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Toto: An Open Time Series Foundation Model Optimized for Observability

Abstract
We introduce TOTO, a time series forecasting
foundation model with 151 million parameters.
TOTO uses a modern decoder-only architecture
coupled with architectural innovations designed
to account for specific challenges found in mul-
tivariate observability time series data. TOTO’s
pre-training corpus is a mixture of observabil-
ity data, open datasets, and synthetic data, and
is 4-10× larger than those of leading time se-
ries foundation models. We source observabil-
ity data exclusively from our own telemetry and
internal observability metrics. Extensive eval-
uations demonstrate that TOTO achieves state-
of-the-art performance on on established gen-
eral purpose time series forecasting benchmarks.
TOTO’s model weights, inference code, and eval-
uation scripts are available as open source under
the Apache 2.0 License.

1. Introduction
Observability is the practice of collecting and analyzing
data generated by distributed computer systems to detect,
diagnose, and swiftly resolve performance and reliability

M
Channels

Variate-wise

Time-wise

Figure 1: Overview of the TOTO architecture. A⃝ Multivariate
input time series of L steps are scaled using causal patch-based
instance normalization, transformed into patch embeddings, and
passed through a decoder-only transformer stack. The trans-
formed features are unembedded and passed through a Student-T
mixture model (optimized via a composite robust loss) which
generates probabilistic next-patch predictions. B⃝ The patch em-
bedding takes as input a time series of M variates by L time steps.
It divides the time dimension into patches and projects these lin-
early into an embedding space . The resulting output is fed to the
transformer decoder. C⃝ The transformer stack features propor-
tional factorized attention.

issues (Majors et al., 2022). A major component of ob-
servability is monitoring time series metrics; observability
tools generate massive and diverse sets of metrics that re-
flect a system’s operational health over time. These metrics
encompass a wide variety of indicators—such as memory
usage, CPU load, disk I/O, network throughput, hit counts,
error rates, and latency—that each exhibit distinct behav-
ioral patterns, and collectively represent an important but
under-studied subset of general time series data.

Accurately modeling observability metrics is essential for
critical tasks like anomaly detection (Li et al., 2020) (e.g.,
identifying spikes in error rates) and predictive forecast-
ing (Chang, 2017) (e.g., anticipating resource exhaustion
or scaling needs). Observability data present challenges
for traditional forecasting methods due to diversity, high-
dimensionality, and complex distributional characteristics.
Moreover, real-world observability systems routinely gen-
erate millions to billions of distinct time series (gra; clo,
2023; rec), rendering fine-tuning or supervised training of
complex models per time series infeasible. These opera-
tional challenges suggest a compelling use case for zero-
shot time series foundation models (FMs). However, we
find that existing FMs (Liu et al., 2024a; Ansari et al., 2024;
Das et al., 2024) trained for general-purpose forecasting
struggle to generalize to observability data (see Section 4).

In this work, we focus on the unique challenges of model-
ing observability data, while accounting for the constraints
of production settings. Our main contribution is TOTO
(Time Series Optimized Transformer for Observability)
a novel open-weights time series forecasting foundation
model, with a focus on zero-shot capabilities. TOTO uses
a modern decoder-only architecture coupled with ar-
chitectural innovations to account for the specific chal-
lenges found in observability time series data: a novel
per-variate patch-based causal scaling to address highly
nonstationary sequences; proportional time-variate factor-
ized attention to judiciously attend across a large number of
covariates; and a Student-T mixture prediction head opti-
mized via a robust composite loss to fit complex and highly
skewed distributions. TOTO’s pretraining corpus contains
4-10× more unique data points than those of other time se-
ries FMs (Ansari et al., 2024; Das et al., 2024; Woo et al.,
2024; Shi et al., 2025), using a mix of domain-specific ob-
servability time series data, multi-domain public datasets,
and synthetic data.
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Figure 2: A⃝ A comparison of the number unique time series points within the pretraining corpora of different time series foundation
models. The scale of TOTO’s training corpus is 4× that of TimesFM 1.0, 5× that of Time-MoE, 6.5× that of Moirai, and over 10×
that of Chronos. B⃝ Ablation results demonstrate the impact of four of TOTO’s architectural components motivated by unique properties
of observability time series data. Results report the change (relative to the full TOTO model) in negative log likelihood on held-out
observability pretraining data when systematically disabling one component at a time. See Appendix D for details.

In our evaluations against leading foundation models
and traditional time series forecasting baselines, TOTO
achieves state-of-the-art performance on both general-
purpose and observability-oriented time series forecast-
ing benchmarks. On BOOM, a recent obesrvability-
focused benchmark, TOTO achieves a 12% improvement
in terms of CRPS compared to the next best method (see
Section 4). TOTO also achieves the top position by a
wide margin on two standard general-purpose time series
benchmarks—GIFT-Eval and Long Sequence Forecasting
(LSF)—implying our observability-focused design also
pays dividends in other time series domains (Aksu et al.,
2024; Zhou et al., 2020). We additionally perform ablations
to motivate TOTO’s architecture design (Fig. 2B). We pro-
vide TOTO’s model weights, inference code, and evaluation
scripts under a permissive (Apache 2.0) license available at
(https://github.com/XXXXXXX/toto).

2. Related Work
By pre-training on large multi-domain datasets, several
time series foundation models (Ansari et al., 2024; Das
et al., 2024; Woo et al., 2024; Shi et al., 2025; Garza and
Mergenthaler-Canseco, 2023; Rasul et al., 2023; Gruver
et al., 2023; Liu et al., 2024b; Chen et al., 2024; Goswami
et al., 2024) have achieved impressive zero-shot prediction
capabilities on general purpose time series benchmarks,
eliminating the need for domain-specific training or fine-
tuning. This approach is promising for observability work-
loads, as a single model can be deployed and horizontally
scaled to provide low-latency and relatively low-cost zero-
shot inference. Our evaluations indicate that TOTO out-
performs existing time series foundation models by a wide
margin on both public forecasting benchmarks (Section 4).

3. TOTO

3.1. Model architecture

Transformer models for time series forecasting have vari-
ously used encoder-decoder (Wu et al., 2021; Ansari et al.,
2024; Zhou et al., 2020), encoder-only (Woo et al., 2024;
Nie et al., 2023; Liu et al., 2024c), and decoder-only archi-
tectures (Das et al., 2024; Rasul et al., 2023). TOTO uses
a decoder-only architecture (trained on a next-patch pre-
diction task), as is has shown to scale well with respect
to training efficiency when provided with sufficient data
(Radford and Narasimhan, 2018; Radford et al., 2019). We
use non-overlapping patch embeddings (Nie et al., 2023;
Cordonnier et al., 2020; Dosovitskiy et al., 2021), with
a patch of size P = 64, to project input time series of
context length L = 4096 points to embeddings of size
64 × D per variate, where D = 768 is the embedding di-
mension for our final model (Fig. 1B). We also utilize tech-
niques demonstrated to yield performance and efficiency
improvements in contemporary transformer literature, in-
cluding pre-normalization (Xiong et al., 2020), RMSNorm
(Zhang and Sennrich, 2019), SwiGLU feed-forward layers
(Shazeer, 2020), and RoPE (Su et al., 2024) with XPOS
(Sun et al., 2022) for improved extrapolation.

We further develop four specialized components
purpose-built for handling multivariate observability
time series data. Fig. 2B presents an ablation study that
demonstrates the impact of these components.

Patch-based causal instance normalization to handle
highly nonstationary data. To improve generalization
across varying input scales, instance normalization is com-
monly applied prior to embedding time series data (for
example, RevIN (Kim et al., 2022)). However, comput-
ing normalization statistics from the entire series would
leak information from future time steps. This violates the
causality of next patch prediction training and results in
poor performance (see ablation in Appendix D). Das et al.
(2024) normalize the entire series according to the statis-
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Zero Shot Baselines

Dataset Metric TOTO MoiraiBase TimesFM2.0 ChronosBolt-Base Timer Time-MoEBase VisionTS Auto-ARIMA Auto-ETS Auto-Theta

BOOM
MASE ↓ 0.617 0.710 0.725 0.726 0.796 0.806 0.988 0.824 0.842 1.123
CRPS ↓ 0.375 0.428 0.447 0.451 0.639 0.649 0.673 0.736 1.975 1.018
Rank ↓ 2.336 4.253 5.155 5.447 9.370 9.381 10.317 9.16 10.956 11.712

Table 1: BOOM results. Performance of TOTO, other zero-shot models, and baselines. MASE and CRPS are normalized by the Seasonal
Naive forecast and aggregated across tasks using shifted geometric mean. Rank is the mean rank across tasks with respect to CRPS.
For model families with multiple sizes (Moirai, Chronos) we show the best-performing variant. TOTO significantly outperforms other
methods on all metrics. Additional results, including all model sizes evaluated as well as categorical breakdowns, are available in
Appendix C.2. Key: Best results, Second-best results.

tics of the first patch. That approach preserves causality,
but can be ineffective for highly nonstationary data with
statistics that vary significantly over time, as is the case
with observability data. To resolve these issues, we propose
a novel per-patch normalization approach, where scaling
factors for each patch are computed exclusively from the
current patch and past data. Thus, our final approach pre-
dominantly preserves causality while substantially enhanc-
ing forecasting performance, particularly for highly non-
stationary series. Additional technical and implementation
details are provided in Appendix A.1.

