researching the affects of artificial intelligence on89

people with dyslexia. Researcher from [1] were able to gather an estimate of the amount of dyslexic90

text documents on the Web (0.005%). They deemed their estimate much lower than the corresponding91

number of dyslexic users (10-17%). If they considered spelling errors as dyslexic-style typographical92

errors, the number would increase to 0.2%. Therefor, it is likely that models trained on data from the93

Web is not reflective of the dyslexic population. This leads us to believe that the models are trained94

on "perfect" data that has been filtered through spell checkers. This potential bias is what is being95

studied in this paper for one NLP task.96

2.3 NLP Model Evaluation and Benchmarking97

Machine translation is a common NLP task where a source sentence is translated into a different98

target language. The Machine Translation Foundation2 provides a new dataset yearly during the99

Conference on Machine Translation (WMT) to benchmark the performance of SOTA MT models on100

various translation tasks. Many language pairs with parallel data are provided in the WMT datasets,101

with public available source data and manually translated target references. We use WMT14 (en2fr)102

dataset for this study. It contains news articles in English as source data, together with parallel manual103

translation in French.104

Following the breakthrough by Vaswani et al. [34], the transformer architecture has become increas-105

ingly popular for MT models. We assume that widely used translation services from major cloud106

service providers such as AWS, Google Cloud and Azure are utilizing this architecture. However,107

the exact model structure is not public information nor the data that is used in the training for these108

models. That means to understand and diagnose these systems, we have to rely on their APIs and109

translation outputs of a wide range of source sentences to shed light on the black box models.110

3 Method111

For our scope of work, we leveraged and modified the WMT14 (en2fr) [2] dataset to evaluate a112

machine translation task from English to French with injected synthetic dyslexic-style errors. We113

select machine translation for our exploratory evaluation because the task is well-defined, with well-114

established metrics and benchmarking datasets, as well as many popular consumer-facing applications115

and services such as Google Translate3. We also limit our initial benchmarking to the translation116

from English to French - two well-resourced languages for machine learning, to reduce potential117

confounding factors due to languages. In this section, we review how we created the synthetic118

dyslexic text corpora and the types of dyslexic writing errors injected. We then present and discuss119

the commercial machine translation services we evaluated using the synthetic dyslexic text. Finally,120

we describe the metrics and methods we utilized for benchmarking the performance of these services121

in both lexical and semantic dimensions.122

2https://machinetranslate.org/about
3https://translate.google.com/
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3.1 Simulating Dyslexia123

The lack of large scale and publicly available dyslexic text corpus has been a bottleneck for dyslexia-124

related language technologies today [35, 8]. Direct collection of text written by people with dyslexia125

faces both ethical and practical challenges. As an “invisible” disability that is highly stigmatized,126

many people with dyslexia feel the pressure and need to conceal their dyslexia, spending extra127

efforts to proofreading their writing or avoiding to write at all [26]. Even if people with dyslexia128

consent to share their data, it is difficult to fully anonymize the data while preserving the unique129

and personal writing styles of dyslexia. Encouraged by the success of using synthetic disability data130

for data-intensive machine learning tasks [12, 35], we created a synthetic dataset of dyslexic text131

by injecting typical dyslexic writing errors into a popular MT benchmarking dataset, namely, the132

WMT14 (en2fr) test dataset [2]. Taking a similar approach proposed by Wu et al. [35], we perturbed133

the English source sentences with the following three synthetic errors that are frequent in dyslexic134

input text and less likely to be fixed by mainstream spellcheckers:135

1. Letter confusion: substituting similar-looking or sounding letters (e.g. b v.s p). Letter136

confusion is reported as the most frequently occurred errors in dyslexic writing [23].137

2. Homophone: replacing a word with its homophones. Phonetically similar sounding words138

are noted as another common but unique challenge for people with dyslexia [18], [23], and139

can potentially create issues for NLP models as this type of error is relatively rare in typical140

text used to train the models.141

3. Confusion set: substituting a word with another word that are likely to be confused with142

by people with dyslexia (e.g. “your” and “you”). Previous work found confusion sets143

contribute a substantial percentage of dyslexic writing errors and are least likely to be caught144

by conventional spellcheckers [18, 24, 35].145

To simulate letter confusion, we constructed a letter substitution dictionary in which each letter is146

associated with other letters people with dyslexia are often confused with [23]. The frequency of147

letter confusion is controlled by a parameter pl, which represents the probability for letter confusion148

to occur in the original corpus. However, following empirical findings that letter confusion rarely149

occur at the beginning of a word [36, 20, 18], the substitution of the first letter would ignored150