Proportional factorized attention to judiciously capture
variate interactions. We design TOTO to natively han-
dle multivariate forecasting by analyzing relationships in
the time dimension (“time-wise” interactions) and the vari-
ate dimension (“variate-wise” interactions). While prior
works that do not utilize variate-wise relationships (such
as PatchTST (Nie et al., 2023) and TimesFM (Das et al.,
2024)) can still achieve competitive performance on mul-
tivariate datasets, other studies (e.g. Woo et al. (2024))
have shown benefits from including variate-wise attention
in ablations. However, observability metrics are often high-
cardinality, multivariate time series, and a full attention
schema simultaneously attending to both the time and vari-
ate dimensions can be computationally costly.

Drawing from our experience that time relationships are
often more important than cross-variate relationships, we
propose a relaxation of factorized attention. Factorized at-
tention strictly alternates attention operations in the time
and variate dimensions, allowing for time and variate mix-
ing with lower algorithmic complexity (Zhang and Yan,
2023; Rao et al., 2021; Arnab et al., 2021). Our design
provides more granular control over the relative propor-
tion of time-wise and variate-wise interactions. Specifi-
cally, each transformer block has attention along only a
single axis, and we can change the ratio of time-wise to
variate-wise transformer blocks as a hyperparameter (as il-
lustrated in Figure 1C). TOTO uses an 11:1 ratio (11 time-
wise transformer blocks followed by a single variate-wise
transformer block), which we found via hyperparameter
optimization (see Appendix A.6).

Student-T mixture model (SMM) head to model heavy-
tailed observability time series. Producing probabilis-
tic outputs is a critical feature of time series models in
several domains, including observability (Zhu and Laptev,
2017; Lee et al., 2023; Hang et al., 2024). In order to
produce probabilistic forecasts across the wide range of
output distributions present in observability data, we em-
ploy a method based on Gaussian mixture models (GMMs),
which can approximate any density function (Goodfellow
et al., 2016). We found that fitting GMMs in the pres-
ence of the extreme outliers and high skew found in ob-
servability data leads to numerical instability in training,
so we instead utilize a Student-T mixture model (SMM) of
K distributions, which robustly generalizes GMMs (Peel
and McLachlan, 2000) and has shown promise for model-
ing heavy-tailed financial time series (Meitz et al., 2018;
WONG et al., 2009). In a contemporaneous work, Yao
et al. (2025) also explored time series foundation models
which model a Student-T mixture output. A mathematical
formulation of of the mixture model, including equations
and parameterizations, is provided in Appendix A.3.

Composite robust loss to stabilize training dynamics.
Mixture models optimized via maximum likelihood are
known to suffer from singularities (Bishop, 2006) and clus-
ter collapse (Eisner). We use a composite loss formulation
that we find, in practice, mitigates these effects. During
training, we optimize a next-patch prediction task, where
the model’s objective is to predict the distribution of val-
ues in the next patch given all previous patches. Our
training combines the standard negative log-likelihood loss,
LNLL, and a general robust loss, LRobust(α,δ) (Barron, 2017).
The robust loss provides a unified framework that allows
for smoothly interpolating between several common robust
loss functions (Black and Anandan, 1996; Geman and Ge-
man, 1986; Aubert et al., 1994; Sun et al., 2010; Jr. and
and, 1978; Leclerc, 1989; Charbonnier et al., 1994; Hu-
ber, 1964; Zhang, 1997), using parameters α ∈ [−∞, 2]
and δ > 0 (see Fig. 4). In our case, after hyperparam-
eter optimization, we found the Cauchy loss (α = 0)
performed best in our setting. While the NLL loss uti-
lizes the full probabilistic output of the model, the robust
loss operates point-wise and measures the prediction er-
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Zero Shot Full Shot Baselines

Metric TOTO MoiraiLarge TimesFM2.0 ChronosBolt-Base TabPFN-TS TEMPO TTM-R2 PatchTST TFT Auto-ARIMA Auto-ETS Auto-Theta

MASE ↓ 0.673 0.785 0.680 0.725 0.748 0.773 0.679 0.762 0.822 0.964 1.088 0.978
CRPS ↓ 0.437 0.506 0.465 0.485 0.480 0.434 0.492 0.496 0.511 0.770 6.327 1.051
Rank ↓ 5.495 10.330 8.412 8.309 8.402 8.897 10.103 10.268 11.629 21.608 25.134 24.134

Table 2: GIFT-Eval results. TOTO’s performance compared to other models reproduced from the GIFT-Eval leaderboard (gif).

ror between the predicted SMM mean and the ground truth
data point. The final combined loss used for training Toto
is: L = λNLL · LNLL + (1 − λNLL) · LRobust(α,δ), where
λNLL ∈ [0, 1] is a ratio tuned simultaneously with the robust
loss hyperparameters, with optimal value λNLL = 0.57.
Further details, including explicit definitions of each loss
component, are provided in Appendix A.5.

3.2. Training data

We trained TOTO with a dataset of approximately 2.36
trillion time series points, of which 1.59 trillion are non-
repeated and non-synthetic. This is significantly larger than
the pretraining corpora of existing time series foundation
models (Fig. 2A). Critically, 43% of our training mixture
contains anonymous observability metrics from a leading
commercial observability platform. This data excludes any
customer data and is sourced solely from the platform’s
own monitoring of internal systems. It consists only of nu-
merical time series data. However, much of this data is
sparse, noisy, or too granular or high in cardinality to be
useful in its raw form. To curate a high-quality dataset, we
sample queries based on quality and relevance signals from
dashboards, monitor alerts, and notebooks built by domain
experts using the platform.

Alongside the observability data, we include public time
series datasets, in particular, the GIFT-Eval Pretrain (Aksu
et al., 2024) and Chronos (Ansari et al., 2024) collections.
Importantly, we remove the subset of the Chronos datasets
that overlap with the GIFT-Eval benchmark in order to
avoid any leakage from the test data. We also find that
adding synthetic data improves model generalization and
performance. For more details on the preparation of public,
synthetic, and observability data, please see Appendix B.

4. Experiments
We evaluate TOTO on three benchmarks: BOOM, a re-
cently released benchmark focused on observability (Data-
dog, 2025), GIFT-Eval, and LSF. We compare against a
comprehensive set of methods, including zero-shot founda-
tion models (‘Zero Shot’), neural models trained on the tar-
get data (‘Full Shot’), and classical supervised approaches
(‘Baselines’). Details of the inference settings and evalua-
tion procedures for all models are described in Appendix C.

BOOM. We evaluate TOTO’s zero-shot forecasting perfor-
mance alongside other foundation models, (Ansari et al.,
2024; Das et al., 2024; Woo et al., 2024; Shi et al., 2025;
Liu et al., 2024b; Chen et al., 2024), as well as full-shot
statistical baselines. As shown in Table 1, TOTO con-
sistently outperforms other models, achieving 13.1% and
12.4% lower MASE and CRPS, respectively, than the next
best (MoiraiBase), and a significantly lower rank (2.351 vs.
4.278).

GIFT-Eval. We evaluate TOTO’s zero-shot performance
on general-purpose time series forecasting via the GIFT-
Eval benchmark (Aksu et al., 2024). TOTO achieves the
top performance among all reported models, with an av-
erage ranking score of 5.495 as of May 2025. It achieves
strong results both in point forecasting, with a MASE of
0.673, and probabilistic forecasting, with a CRPS of 0.437..
Notably, TOTO is the top-performing method in spite of the
fact that several competing models have known partial data
leakage with the benchmark (Aksu et al. (2024)).

LSF. We evaluate TOTO on the widely-used Long Se-
quence Forecasting (LSF) benchmark (Wu et al., 2021).
TOTO achieves state-of-the-art results in zero-shot evalua-
tions, attaining the best performance on 8 out of 12 reported
metrics when compared against other zero-shot methods,
and the lowest average MAE and MSE, see Appendix C.3.
We also explored the efficacy of fine-tuning TOTO on the
training splits of LSF and report the results in Table 10. We
find that TOTO achieves state-of-the-art results in full-shot
evaluations, also attaining the best performance on 8 out of
12 reported metrics, and the lowest average MAE and MSE
of all methods.

5. Conclusion
This work reframes time series forecasting through the lens
of observability—a domain marked by scale, complexity,
and real-world urgency. We presented TOTO, a founda-
tion model purpose-built to forecast multivariate observ-
ability metrics with zero-shot accuracy, which advances the
frontier in zero-shot time series forecasting and sets new
state-of-the-art results on BOOM, GIFT-Eval, and LSF. By
open-sourcing both model and benchmark, we hope to ac-
celerate research to answer these and other open questions,
contribute to the community, and to draw attention to an
important real-world application.
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A. Model architecture details
A.1. Input/output scaling

For a timestep t, we define the causal mean µ̂t and causal
variance ŝt as:

µ̂t =

∑t
i=1 wixi∑t
i=1 wi

, ŝt =

√∑t
i=1 wi(xi − µ̂t)2∑t

i=1 wi − 1
+ 0.1 ,

where xi represents the input value and wi the correspond-
ing weight at timestep i. We set the weight to 0 for padding
positions and 1 for all other positions. We add a mini-
mum value of 0.1 to the causal standard deviation, in or-
der to limit the amount of scaling applied to any particu-
lar value and avoid numerical overflow. Timesteps within
each patch share the normalization values determined by
the final timestep of that patch. As computing causal statis-
tics for every subsequence would have suboptimal O(n2)
complexity in the sequence dimension, we instead use
Welford’s online algorithm (Welford, 1962), a method that
provides numerically stable variance calculations in O(n)
time. We gain further efficiency with a vectorized adapta-
tion of the algorithm, allowing for GPU parallelism.

This normalization approach preserves causality and is
more adaptive than a fixed per-variate scaling factor. How-
ever, in practice, we still find training instability in the
presence of extreme nonstationarity. To address this, we
relax our requirement of strict causality and introduce a
simple clipping mechanism using variate-level statistics.
We constrain ŝt within a range defined by a minimum
value, constant exponent κ, and the full-variate variance
s: max(0.1, s× 10−κ) ≤ ŝt ≤ s× 10κ, (we set κ = 10 in
practice). At inference we compute statistics based solely
on the historical context.

To ensure numerical stability, we compute the µ̂t and ŝt
using an efficient vectorized implementation (Listing 1)
of Welford’s online algorithm (Welford, 1962), incorporat-
ing Bessel’s correction to provide an unbiased estimator of
variance, as described in Option A of (sta, 2012). We stabi-
lize training against extreme outliers by incorporating weak
information from the global statistics.

1 def compute_causal_statistics(
2 data: torch.Tensor,
3 weights: torch.Tensor,
4 minimum_scale: float,
5 ) -> Tuple[torch.Tensor, torch.Tensor]:
6 # Compute causal means at each time

step
7 weighted_data = weights * data
8 cum_weights = torch.cumsum(weights, dim

=-1)
9 cum_values = torch.cumsum(weighted_data

, dim=-1)
10 denominator = cum_weights.clamp_min

(1.0)

9
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11 causal_means = cum_values / denominator
12

13 # For Welford’s algorithm, we need to
compute the correction term

14 # delta using the difference between
the current value and the

15 # previous running mean.
16 shifted_means = torch.zeros_like(

causal_means)
17 shifted_means[..., 1:] = causal_means

[..., :-1]
18 delta = data - shifted_means
19

20 # Compute m_2, the second moment
accumulator for Welford’s

21 # algorithm.
22 increment = delta * (data -

causal_means) * weights
23 m_2 = torch.cumsum(increment, dim=-1)
24

25 # Compute the variance using Bessel’s
correction.

26 causal_variance = m_2 / torch.clamp(
denominator - 1.0, min=1.0)

27 causal_scale = torch.sqrt(
causal_variance + minimum_scale)

28

29 return causal_means, causal_scale

Listing 1: Vectorized PyTorch implementation of Welford’s
algorithm for computing causal statistics

In our ablation study (Section D), we find that causal
scaling leads to dramatic performance improvements over
naive global scaling.

A.2. Attention mechanism

To address the unique challenges of time series data, and
particularly to adapt transformer architectures for multi-
variate time-series forecasting, several works have imple-
mented modifications to the attention mechanism. These
strategies have included:

• Concatenating variates along the time dimension and
computing full self-attention between every variate/-
time location, as in the “any-variate attention” used
by Woo et al. (2024). This can capture every possible
variate and time interaction, but it is costly in terms of
computation and memory usage.

• Assuming variate independence, and computing atten-
tion only in the time dimension as in Nie et al. (2023);
Shi et al. (2025). This is efficient, but throws away all
information about variate-wise interactions.

• Computing attention only in the variate dimension,
and using a feed-forward network in the time dimen-
sion (Ilbert et al., 2024; Liu et al., 2024c).

• Computing “factorized attention,” where each trans-
former block contains a separate variate and time at-
tention computation (Zhang and Yan, 2023; Rao et al.,
2021; Arnab et al., 2021). This allows both variate
and time mixing, and is more efficient than full cross-
attention. However, it doubles the effective depth of
the network.

In Section 3.1, we propose a novel approach that allows
for both variate and time interactions, while reducing the
computational cost and improving overall scalability.

A.2.1. COMPLEXITY ANALYSIS

After the patchwise embedding layer, we have inputs of
shape X ∈ RB×M× L

P ×D, where B is the batch dimension,
M is the number of variates per batch item, L

P is time steps
divided by patch width, and D is the model embedding di-
mension.

Time-wise attention. We parallelize along the time di-
mension by reshaping the input tensor from 4 dimensions
to 3:

X ∈ RB×M× L
P ×D → Xtime ∈ R(B×M)×L

P ×D

This allows for attention to be calculated independently in
parallel per variate, giving a complexity of:

O(M × (
L

P
)2 ×D)

In the time-wise attention blocks, we use causal masking
and rotary positional embeddings (Su et al., 2024) with
XPOS (Sun et al., 2022) in order to autoregressively model
time-dependent features.

Variate-wise attention. We similarly parallelize along
the variate dimension by reshaping the input tensor:

X ∈ RB×M× L
P ×D → Xvariate ∈ R(B× L

P )×M×D

We calculate attention in parallel for each time step, with
complexity:

O(
L

P
×M2 ×D)

In the variate-wise blocks, we use full bidirectional atten-
tion (without causal masking) in order to preserve permu-
tation invariance of the covariates, with a block-diagonal
ID mask to ensure that only related variates attend to each
other. This masking allows us to pack multiple independent
multivariate time series into the same batch, in order to im-
prove training efficiency and reduce the amount of padding.
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Computational complexity. Each transformer block in
our model contains N time-wise attention layers and 1
variate-wise layer. The complexity for full self-attention
over N + 1 layers, where interactions can occur across all
variates and sequence positions, would be of complexity:

O

(
(N + 1)×M2 ×

(
L

P

)2

×D

)
(1)

This reflects the quadratic dependence on both the se-
quence length L

P and the variate dimension M , with linear
dependence on the embedding dimension D. However, by
utilizing factorized attention, we can reduce the computa-
tional complexity of the attention calculation to:

O

(
N ×M ×

(
L

P

)2

×D +
L

P
×M2 ×D

)
=

O
(
D × L

P
×M ×

(
N × L

P
+M

)) (2)

We demonstrate that factorized variate-wise attention is
asymptotically smaller in computational complexity than
full self-attention (see Equation 1 and Equation 2). When
comparing a model with full self-attention, we can assume
N and D are fixed. Therefore:

O

(
M ×

(
L

P

)2

+
L

P
×M2

)
< O

(
M2 ×

(
L

P

)2
)

which reduces to:

O
(
M +

L

P

)
< O

(
M × L

P

)
.

Thus, by factorizing attention into time-wise and variate-
wise components, the computational complexity is re-
duced, especially for large numbers of variates M or
long sequences L

P , making it more scalable than full self-
attention.

A.3. Probabilistic prediction

Practitioners who rely on time series forecasting typically
prefer probabilistic predictions. A common practice in neu-
ral time series models is to use an output layer where the
model regresses the parameters of a probability distribu-
tion. This allows for prediction intervals to be computed
using Monte Carlo sampling (see Appendix A.4) (Salinas
et al., 2020).

Common choices for an output layer are Normal (Salinas
et al., 2020) and Student-T (Das et al., 2023; Rasul et al.,
2023), which can improve robustness to outliers. Moirai
(Woo et al., 2024) allows for more flexible residual dis-
tributions by proposing a novel mixture model incorporat-
ing a weighted combination of Gaussian, Student-T, Log-
Normal, and Negative-Binomial outputs.

However, real-world time series can often have complex
distributions that are challenging to fit, with outliers, heavy
tails, extreme skew, and multimodality. In order to accom-
modate these scenarios, we introduce an even more flexible
output likelihood in Section 3.1 based on a Student-T mix-
ture model (Peel and McLachlan, 2000).

TOTO makes predictions using a mixture of K Student-T
distributions (where K is a hyperparameter) for each time
step, as well as a learned weighting. Formally, the SMM is
defined by:

p(x) =

K∑
k=1

πkT (x | µk, τk, νk) (3)

where πk∈K are nonnegative mixing coefficients which
sum to 1 for the kth Student’s t-distribution Tk with νk de-
grees of freedom, mean µk, and scale τk. T (x | µ, σ, ν) is
defined as:

T (x | µ, τ, ν) =

Γ
(
ν+d
2

)
Γ
(
ν
2

)
(νπ)d/2|τ |1/2

(
1 +

1

ν
(x− µ)⊤τ−1(x− µ)

)− ν+d
2

where Γ(·) is the gamma function.

In our ablation study (Appendix D), we find that the SMM
improves both point prediction and probabilistic forecast-
ing accuracy when compared with a single Student-T dis-
tribution as used in TiDE (Das et al., 2023), Lag-Llama
(Rasul et al., 2023), and implementations of DeepAR (Sali-
nas et al., 2020), PatchTST (Nie et al., 2023), iTransformer
(Shazeer, 2020), and others in the popular open-source
GluonTS library (Alexandrov et al., 2020).