95% of the time during error injection. Also, to be consistent with the observations that multiple151

letter confusions are uncommon in dyslexic writing [23], we decreased the probability of another152

substitution happening by 90% for that same word after one substitution is made.153

To simulate homophone errors, we constructed a homophone dictionary in which each word is154

associated with its phonetically similar sounding words. We leveraged free public resources such as155

the Homophone Finder website4 to build the homophone dictionary. The frequency of homophone156

error is again controlled by a parameter ph, which represents the probability for us to swap the current157

word with its homophone.158

To simulate errors from confusion set, we constructed a dictionary using the confusion set identified159

by Pedler and Mitton [19]. This set contains around 6000 pairs of words that are likely to be confused160

with one another by people with dyslexia. The frequency of this type of error is controlled by ps,161

representing the probability of a word being replaced by its paired word in the confusion set.162

Examples of three types of injected errors are provided in Table 1. The original sentences are taken163

from WMT14 (en2fr). Note that the perturbed sentences with homophone and confusion set errors164

do not have misspellings but “real word errors” that are less likely to be detected and fixed by165

spellcheckers before being sent for machine translations [24].166

With this in mind, we are able to modify the WMT14 (en2fr) test dataset with different p values,167

resulting different quantities of dyslexic errors injected into original source data. In this paper, we168

focus on the percentage of words modified ranging from 10-20% as this follows findings from [23] in169

real world dyslexic text error rate.170

4https://www.homophone.com
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Table 1: Example synthetic dyslexic sentences with injected dyslexic writing errors
Error Injection Original Sentence Perturbed Sentence
Letter Confusion In Nevada, where about 50 volun-

teers’ cars were equipped with the
devices not long ago, drivers were
uneasy about the government being
able to monitor their every move.

In Nevada, where abouf 50 wolun-
teers’ cars were equipped with thi
devoces not iong ago, driverc were
nneasy about the government being
able to mohitor thein every movo.

Homophone New York City is looking into one. New York City is looking into won.

Confusion Set “The gas tax is just not sustainable,”
said Lee Munnich, a transportation
policy expert at the University of
Minnesota.

“The gas tax is just knot sustain-
able,” said Lee Munnich, eye trans-
portation policy export at the Uni-
versity of Minnesota.

3.2 Commercial Machine Translation Audit171

We chose to evaluate SOTA models that are deployed across major cloud computing platforms namely,172

AWS, Azure and Google Cloud. Based on a survey from Public First 51% of business utilize cloud173

services, majority of which are customers of AWS, Azure and Google Cloud 5. We also tested our174

dataset on GPT-3.5 (gpt-3.5-turbo-1106)6 a large language model (LLM). For each one of these175

services, we tested the performance of document translation, and for GPT we did a sentence-level176

translation (document translation was not available). For document translation, we submitted text177

files to the services for translation. For sentence-by-sentence translation, we were able to call the178

OpenAI API with Python scripts. All of these platforms require payment for the use of the translation179

services. For Google Cloud, we used the Cloud Translation API, for AWS, we used the Amazon180

Translate service and for Azure, we used the Translator in the Cognitive Services. Once the text was181

received we were able to evaluate the text.182

3.3 Evaluation Metrics183

We evaluate the performance of commercial MT services over synthetic dyslexic text with both184

lexical and semantic metrics. While the lexical metrics - such as BLEU [17] and WER [32] - allow185

us to benchmark against position our results in relation to a wide range of MT models and tasks, the186

semantic metrics - such as BERT and LaBSE - help illustrate how dyslexia might impact the user187

experience of these MT services.188

3.3.1 Lexical metrics189

Lexical based metrics have been commonly used in the evaluation of machine translation systems [13].190

One of the most popular lexical based metrics is Bilingual evaluation understudy (BLEU) [17], which191

is frequently used for in benchmarks and leaderboards. BLEU measures the n-gram similarity192

between MT output and the reference, and it is known for its simplicity, language-agnostics, and193

ability to measure both precision and fluency. BLEU score ranges from 0 to 1 where 1 indicates a194

perfect translation. State-of-the-art (SOTA) MT systems have reported BLEU score as high as 0.464195

for WMT14 (en2fr) task [14], which could be considered as generally “high quality translations”7.196