The parameters of this mixture model are computed from
the flattened features ht ∈ RD produced by the transformer
backbone for each time step t, where D is the model’s em-
bedding dimension. Using a set of linear projections with
weight matrices W ∈ RK×D and bias vectors b ∈ RK , we
derive all K mixture components simultaneously. For each

11
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Figure 3: Example of TOTO 's 96-step zero-shot forecasts on
the ETTh1 dataset, showing multivariate probabilistic predictions.
Solid lines represent ground truth, dashed lines represent median
point forecasts, and shaded regions represent 95% prediction in-
tervals.

time step t, the parameters are computed as:

νt = 2 +max(softplus(Wνht + bν), ϵ) (4)
µt = Wµht + bµ (5)
τt = max(softplus(Wτht + bτ ), ϵ) (6)
π̃t = Wπht + bπ (7)

where each equation produces a vector in RK containing
the parameters for all mixture components at time t. The
individual component parameters νt,k, µt,k, τt,k, and π̃t,k

(the mixture logits) are the kth elements of these vectors.
The parameter ϵ is machine epsilon (the smallest positive
floating-point number), and softplus(x) = log(1+ ex). The
use of softplus and ϵ ensure that the scale τ remains posi-
tive. Similarly, we add the constraint ν > 2 to ensure that
each component of our mixture has well-defined first and
second moments (mean and variance).

The mixture weights π are computed using by applying
softmax to the logits:

πt,k = softmax(π̃t, k)

=
eπ̃t,k∑K
j=1 e

π̃t,j

An example distribution median and 95th percentile is il-
lustrated in Fig. 3.

A.4. Forecasting

When performing inference, we draw u (for some user
specified integer u > 0) samples from the mixture distri-
bution at each timestamp, then feed each sample back into
the decoder for the next prediction, resulting in n identi-
cally and independently sampled time-series. This allows
us to produce prediction intervals at any quantile, limited
only by the number of samples. Our exact sampling proce-
dure for several tasks is detailed in Section 4.
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Figure 4: Visualization of generalized robust loss for different
values of α, with δ fixed at 1. Changing δ scales the horizontal
axis.

A.5. Loss function

TOTO learns the conditional distribution p(Xi+1|X1:i),
where Xi represents the i-th patch containing multiple time
steps.

The LNLL optimizes probabilistic predictions and is defined
as:

LNLL(x, µ, τ, ν) = − log (p(xt|X1:i)) =

− log

(
K∑

k=1

πt,kT (xt | µt,k, τt,k, νt,k)

)
(8)

where p(xt|X1:i) is the probability density of the ground
truth xt under the model’s predicted mixture distribution
conditioned on all previous patches. The parameters πt,k,
µt,k, τt,k, and νt,k are the mixture weights and Student-T
parameters computed by the model for time step t.

For a ground truth value xt in patch i + 1 and the mean
prediction x̂t = E[p(xt|X1:i)], the robust loss is defined in
Barron (2017).

Here, LRobust(α,δ) serves as a point prediction error mea-
sure, where α ≤ 2 is a shape parameter that controls the
robustness to outlier observations (Fig. 4) and δ > 0 is a
scale parameter that determines the size of the parabolic
portion of the loss curve. This loss component directly pe-
nalizes point prediction accuracy, and we conjecture this
may help steer the mixture model away from degenerate
solutions of the type described in (Eisner). In our abla-
tion study, we find that adding the robust loss component
significantly improves point forecasting accuracy without
hurting probabilistic predictions (Section D).

L is applied to each timestep t in the target patch Xi+1, and
the total loss is aggregated across all timesteps during train-
ing. By combining the probabilistic LNLL loss with the ro-
bust point-prediction loss, we achieve both accurate distri-
bution modeling and stable convergence, especially in do-
mains with highly heterogeneous data characteristics. The
hyperparameter λNLL controls the balance between these

12
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two loss components and is tuned empirically.

A.6. Hyperparameter Optimization

To determine the optimal architecture and training configu-
ration for Toto, we conducted an extensive hyperparameter
sweep using Optuna (Akiba et al., 2019), a Bayesian op-
timization framework. We employed the Tree-structured
Parzen Estimator (TPE) algorithm with 65 trials to effi-
ciently explore the high-dimensional search space.

Our optimization objective was to minimize the valida-
tion mean absolute error (MAE) on multi-step forecasting
tasks on a random validation split of the observability por-
tion of the pretraining data. We train the model using the
AdamW optimizer (Loshchilov and Hutter, 2019) with a
WSD learning rate scheduler (Hu et al., 2024). We per-
formed this sweep over 50,000 steps over 133 iterations
over ranges described in Table 3.

The resulting hyperparameter configuration described in
Table 4 obtained the best multistep (average of 96 and 192)
MAE on the observability validation set.

In Section D, we perform an ablation study on the im-
pact of various model components. We optimize speed
and memory usage by utilizing fused kernel implementa-
tions and memory efficient attention operations via xform-
ers (Lefaudeux et al., 2022), (with the FlashAttention-3
kernel (Shah et al., 2024)).

We ran all experiments, including hyperparameter tuning,
final model training, and benchmark evaluation on a GPU
cluster consisting of A100s and H100s.

B. Training data preprocessing
B.1. Observability Dataset

Observability metrics are retrieved from a large-scale time
series database using a specialized query language support-
ing filters, group-bys, time aggregation, and various trans-
formations and postprocessing functions (Fig. 5). We con-
sider groups returned from the same query to be related
variates in a multivariate time series. After we retrieve the
query results, we discard the query strings and group iden-
tifiers, keeping only the raw numeric data. As described in
Section 3.2, we source metrics defined by user-generated
queries. This excludes any customer data and is sourced
solely from the internal users and telemetry.

B.2. Public Datasets

We train on a public dataset corpus, which exposes the
model to diverse time series behaviors across different
domains and sampling frequencies, contributing approxi-
mately 250 billion time series points to our training data.

Figure 5: Example metric query in the observability platform.
The metric name (1) determines which metric is being queried.
The filter clause (2) limits which contexts are queried, in this case
restricting the query to apps in the prod environment. The space
aggregation (3) indicates that the sum of the metric value should
be returned for each unique value of the group-by key(s), aggre-
gated across all other keys. The time aggregation (4) indicates
that metric values should be aggregated to the average for each
60-second interval. The query results will be a multivariate time
series with 1-minute time steps, and with separate individual vari-
ates for each unique value of cluster name.

Our pre-training dataset incorporates a diverse col-
lection of time series from the GIFT-Eval Pre-
train collection (Godahewa et al., 2021) and non-
overlapping Chronos datasets (Ansari et al., 2024).
These datasets include ercot, exchange_rate,
weatherbench_daily, weatherbench_hourly,
weatherbench_monthly, dominick,
mexico_city_bikes, ushcn_daily, and
wiki_daily_100k.

Handling this vast amount of data requires several prepro-
cessing steps to ensure consistency and quality. We de-
scribe the details of preprocessing and data augmentation
in Appendix B.4.

B.3. Synthetic Data

We supplement our training with synthetic data to further
improve model performance. Our synthetic dataset con-
sists of procedurally generated time series using an ap-
proach similar to TimesFM (Das et al., 2024), as well as
kernel_synth_1m from the Chronos dataset (Ansari
et al., 2024). Synthetic data constitutes approximately 33%
of our training dataset.

We generate synthetic time series through the composition
of components such as piecewise linear trends, ARMA pro-
cesses, sinusoidal seasonal patterns, and various residual
distributions. Our procedural generation randomly com-
bines multiple processes per variate to introduce diverse
patterns. The generation includes creating base series with
transformations, clipping extreme values, and rescaling to
specified ranges.

These synthetic datasets help the model learn robust repre-
sentations by providing examples with specific characteris-
tics that might be underrepresented in real-world data.

13
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Category Values / Ranges

Patch Size {16, 32, 64}
Variate-wise Attention Frequency Every {3, 4, 6, 12} layers
Variate-wise Layer First [True, False]
T Components [8, 16, 24, 32]
Loss Function λNLL ∈ [0.05, 1.0]
Robust Loss Params α ∈ {−∞,−2, 0, 0.5, 1.0}, δ ∈ [0.1, 3.0]
Warmup Steps [0, 10,000]
Stable Ratio* [.1, .9]
Learning Rate [10−5, 5× 10−3]
Weight Decay [10−3, 10−1]
Synthetic Data Proportion [0.0, 0.75]
Shuffling Type [Normally Distributed, Adjacent, Random, None]
Normally Distributed Shuffling Standard Deviation [.15, 5000]
Shuffling Frequency [0.0, 0.3]

Table 3: Summary of hyperparameter search space. *Stable Ratio defines the proportion of steps that are stable after the warmup phase
of the WSD learning rate schedule.

Hyperparameter Value

Embedding Dimension 768
MLP Dimension 3072
# Layers 12
# Heads 12
# Variates 32
Spacewise Layer Cadence 12
Patch Size 64
# T Mixture Model Components 24
Annealing Schedule WSD
Optimizer AdamW
(β1, β2) (0.9579, 0.9581)
Weight Decay 0.0014
Initial Learning Rate 0.0005
Warmup Steps 6784
Stable Steps 112,255
Decay Steps 15,962
Batch Size 128
Total Train Steps 135,001
LRobust α 0.0000
LRobust δ 0.1010
λNLL 0.5755
κ 10

Table 4: Hyperparameters for Toto

B.4. Preprocessing

To prepare the raw time series for training, we apply
padding and masking techniques to align the series lengths,
making them divisible by the patch stride. This involves
adding necessary left-padding to both the time series data
and the ID mask, ensuring compatibility with the model's

requirements.