In contrast, BLEU scores lower than 0.2 would be considered “hard to understand” and “almost197

useless”.198

The second lexical based metric we utilize is Word Error Rate (WER) [32], which measures the199

edit distance between MT output and the reference. As WER can be further broken down into the200

minimum number of word substitutions, insertions, and deletions required to convert the MT output201

5https://awsus.publicfirst.co/
6https://platform.openai.com/docs/models/gpt-3-5-turbo
7BLEU Score Interpretations: https://cloud.google.com/translate/automl/docs/evaluate
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to the reference sentence, this metric provides us additional insights into how the translation of202

perturbed dyslexic sentences differ from the original sentences. While WER can range from zero to203

infinity, a WER score higher than 0.5 generally suggests a poor performance.204

3.3.2 Semantic Metrics205

Since we are dealing with injected synthetic text, the lexical form of words are sometimes very similar206

(for example in third row of Table 1 we have "knot" v. "not"). The edit distance between the two207

samples is 1. However, the semantics of the words are completely different. This is where our lexical208

metrics would likely fail. In order to fairly compare the sentences, we introduce semantic calculations.209

The first method was using BERTScore [37] which computes a similarity score between 0 and 1210

(where 1 is perfect) using contextual embeddings. The second evaluation metric we utilized was a211

language independent method LaBSE [6] where we were able to use the source English sentences212

from WMT directly for semantic comparison. We calculated the L2-norm of the sentence embeddings213

from LaBSE to get the similarity between the source English sentences (without injections) to the214

translations generated by the models. We called this the LaBSE score 8. Same to the previous metric,215

the score ranges between 0 and 1 where 1 indicates identical sentences and meaning. We must note216

that a score of 1.0 requires the sentences to be syntactical identical. In other words, two sentences217

with identical meanings but different writing would not score 1.0, but very close to 1.0.218

4 Results219

4.1 Lexical Divergence220

To measure how injected dyslexic errors influence translation results at a lexical level, we calculated221

the BLEU and WER scores using the French translation from perturbed English sentences as222

hypothesis and the original target sentences in French as references. We also calculated the BLEU223

and WER scores for the translations generated by each MT service over the original, unperturbed224

English data, as the baseline for our comparison.225

We observed a SOTA level of performance in audited MT services at the baseline condition, with226

BLEU score ranging from 0.429 (GPT3.5) to 0.469 (Google). However, the performance consistently227

degrades as dyslexic style errors occur. Figure 1a shows a near linear drop in BLEU score, along with228

the increase of words perturbed with dyslexic errors. While GPT3.5 has the lowest baseline BLEU229

score, it is also least impacted by the increase of dyslexic errors. In contrast, the performance of230

Azure MT drops most drastically when encountering more dyslexic errors. In terms of error types, we231

notice that most services have more difficulties dealing with “real word errors” from homophone and232

confusion set, rather than syntactic errors like letter confusion, with Azure being the only exception.233

This observation is consistent with previous findings that real word errors in dyslexic writing pose234

greater challenges for NLP models [19, 24].235

Similar trend is observed in WER scores. As shown in Figure 1b, for all audited services, their WER236

scores increase steadily as more synthetic dyslexic errors are injected into the source data. The slope237

of increase is greatest for homophone errors, and lowest for letter confusion. However, comparing to238

AWS and GPT3.5, Google and Azure seem to be particularly challenged by letter confusion errors,239

showing a degradation in translation quality almost as rapidly as when encountering synthetic real240

word errors. Further inspection of their translation results in this condition suggests that the MT241

services by Google and Azure are less likely to recover from a misspelled word, but tend to directly242

copy it in the translation. For example, when the baseline sentence “The American Civil Liberties243

Union is deeply concerned” is perturbed to become “The American Cavil Liberties Union is deeply244

concerned”, Google and Azure would translate the perturbed sentence to “L’American Cavil Liberties245

Union est profondément préoccupée”, with the misspelling “Cavil” preserved in the translation.246

We also broke down the different types of edits used for calculating WER and inspect them separately.247

Figure 2 shows the breakdown of substitutions, insertions, and deletions in the translation of 20%248