Next, various data augmentations are employed to enhance
the dataset's robustness. We introduce random time off-
sets to prevent memorization caused by having series al-
ways align the same way with the patch grid. After con-
catenating the observability and public datasets for train-
ing, we also implement a variate shuffling strategy to main-
tain diversity and representation. Specifically, we randomly
combine variates from either observability, open source
datasets (GIFT-Eval pretrain and Chronos datasets), and/or
synthetic data with a probability of 14%, thus creating
new, diverse combinations of data points. We shuffle se-
ries with adjacent indices (batched by 32 variates), favoring
data points that were closer together in the original datasets.
This approach improves the model's ability to generalize
across different types of data effectively.

C. Results
C.1. Inference procedures

To evaluate the comparison models on BOOM, we closely
follow the evaluation methodology used in the GIFT-Eval
implementation. For models not included in GIFT-Eval,
we rely on their official implementations and recommended
evaluation procedures. All foundation models are evalu-
ated using a unified context length of 2048. This choice
is informed by preliminary experiments showing that a
shorter context length (512) leads to a general degradation
in performance across models. Therefore, we opt for a rel-
atively large context window (2048) to preserve forecast
quality, while ensuring feasibility on available hardware.

To evaluate the zero-shot performance of other foundation
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models on BOOM, we follow the sampling procedures out-
lined in their respective manuscripts. For Chronos, we
generate 20 samples and use the median prediction as the
point forecast. For Moirai, we generate 100 samples, again
taking the median, and set the patch size to “auto”. For
TOTO we generate 256 samples and take the median as the
point forecast. TimesFM produces only point forecasts of
the mean, which we use directly. In all cases, we com-
pute CRPS with respect to the probabilistic samples and
MASE with respect to the point forecast. Since TimesFM
and Chronos support only univariate forecasting, we eval-
uate each variate independently. In contrast, both Moirai
and TOTO support joint prediction over groups of related
variates.

For the three statistical baselines—AutoARIMA, Auto-
Theta, and AutoETS—we use the default hyperparameter
settings from the statsforecast package, with one exception:
for AutoARIMA, we reduce maxd and maxD from 2 to 1
due to frequent numerical instability when d = D = 2. Fol-
lowing GIFT-Eval, we set the maximum input length for all
statistical models to 1000.

C.2. BOOM

In Fig. 6, we present qualitative comparisons across three
representative forecasting scenarios to highlight the be-
havioral differences between TOTO, Chronos, and Moirai.
In the first example (a), features a highly stochastic sig-
nal interwoven with complex seasonal components. While
Moirai and Chronos models tend to overfit short-term fluc-
tuations—resulting in jagged forecasts and unstable confi-
dence intervals— TOTO effectively identifies and extrapo-
lates the latent seasonal structure, yielding smoother, more
coherent trajectories and uncertainty bands that reflect a
deeper structural understanding of the series dynamics. Ex-
ample (b) the target signal exhibits high dynamism with
rapidly oscillating structure and sustained amplitude mod-
ulations—posing a challenge for long-range temporal mod-
eling. While both Moirai and Chronos models progres-
sively lose phase alignment and dampen their amplitude
estimates, TOTO consistently maintains sharp, temporally
aligned forecasts with well-calibrated uncertainty, accu-
rately tracking the intricate periodic structure far into the
forecast horizon. Finally, example (c), the target series is
characterized by sparse, bursty impulses with high variance
across events. Here, although TOTO ’s mean prediction
does not always precisely capture individual peaks, its pre-
dictive distribution faithfully mirrors the underlying spiki-
ness of the series, in stark contrast to Chronos, which col-
lapses to an overconfident flat trajectory.

Table 5 reports the results for all versions and sizes of the
zero-shot models.

To better understand the capabilities and limitations of

different forecasting models, we conduct a disaggregated
evaluation across four major characteristics that describe
time series in the BOOM dataset. This analysis enables
us to probe how models respond to structural diversity in
real-world time series data.

Across all three categorical axes, the TOTO consistently
achieves the lowest CRPS, with strong margins over all
baselines.

C.3. LSF

In addition to our primary evaluations, we also assess
the model’s performance on the Long Sequence Forecast-
ing (LSF) benchmark datasets—ETTh1, ETTh2, ETTm1,
ETTm2, Electricity, and Weather (Wu et al., 2021). As
noted by Aksu et al. (2024), these datasets are limited in
size and diversity, and recent findings (Xu et al., 2024) sug-
gest that strong supervised baselines can already perform
near the upper bound on such benchmarks. This may indi-
cate a saturation point where further gains from foundation
models are difficult to observe, rather than a fundamental
limitation of the models themselves. Nevertheless, as it re-
mains a widely used legacy benchmark in the literature, we
report zero-shot results of TOTO on it to maintain consis-
tency with established practices in the field.

Furthermore we leverage its small scale and constrained
use-cases to examine TOTO’s capacity to transfer to new
datasets and specialized domains by conducting fine-tuning
experiments on the training splits of its datasets.

Following standard practice for the LSF benchmark, we re-
port normalized Mean Absolute Error (MAE) and Mean
Squared Error (MSE), in order to be able to compare per-
formance across different datasets. We evaluate using fore-
cast lengths of 96, 192, 336, and 720 time steps. Predic-
tions are generated using sliding windows with a stride of 1.
For the Electricity dataset, however, we use a stride equal
to the prediction length to reduce computational resource
requirements. The results are then averaged. We compare
TOTO’s performance with results reported by recent state-
of-the-art time series foundation models, including Moirai
(Woo et al., 2024), VisionTS (Chen et al., 2024), TimesFM
(Das et al., 2024), Time-MoE (Shi et al., 2025), TimeLLM
(Jin et al., 2024), GPT4TS (Zhou et al., 2023), xLSTM-
Time (Alharthi and Mahmood, 2024) and other models
evaluated in Woo et al. (2024) and Das et al. (2024). We
display zero-shot and full-shot TOTO results in Table 9 and
Table 10 respectively. We also provide additional per pre-
diction length results in Table 11 and Table 12.

Table 9 shows that TOTO consistently delivers the best
overall performance across all datasets, achieving the low-
est average MAE and MSE, and outperforming other zero-
shot baselines on 8 out of 12 evaluation metrics. Its per-
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Dataset Metric Toto MoiraiSmall MoiraiBase MoiraiLarge TimesFM2.0 Chronos-boltSmall Chronos-boltBase Timer Time-MoE VisionTS Naive

BOOM
MASE ↓ 0.617 0.738 0.710 0.720 0.725 0.733 0.726 0.796 0.806 0.991 1.000
CRPS ↓ 0.375 0.447 0.428 0.436 0.447 0.455 0.451 0.639 0.649 0.675 1.000

Table 5: BOOM results. Full results across all models evaluated from Table 1. Key: Best results, Second-best results.

Real Term Metric Toto MoiraiSmall MoiraiBase MoiraiLarge TimesFM2.0 Chronos-boltSmall Chronos-boltBase Timer Time-MoE VisionTS Naive

Long
MASE ↓ 0.688 0.795 0.780 0.799 0.817 0.813 0.798 0.809 0.886 1.026 1.000
CRPS ↓ 0.424 0.482 0.473 0.491 0.522 0.528 0.519 0.661 0.724 0.698 1.000

Medium
MASE ↓ 0.657 0.771 0.753 0.770 0.780 0.782 0.782 0.804 0.866 1.011 1.000
CRPS ↓ 0.406 0.476 0.460 0.475 0.499 0.508 0.507 0.671 0.725 0.698 1.000

Short
MASE ↓ 0.535 0.670 0.627 0.626 0.619 0.638 0.632 0.779 0.704 0.947 1.000
CRPS ↓ 0.318 0.399 0.370 0.369 0.359 0.368 0.365 0.597 0.541 0.640 1.000

Table 6: Performance comparison of TOTO and other zero-shot models across different prediction terms. MASE and CRPS
are normalized by the Seasonal Naive forecast and aggregated across tasks using the shifted geometric mean. Key: Best results,
Second-best results.

Type Metric Toto MoiraiSmall MoiraiBase MoiraiLarge TimesFM2.0 Chronos-BoltSmall Chronos-BoltBase Timer Time-MoE VisionTS Naive

Count
MASE ↓ 0.687 0.814 0.795 0.813 0.919 0.883 0.880 0.663 0.652 1.220 1.000
CRPS ↓ 0.317 0.370 0.353 0.372 0.403 0.403 0.402 0.662 0.651 0.603 1.000

Distribution
MASE ↓ 0.658 0.741 0.724 0.729 0.745 0.759 0.753 0.890 0.878 1.034 1.000
CRPS ↓ 0.382 0.434 0.422 0.428 0.440 0.452 0.446 0.608 0.604 0.674 1.000

Gauge
MASE ↓ 0.583 0.720 0.686 0.700 0.706 0.706 0.696 0.721 0.760 0.922 1.000
CRPS ↓ 0.382 0.471 0.444 0.456 0.466 0.469 0.463 0.658 0.694 0.672 1.000

Rate
MASE ↓ 0.634 0.753 0.728 0.733 0.726 0.742 0.739 0.864 0.846 1.041 1.000
CRPS ↓ 0.369 0.433 0.418 0.422 0.431 0.445 0.443 0.630 0.619 0.687 1.000

Table 7: Performance comparison of TOTO and other zero-shot models across different metric types. MASE and CRPS are normalized
by the Seasonal Naive forecast and aggregated across tasks using the shifted geometric mean. Key: Best results, Second-best results.

Domain Metric Toto MoiraiSmall MoiraiBase MoiraiLarge TimesFM2.0 Chronos-BoltSmall Chronos-BoltBase Timer Time-MoE VisionTS Naive

Application usage
MASE ↓ 0.639 0.747 0.721 0.730 0.736 0.748 0.748 0.871 0.863 1.042 1.000
CRPS ↓ 0.378 0.440 0.422 0.430 0.441 0.452 0.451 0.636 0.633 0.691 1.000

Database
MASE ↓ 0.635 0.751 0.738 0.743 0.765 0.761 0.757 0.716 0.714 1.017 1.000
CRPS ↓ 0.362 0.429 0.414 0.418 0.440 0.444 0.441 0.619 0.618 0.647 1.000

Infrastructure
MASE ↓ 0.568 0.692 0.650 0.670 0.679 0.678 0.663 0.728 0.791 0.863 1.000
CRPS ↓ 0.391 0.476 0.446 0.462 0.471 0.474 0.466 0.655 0.713 0.666 1.000

Networking
MASE ↓ 0.635 0.795 0.786 0.773 0.765 0.779 0.757 0.871 0.856 1.035 1.000
CRPS ↓ 0.400 0.493 0.484 0.484 0.493 0.506 0.489 0.725 0.721 0.734 1.000

Security
MASE ↓ 0.682 0.741 0.739 0.736 0.717 0.734 0.729 0.828 0.770 0.924 1.000
CRPS ↓ 0.476 0.505 0.504 0.504 0.525 0.539 0.535 0.664 0.625 0.735 1.000

Table 8: Performance comparison of TOTO and other zero-shot models across different metric domains. MASE and CRPS are
normalized by the Seasonal Naive forecast and aggregated across tasks using the shifted geometric mean. Key: Best results,
Second-best results.

formance is especially strong on ETTm2, Electricity, and
Weather, where it continues to excel even in zero-shot sce-
narios.

Furthermore, Table 10 shows that even when starting from
a strong SOTA baseline, TOTO’s performance improves
with fine-tuning, showing it can achieve full-shot SOTA
results and adapt to new domains with limited data. This
highlights TOTO’s robustness and versatility as a founda-
tion model for a wide range of time-series forecasting tasks.

Full-shot results on LSF benchmarks We conduct fine-
tuning experiments on Toto following similar procedure de-
lineated by (Wu et al., 2023) and (Woo et al., 2024). The
full-shot results for each dataset, comparing fine-tuned and

zero-shot performance, are reported in Table 10.

Results Our experimental results demonstrate that when
finetuned, denoted as TOTOFT), achieves state-of-the-
art performance on 3 out of 6 datasets in the
LSF benchmark—specifically, ETTm2, Electricity, and
Weather—where it outperforms all other models on both
MAE and MSE metrics. Additionally, TOTOFT achieves
the best MAE score on ETTm1 and ETTh2, although it
does not lead on MSE for those datasets. Compared to its
zero-shot counterpart, TOTOFT consistently improves both
MAE and MSE metrics across most datasets, with par-
ticularly notable gains in ETTm1 (MAE: 0.378 → 0.357,
MSE: 0.396 → 0.349) and ETTm2 (MAE: 0.303 → 0.291,
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Figure 6: Example of 336-step zero-shot comparative forecasts on the Boom, showing multivariate probabilistic predictions. Solid lines
represent ground truth, dashed lines represent median point forecasts, and shaded regions represent 95% prediction intervals.
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Dataset Metric Toto MoiraiSmall MoiraiBase MoiraiLarge Time-MoEBase Time-MoELarge Time-MoEUltra VisionTS

ETTh1 MAE ↓ 0.413 0.424 0.438 0.469 0.424 0.419 0.426 0.414
MSE ↓ 0.435 0.400 0.434 0.510 0.400 0.394 0.412 0.390

ETTh2 MAE ↓ 0.363 0.379 0.382 0.376 0.404 0.415 0.399 0.375
MSE ↓ 0.340 0.341 0.345 0.354 0.366 0.405 0.371 0.333

ETTm1 MAE ↓ 0.378 0.409 0.388 0.389 0.415 0.405 0.391 0.372
MSE ↓ 0.396 0.448 0.381 0.390 0.394 0.376 0.356 0.374

ETTm2 MAE ↓ 0.303 0.341 0.321 0.320 0.365 0.361 0.344 0.321
MSE ↓ 0.267 0.300 0.272 0.276 0.317 0.316 0.288 0.282

Electricity MAE ↓ 0.242† 0.320 0.274 0.273 - - - 0.294
MSE ↓ 0.158† 0.233 0.188 0.188 - - - 0.207

Weather MAE ↓ 0.245 0.267 0.261 0.275 0.297 0.300 0.288 0.292
MSE ↓ 0.224 0.242 0.238 0.259 0.265 0.270 0.256 0.269

Mean MAE ↓ 0.324 0.357 0.344 0.350 - - - 0.345
MSE ↓ 0.303 0.327 0.310 0.330 - - - 0.309

Best Count 8 0 0 0 0 0 1 3

Table 9: LSF results Zero-Shot comparison of models on the LSF benchmark. Non-TOTO values are reproduced from published tables.
Key: Best results, Second-best results. Values marked with † use a window stride equal to the prediction length on the Electricity
dataset. “Best Count” row reports the number of times each model attains the best result for a given dataset-metric pair.

Zero Shot Full Shot

Dataset Metric Toto TotoFT TimeLLM GPT4TS VisionTSFT Time-MoEBaseFT Time-MoELargeFT Time-MoEUltraFT TimesFM* xLSTMTime iTransformer TimesNet PatchTST Crossformer TiDE DLinear SCINet FEDformer

ETTh1 MAE ↓ 0.413 0.409 0.423 0.426 0.409 0.406 0.404 0.406 0.426 0.428 0.448 0.450 0.455 0.522 0.507 0.452 0.647 0.460
MSE ↓ 0.435 0.415 0.408 0.427 0.395 0.379 0.375 0.373 - 0.408 0.454 0.458 0.469 0.529 0.541 0.456 0.747 0.440

ETTh2 MAE ↓ 0.363 0.363 0.383 0.394 0.382 0.386 0.386 0.380 0.410 0.386 0.407 0.497 0.407 0.684 0.550 0.515 0.723 0.449
MSE ↓ 0.340 0.339 0.334 0.354 0.336 0.346 0.361 0.334 - 0.346 0.383 0.414 0.387 0.942 0.611 0.559 0.954 0.437

ETTm1 MAE ↓ 0.378 0.357 0.372 0.383 0.367 0.381 0.371 0.373 0.388 0.371 0.410 0.406 0.400 0.495 0.419 0.407 0.481 0.452
MSE ↓ 0.396 0.349 0.329 0.352 0.338 0.345 0.322 0.329 - 0.347 0.407 0.400 0.387 0.513 0.419 0.403 0.486 0.448

ETTm2 MAE ↓ 0.303 0.291 0.313 0.326 0.319 0.335 0.332 0.334 0.334 0.310 0.332 0.333 0.326 0.611 0.404 0.401 0.537 0.349
MSE ↓ 0.267 0.244 0.251 0.266 0.261 0.271 0.284 0.277 - 0.254 0.288 0.291 0.281 0.757 0.358 0.350 0.571 0.305

Electricity MAE ↓ 0.242† 0.233† 0.252 0.263 0.249 - - - - 0.250 0.270 0.295 0.304 0.334 0.344 0.300 0.365 0.327
MSE ↓ 0.158† 0.150† 0.158 0.167 0.156 - - - - 0.157 0.178 0.193 0.216 0.244 0.252 0.212 0.268 0.214

Weather MAE ↓ 0.245 0.233 0.257 0.270 0.262 0.275 0.273 0.280 - 0.255 0.278 0.287 0.281 0.315 0.320 0.317 0.363 0.360
MSE ↓ 0.224 0.206 0.225 0.237 0.227 0.236 0.234 0.250 - 0.222 0.258 0.259 0.259 0.259 0.271 0.265 0.292 0.309

Mean MAE ↓ 0.324 0.314 0.333 0.344 0.331 - - - - 0.333 0.358 0.378 0.362 0.494 0.424 0.399 0.519 0.400
MSE ↓ 0.303 0.284 0.284 0.300 0.286 - - - - 0.289 0.328 0.336 0.333 0.541 0.409 0.374 0.553 0.359

Best Count 8 1 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0

Table 10: Full-Shot comparison of models on the LSF benchmark, with TOTO’s Zero-Shot result in the first data column.*TimesFM only
reports values for MAE on ETTh1, ETTh2, ETTm1, and ETTm2 after fine-tuning.
Key: Best results, Second-best results. Values marked with † use a window stride equal to the prediction length on the Electricity
dataset. “Best Count” row reports the number of times each model attains the best result for a given dataset-metric pair.