8https://huggingface.co/setu4993/LaBSE
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(b) WER scores increase as more dyslexic errors occur

Figure 1: Change in lexical based metrics for all audited services. Baseline values indicate the metric
score for unperturbed text, y-axis shows the change in corresponding metric compared to the baseline.

perturbed text from the reference. While the overall trends are similar for all MT services with three249

types of synthetic errors, we do observe some small difference in Azure and Google when handling250

letter confusion. These two services appear to make more deletions than insertions in their translation251

of text with letter confusion errors, suggesting potential loss of semantic information in the translation252

when source data contain significant amount of dyslexic misspellings. On the other hand, services253

like AWS and GPT3.5, despite more robust performance, tend to insert words in their translations. A254

deeper investigation on insertion errors found that articles are most often being inserted (see Figure 3255

for the most commonly added words by AWS with 20% confusion set errors).256

While GPT3.5 generally perform better with synthetic dyslexic text, its performance still declines257

and could sometimes make serious mistakes due to dyslexic errors. For example, when the baseline258

sentence “The technology is there to do it” is perturbed to “The technology is there to do ti. ”, the259

translation by GPT3.5 diverges from “La technologie est là pour le faire” to “La technologie le260

frappe de plein fouet” (“technology hitting it head on”).261

4.2 Semantic Divergence262

While lexical divergence, such as the insertion and deletion of particles, might not significantly impact263

the quality of translations, semantic change in the translation of dyslexic text from non-dyslexic264

text could have direct user experience consequences. While all audited services demonstrate high265

performance with unperturbed text at the semantic dimension (BERTScores and LaBSE scores all266

above 0.9), the semantic of the translation diverges as more dyslexic writing errors occur. As shown267

in Figure 4, both the BERTScore and LaBSE drops when the percentage of synthetic errors in text268

increases. Among all the audited services, the performance of Google and Azure declines most269

rapidly, while GPT3.5 maintains a relatively robust level of performance.270
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Figure 2: Breakdown of WER scores by edit type (20% word perturbed)

Figure 3: Word cloud of word confusion AWS (20% word modified)

Even if the sematic divergence is smaller comparing to the lexical divergence, the disparity between271

the baseline and text with 20% dyslexic errors is statistically significant, suggesting a clear gap in272

MT service quality for dyslexic users.273

5 Discussion274

Our results uncover potential disparities in the quality of MT services for people with and without275

dyslexia. As part of the cloud infrastructure, these services have been ubiquitously adopted as276

foundation for many other digital products and services. Our work shows how typical dyslexic277

writing errors could lead to the degradation of SOTA MT services. Even advanced LLMs, which278

have been believed as a solution for dyslexia, struggle with real word errors from homophones and279
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(b) LaBSE scores drop as more dyslexic errors occur

Figure 4: Change in semantic metrics for all audited services. Baseline values indicate the metric
score for unperturbed text, y-axis shows the change in corresponding metric in comparison to the
baseline.

confusion set. While LLMs are better than other services in terms of lexical and syntactic mistakes,280

they do still produce semantic divergence when translating dyslexic text, and such divergence could281

be even harder to be noticed by users with dyslexia, resulting in higher user risk and potentially worse282

experience in the long term.283

6 Limitations and Future Work284

Although we were able to experiment with a wide variety of configurations with the quantities and285

types of dyslexic writing errors, our synthetic datasets are nevertheless limited in their ability to286

capture the full heterogeneity of dyslexic writing. Like any other neurodivergence, dyslexia affects287

people differently: the way it manifests in writing differs across individuals and situations. More288

authentic, real world data from people with dyslexia is required to better represent this community289

in AI data in order to develop fair and inclusive NLP models for dyslexia. We also look forward to290

extend our methodology to other communities and application domains, making it easier to audit a291

wide range of AI models and services using synthetic data about marginalized, sensitive populations.292

7 Conclusion293

We proposed a novel method to generate synthetic dyslexia datasets and levaraged them to identify294

performance disparities in SOTA machine translation services for people with dyslexia. Our lexical295

and semantic metrics allow us to benchmark and better understand existing disparities. Our work296

highlights the importance of making NLP and AI more inclusive and equitable to communities most297

impacted by such technologies. We call for attention from language technology researchers and298

developers to close the equity gap for users with dyslexia.299
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