MSE: 0.267 → 0.244). Overall, TOTOFT ranks first in 8 out
of 12 metric-dataset pairs, outperforming all other mod-
els, including both zero-shot and full-shot baselines. No-
tably, it also delivers the best overall performance on the
benchmark, achieving the lowest average MAE (0.314) and
MSE (0.284). These results underscore the effectiveness
of fine-tuning in enhancing Toto’s predictive performance,
establishing TOTOFT as the new SOTA model on the LSF
benchmark. In addition, this demonstrates that Toto is
a robust foundation model, adaptable to a wide range of
downstream datasets, including those from entirely new do-
mains, making it a versatile choice for time-series forecast-
ing tasks.

A closer examination of the results reveals that while
TotoFT achieves state-of-the-art performance on most
datasets, the effectiveness of fine-tuning varies across
them. Fine-tuning proves especially beneficial on ETTm1,

ETTm2, and Weather, where it significantly enhances
model predictions. In contrast, the improvements on
ETTh1 are more modest, and for ETTh2, fine-tuning yields
no notable gains—potentially due to the relatively small
size of these datasets. Moreover, even though fine-tuning
generally improves performance over the original TOTO
model, TOTOFT does not outperform other full-shot mod-
els on ETTh1.

Additional details on zero-shot and full-shot results per pre-
diction length are displayed in Table 12

D. Ablations
We evaluate the contribution of various architectural com-
ponents of the TOTO model by systematically disabling
one component at a time and measuring the relative per-
formance degradation. The full Toto model serves as the
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Zero Shot

Dataset Prediction Length Metric Toto MoiraiSmall MoiraiBase MoiraiLarge Time-MoEBase Time-MoELarge Time-MoEUltra VisionTS

96 MAE ↓ 0.381 0.402 0.402 0.398 0.381 0.382 0.379 0.383
MSE ↓ 0.382 0.375 0.384 0.380 0.357 0.350 0.349 0.353

192 MAE ↓ 0.408 0.419 0.429 0.434 0.404 0.412 0.413 0.410
ETTh1 MSE ↓ 0.428 0.399 0.425 0.440 0.384 0.388 0.395 0.392

336 MAE ↓ 0.422 0.429 0.450 0.474 0.434 0.430 0.453 0.423
MSE ↓ 0.457 0.412 0.456 0.514 0.411 0.411 0.447 0.407

720 MAE ↓ 0.440 0.444 0.473 0.568 0.477 0.455 0.462 0.441
MSE ↓ 0.472 0.413 0.470 0.705 0.449 0.427 0.457 0.406

96 MAE ↓ 0.310 0.334 0.327 0.325 0.359 0.354 0.352 0.328
MSE ↓ 0.273 0.281 0.277 0.287 0.305 0.302 0.292 0.271

192 MAE ↓ 0.356 0.373 0.374 0.367 0.386 0.385 0.379 0.367
ETTh2 MSE ↓ 0.339 0.340 0.340 0.347 0.351 0.364 0.347 0.328

336 MAE ↓ 0.387 0.393 0.401 0.393 0.418 0.425 0.419 0.381
MSE ↓ 0.374 0.362 0.371 0.377 0.391 0.417 0.406 0.345

720 MAE ↓ 0.400 0.416 0.426 0.421 0.454 0.496 0.447 0.422
MSE ↓ 0.375 0.380 0.394 0.404 0.419 0.537 0.439 0.388

96 MAE ↓ 0.333 0.383 0.360 0.363 0.368 0.357 0.341 0.347
MSE ↓ 0.320 0.404 0.335 0.353 0.338 0.309 0.281 0.341

192 MAE ↓ 0.364 0.402 0.379 0.380 0.388 0.381 0.358 0.360
ETTm1 MSE ↓ 0.371 0.435 0.366 0.376 0.353 0.346 0.305 0.360

336 MAE ↓ 0.388 0.416 0.394 0.395 0.413 0.408 0.395 0.374
MSE ↓ 0.408 0.462 0.391 0.399 0.381 0.373 0.369 0.377

720 MAE ↓ 0.426 0.437 0.419 0.417 0.493 0.477 0.472 0.405
MSE ↓ 0.485 0.490 0.434 0.432 0.504 0.475 0.469 0.416

96 MAE ↓ 0.237 0.282 0.269 0.260 0.291 0.286 0.288 0.282
MSE ↓ 0.172 0.205 0.195 0.189 0.201 0.197 0.198 0.228

192 MAE ↓ 0.280 0.318 0.303 0.300 0.334 0.322 0.312 0.305
ETTm2 MSE ↓ 0.232 0.261 0.247 0.247 0.258 0.250 0.235 0.262

336 MAE ↓ 0.320 0.355 0.333 0.334 0.373 0.375 0.348 0.328
MSE ↓ 0.290 0.319 0.291 0.295 0.324 0.337 0.293 0.293

720 MAE ↓ 0.375 0.410 0.377 0.386 0.464 0.461 0.428 0.370
MSE ↓ 0.372 0.415 0.355 0.372 0.488 0.480 0.427 0.343

96 MAE ↓ 0.211† 0.299 0.248 0.242 - - - 0.266
MSE ↓ 0.125† 0.205 0.158 0.152 - - - 0.177

192 MAE ↓ 0.228† 0.310 0.263 0.259 - - - 0.277
Electricity MSE ↓ 0.145† 0.220 0.174 0.171 - - - 0.188

336 MAE ↓ 0.244† 0.323 0.278 0.278 - - - 0.296
MSE ↓ 0.157† 0.236 0.191 0.192 - - - 0.207

720 MAE ↓ 0.284† 0.347 0.307 0.313 - - - 0.337
MSE ↓ 0.207† 0.270 0.229 0.236 - - - 0.256

96 MAE ↓ 0.179 0.212 0.203 0.208 0.214 0.213 0.211 0.257
MSE ↓ 0.149 0.173 0.167 0.177 0.160 0.159 0.157 0.220

192 MAE ↓ 0.223 0.250 0.241 0.249 0.260 0.266 0.256 0.275
Weather MSE ↓ 0.192 0.216 0.209 0.219 0.210 0.215 0.208 0.244

336 MAE ↓ 0.265 0.282 0.276 0.292 0.309 0.322 0.290 0.299
MSE ↓ 0.245 0.260 0.256 0.277 0.274 0.291 0.255 0.280

720 MAE ↓ 0.312 0.322 0.323 0.350 0.405 0.400 0.397 0.337
MSE ↓ 0.310 0.320 0.321 0.365 0.418 0.415 0.405 0.330

Best Count 29 0 0 0 2 0 6 11

Table 11: Zero-Shot-Shot Comparison of different models with TOTO on the LSF benchmark datasets for each prediction length. Non-
TOTO values are reproduced from published tables.
Key: Best results, Second-best results. Values marked with † use a window stride equal to the prediction length on the Electricity
dataset. “Best Count” row reports the number of times each model attains the best result for a given metric.

control, and each variant’s performance is presented rela-
tive to this baseline in Table 13. All models in the abla-
tion study, including the control, were trained for 75,000
steps (a subset of the full-length training of the TOTO base
model).

To compare performance between the different arms of the
experiment, we look at NLL loss on a held-out validation
split of the observability portion of the pretraining data.

This summarizes the output distribution and gives us a sin-
gle performance metric to compare both point forecasting
and probabilistic forecasting. For each model, we pick the
checkpoint with lowest NLL throughout the training run
(evaluating on the validation set every 5,000 steps).

The results reveal that removing key modeling elements
significantly impacts performance. Disabling Causal Scal-
ing leads to the largest degradation, with an increase of
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Zero Shot Full Shot

Dataset Prediction Length Metric Toto TotoFT TimeLLM GPT4TS VisionTSFT Time-MoEBaseFT Time-MoELargeFT Time-MoEUltraFT TimesFM* xLSTMTime iTransformer TimesNet PatchTST Crossformer TiDE DLinear SCINet FEDformer

96 MAE ↓ 0.381 0.374 0.392 0.397 0.376 0.373 0.371 0.365 0.398 0.395 0.405 0.402 0.419 0.448 0.464 0.400 0.599 0.419
MSE ↓ 0.382 0.364 0.362 0.376 0.347 0.345 0.335 0.323 - 0.368 0.386 0.384 0.414 0.423 0.479 0.386 0.654 0.376

192 MAE ↓ 0.408 0.402 0.418 0.418 0.400 0.396 0.400 0.391 0.424 0.416 0.436 0.429 0.445 0.474 0.492 0.432 0.631 0.448
ETTh1 MSE ↓ 0.428 0.409 0.398 0.416 0.385 0.372 0.374 0.359 - 0.401 0.441 0.436 0.460 0.471 0.525 0.437 0.719 0.420

336 MAE ↓ 0.422 0.418 0.427 0.433 0.415 0.412 0.412 0.418 0.436 0.437 0.458 0.469 0.466 0.546 0.515 0.459 0.659 0.465
MSE ↓ 0.457 0.436 0.430 0.442 0.407 0.389 0.390 0.388 - 0.422 0.487 0.491 0.501 0.570 0.565 0.481 0.778 0.459

720 MAE ↓ 0.440 0.440 0.457 0.456 0.443 0.443 0.433 0.450 0.445 0.465 0.491 0.500 0.488 0.621 0.558 0.516 0.699 0.507
MSE ↓ 0.472 0.454 0.442 0.477 0.439 0.410 0.402 0.425 - 0.441 0.503 0.521 0.500 0.653 0.594 0.519 0.836 0.506

96 MAE ↓ 0.310 0.309 0.328 0.342 0.328 0.340 0.335 0.338 0.356 0.333 0.349 0.374 0.348 0.584 0.440 0.387 0.621 0.397
MSE ↓ 0.273 0.272 0.268 0.285 0.269 0.276 0.278 0.274 - 0.273 0.297 0.340 0.302 0.745 0.400 0.333 0.707 0.358

192 MAE ↓ 0.356 0.355 0.375 0.389 0.374 0.371 0.373 0.370 0.400 0.378 0.400 0.414 0.400 0.656 0.509 0.476 0.689 0.439
ETTh2 MSE ↓ 0.339 0.338 0.329 0.354 0.332 0.331 0.345 0.330 - 0.340 0.380 0.402 0.388 0.877 0.528 0.477 0.860 0.429

336 MAE ↓ 0.387 0.386 0.409 0.407 0.395 0.402 0.402 0.396 0.428 0.403 0.432 0.541 0.433 0.731 0.571 0.541 0.744 0.487
MSE ↓ 0.374 0.372 0.368 0.373 0.351 0.373 0.384 0.362 - 0.373 0.428 0.452 0.426 1.043 0.643 0.594 1.000 0.496

720 MAE ↓ 0.400 0.400 0.420 0.441 0.430 0.431 0.437 0.417 0.457 0.430 0.445 0.657 0.446 0.763 0.679 0.657 0.838 0.474
MSE ↓ 0.375 0.374 0.372 0.406 0.390 0.404 0.437 0.370 - 0.398 0.427 0.462 0.431 1.104 0.874 0.831 1.249 0.463

96 MAE ↓ 0.333 0.313 0.334 0.346 0.322 0.334 0.325 0.323 0.345 0.335 0.368 0.375 0.367 0.426 0.387 0.372 0.438 0.419
MSE ↓ 0.320 0.278 0.272 0.292 0.281 0.286 0.264 0.256 - 0.286 0.334 0.338 0.329 0.404 0.364 0.345 0.418 0.379

192 MAE ↓ 0.364 0.345 0.358 0.372 0.353 0.358 0.350 0.343 0.374 0.361 0.391 0.387 0.385 0.451 0.404 0.389 0.450 0.441
ETTm1 MSE ↓ 0.371 0.328 0.310 0.332 0.322 0.307 0.295 0.281 - 0.329 0.377 0.374 0.367 0.450 0.398 0.380 0.439 0.426

336 MAE ↓ 0.388 0.368 0.384 0.394 0.379 0.390 0.376 0.374 0.397 0.379 0.420 0.411 0.410 0.515 0.425 0.413 0.485 0.459
MSE ↓ 0.408 0.364 0.352 0.366 0.356 0.354 0.323 0.326 - 0.358 0.426 0.410 0.399 0.532 0.428 0.413 0.490 0.445

720 MAE ↓ 0.426 0.403 0.411 0.421 0.413 0.445 0.435 0.452 0.436 0.411 0.459 0.450 0.439 0.589 0.461 0.453 0.550 0.490
MSE ↓ 0.485 0.426 0.383 0.417 0.391 0.433 0.409 0.454 - 0.416 0.491 0.478 0.454 0.666 0.487 0.474 0.595 0.543

96 MAE ↓ 0.237 0.227 0.253 0.262 0.256 0.265 0.259 0.273 0.263 0.250 0.264 0.267 0.259 0.366 0.305 0.292 0.377 0.287
MSE ↓ 0.172 0.158 0.161 0.173 0.169 0.172 0.169 0.183 - 0.164 0.180 0.187 0.175 0.287 0.207 0.193 0.286 0.203

192 MAE ↓ 0.280 0.269 0.293 0.301 0.294 0.306 0.295 0.301 0.309 0.288 0.309 0.309 0.302 0.492 0.364 0.362 0.445 0.328
ETTm2 MSE ↓ 0.232 0.212 0.219 0.229 0.225 0.228 0.223 0.223 - 0.218 0.250 0.249 0.241 0.414 0.290 0.284 0.399 0.269

336 MAE ↓ 0.320 0.306 0.329 0.341 0.334 0.345 0.341 0.339 0.349 0.322 0.348 0.351 0.343 0.542 0.422 0.427 0.591 0.366
MSE ↓ 0.290 0.263 0.271 0.286 0.278 0.281 0.293 0.278 - 0.271 0.311 0.321 0.305 0.597 0.377 0.369 0.637 0.325

720 MAE ↓ 0.375 0.362 0.379 0.401 0.392 0.424 0.433 0.424 0.415 0.380 0.407 0.403 0.400 1.042 0.524 0.522 0.735 0.415
MSE ↓ 0.372 0.344 0.352 0.378 0.372 0.403 0.451 0.425 - 0.361 0.412 0.408 0.402 1.730 0.558 0.554 0.960 0.421

96 MAE ↓ 0.211† 0.205† 0.224 0.238 0.218 - - - - 0.221 0.240 0.272 0.285 0.314 0.329 0.282 0.345 0.308
MSE ↓ 0.125† 0.121† 0.131 0.139 0.126 - - - - 0.128 0.148 0.168 0.195 0.219 0.237 0.197 0.247 0.193

192 MAE ↓ 0.228† 0.223† 0.241 0.251 0.237 - - - - 0.243 0.253 0.289 0.289 0.322 0.330 0.285 0.355 0.315
Electricity MSE ↓ 0.145† 0.142† 0.152 0.153 0.144 - - - - 0.150 0.162 0.184 0.199 0.231 0.236 0.196 0.257 0.201

336 MAE ↓ 0.244† 0.238† 0.248 0.266 0.256 - - - - 0.259 0.269 0.300 0.305 0.337 0.344 0.301 0.369 0.329
MSE ↓ 0.157† 0.153† 0.160 0.169 0.162 - - - - 0.166 0.178 0.198 0.215 0.246 0.249 0.209 0.269 0.214

720 MAE ↓ 0.284† 0.264† 0.298 0.297 0.286 - - - - 0.276 0.317 0.320 0.337 0.363 0.373 0.333 0.390 0.355
MSE ↓ 0.207† 0.185† 0.192 0.206 0.192 - - - - 0.185 0.225 0.220 0.256 0.280 0.284 0.245 0.299 0.246

96 MAE ↓ 0.179 0.165 0.201 0.212 0.192 0.203 0.201 0.208 - 0.187 0.214 0.220 0.218 0.230 0.261 0.255 0.306 0.296
MSE ↓ 0.149 0.134 0.147 0.162 0.142 0.151 0.149 0.154 - 0.144 0.174 0.172 0.177 0.158 0.202 0.196 0.221 0.217

192 MAE ↓ 0.223 0.211 0.234 0.248 0.238 0.246 0.244 0.251 - 0.236 0.254 0.261 0.259 0.277 0.298 0.296 0.340 0.336
Weather MSE ↓ 0.192 0.177 0.189 0.204 0.191 0.195 0.192 0.202 - 0.192 0.221 0.219 0.225 0.206 0.242 0.237 0.261 0.276

336 MAE ↓ 0.265 0.253 0.279 0.286 0.282 0.288 0.285 0.287 - 0.272 0.296 0.306 0.297 0.335 0.335 0.335 0.378 0.380
MSE ↓ 0.245 0.225 0.262 0.254 0.246 0.247 0.245 0.252 - 0.237 0.278 0.280 0.278 0.272 0.287 0.283 0.309 0.339

720 MAE ↓ 0.312 0.302 0.316 0.337 0.337 0.366 0.365 0.376 - 0.326 0.349 0.359 0.348 0.418 0.386 0.381 0.427 0.428
MSE ↓ 0.310 0.288 0.304 0.326 0.328 0.352 0.352 0.392 - 0.313 0.358 0.365 0.354 0.398 0.351 0.345 0.377 0.403

Best Count 31 3 0 1 1 4 9 0 1 0 0 0 0 0 0 0 0

Table 12: Full-Shot Comparison of different models with TOTO on the LSF benchmark datasets for each prediction length, with TOTO’s
Zero-Shot result in the first data column.
Key: Best results, Second-best results. Values marked with † use a window stride equal to the prediction length on the Electricity
dataset. “Best Count” row reports the number of times each model attains the best result for a given metric.

Model Best NLL Loss (% increase) ↓
Control 0.0%
No Variate-wise Attention 1.6%
No Robust Loss 11.1%
No Student-T Mixture 27.2%
No Causal Scaling 27.3%

Table 13: Relative change in NLL on held-out observability pretraining data when removing key design features of the TOTO architecture.

27.3% in NLL when we replace the causal scaler with a
naive global scaler. Replacing the Student-T mixture model
with a single Student-T output causes a similar NLL in-
crease of 27.2%. Interestingly, removing the robust loss
component and optimizing NLL alone actually leads to a
worse overall NLL, with an 11.1% increase; we speculate
this is because the robust loss stabilizes the training, as dis-
cussed in Section 3.1. Finally, removing the variate-wise
attention (i.e. making all the attention layers time-wise
while holding the parameter count constant) leads to a more
modest increase in NLL of 1.6%.
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